blob: 582bf4dc5747ce63ecd68df8f1b6e8ae56378cc0 [file] [log] [blame]
; RUN: opt < %s -loop-vectorize -pass-remarks=loop-vectorize -pass-remarks-analysis=loop-vectorize -pass-remarks-missed=loop-vectorize -mtriple aarch64-unknown-linux-gnu -mattr=+sve -S 2>%t | FileCheck %s -check-prefix=CHECK
; RUN: cat %t | FileCheck %s -check-prefix=CHECK-REMARK
; Reduction can be vectorized
; ADD
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
define i32 @add(i32* nocapture %a, i32* nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @add
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x i32>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x i32>
; CHECK: %[[ADD1:.*]] = add <vscale x 8 x i32> %[[LOAD1]]
; CHECK: %[[ADD2:.*]] = add <vscale x 8 x i32> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[ADD:.*]] = add <vscale x 8 x i32> %[[ADD2]], %[[ADD1]]
; CHECK-NEXT: call i32 @llvm.vector.reduce.add.nxv8i32(<vscale x 8 x i32> %[[ADD]])
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi i32 [ 2, %entry ], [ %add, %for.body ]
%arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv
%0 = load i32, i32* %arrayidx, align 4
%add = add nsw i32 %0, %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end: ; preds = %for.body, %entry
ret i32 %add
}
; OR
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
define i32 @or(i32* nocapture %a, i32* nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @or
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x i32>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x i32>
; CHECK: %[[OR1:.*]] = or <vscale x 8 x i32> %[[LOAD1]]
; CHECK: %[[OR2:.*]] = or <vscale x 8 x i32> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[OR:.*]] = or <vscale x 8 x i32> %[[OR2]], %[[OR1]]
; CHECK-NEXT: call i32 @llvm.vector.reduce.or.nxv8i32(<vscale x 8 x i32> %[[OR]])
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi i32 [ 2, %entry ], [ %or, %for.body ]
%arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv
%0 = load i32, i32* %arrayidx, align 4
%or = or i32 %0, %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end: ; preds = %for.body, %entry
ret i32 %or
}
; AND
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
define i32 @and(i32* nocapture %a, i32* nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @and
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x i32>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x i32>
; CHECK: %[[AND1:.*]] = and <vscale x 8 x i32> %[[LOAD1]]
; CHECK: %[[AND2:.*]] = and <vscale x 8 x i32> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[ABD:.*]] = and <vscale x 8 x i32> %[[ADD2]], %[[AND1]]
; CHECK-NEXT: call i32 @llvm.vector.reduce.and.nxv8i32(<vscale x 8 x i32> %[[ADD]])
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi i32 [ 2, %entry ], [ %and, %for.body ]
%arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv
%0 = load i32, i32* %arrayidx, align 4
%and = and i32 %0, %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end: ; preds = %for.body, %entry
ret i32 %and
}
; XOR
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
define i32 @xor(i32* nocapture %a, i32* nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @xor
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x i32>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x i32>
; CHECK: %[[XOR1:.*]] = xor <vscale x 8 x i32> %[[LOAD1]]
; CHECK: %[[XOR2:.*]] = xor <vscale x 8 x i32> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[XOR:.*]] = xor <vscale x 8 x i32> %[[XOR2]], %[[XOR1]]
; CHECK-NEXT: call i32 @llvm.vector.reduce.xor.nxv8i32(<vscale x 8 x i32> %[[XOR]])
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi i32 [ 2, %entry ], [ %xor, %for.body ]
%arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv
%0 = load i32, i32* %arrayidx, align 4
%xor = xor i32 %0, %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end: ; preds = %for.body, %entry
ret i32 %xor
}
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
; SMIN
define i32 @smin(i32* nocapture %a, i32* nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @smin
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x i32>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x i32>
; CHECK: %[[ICMP1:.*]] = icmp slt <vscale x 8 x i32> %[[LOAD1]]
; CHECK: %[[ICMP2:.*]] = icmp slt <vscale x 8 x i32> %[[LOAD2]]
; CHECK: %[[SEL1:.*]] = select <vscale x 8 x i1> %[[ICMP1]], <vscale x 8 x i32> %[[LOAD1]]
; CHECK: %[[SEL2:.*]] = select <vscale x 8 x i1> %[[ICMP2]], <vscale x 8 x i32> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[ICMP:.*]] = icmp slt <vscale x 8 x i32> %[[SEL1]], %[[SEL2]]
; CHECK-NEXT: %[[SEL:.*]] = select <vscale x 8 x i1> %[[ICMP]], <vscale x 8 x i32> %[[SEL1]], <vscale x 8 x i32> %[[SEL2]]
; CHECK-NEXT: call i32 @llvm.vector.reduce.smin.nxv8i32(<vscale x 8 x i32> %[[SEL]])
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.010 = phi i32 [ 2, %entry ], [ %.sroa.speculated, %for.body ]
%arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv
%0 = load i32, i32* %arrayidx, align 4
%cmp.i = icmp slt i32 %0, %sum.010
%.sroa.speculated = select i1 %cmp.i, i32 %0, i32 %sum.010
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end:
ret i32 %.sroa.speculated
}
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
; UMAX
define i32 @umax(i32* nocapture %a, i32* nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @umax
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x i32>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x i32>
; CHECK: %[[ICMP1:.*]] = icmp ugt <vscale x 8 x i32> %[[LOAD1]]
; CHECK: %[[ICMP2:.*]] = icmp ugt <vscale x 8 x i32> %[[LOAD2]]
; CHECK: %[[SEL1:.*]] = select <vscale x 8 x i1> %[[ICMP1]], <vscale x 8 x i32> %[[LOAD1]]
; CHECK: %[[SEL2:.*]] = select <vscale x 8 x i1> %[[ICMP2]], <vscale x 8 x i32> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[ICMP:.*]] = icmp ugt <vscale x 8 x i32> %[[SEL1]], %[[SEL2]]
; CHECK-NEXT: %[[SEL:.*]] = select <vscale x 8 x i1> %[[ICMP]], <vscale x 8 x i32> %[[SEL1]], <vscale x 8 x i32> %[[SEL2]]
; CHECK-NEXT: call i32 @llvm.vector.reduce.umax.nxv8i32(<vscale x 8 x i32> %[[SEL]])
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.010 = phi i32 [ 2, %entry ], [ %.sroa.speculated, %for.body ]
%arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv
%0 = load i32, i32* %arrayidx, align 4
%cmp.i = icmp ugt i32 %0, %sum.010
%.sroa.speculated = select i1 %cmp.i, i32 %0, i32 %sum.010
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end:
ret i32 %.sroa.speculated
}
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
; FADD (FAST)
define float @fadd_fast(float* noalias nocapture readonly %a, i64 %n) {
; CHECK-LABEL: @fadd_fast
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x float>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x float>
; CHECK: %[[ADD1:.*]] = fadd fast <vscale x 8 x float> %[[LOAD1]]
; CHECK: %[[ADD2:.*]] = fadd fast <vscale x 8 x float> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[ADD:.*]] = fadd fast <vscale x 8 x float> %[[ADD2]], %[[ADD1]]
; CHECK-NEXT: call fast float @llvm.vector.reduce.fadd.nxv8f32(float -0.000000e+00, <vscale x 8 x float> %[[ADD]])
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi float [ 0.000000e+00, %entry ], [ %add, %for.body ]
%arrayidx = getelementptr inbounds float, float* %a, i64 %iv
%0 = load float, float* %arrayidx, align 4
%add = fadd fast float %0, %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end:
ret float %add
}
; CHECK-REMARK: Scalable vectorization not supported for the reduction operations found in this loop. Using fixed-width vectorization instead.
; CHECK-REMARK: vectorized loop (vectorization width: 8, interleaved count: 2)
define bfloat @fadd_fast_bfloat(bfloat* noalias nocapture readonly %a, i64 %n) {
; CHECK-LABEL: @fadd_fast_bfloat
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <8 x bfloat>
; CHECK: %[[LOAD2:.*]] = load <8 x bfloat>
; CHECK: %[[FADD1:.*]] = fadd fast <8 x bfloat> %[[LOAD1]]
; CHECK: %[[FADD2:.*]] = fadd fast <8 x bfloat> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[RDX:.*]] = fadd fast <8 x bfloat> %[[FADD2]], %[[FADD1]]
; CHECK: call fast bfloat @llvm.vector.reduce.fadd.v8bf16(bfloat 0xR8000, <8 x bfloat> %[[RDX]])
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi bfloat [ 0.000000e+00, %entry ], [ %add, %for.body ]
%arrayidx = getelementptr inbounds bfloat, bfloat* %a, i64 %iv
%0 = load bfloat, bfloat* %arrayidx, align 4
%add = fadd fast bfloat %0, %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end:
ret bfloat %add
}
; FMIN (FAST)
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
define float @fmin_fast(float* noalias nocapture readonly %a, i64 %n) #0 {
; CHECK-LABEL: @fmin_fast
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x float>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x float>
; CHECK: %[[FCMP1:.*]] = fcmp olt <vscale x 8 x float> %[[LOAD1]]
; CHECK: %[[FCMP2:.*]] = fcmp olt <vscale x 8 x float> %[[LOAD2]]
; CHECK: %[[SEL1:.*]] = select <vscale x 8 x i1> %[[FCMP1]], <vscale x 8 x float> %[[LOAD1]]
; CHECK: %[[SEL2:.*]] = select <vscale x 8 x i1> %[[FCMP2]], <vscale x 8 x float> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[FCMP:.*]] = fcmp olt <vscale x 8 x float> %[[SEL1]], %[[SEL2]]
; CHECK-NEXT: %[[SEL:.*]] = select <vscale x 8 x i1> %[[FCMP]], <vscale x 8 x float> %[[SEL1]], <vscale x 8 x float> %[[SEL2]]
; CHECK-NEXT: call float @llvm.vector.reduce.fmin.nxv8f32(<vscale x 8 x float> %[[SEL]])
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi float [ 0.000000e+00, %entry ], [ %.sroa.speculated, %for.body ]
%arrayidx = getelementptr inbounds float, float* %a, i64 %iv
%0 = load float, float* %arrayidx, align 4
%cmp.i = fcmp olt float %0, %sum.07
%.sroa.speculated = select i1 %cmp.i, float %0, float %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end:
ret float %.sroa.speculated
}
; FMAX (FAST)
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
define float @fmax_fast(float* noalias nocapture readonly %a, i64 %n) #0 {
; CHECK-LABEL: @fmax_fast
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x float>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x float>
; CHECK: %[[FCMP1:.*]] = fcmp fast ogt <vscale x 8 x float> %[[LOAD1]]
; CHECK: %[[FCMP2:.*]] = fcmp fast ogt <vscale x 8 x float> %[[LOAD2]]
; CHECK: %[[SEL1:.*]] = select <vscale x 8 x i1> %[[FCMP1]], <vscale x 8 x float> %[[LOAD1]]
; CHECK: %[[SEL2:.*]] = select <vscale x 8 x i1> %[[FCMP2]], <vscale x 8 x float> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[FCMP:.*]] = fcmp fast ogt <vscale x 8 x float> %[[SEL1]], %[[SEL2]]
; CHECK-NEXT: %[[SEL:.*]] = select fast <vscale x 8 x i1> %[[FCMP]], <vscale x 8 x float> %[[SEL1]], <vscale x 8 x float> %[[SEL2]]
; CHECK-NEXT: call fast float @llvm.vector.reduce.fmax.nxv8f32(<vscale x 8 x float> %[[SEL]])
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi float [ 0.000000e+00, %entry ], [ %.sroa.speculated, %for.body ]
%arrayidx = getelementptr inbounds float, float* %a, i64 %iv
%0 = load float, float* %arrayidx, align 4
%cmp.i = fcmp fast ogt float %0, %sum.07
%.sroa.speculated = select i1 %cmp.i, float %0, float %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end:
ret float %.sroa.speculated
}
; Reduction cannot be vectorized
; MUL
; CHECK-REMARK: Scalable vectorization not supported for the reduction operations found in this loop. Using fixed-width vectorization instead.
; CHECK-REMARK: vectorized loop (vectorization width: 8, interleaved count: 2)
define i32 @mul(i32* nocapture %a, i32* nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @mul
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <8 x i32>
; CHECK: %[[LOAD2:.*]] = load <8 x i32>
; CHECK: %[[MUL1:.*]] = mul <8 x i32> %[[LOAD1]]
; CHECK: %[[MUL2:.*]] = mul <8 x i32> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[RDX:.*]] = mul <8 x i32> %[[MUL2]], %[[MUL1]]
; CHECK: call i32 @llvm.vector.reduce.mul.v8i32(<8 x i32> %[[RDX]])
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi i32 [ 2, %entry ], [ %mul, %for.body ]
%arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv
%0 = load i32, i32* %arrayidx, align 4
%mul = mul nsw i32 %0, %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end: ; preds = %for.body, %entry
ret i32 %mul
}
; Note: This test was added to ensure we always check the legality of reductions (end emit a warning if necessary) before checking for memory dependencies
; CHECK-REMARK: Scalable vectorization not supported for the reduction operations found in this loop. Using fixed-width vectorization instead.
; CHECK-REMARK: vectorized loop (vectorization width: 8, interleaved count: 2)
define i32 @memory_dependence(i32* noalias nocapture %a, i32* noalias nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @memory_dependence
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <8 x i32>
; CHECK: %[[LOAD2:.*]] = load <8 x i32>
; CHECK: %[[LOAD3:.*]] = load <8 x i32>
; CHECK: %[[LOAD4:.*]] = load <8 x i32>
; CHECK: %[[ADD1:.*]] = add nsw <8 x i32> %[[LOAD3]], %[[LOAD1]]
; CHECK: %[[ADD2:.*]] = add nsw <8 x i32> %[[LOAD4]], %[[LOAD2]]
; CHECK: %[[MUL1:.*]] = mul <8 x i32> %[[LOAD3]]
; CHECK: %[[MUL2:.*]] = mul <8 x i32> %[[LOAD4]]
; CHECK: middle.block:
; CHECK: %[[RDX:.*]] = mul <8 x i32> %[[MUL2]], %[[MUL1]]
; CHECK: call i32 @llvm.vector.reduce.mul.v8i32(<8 x i32> %[[RDX]])
entry:
br label %for.body
for.body:
%i = phi i64 [ %inc, %for.body ], [ 0, %entry ]
%sum = phi i32 [ %mul, %for.body ], [ 2, %entry ]
%arrayidx = getelementptr inbounds i32, i32* %a, i64 %i
%0 = load i32, i32* %arrayidx, align 4
%arrayidx1 = getelementptr inbounds i32, i32* %b, i64 %i
%1 = load i32, i32* %arrayidx1, align 4
%add = add nsw i32 %1, %0
%add2 = add nuw nsw i64 %i, 32
%arrayidx3 = getelementptr inbounds i32, i32* %a, i64 %add2
store i32 %add, i32* %arrayidx3, align 4
%mul = mul nsw i32 %1, %sum
%inc = add nuw nsw i64 %i, 1
%exitcond.not = icmp eq i64 %inc, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end:
ret i32 %mul
}
attributes #0 = { "no-nans-fp-math"="true" "no-signed-zeros-fp-math"="true" }
!0 = distinct !{!0, !1, !2, !3, !4}
!1 = !{!"llvm.loop.vectorize.width", i32 8}
!2 = !{!"llvm.loop.vectorize.scalable.enable", i1 true}
!3 = !{!"llvm.loop.interleave.count", i32 2}
!4 = !{!"llvm.loop.vectorize.enable", i1 true}