blob: 90d5a7c4f3b9745b0c097b39196631a75b7ba085 [file] [log] [blame]
//===-- TestRISCVEmulator.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "gtest/gtest.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/Disassembler.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Utility/ArchSpec.h"
#include "lldb/Utility/RegisterValue.h"
#include "Plugins/Instruction/RISCV/EmulateInstructionRISCV.h"
#include "Plugins/Process/Utility/RegisterInfoPOSIX_riscv64.h"
#include "Plugins/Process/Utility/lldb-riscv-register-enums.h"
using namespace llvm;
using namespace lldb;
using namespace lldb_private;
struct RISCVEmulatorTester : public EmulateInstructionRISCV, testing::Test {
RegisterInfoPOSIX_riscv64::GPR gpr;
RegisterInfoPOSIX_riscv64::FPR fpr;
uint8_t memory[1024] = {0};
RISCVEmulatorTester(std::string triple = "riscv64-unknown-linux-gnu")
: EmulateInstructionRISCV(ArchSpec(triple)) {
EmulateInstruction::SetReadRegCallback(ReadRegisterCallback);
EmulateInstruction::SetWriteRegCallback(WriteRegisterCallback);
EmulateInstruction::SetReadMemCallback(ReadMemoryCallback);
EmulateInstruction::SetWriteMemCallback(WriteMemoryCallback);
ClearAll();
}
static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton,
const RegisterInfo *reg_info,
RegisterValue &reg_value) {
RISCVEmulatorTester *tester = (RISCVEmulatorTester *)instruction;
uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
if (reg == gpr_x0_riscv)
reg_value.SetUInt(0, reg_info->byte_size);
if (reg >= gpr_pc_riscv && reg <= gpr_x31_riscv)
reg_value.SetUInt(tester->gpr.gpr[reg], reg_info->byte_size);
if (reg >= fpr_f0_riscv && reg <= fpr_f31_riscv)
reg_value.SetUInt(tester->fpr.fpr[reg - fpr_f0_riscv],
reg_info->byte_size);
if (reg == fpr_fcsr_riscv)
reg_value.SetUInt(tester->fpr.fcsr, reg_info->byte_size);
return true;
}
static bool WriteRegisterCallback(EmulateInstruction *instruction,
void *baton, const Context &context,
const RegisterInfo *reg_info,
const RegisterValue &reg_value) {
RISCVEmulatorTester *tester = (RISCVEmulatorTester *)instruction;
uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
if (reg >= gpr_pc_riscv && reg <= gpr_x31_riscv)
tester->gpr.gpr[reg] = reg_value.GetAsUInt64();
if (reg >= fpr_f0_riscv && reg <= fpr_f31_riscv)
tester->fpr.fpr[reg - fpr_f0_riscv] = reg_value.GetAsUInt64();
if (reg == fpr_fcsr_riscv)
tester->fpr.fcsr = reg_value.GetAsUInt32();
return true;
}
static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton,
const Context &context, addr_t addr,
void *dst, size_t length) {
RISCVEmulatorTester *tester = (RISCVEmulatorTester *)instruction;
assert(addr + length < sizeof(tester->memory));
memcpy(dst, tester->memory + addr, length);
return length;
};
static size_t WriteMemoryCallback(EmulateInstruction *instruction,
void *baton, const Context &context,
addr_t addr, const void *dst,
size_t length) {
RISCVEmulatorTester *tester = (RISCVEmulatorTester *)instruction;
assert(addr + length < sizeof(tester->memory));
memcpy(tester->memory + addr, dst, length);
return length;
};
bool DecodeAndExecute(uint32_t inst, bool ignore_cond) {
return llvm::transformOptional(
Decode(inst),
[&](DecodeResult res) { return Execute(res, ignore_cond); })
.value_or(false);
}
void ClearAll() {
memset(&gpr, 0, sizeof(gpr));
memset(&fpr, 0, sizeof(fpr));
memset(memory, 0, sizeof(memory));
}
};
TEST_F(RISCVEmulatorTester, testJAL) {
addr_t old_pc = 0x114514;
WritePC(old_pc);
// jal x1, -6*4
uint32_t inst = 0b11111110100111111111000011101111;
ASSERT_TRUE(DecodeAndExecute(inst, false));
auto x1 = gpr.gpr[1];
auto pc = ReadPC();
ASSERT_TRUE(pc.has_value());
ASSERT_EQ(x1, old_pc + 4);
ASSERT_EQ(*pc, old_pc + (-6 * 4));
}
constexpr uint32_t EncodeIType(uint32_t opcode, uint32_t funct3, uint32_t rd,
uint32_t rs1, uint32_t imm) {
return imm << 20 | rs1 << 15 | funct3 << 12 | rd << 7 | opcode;
}
constexpr uint32_t EncodeJALR(uint32_t rd, uint32_t rs1, int32_t offset) {
return EncodeIType(0b1100111, 0, rd, rs1, uint32_t(offset));
}
TEST_F(RISCVEmulatorTester, testJALR) {
addr_t old_pc = 0x114514;
addr_t old_x2 = 0x1024;
WritePC(old_pc);
gpr.gpr[2] = old_x2;
// jalr x1, x2(-255)
uint32_t inst = EncodeJALR(1, 2, -255);
ASSERT_TRUE(DecodeAndExecute(inst, false));
auto x1 = gpr.gpr[1];
auto pc = ReadPC();
ASSERT_TRUE(pc.has_value());
ASSERT_EQ(x1, old_pc + 4);
// JALR always zeros the bottom bit of the target address.
ASSERT_EQ(*pc, (old_x2 + (-255)) & (~1));
}
constexpr uint32_t EncodeBType(uint32_t opcode, uint32_t funct3, uint32_t rs1,
uint32_t rs2, uint32_t imm) {
uint32_t bimm = (imm & (0b1 << 11)) >> 4 | (imm & (0b11110)) << 7 |
(imm & (0b111111 << 5)) << 20 | (imm & (0b1 << 12)) << 19;
return rs2 << 20 | rs1 << 15 | funct3 << 12 | opcode | bimm;
}
constexpr uint32_t BEQ(uint32_t rs1, uint32_t rs2, int32_t offset) {
return EncodeBType(0b1100011, 0b000, rs1, rs2, uint32_t(offset));
}
constexpr uint32_t BNE(uint32_t rs1, uint32_t rs2, int32_t offset) {
return EncodeBType(0b1100011, 0b001, rs1, rs2, uint32_t(offset));
}
constexpr uint32_t BLT(uint32_t rs1, uint32_t rs2, int32_t offset) {
return EncodeBType(0b1100011, 0b100, rs1, rs2, uint32_t(offset));
}
constexpr uint32_t BGE(uint32_t rs1, uint32_t rs2, int32_t offset) {
return EncodeBType(0b1100011, 0b101, rs1, rs2, uint32_t(offset));
}
constexpr uint32_t BLTU(uint32_t rs1, uint32_t rs2, int32_t offset) {
return EncodeBType(0b1100011, 0b110, rs1, rs2, uint32_t(offset));
}
constexpr uint32_t BGEU(uint32_t rs1, uint32_t rs2, int32_t offset) {
return EncodeBType(0b1100011, 0b111, rs1, rs2, uint32_t(offset));
}
using EncoderB = uint32_t (*)(uint32_t rs1, uint32_t rs2, int32_t offset);
static void testBranch(RISCVEmulatorTester *tester, EncoderB encoder,
bool branched, uint64_t rs1, uint64_t rs2) {
// prepare test registers
addr_t old_pc = 0x114514;
tester->WritePC(old_pc);
tester->gpr.gpr[1] = rs1;
tester->gpr.gpr[2] = rs2;
// b<cmp> x1, x2, (-256)
uint32_t inst = encoder(1, 2, -256);
ASSERT_TRUE(tester->DecodeAndExecute(inst, false));
auto pc = tester->ReadPC();
ASSERT_TRUE(pc.has_value());
ASSERT_EQ(*pc, old_pc + (branched ? (-256) : 0));
}
#define GEN_BRANCH_TEST(name, rs1, rs2_branched, rs2_continued) \
TEST_F(RISCVEmulatorTester, test##name##Branched) { \
testBranch(this, name, true, rs1, rs2_branched); \
} \
TEST_F(RISCVEmulatorTester, test##name##Continued) { \
testBranch(this, name, false, rs1, rs2_continued); \
}
static void CheckRD(RISCVEmulatorTester *tester, uint64_t rd, uint64_t value) {
ASSERT_EQ(tester->gpr.gpr[rd], value);
}
template <typename T>
static void CheckMem(RISCVEmulatorTester *tester, uint64_t addr,
uint64_t value) {
auto mem = tester->ReadMem<T>(addr);
ASSERT_TRUE(mem.has_value());
ASSERT_EQ(*mem, value);
}
using RS1 = uint64_t;
using RS2 = uint64_t;
using PC = uint64_t;
using RDComputer = std::function<uint64_t(RS1, RS2, PC)>;
static void TestInst(RISCVEmulatorTester *tester, DecodeResult inst,
bool has_rs2, RDComputer rd_val) {
addr_t old_pc = 0x114514;
tester->WritePC(old_pc);
uint32_t rd = DecodeRD(inst.inst);
uint32_t rs1 = DecodeRS1(inst.inst);
uint32_t rs2 = 0;
uint64_t rs1_val = 0x19;
uint64_t rs2_val = 0x81;
if (rs1)
tester->gpr.gpr[rs1] = rs1_val;
if (has_rs2) {
rs2 = DecodeRS2(inst.inst);
if (rs2) {
if (rs1 == rs2)
rs2_val = rs1_val;
tester->gpr.gpr[rs2] = rs2_val;
}
}
ASSERT_TRUE(tester->Execute(inst, false));
CheckRD(tester, rd, rd_val(rs1_val, rs2 ? rs2_val : 0, old_pc));
}
template <typename T>
static void TestAtomic(RISCVEmulatorTester *tester, uint64_t inst, T rs1_val,
T rs2_val, T rd_expected, T mem_expected) {
// Atomic inst must have rs1 and rs2
uint32_t rd = DecodeRD(inst);
uint32_t rs1 = DecodeRS1(inst);
uint32_t rs2 = DecodeRS2(inst);
// addr was stored in rs1
uint64_t atomic_addr = 0x100;
tester->gpr.gpr[rs1] = atomic_addr;
tester->gpr.gpr[rs2] = rs2_val;
// Write and check rs1_val in atomic_addr
ASSERT_TRUE(tester->WriteMem<T>(atomic_addr, rs1_val));
CheckMem<T>(tester, atomic_addr, rs1_val);
ASSERT_TRUE(tester->DecodeAndExecute(inst, false));
CheckRD(tester, rd, rd_expected);
CheckMem<T>(tester, atomic_addr, mem_expected);
}
TEST_F(RISCVEmulatorTester, TestAtomicSequence) {
this->WritePC(0x0);
*(uint32_t *)this->memory = 0x100427af; // lr.w a5,(s0)
*(uint32_t *)(this->memory + 4) = 0x00079663; // bnez a5,12
*(uint32_t *)(this->memory + 8) = 0x1ce426af; // sc.w.aq a3,a4,(s0)
*(uint32_t *)(this->memory + 12) = 0xfe069ae3; // bnez a3,-12
ASSERT_TRUE(this->DecodeAndExecute(*(uint32_t *)this->memory, false));
ASSERT_EQ(this->gpr.gpr[0], uint64_t(16));
}
struct TestDecode {
uint32_t inst;
RISCVInst inst_type;
};
TEST_F(RISCVEmulatorTester, TestCDecode) {
std::vector<TestDecode> tests = {
{0x0000, INVALID{0x0000}},
{0x0010, RESERVED{0x0010}},
// ADDI4SPN here, decode as ADDI
{0x0024, ADDI{Rd{9}, Rs{2}, 8}},
{0x2084, FLD{Rd{9}, Rs{9}, 0}},
{0x4488, LW{Rd{10}, Rs{9}, 8}},
{0x6488, LD{Rd{10}, Rs{9}, 8}},
{0xA084, FSD{Rs{9}, Rs{9}, 0}},
{0xC488, SW{Rs{9}, Rs{10}, 8}},
{0xE488, SD{Rs{9}, Rs{10}, 8}},
{0x1001, NOP{0x1001}},
{0x1085, ADDI{Rd{1}, Rs{1}, uint32_t(-31)}},
{0x2081, ADDIW{Rd{1}, Rs{1}, 0}},
// ADDI16SP here, decode as ADDI
{0x7101, ADDI{Rd{2}, Rs{2}, uint32_t(-512)}},
{0x4081, ADDI{Rd{1}, Rs{0}, 0}},
{0x7081, LUI{Rd{1}, uint32_t(-131072)}},
{0x8085, SRLI{Rd{9}, Rs{9}, 1}},
{0x8485, SRAI{Rd{9}, Rs{9}, 1}},
{0x8881, ANDI{Rd{9}, Rs{9}, 0}},
{0x8C85, SUB{Rd{9}, Rs{9}, Rs{9}}},
{0x8CA5, XOR{Rd{9}, Rs{9}, Rs{9}}},
{0x8CC5, OR{Rd{9}, Rs{9}, Rs{9}}},
{0x8CE5, AND{Rd{9}, Rs{9}, Rs{9}}},
{0x9C85, SUBW{Rd{9}, Rs{9}, Rs{9}}},
{0x9CA5, ADDW{Rd{9}, Rs{9}, Rs{9}}},
// C.J here, decoded as JAL
{0xA001, JAL{Rd{0}, 0}},
{0xC081, B{Rs{9}, Rs{0}, 0, 0b000}},
{0xE081, B{Rs{9}, Rs{0}, 0, 0b001}},
{0x1082, SLLI{Rd{1}, Rs{1}, 32}},
{0x1002, HINT{0x1002}},
// SLLI64 here, decoded as HINT if not in RV128
{0x0082, HINT{0x0082}},
// FLDSP here, decoded as FLD
{0x2082, FLD{Rd{1}, Rs{2}, 0}},
// LWSP here, decoded as LW
{0x4082, LW{Rd{1}, Rs{2}, 0}},
// LDSP here, decoded as LD
{0x6082, LD{Rd{1}, Rs{2}, 0}},
// C.JR here, decoded as JALR
{0x8082, JALR{Rd{0}, Rs{1}, 0}},
// C.MV here, decoded as ADD
{0x8086, ADD{Rd{1}, Rs{0}, Rs{1}}},
{0x9002, EBREAK{0x9002}},
{0x9082, JALR{Rd{1}, Rs{1}, 0}},
{0x9086, ADD{Rd{1}, Rs{1}, Rs{1}}},
// C.FSDSP here, decoded as FSD
{0xA006, FSD{Rs{2}, Rs{1}, 0}},
// C.SWSP here, decoded as SW
{0xC006, SW{Rs{2}, Rs{1}, 0}},
// C.SDSP here, decoded as SD
{0xE006, SD{Rs{2}, Rs{1}, 0}},
};
for (auto i : tests) {
auto decode = this->Decode(i.inst);
ASSERT_TRUE(decode.has_value());
ASSERT_EQ(decode->decoded, i.inst_type);
}
}
class RISCVEmulatorTester32 : public RISCVEmulatorTester {
public:
RISCVEmulatorTester32() : RISCVEmulatorTester("riscv32-unknown-linux-gnu") {}
};
TEST_F(RISCVEmulatorTester32, TestCDecodeRV32) {
std::vector<TestDecode> tests = {
{0x6002, FLW{Rd{0}, Rs{2}, 0}},
{0xE006, FSW{Rs{2}, Rs{1}, 0}},
{0x6000, FLW{Rd{8}, Rs{8}, 0}},
{0xE000, FSW{Rs{8}, Rs{8}, 0}},
{0x2084, FLD{Rd{9}, Rs{9}, 0}},
{0xA084, FSD{Rs{9}, Rs{9}, 0}},
{0x2082, FLD{Rd{1}, Rs{2}, 0}},
{0xA006, FSD{Rs{2}, Rs{1}, 0}},
};
for (auto i : tests) {
auto decode = this->Decode(i.inst);
ASSERT_TRUE(decode.has_value());
ASSERT_EQ(decode->decoded, i.inst_type);
}
}
// GEN_BRANCH_TEST(opcode, imm1, imm2, imm3):
// It should branch for instruction `opcode imm1, imm2`
// It should do nothing for instruction `opcode imm1, imm3`
GEN_BRANCH_TEST(BEQ, 1, 1, 0)
GEN_BRANCH_TEST(BNE, 1, 0, 1)
GEN_BRANCH_TEST(BLT, -2, 1, -3)
GEN_BRANCH_TEST(BGE, -2, -3, 1)
GEN_BRANCH_TEST(BLTU, -2, -1, 1)
GEN_BRANCH_TEST(BGEU, -2, 1, -1)
struct TestData {
uint32_t inst;
std::string name;
bool has_rs2;
RDComputer rd_val;
};
TEST_F(RISCVEmulatorTester, TestDecodeAndExcute) {
std::vector<TestData> tests = {
// RV32I & RV64I Tests
{0x00010113, "ADDI", false, [](RS1 rs1, RS2, PC) { return rs1 + 0; }},
{0x00023517, "AUIPC", false, [](RS1, RS2, PC pc) { return pc + 143360; }},
{0x0006079b, "ADDIW", false, [](RS1 rs1, RS2, PC) { return rs1 + 0; }},
{0x00110837, "LUI", false, [](RS1, RS2, PC pc) { return 1114112; }},
{0x00147513, "ANDI", false, [](RS1 rs1, RS2, PC) { return rs1 & 1; }},
{0x00153513, "SLTIU", false, [](RS1 rs1, RS2, PC) { return 0; }},
{0x00256513, "ORI", false, [](RS1 rs1, RS2, PC) { return rs1 | 2; }},
{0x00451a13, "SLLI", false, [](RS1 rs1, RS2, PC) { return rs1 << 4; }},
{0x00455693, "SRLI", false, [](RS1 rs1, RS2, PC) { return rs1 >> 4; }},
{0x00a035b3, "SLTU", true, [](RS1 rs1, RS2 rs2, PC) { return rs2 != 0; }},
{0x00b50633, "ADD", true, [](RS1 rs1, RS2 rs2, PC) { return rs1 + rs2; }},
{0x40d507b3, "SUB", true, [](RS1 rs1, RS2 rs2, PC) { return rs1 - rs2; }},
// RV32M & RV64M Tests
{0x02f787b3, "MUL", true, [](RS1 rs1, RS2 rs2, PC) { return rs1 * rs2; }},
{0x2F797B3, "MULH", true, [](RS1 rs1, RS2 rs2, PC) { return 0; }},
{0x2F7A7B3, "MULHSU", true, [](RS1 rs1, RS2 rs2, PC) { return 0; }},
{0x2F7B7B3, "MULHU", true, [](RS1 rs1, RS2 rs2, PC) { return 0; }},
{0x02f747b3, "DIV", true, [](RS1 rs1, RS2 rs2, PC) { return rs1 / rs2; }},
{0x02f757b3, "DIVU", true,
[](RS1 rs1, RS2 rs2, PC) { return rs1 / rs2; }},
{0x02f767b3, "REM", true, [](RS1 rs1, RS2 rs2, PC) { return rs1 % rs2; }},
{0x02f777b3, "REMU", true,
[](RS1 rs1, RS2 rs2, PC) { return rs1 % rs2; }},
{0x02f787bb, "MULW", true,
[](RS1 rs1, RS2 rs2, PC) { return rs1 * rs2; }},
{0x02f747bb, "DIVW", true,
[](RS1 rs1, RS2 rs2, PC) { return rs1 / rs2; }},
{0x02f757bb, "DIVUW", true,
[](RS1 rs1, RS2 rs2, PC) { return rs1 / rs2; }},
{0x02f767bb, "REMW", true,
[](RS1 rs1, RS2 rs2, PC) { return rs1 % rs2; }},
{0x02f777bb, "REMUW", true,
[](RS1 rs1, RS2 rs2, PC) { return rs1 % rs2; }},
};
for (auto i : tests) {
auto decode = this->Decode(i.inst);
ASSERT_TRUE(decode.has_value());
std::string name = decode->pattern.name;
ASSERT_EQ(name, i.name);
TestInst(this, *decode, i.has_rs2, i.rd_val);
}
}
TEST_F(RISCVEmulatorTester, TestAMOSWAP) {
TestAtomic<uint32_t>(this, 0x8F7282F, 0x1, 0x2, 0x1, 0x2);
TestAtomic<uint64_t>(this, 0x8F7382F, 0x1, 0x2, 0x1, 0x2);
}
TEST_F(RISCVEmulatorTester, TestAMOADD) {
TestAtomic<uint32_t>(this, 0xF7282F, 0x1, 0x2, 0x1, 0x3);
TestAtomic<uint64_t>(this, 0xF7382F, 0x1, 0x2, 0x1, 0x3);
}
TEST_F(RISCVEmulatorTester, TestAMOXOR) {
TestAtomic<uint32_t>(this, 0x20F7282F, 0x1, 0x2, 0x1, 0x3);
TestAtomic<uint32_t>(this, 0x20F7382F, 0x1, 0x2, 0x1, 0x3);
}
TEST_F(RISCVEmulatorTester, TestAMOAND) {
TestAtomic<uint32_t>(this, 0x60F7282F, 0x1, 0x2, 0x1, 0x0);
TestAtomic<uint64_t>(this, 0x60F7382F, 0x1, 0x2, 0x1, 0x0);
}
TEST_F(RISCVEmulatorTester, TestAMOOR) {
TestAtomic<uint32_t>(this, 0x40F7282F, 0x1, 0x2, 0x1, 0x3);
TestAtomic<uint32_t>(this, 0x40F7382F, 0x1, 0x2, 0x1, 0x3);
}
TEST_F(RISCVEmulatorTester, TestAMOMIN) {
TestAtomic<uint32_t>(this, 0x80F7282F, 0x1, 0x2, 0x1, 0x1);
TestAtomic<uint64_t>(this, 0x80F7382F, 0x1, 0x2, 0x1, 0x1);
}
TEST_F(RISCVEmulatorTester, TestAMOMAX) {
TestAtomic<uint32_t>(this, 0xA0F7282F, 0x1, 0x2, 0x1, 0x2);
TestAtomic<uint64_t>(this, 0xA0F7382F, 0x1, 0x2, 0x1, 0x2);
}
TEST_F(RISCVEmulatorTester, TestAMOMINU) {
TestAtomic<uint32_t>(this, 0xC0F7282F, 0x1, 0x2, 0x1, 0x1);
TestAtomic<uint64_t>(this, 0xC0F7382F, 0x1, 0x2, 0x1, 0x1);
}
TEST_F(RISCVEmulatorTester, TestAMOMAXU) {
TestAtomic<uint32_t>(this, 0xE0F7282F, 0x1, 0x2, 0x1, 0x2);
TestAtomic<uint64_t>(this, 0xE0F7382F, 0x1, 0x2, 0x1, 0x2);
}
template <typename T> struct F_D_CalInst {
uint32_t inst;
std::string name;
T rs1_val;
T rs2_val;
T rd_val;
};
using FloatCalInst = F_D_CalInst<float>;
using DoubleCalInst = F_D_CalInst<double>;
template <typename T>
static void TestF_D_CalInst(RISCVEmulatorTester *tester, DecodeResult inst,
T rs1_val, T rs2_val, T rd_exp) {
std::vector<std::string> CMPs = {"FEQ_S", "FLT_S", "FLE_S",
"FEQ_D", "FLT_D", "FLE_D"};
std::vector<std::string> FMAs = {"FMADD_S", "FMSUB_S", "FNMSUB_S",
"FNMADD_S", "FMADD_D", "FMSUB_D",
"FNMSUB_D", "FNMADD_D"};
uint32_t rd = DecodeRD(inst.inst);
uint32_t rs1 = DecodeRS1(inst.inst);
uint32_t rs2 = DecodeRS2(inst.inst);
APFloat ap_rs1_val(rs1_val);
APFloat ap_rs2_val(rs2_val);
APFloat ap_rs3_val(0.0f);
static_assert(std::is_same_v<T, float> || std::is_same_v<T, double>,
"T should be float or double");
if constexpr (std::is_same_v<T, float>)
ap_rs3_val = APFloat(0.5f);
if constexpr (std::is_same_v<T, double>)
ap_rs3_val = APFloat(0.5);
if (rs1)
tester->fpr.fpr[rs1] = ap_rs1_val.bitcastToAPInt().getZExtValue();
if (rs2)
tester->fpr.fpr[rs2] = ap_rs2_val.bitcastToAPInt().getZExtValue();
for (auto i : FMAs) {
if (inst.pattern.name == i) {
uint32_t rs3 = DecodeRS3(inst.inst);
tester->fpr.fpr[rs3] = ap_rs3_val.bitcastToAPInt().getZExtValue();
}
}
ASSERT_TRUE(tester->Execute(inst, false));
for (auto i : CMPs) {
if (inst.pattern.name == i) {
ASSERT_EQ(tester->gpr.gpr[rd], rd_exp);
return;
}
}
if constexpr (std::is_same_v<T, float>) {
APInt apInt(32, tester->fpr.fpr[rd]);
APFloat rd_val(apInt.bitsToFloat());
ASSERT_EQ(rd_val.convertToFloat(), rd_exp);
}
if constexpr (std::is_same_v<T, double>) {
APInt apInt(64, tester->fpr.fpr[rd]);
APFloat rd_val(apInt.bitsToDouble());
ASSERT_EQ(rd_val.convertToDouble(), rd_exp);
}
}
TEST_F(RISCVEmulatorTester, TestFloatInst) {
std::vector<FloatCalInst> tests = {
{0x21F253, "FADD_S", 0.5f, 0.5f, 1.0f},
{0x821F253, "FSUB_S", 1.0f, 0.5f, 0.5f},
{0x1021F253, "FMUL_S", 0.5f, 0.5f, 0.25f},
{0x1821F253, "FDIV_S", 0.1f, 0.1f, 1.0f},
{0x20218253, "FSGNJ_S", 0.5f, 0.2f, 0.5f},
{0x20219253, "FSGNJN_S", 0.5f, -1.0f, 0.5f},
{0x2021A253, "FSGNJX_S", -0.5f, -0.5f, 0.5f},
{0x2021A253, "FSGNJX_S", -0.5f, 0.5f, -0.5f},
{0x28218253, "FMIN_S", -0.5f, 0.5f, -0.5f},
{0x28218253, "FMIN_S", -0.5f, -0.6f, -0.6f},
{0x28218253, "FMIN_S", 0.5f, 0.6f, 0.5f},
{0x28219253, "FMAX_S", -0.5f, -0.6f, -0.5f},
{0x28219253, "FMAX_S", 0.5f, 0.6f, 0.6f},
{0x28219253, "FMAX_S", 0.5f, -0.6f, 0.5f},
{0xA021A253, "FEQ_S", 0.5f, 0.5f, 1},
{0xA021A253, "FEQ_S", 0.5f, -0.5f, 0},
{0xA021A253, "FEQ_S", -0.5f, 0.5f, 0},
{0xA021A253, "FEQ_S", 0.4f, 0.5f, 0},
{0xA0219253, "FLT_S", 0.4f, 0.5f, 1},
{0xA0219253, "FLT_S", 0.5f, 0.5f, 0},
{0xA0218253, "FLE_S", 0.4f, 0.5f, 1},
{0xA0218253, "FLE_S", 0.5f, 0.5f, 1},
{0x4021F243, "FMADD_S", 0.5f, 0.5f, 0.75f},
{0x4021F247, "FMSUB_S", 0.5f, 0.5f, -0.25f},
{0x4021F24B, "FNMSUB_S", 0.5f, 0.5f, 0.25f},
{0x4021F24F, "FNMADD_S", 0.5f, 0.5f, -0.75f},
};
for (auto i : tests) {
auto decode = this->Decode(i.inst);
ASSERT_TRUE(decode.has_value());
std::string name = decode->pattern.name;
ASSERT_EQ(name, i.name);
TestF_D_CalInst(this, *decode, i.rs1_val, i.rs2_val, i.rd_val);
}
}
TEST_F(RISCVEmulatorTester, TestDoubleInst) {
std::vector<DoubleCalInst> tests = {
{0x221F253, "FADD_D", 0.5, 0.5, 1.0},
{0xA21F253, "FSUB_D", 1.0, 0.5, 0.5},
{0x1221F253, "FMUL_D", 0.5, 0.5, 0.25},
{0x1A21F253, "FDIV_D", 0.1, 0.1, 1.0},
{0x22218253, "FSGNJ_D", 0.5, 0.2, 0.5},
{0x22219253, "FSGNJN_D", 0.5, -1.0, 0.5},
{0x2221A253, "FSGNJX_D", -0.5, -0.5, 0.5},
{0x2221A253, "FSGNJX_D", -0.5, 0.5, -0.5},
{0x2A218253, "FMIN_D", -0.5, 0.5, -0.5},
{0x2A218253, "FMIN_D", -0.5, -0.6, -0.6},
{0x2A218253, "FMIN_D", 0.5, 0.6, 0.5},
{0x2A219253, "FMAX_D", -0.5, -0.6, -0.5},
{0x2A219253, "FMAX_D", 0.5, 0.6, 0.6},
{0x2A219253, "FMAX_D", 0.5, -0.6, 0.5},
{0xA221A253, "FEQ_D", 0.5, 0.5, 1},
{0xA221A253, "FEQ_D", 0.5, -0.5, 0},
{0xA221A253, "FEQ_D", -0.5, 0.5, 0},
{0xA221A253, "FEQ_D", 0.4, 0.5, 0},
{0xA2219253, "FLT_D", 0.4, 0.5, 1},
{0xA2219253, "FLT_D", 0.5, 0.5, 0},
{0xA2218253, "FLE_D", 0.4, 0.5, 1},
{0xA2218253, "FLE_D", 0.5, 0.5, 1},
{0x4221F243, "FMADD_D", 0.5, 0.5, 0.75},
{0x4221F247, "FMSUB_D", 0.5, 0.5, -0.25},
{0x4221F24B, "FNMSUB_D", 0.5, 0.5, 0.25},
{0x4221F24F, "FNMADD_D", 0.5, 0.5, -0.75},
};
for (auto i : tests) {
auto decode = this->Decode(i.inst);
ASSERT_TRUE(decode.has_value());
std::string name = decode->pattern.name;
ASSERT_EQ(name, i.name);
TestF_D_CalInst(this, *decode, i.rs1_val, i.rs2_val, i.rd_val);
}
}
template <typename T>
static void TestInverse(RISCVEmulatorTester *tester, uint32_t f_reg,
uint32_t x_reg, DecodeResult f2i, DecodeResult i2f,
APFloat apf_val) {
uint64_t exp_x;
if constexpr (std::is_same_v<T, float>)
exp_x = uint64_t(apf_val.convertToFloat());
if constexpr (std::is_same_v<T, double>)
exp_x = uint64_t(apf_val.convertToDouble());
T exp_f = T(exp_x);
// convert float/double to int.
tester->fpr.fpr[f_reg] = apf_val.bitcastToAPInt().getZExtValue();
ASSERT_TRUE(tester->Execute(f2i, false));
ASSERT_EQ(tester->gpr.gpr[x_reg], exp_x);
// then convert int to float/double back.
ASSERT_TRUE(tester->Execute(i2f, false));
ASSERT_EQ(tester->fpr.fpr[f_reg],
APFloat(exp_f).bitcastToAPInt().getZExtValue());
}
struct FCVTInst {
uint32_t f2i;
uint32_t i2f;
APFloat data;
bool isDouble;
};
TEST_F(RISCVEmulatorTester, TestFCVT) {
std::vector<FCVTInst> tests{
// FCVT_W_S and FCVT_S_W
{0xC000F0D3, 0xD000F0D3, APFloat(12.0f), false},
// FCVT_WU_S and FCVT_S_WU
{0xC010F0D3, 0xD010F0D3, APFloat(12.0f), false},
// FCVT_L_S and FCVT_S_L
{0xC020F0D3, 0xD020F0D3, APFloat(12.0f), false},
// FCVT_LU_S and FCVT_S_LU
{0xC030F0D3, 0xD030F0D3, APFloat(12.0f), false},
// FCVT_W_D and FCVT_D_W
{0xC200F0D3, 0xD200F0D3, APFloat(12.0), true},
// FCVT_WU_D and FCVT_D_WU
{0xC210F0D3, 0xD210F0D3, APFloat(12.0), true},
// FCVT_L_D and FCVT_D_L
{0xC220F0D3, 0xD220F0D3, APFloat(12.0), true},
// FCVT_LU_D and FCVT_D_LU
{0xC230F0D3, 0xD230F0D3, APFloat(12.0), true},
};
for (auto i : tests) {
auto f2i = this->Decode(i.f2i);
auto i2f = this->Decode(i.i2f);
ASSERT_TRUE(f2i.has_value());
ASSERT_TRUE(i2f.has_value());
uint32_t f_reg = DecodeRS1((*f2i).inst);
uint32_t x_reg = DecodeRS1((*i2f).inst);
if (i.isDouble)
TestInverse<double>(this, f_reg, x_reg, *f2i, *i2f, i.data);
else
TestInverse<float>(this, f_reg, x_reg, *f2i, *i2f, i.data);
}
}
TEST_F(RISCVEmulatorTester, TestFDInverse) {
// FCVT_S_D
auto d2f = this->Decode(0x4010F0D3);
// FCVT_S_D
auto f2d = this->Decode(0x4200F0D3);
ASSERT_TRUE(d2f.has_value());
ASSERT_TRUE(f2d.has_value());
auto data = APFloat(12.0);
uint32_t reg = DecodeRS1((*d2f).inst);
float exp_f = 12.0f;
double exp_d = 12.0;
// double to float
this->fpr.fpr[reg] = data.bitcastToAPInt().getZExtValue();
ASSERT_TRUE(this->Execute(*d2f, false));
ASSERT_EQ(this->fpr.fpr[reg], APFloat(exp_f).bitcastToAPInt().getZExtValue());
// float to double
ASSERT_TRUE(this->Execute(*f2d, false));
ASSERT_EQ(this->fpr.fpr[reg], APFloat(exp_d).bitcastToAPInt().getZExtValue());
}
TEST_F(RISCVEmulatorTester, TestFloatLSInst) {
uint32_t FLWInst = 0x1A207; // imm = 0
uint32_t FSWInst = 0x21A827; // imm = 16
APFloat apf(12.0f);
uint64_t bits = apf.bitcastToAPInt().getZExtValue();
*(uint64_t *)this->memory = bits;
auto decode = this->Decode(FLWInst);
ASSERT_TRUE(decode.has_value());
std::string name = decode->pattern.name;
ASSERT_EQ(name, "FLW");
ASSERT_TRUE(this->Execute(*decode, false));
ASSERT_EQ(this->fpr.fpr[DecodeRD(FLWInst)], bits);
this->fpr.fpr[DecodeRS2(FSWInst)] = bits;
decode = this->Decode(FSWInst);
ASSERT_TRUE(decode.has_value());
name = decode->pattern.name;
ASSERT_EQ(name, "FSW");
ASSERT_TRUE(this->Execute(*decode, false));
ASSERT_EQ(*(uint32_t *)(this->memory + 16), bits);
}
TEST_F(RISCVEmulatorTester, TestDoubleLSInst) {
uint32_t FLDInst = 0x1B207; // imm = 0
uint32_t FSDInst = 0x21B827; // imm = 16
APFloat apf(12.0);
uint64_t bits = apf.bitcastToAPInt().getZExtValue();
*(uint64_t *)this->memory = bits;
auto decode = this->Decode(FLDInst);
ASSERT_TRUE(decode.has_value());
std::string name = decode->pattern.name;
ASSERT_EQ(name, "FLD");
ASSERT_TRUE(this->Execute(*decode, false));
ASSERT_EQ(this->fpr.fpr[DecodeRD(FLDInst)], bits);
this->fpr.fpr[DecodeRS2(FSDInst)] = bits;
decode = this->Decode(FSDInst);
ASSERT_TRUE(decode.has_value());
name = decode->pattern.name;
ASSERT_EQ(name, "FSD");
ASSERT_TRUE(this->Execute(*decode, false));
ASSERT_EQ(*(uint64_t *)(this->memory + 16), bits);
}
TEST_F(RISCVEmulatorTester, TestFMV_X_WInst) {
auto FMV_X_WInst = 0xE0018253;
APFloat apf(12.0f);
auto exp_bits = apf.bitcastToAPInt().getZExtValue();
this->fpr.fpr[DecodeRS1(FMV_X_WInst)] = NanBoxing(exp_bits);
auto decode = this->Decode(FMV_X_WInst);
ASSERT_TRUE(decode.has_value());
std::string name = decode->pattern.name;
ASSERT_EQ(name, "FMV_X_W");
ASSERT_TRUE(this->Execute(*decode, false));
ASSERT_EQ(this->gpr.gpr[DecodeRD(FMV_X_WInst)], exp_bits);
}
TEST_F(RISCVEmulatorTester, TestFMV_X_DInst) {
auto FMV_X_DInst = 0xE2018253;
APFloat apf(12.0);
auto exp_bits = apf.bitcastToAPInt().getZExtValue();
this->fpr.fpr[DecodeRS1(FMV_X_DInst)] = exp_bits;
auto decode = this->Decode(FMV_X_DInst);
ASSERT_TRUE(decode.has_value());
std::string name = decode->pattern.name;
ASSERT_EQ(name, "FMV_X_D");
ASSERT_TRUE(this->Execute(*decode, false));
ASSERT_EQ(this->gpr.gpr[DecodeRD(FMV_X_DInst)], exp_bits);
}
TEST_F(RISCVEmulatorTester, TestFMV_W_XInst) {
auto FMV_W_XInst = 0xF0018253;
APFloat apf(12.0f);
uint64_t exp_bits = NanUnBoxing(apf.bitcastToAPInt().getZExtValue());
this->gpr.gpr[DecodeRS1(FMV_W_XInst)] = exp_bits;
auto decode = this->Decode(FMV_W_XInst);
ASSERT_TRUE(decode.has_value());
std::string name = decode->pattern.name;
ASSERT_EQ(name, "FMV_W_X");
ASSERT_TRUE(this->Execute(*decode, false));
ASSERT_EQ(this->fpr.fpr[DecodeRD(FMV_W_XInst)], exp_bits);
}
TEST_F(RISCVEmulatorTester, TestFMV_D_XInst) {
auto FMV_D_XInst = 0xF2018253;
APFloat apf(12.0);
uint64_t bits = apf.bitcastToAPInt().getZExtValue();
this->gpr.gpr[DecodeRS1(FMV_D_XInst)] = bits;
auto decode = this->Decode(FMV_D_XInst);
ASSERT_TRUE(decode.has_value());
std::string name = decode->pattern.name;
ASSERT_EQ(name, "FMV_D_X");
ASSERT_TRUE(this->Execute(*decode, false));
ASSERT_EQ(this->fpr.fpr[DecodeRD(FMV_D_XInst)], bits);
}