|  | //===-- Process.cpp -------------------------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include <atomic> | 
|  | #include <memory> | 
|  | #include <mutex> | 
|  | #include <optional> | 
|  |  | 
|  | #include "llvm/ADT/ScopeExit.h" | 
|  | #include "llvm/Support/ScopedPrinter.h" | 
|  | #include "llvm/Support/Threading.h" | 
|  |  | 
|  | #include "lldb/Breakpoint/BreakpointLocation.h" | 
|  | #include "lldb/Breakpoint/StoppointCallbackContext.h" | 
|  | #include "lldb/Core/Debugger.h" | 
|  | #include "lldb/Core/Module.h" | 
|  | #include "lldb/Core/ModuleSpec.h" | 
|  | #include "lldb/Core/PluginManager.h" | 
|  | #include "lldb/Core/Progress.h" | 
|  | #include "lldb/Core/Telemetry.h" | 
|  | #include "lldb/Expression/DiagnosticManager.h" | 
|  | #include "lldb/Expression/DynamicCheckerFunctions.h" | 
|  | #include "lldb/Expression/UserExpression.h" | 
|  | #include "lldb/Expression/UtilityFunction.h" | 
|  | #include "lldb/Host/ConnectionFileDescriptor.h" | 
|  | #include "lldb/Host/FileSystem.h" | 
|  | #include "lldb/Host/Host.h" | 
|  | #include "lldb/Host/HostInfo.h" | 
|  | #include "lldb/Host/OptionParser.h" | 
|  | #include "lldb/Host/Pipe.h" | 
|  | #include "lldb/Host/Terminal.h" | 
|  | #include "lldb/Host/ThreadLauncher.h" | 
|  | #include "lldb/Interpreter/CommandInterpreter.h" | 
|  | #include "lldb/Interpreter/OptionArgParser.h" | 
|  | #include "lldb/Interpreter/OptionValueProperties.h" | 
|  | #include "lldb/Symbol/Function.h" | 
|  | #include "lldb/Symbol/Symbol.h" | 
|  | #include "lldb/Target/ABI.h" | 
|  | #include "lldb/Target/AssertFrameRecognizer.h" | 
|  | #include "lldb/Target/DynamicLoader.h" | 
|  | #include "lldb/Target/InstrumentationRuntime.h" | 
|  | #include "lldb/Target/JITLoader.h" | 
|  | #include "lldb/Target/JITLoaderList.h" | 
|  | #include "lldb/Target/Language.h" | 
|  | #include "lldb/Target/LanguageRuntime.h" | 
|  | #include "lldb/Target/MemoryHistory.h" | 
|  | #include "lldb/Target/MemoryRegionInfo.h" | 
|  | #include "lldb/Target/OperatingSystem.h" | 
|  | #include "lldb/Target/Platform.h" | 
|  | #include "lldb/Target/Process.h" | 
|  | #include "lldb/Target/RegisterContext.h" | 
|  | #include "lldb/Target/StopInfo.h" | 
|  | #include "lldb/Target/StructuredDataPlugin.h" | 
|  | #include "lldb/Target/SystemRuntime.h" | 
|  | #include "lldb/Target/Target.h" | 
|  | #include "lldb/Target/TargetList.h" | 
|  | #include "lldb/Target/Thread.h" | 
|  | #include "lldb/Target/ThreadPlan.h" | 
|  | #include "lldb/Target/ThreadPlanBase.h" | 
|  | #include "lldb/Target/ThreadPlanCallFunction.h" | 
|  | #include "lldb/Target/ThreadPlanStack.h" | 
|  | #include "lldb/Target/UnixSignals.h" | 
|  | #include "lldb/Target/VerboseTrapFrameRecognizer.h" | 
|  | #include "lldb/Utility/AddressableBits.h" | 
|  | #include "lldb/Utility/Event.h" | 
|  | #include "lldb/Utility/LLDBLog.h" | 
|  | #include "lldb/Utility/Log.h" | 
|  | #include "lldb/Utility/NameMatches.h" | 
|  | #include "lldb/Utility/ProcessInfo.h" | 
|  | #include "lldb/Utility/SelectHelper.h" | 
|  | #include "lldb/Utility/State.h" | 
|  | #include "lldb/Utility/Timer.h" | 
|  |  | 
|  | using namespace lldb; | 
|  | using namespace lldb_private; | 
|  | using namespace std::chrono; | 
|  |  | 
|  | class ProcessOptionValueProperties | 
|  | : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> { | 
|  | public: | 
|  | ProcessOptionValueProperties(llvm::StringRef name) : Cloneable(name) {} | 
|  |  | 
|  | const Property * | 
|  | GetPropertyAtIndex(size_t idx, | 
|  | const ExecutionContext *exe_ctx) const override { | 
|  | // When getting the value for a key from the process options, we will | 
|  | // always try and grab the setting from the current process if there is | 
|  | // one. Else we just use the one from this instance. | 
|  | if (exe_ctx) { | 
|  | Process *process = exe_ctx->GetProcessPtr(); | 
|  | if (process) { | 
|  | ProcessOptionValueProperties *instance_properties = | 
|  | static_cast<ProcessOptionValueProperties *>( | 
|  | process->GetValueProperties().get()); | 
|  | if (this != instance_properties) | 
|  | return instance_properties->ProtectedGetPropertyAtIndex(idx); | 
|  | } | 
|  | } | 
|  | return ProtectedGetPropertyAtIndex(idx); | 
|  | } | 
|  | }; | 
|  |  | 
|  | static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = { | 
|  | { | 
|  | eFollowParent, | 
|  | "parent", | 
|  | "Continue tracing the parent process and detach the child.", | 
|  | }, | 
|  | { | 
|  | eFollowChild, | 
|  | "child", | 
|  | "Trace the child process and detach the parent.", | 
|  | }, | 
|  | }; | 
|  |  | 
|  | #define LLDB_PROPERTIES_process | 
|  | #include "TargetProperties.inc" | 
|  |  | 
|  | enum { | 
|  | #define LLDB_PROPERTIES_process | 
|  | #include "TargetPropertiesEnum.inc" | 
|  | ePropertyExperimental, | 
|  | }; | 
|  |  | 
|  | #define LLDB_PROPERTIES_process_experimental | 
|  | #include "TargetProperties.inc" | 
|  |  | 
|  | enum { | 
|  | #define LLDB_PROPERTIES_process_experimental | 
|  | #include "TargetPropertiesEnum.inc" | 
|  | }; | 
|  |  | 
|  | class ProcessExperimentalOptionValueProperties | 
|  | : public Cloneable<ProcessExperimentalOptionValueProperties, | 
|  | OptionValueProperties> { | 
|  | public: | 
|  | ProcessExperimentalOptionValueProperties() | 
|  | : Cloneable(Properties::GetExperimentalSettingsName()) {} | 
|  | }; | 
|  |  | 
|  | ProcessExperimentalProperties::ProcessExperimentalProperties() | 
|  | : Properties(OptionValuePropertiesSP( | 
|  | new ProcessExperimentalOptionValueProperties())) { | 
|  | m_collection_sp->Initialize(g_process_experimental_properties); | 
|  | } | 
|  |  | 
|  | ProcessProperties::ProcessProperties(lldb_private::Process *process) | 
|  | : Properties(), | 
|  | m_process(process) // Can be nullptr for global ProcessProperties | 
|  | { | 
|  | if (process == nullptr) { | 
|  | // Global process properties, set them up one time | 
|  | m_collection_sp = std::make_shared<ProcessOptionValueProperties>("process"); | 
|  | m_collection_sp->Initialize(g_process_properties); | 
|  | m_collection_sp->AppendProperty( | 
|  | "thread", "Settings specific to threads.", true, | 
|  | Thread::GetGlobalProperties().GetValueProperties()); | 
|  | } else { | 
|  | m_collection_sp = | 
|  | OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties()); | 
|  | m_collection_sp->SetValueChangedCallback( | 
|  | ePropertyPythonOSPluginPath, | 
|  | [this] { m_process->LoadOperatingSystemPlugin(true); }); | 
|  | m_collection_sp->SetValueChangedCallback( | 
|  | ePropertyDisableLangRuntimeUnwindPlans, | 
|  | [this] { DisableLanguageRuntimeUnwindPlansCallback(); }); | 
|  | } | 
|  |  | 
|  | m_experimental_properties_up = | 
|  | std::make_unique<ProcessExperimentalProperties>(); | 
|  | m_collection_sp->AppendProperty( | 
|  | Properties::GetExperimentalSettingsName(), | 
|  | "Experimental settings - setting these won't produce " | 
|  | "errors if the setting is not present.", | 
|  | true, m_experimental_properties_up->GetValueProperties()); | 
|  | } | 
|  |  | 
|  | ProcessProperties::~ProcessProperties() = default; | 
|  |  | 
|  | bool ProcessProperties::GetDisableMemoryCache() const { | 
|  | const uint32_t idx = ePropertyDisableMemCache; | 
|  | return GetPropertyAtIndexAs<bool>( | 
|  | idx, g_process_properties[idx].default_uint_value != 0); | 
|  | } | 
|  |  | 
|  | uint64_t ProcessProperties::GetMemoryCacheLineSize() const { | 
|  | const uint32_t idx = ePropertyMemCacheLineSize; | 
|  | return GetPropertyAtIndexAs<uint64_t>( | 
|  | idx, g_process_properties[idx].default_uint_value); | 
|  | } | 
|  |  | 
|  | Args ProcessProperties::GetExtraStartupCommands() const { | 
|  | Args args; | 
|  | const uint32_t idx = ePropertyExtraStartCommand; | 
|  | m_collection_sp->GetPropertyAtIndexAsArgs(idx, args); | 
|  | return args; | 
|  | } | 
|  |  | 
|  | void ProcessProperties::SetExtraStartupCommands(const Args &args) { | 
|  | const uint32_t idx = ePropertyExtraStartCommand; | 
|  | m_collection_sp->SetPropertyAtIndexFromArgs(idx, args); | 
|  | } | 
|  |  | 
|  | FileSpec ProcessProperties::GetPythonOSPluginPath() const { | 
|  | const uint32_t idx = ePropertyPythonOSPluginPath; | 
|  | return GetPropertyAtIndexAs<FileSpec>(idx, {}); | 
|  | } | 
|  |  | 
|  | uint32_t ProcessProperties::GetVirtualAddressableBits() const { | 
|  | const uint32_t idx = ePropertyVirtualAddressableBits; | 
|  | return GetPropertyAtIndexAs<uint64_t>( | 
|  | idx, g_process_properties[idx].default_uint_value); | 
|  | } | 
|  |  | 
|  | void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) { | 
|  | const uint32_t idx = ePropertyVirtualAddressableBits; | 
|  | SetPropertyAtIndex(idx, static_cast<uint64_t>(bits)); | 
|  | } | 
|  |  | 
|  | uint32_t ProcessProperties::GetHighmemVirtualAddressableBits() const { | 
|  | const uint32_t idx = ePropertyHighmemVirtualAddressableBits; | 
|  | return GetPropertyAtIndexAs<uint64_t>( | 
|  | idx, g_process_properties[idx].default_uint_value); | 
|  | } | 
|  |  | 
|  | void ProcessProperties::SetHighmemVirtualAddressableBits(uint32_t bits) { | 
|  | const uint32_t idx = ePropertyHighmemVirtualAddressableBits; | 
|  | SetPropertyAtIndex(idx, static_cast<uint64_t>(bits)); | 
|  | } | 
|  |  | 
|  | void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { | 
|  | const uint32_t idx = ePropertyPythonOSPluginPath; | 
|  | SetPropertyAtIndex(idx, file); | 
|  | } | 
|  |  | 
|  | bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { | 
|  | const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; | 
|  | return GetPropertyAtIndexAs<bool>( | 
|  | idx, g_process_properties[idx].default_uint_value != 0); | 
|  | } | 
|  |  | 
|  | void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { | 
|  | const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; | 
|  | SetPropertyAtIndex(idx, ignore); | 
|  | } | 
|  |  | 
|  | bool ProcessProperties::GetUnwindOnErrorInExpressions() const { | 
|  | const uint32_t idx = ePropertyUnwindOnErrorInExpressions; | 
|  | return GetPropertyAtIndexAs<bool>( | 
|  | idx, g_process_properties[idx].default_uint_value != 0); | 
|  | } | 
|  |  | 
|  | void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { | 
|  | const uint32_t idx = ePropertyUnwindOnErrorInExpressions; | 
|  | SetPropertyAtIndex(idx, ignore); | 
|  | } | 
|  |  | 
|  | bool ProcessProperties::GetStopOnSharedLibraryEvents() const { | 
|  | const uint32_t idx = ePropertyStopOnSharedLibraryEvents; | 
|  | return GetPropertyAtIndexAs<bool>( | 
|  | idx, g_process_properties[idx].default_uint_value != 0); | 
|  | } | 
|  |  | 
|  | void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { | 
|  | const uint32_t idx = ePropertyStopOnSharedLibraryEvents; | 
|  | SetPropertyAtIndex(idx, stop); | 
|  | } | 
|  |  | 
|  | bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const { | 
|  | const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; | 
|  | return GetPropertyAtIndexAs<bool>( | 
|  | idx, g_process_properties[idx].default_uint_value != 0); | 
|  | } | 
|  |  | 
|  | void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) { | 
|  | const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; | 
|  | SetPropertyAtIndex(idx, disable); | 
|  | m_process->Flush(); | 
|  | } | 
|  |  | 
|  | void ProcessProperties::DisableLanguageRuntimeUnwindPlansCallback() { | 
|  | if (!m_process) | 
|  | return; | 
|  | for (auto thread_sp : m_process->Threads()) { | 
|  | thread_sp->ClearStackFrames(); | 
|  | thread_sp->DiscardThreadPlans(/*force*/ true); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ProcessProperties::GetDetachKeepsStopped() const { | 
|  | const uint32_t idx = ePropertyDetachKeepsStopped; | 
|  | return GetPropertyAtIndexAs<bool>( | 
|  | idx, g_process_properties[idx].default_uint_value != 0); | 
|  | } | 
|  |  | 
|  | void ProcessProperties::SetDetachKeepsStopped(bool stop) { | 
|  | const uint32_t idx = ePropertyDetachKeepsStopped; | 
|  | SetPropertyAtIndex(idx, stop); | 
|  | } | 
|  |  | 
|  | bool ProcessProperties::GetWarningsOptimization() const { | 
|  | const uint32_t idx = ePropertyWarningOptimization; | 
|  | return GetPropertyAtIndexAs<bool>( | 
|  | idx, g_process_properties[idx].default_uint_value != 0); | 
|  | } | 
|  |  | 
|  | bool ProcessProperties::GetWarningsUnsupportedLanguage() const { | 
|  | const uint32_t idx = ePropertyWarningUnsupportedLanguage; | 
|  | return GetPropertyAtIndexAs<bool>( | 
|  | idx, g_process_properties[idx].default_uint_value != 0); | 
|  | } | 
|  |  | 
|  | bool ProcessProperties::GetStopOnExec() const { | 
|  | const uint32_t idx = ePropertyStopOnExec; | 
|  | return GetPropertyAtIndexAs<bool>( | 
|  | idx, g_process_properties[idx].default_uint_value != 0); | 
|  | } | 
|  |  | 
|  | std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { | 
|  | const uint32_t idx = ePropertyUtilityExpressionTimeout; | 
|  | uint64_t value = GetPropertyAtIndexAs<uint64_t>( | 
|  | idx, g_process_properties[idx].default_uint_value); | 
|  | return std::chrono::seconds(value); | 
|  | } | 
|  |  | 
|  | std::chrono::seconds ProcessProperties::GetInterruptTimeout() const { | 
|  | const uint32_t idx = ePropertyInterruptTimeout; | 
|  | uint64_t value = GetPropertyAtIndexAs<uint64_t>( | 
|  | idx, g_process_properties[idx].default_uint_value); | 
|  | return std::chrono::seconds(value); | 
|  | } | 
|  |  | 
|  | bool ProcessProperties::GetSteppingRunsAllThreads() const { | 
|  | const uint32_t idx = ePropertySteppingRunsAllThreads; | 
|  | return GetPropertyAtIndexAs<bool>( | 
|  | idx, g_process_properties[idx].default_uint_value != 0); | 
|  | } | 
|  |  | 
|  | bool ProcessProperties::GetOSPluginReportsAllThreads() const { | 
|  | const bool fail_value = true; | 
|  | const Property *exp_property = | 
|  | m_collection_sp->GetPropertyAtIndex(ePropertyExperimental); | 
|  | OptionValueProperties *exp_values = | 
|  | exp_property->GetValue()->GetAsProperties(); | 
|  | if (!exp_values) | 
|  | return fail_value; | 
|  |  | 
|  | return exp_values | 
|  | ->GetPropertyAtIndexAs<bool>(ePropertyOSPluginReportsAllThreads) | 
|  | .value_or(fail_value); | 
|  | } | 
|  |  | 
|  | void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { | 
|  | const Property *exp_property = | 
|  | m_collection_sp->GetPropertyAtIndex(ePropertyExperimental); | 
|  | OptionValueProperties *exp_values = | 
|  | exp_property->GetValue()->GetAsProperties(); | 
|  | if (exp_values) | 
|  | exp_values->SetPropertyAtIndex(ePropertyOSPluginReportsAllThreads, | 
|  | does_report); | 
|  | } | 
|  |  | 
|  | FollowForkMode ProcessProperties::GetFollowForkMode() const { | 
|  | const uint32_t idx = ePropertyFollowForkMode; | 
|  | return GetPropertyAtIndexAs<FollowForkMode>( | 
|  | idx, static_cast<FollowForkMode>( | 
|  | g_process_properties[idx].default_uint_value)); | 
|  | } | 
|  |  | 
|  | bool ProcessProperties::TrackMemoryCacheChanges() const { | 
|  | const uint32_t idx = ePropertyTrackMemoryCacheChanges; | 
|  | return GetPropertyAtIndexAs<bool>( | 
|  | idx, g_process_properties[idx].default_uint_value != 0); | 
|  | } | 
|  |  | 
|  | ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, | 
|  | llvm::StringRef plugin_name, | 
|  | ListenerSP listener_sp, | 
|  | const FileSpec *crash_file_path, | 
|  | bool can_connect) { | 
|  | static uint32_t g_process_unique_id = 0; | 
|  |  | 
|  | ProcessSP process_sp; | 
|  | ProcessCreateInstance create_callback = nullptr; | 
|  | if (!plugin_name.empty()) { | 
|  | create_callback = | 
|  | PluginManager::GetProcessCreateCallbackForPluginName(plugin_name); | 
|  | if (create_callback) { | 
|  | process_sp = create_callback(target_sp, listener_sp, crash_file_path, | 
|  | can_connect); | 
|  | if (process_sp) { | 
|  | if (process_sp->CanDebug(target_sp, true)) { | 
|  | process_sp->m_process_unique_id = ++g_process_unique_id; | 
|  | } else | 
|  | process_sp.reset(); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | for (uint32_t idx = 0; | 
|  | (create_callback = | 
|  | PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; | 
|  | ++idx) { | 
|  | process_sp = create_callback(target_sp, listener_sp, crash_file_path, | 
|  | can_connect); | 
|  | if (process_sp) { | 
|  | if (process_sp->CanDebug(target_sp, false)) { | 
|  | process_sp->m_process_unique_id = ++g_process_unique_id; | 
|  | break; | 
|  | } else | 
|  | process_sp.reset(); | 
|  | } | 
|  | } | 
|  | } | 
|  | return process_sp; | 
|  | } | 
|  |  | 
|  | llvm::StringRef Process::GetStaticBroadcasterClass() { | 
|  | static constexpr llvm::StringLiteral class_name("lldb.process"); | 
|  | return class_name; | 
|  | } | 
|  |  | 
|  | Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) | 
|  | : Process(target_sp, listener_sp, UnixSignals::CreateForHost()) { | 
|  | // This constructor just delegates to the full Process constructor, | 
|  | // defaulting to using the Host's UnixSignals. | 
|  | } | 
|  |  | 
|  | Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, | 
|  | const UnixSignalsSP &unix_signals_sp) | 
|  | : ProcessProperties(this), | 
|  | Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), | 
|  | Process::GetStaticBroadcasterClass().str()), | 
|  | m_target_wp(target_sp), m_public_state(eStateUnloaded), | 
|  | m_private_state(eStateUnloaded), | 
|  | m_private_state_broadcaster(nullptr, | 
|  | "lldb.process.internal_state_broadcaster"), | 
|  | m_private_state_control_broadcaster( | 
|  | nullptr, "lldb.process.internal_state_control_broadcaster"), | 
|  | m_private_state_listener_sp( | 
|  | Listener::MakeListener("lldb.process.internal_state_listener")), | 
|  | m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), | 
|  | m_thread_id_to_index_id_map(), m_exit_status(-1), | 
|  | m_thread_list_real(*this), m_thread_list(*this), m_thread_plans(*this), | 
|  | m_extended_thread_list(*this), | 
|  | m_base_direction(RunDirection::eRunForward), m_extended_thread_stop_id(0), | 
|  | m_queue_list(this), m_queue_list_stop_id(0), | 
|  | m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), | 
|  | m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), | 
|  | m_stdin_forward(false), m_stdout_data(), m_stderr_data(), | 
|  | m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), | 
|  | m_memory_cache(*this), m_allocated_memory_cache(*this), | 
|  | m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), | 
|  | m_private_run_lock(), m_currently_handling_do_on_removals(false), | 
|  | m_resume_requested(false), m_interrupt_tid(LLDB_INVALID_THREAD_ID), | 
|  | m_finalizing(false), m_destructing(false), | 
|  | m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), | 
|  | m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), | 
|  | m_can_interpret_function_calls(false), m_run_thread_plan_lock(), | 
|  | m_can_jit(eCanJITDontKnow), | 
|  | m_crash_info_dict_sp(new StructuredData::Dictionary()) { | 
|  | CheckInWithManager(); | 
|  |  | 
|  | Log *log = GetLog(LLDBLog::Object); | 
|  | LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); | 
|  |  | 
|  | if (!m_unix_signals_sp) | 
|  | m_unix_signals_sp = std::make_shared<UnixSignals>(); | 
|  |  | 
|  | SetEventName(eBroadcastBitStateChanged, "state-changed"); | 
|  | SetEventName(eBroadcastBitInterrupt, "interrupt"); | 
|  | SetEventName(eBroadcastBitSTDOUT, "stdout-available"); | 
|  | SetEventName(eBroadcastBitSTDERR, "stderr-available"); | 
|  | SetEventName(eBroadcastBitProfileData, "profile-data-available"); | 
|  | SetEventName(eBroadcastBitStructuredData, "structured-data-available"); | 
|  |  | 
|  | m_private_state_control_broadcaster.SetEventName( | 
|  | eBroadcastInternalStateControlStop, "control-stop"); | 
|  | m_private_state_control_broadcaster.SetEventName( | 
|  | eBroadcastInternalStateControlPause, "control-pause"); | 
|  | m_private_state_control_broadcaster.SetEventName( | 
|  | eBroadcastInternalStateControlResume, "control-resume"); | 
|  |  | 
|  | // The listener passed into process creation is the primary listener: | 
|  | // It always listens for all the event bits for Process: | 
|  | SetPrimaryListener(listener_sp); | 
|  |  | 
|  | m_private_state_listener_sp->StartListeningForEvents( | 
|  | &m_private_state_broadcaster, | 
|  | eBroadcastBitStateChanged | eBroadcastBitInterrupt); | 
|  |  | 
|  | m_private_state_listener_sp->StartListeningForEvents( | 
|  | &m_private_state_control_broadcaster, | 
|  | eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | | 
|  | eBroadcastInternalStateControlResume); | 
|  | // We need something valid here, even if just the default UnixSignalsSP. | 
|  | assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); | 
|  |  | 
|  | // Allow the platform to override the default cache line size | 
|  | OptionValueSP value_sp = | 
|  | m_collection_sp->GetPropertyAtIndex(ePropertyMemCacheLineSize) | 
|  | ->GetValue(); | 
|  | uint64_t platform_cache_line_size = | 
|  | target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); | 
|  | if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) | 
|  | value_sp->SetValueAs(platform_cache_line_size); | 
|  |  | 
|  | // FIXME: Frame recognizer registration should not be done in Target. | 
|  | // We should have a plugin do the registration instead, for example, a | 
|  | // common C LanguageRuntime plugin. | 
|  | RegisterAssertFrameRecognizer(this); | 
|  | RegisterVerboseTrapFrameRecognizer(*this); | 
|  | } | 
|  |  | 
|  | Process::~Process() { | 
|  | Log *log = GetLog(LLDBLog::Object); | 
|  | LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); | 
|  | StopPrivateStateThread(); | 
|  |  | 
|  | // ThreadList::Clear() will try to acquire this process's mutex, so | 
|  | // explicitly clear the thread list here to ensure that the mutex is not | 
|  | // destroyed before the thread list. | 
|  | m_thread_list.Clear(); | 
|  | } | 
|  |  | 
|  | ProcessProperties &Process::GetGlobalProperties() { | 
|  | // NOTE: intentional leak so we don't crash if global destructor chain gets | 
|  | // called as other threads still use the result of this function | 
|  | static ProcessProperties *g_settings_ptr = | 
|  | new ProcessProperties(nullptr); | 
|  | return *g_settings_ptr; | 
|  | } | 
|  |  | 
|  | void Process::Finalize(bool destructing) { | 
|  | if (m_finalizing.exchange(true)) | 
|  | return; | 
|  | if (destructing) | 
|  | m_destructing.exchange(true); | 
|  |  | 
|  | // Destroy the process. This will call the virtual function DoDestroy under | 
|  | // the hood, giving our derived class a chance to do the ncessary tear down. | 
|  | DestroyImpl(false); | 
|  |  | 
|  | // Clear our broadcaster before we proceed with destroying | 
|  | Broadcaster::Clear(); | 
|  |  | 
|  | // Do any cleanup needed prior to being destructed... Subclasses that | 
|  | // override this method should call this superclass method as well. | 
|  |  | 
|  | // We need to destroy the loader before the derived Process class gets | 
|  | // destroyed since it is very likely that undoing the loader will require | 
|  | // access to the real process. | 
|  | m_dynamic_checkers_up.reset(); | 
|  | m_abi_sp.reset(); | 
|  | m_os_up.reset(); | 
|  | m_system_runtime_up.reset(); | 
|  | m_dyld_up.reset(); | 
|  | m_jit_loaders_up.reset(); | 
|  | m_thread_plans.Clear(); | 
|  | m_thread_list_real.Destroy(); | 
|  | m_thread_list.Destroy(); | 
|  | m_extended_thread_list.Destroy(); | 
|  | m_queue_list.Clear(); | 
|  | m_queue_list_stop_id = 0; | 
|  | m_watchpoint_resource_list.Clear(); | 
|  | std::vector<Notifications> empty_notifications; | 
|  | m_notifications.swap(empty_notifications); | 
|  | m_image_tokens.clear(); | 
|  | m_memory_cache.Clear(); | 
|  | m_allocated_memory_cache.Clear(/*deallocate_memory=*/true); | 
|  | { | 
|  | std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); | 
|  | m_language_runtimes.clear(); | 
|  | } | 
|  | m_instrumentation_runtimes.clear(); | 
|  | m_next_event_action_up.reset(); | 
|  | // Clear the last natural stop ID since it has a strong reference to this | 
|  | // process | 
|  | m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); | 
|  | // We have to be very careful here as the m_private_state_listener might | 
|  | // contain events that have ProcessSP values in them which can keep this | 
|  | // process around forever. These events need to be cleared out. | 
|  | m_private_state_listener_sp->Clear(); | 
|  | m_public_run_lock.SetStopped(); | 
|  | m_private_run_lock.SetStopped(); | 
|  | m_structured_data_plugin_map.clear(); | 
|  | } | 
|  |  | 
|  | void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { | 
|  | m_notifications.push_back(callbacks); | 
|  | if (callbacks.initialize != nullptr) | 
|  | callbacks.initialize(callbacks.baton, this); | 
|  | } | 
|  |  | 
|  | bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { | 
|  | std::vector<Notifications>::iterator pos, end = m_notifications.end(); | 
|  | for (pos = m_notifications.begin(); pos != end; ++pos) { | 
|  | if (pos->baton == callbacks.baton && | 
|  | pos->initialize == callbacks.initialize && | 
|  | pos->process_state_changed == callbacks.process_state_changed) { | 
|  | m_notifications.erase(pos); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Process::SynchronouslyNotifyStateChanged(StateType state) { | 
|  | std::vector<Notifications>::iterator notification_pos, | 
|  | notification_end = m_notifications.end(); | 
|  | for (notification_pos = m_notifications.begin(); | 
|  | notification_pos != notification_end; ++notification_pos) { | 
|  | if (notification_pos->process_state_changed) | 
|  | notification_pos->process_state_changed(notification_pos->baton, this, | 
|  | state); | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: We need to do some work on events before the general Listener sees | 
|  | // them. | 
|  | // For instance if we are continuing from a breakpoint, we need to ensure that | 
|  | // we do the little "insert real insn, step & stop" trick.  But we can't do | 
|  | // that when the event is delivered by the broadcaster - since that is done on | 
|  | // the thread that is waiting for new events, so if we needed more than one | 
|  | // event for our handling, we would stall.  So instead we do it when we fetch | 
|  | // the event off of the queue. | 
|  | // | 
|  |  | 
|  | StateType Process::GetNextEvent(EventSP &event_sp) { | 
|  | StateType state = eStateInvalid; | 
|  |  | 
|  | if (GetPrimaryListener()->GetEventForBroadcaster(this, event_sp, | 
|  | std::chrono::seconds(0)) && | 
|  | event_sp) | 
|  | state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); | 
|  |  | 
|  | return state; | 
|  | } | 
|  |  | 
|  | void Process::SyncIOHandler(uint32_t iohandler_id, | 
|  | const Timeout<std::micro> &timeout) { | 
|  | // don't sync (potentially context switch) in case where there is no process | 
|  | // IO | 
|  | if (!ProcessIOHandlerExists()) | 
|  | return; | 
|  |  | 
|  | auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); | 
|  |  | 
|  | Log *log = GetLog(LLDBLog::Process); | 
|  | if (Result) { | 
|  | LLDB_LOG( | 
|  | log, | 
|  | "waited from m_iohandler_sync to change from {0}. New value is {1}.", | 
|  | iohandler_id, *Result); | 
|  | } else { | 
|  | LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", | 
|  | iohandler_id); | 
|  | } | 
|  | } | 
|  |  | 
|  | StateType Process::WaitForProcessToStop( | 
|  | const Timeout<std::micro> &timeout, EventSP *event_sp_ptr, bool wait_always, | 
|  | ListenerSP hijack_listener_sp, Stream *stream, bool use_run_lock, | 
|  | SelectMostRelevant select_most_relevant) { | 
|  | // We can't just wait for a "stopped" event, because the stopped event may | 
|  | // have restarted the target. We have to actually check each event, and in | 
|  | // the case of a stopped event check the restarted flag on the event. | 
|  | if (event_sp_ptr) | 
|  | event_sp_ptr->reset(); | 
|  | StateType state = GetState(); | 
|  | // If we are exited or detached, we won't ever get back to any other valid | 
|  | // state... | 
|  | if (state == eStateDetached || state == eStateExited) | 
|  | return state; | 
|  |  | 
|  | Log *log = GetLog(LLDBLog::Process); | 
|  | LLDB_LOG(log, "timeout = {0}", timeout); | 
|  |  | 
|  | if (!wait_always && StateIsStoppedState(state, true) && | 
|  | StateIsStoppedState(GetPrivateState(), true)) { | 
|  | LLDB_LOGF(log, | 
|  | "Process::%s returning without waiting for events; process " | 
|  | "private and public states are already 'stopped'.", | 
|  | __FUNCTION__); | 
|  | // We need to toggle the run lock as this won't get done in | 
|  | // SetPublicState() if the process is hijacked. | 
|  | if (hijack_listener_sp && use_run_lock) | 
|  | m_public_run_lock.SetStopped(); | 
|  | return state; | 
|  | } | 
|  |  | 
|  | while (state != eStateInvalid) { | 
|  | EventSP event_sp; | 
|  | state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); | 
|  | if (event_sp_ptr && event_sp) | 
|  | *event_sp_ptr = event_sp; | 
|  |  | 
|  | bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); | 
|  | Process::HandleProcessStateChangedEvent( | 
|  | event_sp, stream, select_most_relevant, pop_process_io_handler); | 
|  |  | 
|  | switch (state) { | 
|  | case eStateCrashed: | 
|  | case eStateDetached: | 
|  | case eStateExited: | 
|  | case eStateUnloaded: | 
|  | // We need to toggle the run lock as this won't get done in | 
|  | // SetPublicState() if the process is hijacked. | 
|  | if (hijack_listener_sp && use_run_lock) | 
|  | m_public_run_lock.SetStopped(); | 
|  | return state; | 
|  | case eStateStopped: | 
|  | if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) | 
|  | continue; | 
|  | else { | 
|  | // We need to toggle the run lock as this won't get done in | 
|  | // SetPublicState() if the process is hijacked. | 
|  | if (hijack_listener_sp && use_run_lock) | 
|  | m_public_run_lock.SetStopped(); | 
|  | return state; | 
|  | } | 
|  | default: | 
|  | continue; | 
|  | } | 
|  | } | 
|  | return state; | 
|  | } | 
|  |  | 
|  | bool Process::HandleProcessStateChangedEvent( | 
|  | const EventSP &event_sp, Stream *stream, | 
|  | SelectMostRelevant select_most_relevant, | 
|  | bool &pop_process_io_handler) { | 
|  | const bool handle_pop = pop_process_io_handler; | 
|  |  | 
|  | pop_process_io_handler = false; | 
|  | ProcessSP process_sp = | 
|  | Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); | 
|  |  | 
|  | if (!process_sp) | 
|  | return false; | 
|  |  | 
|  | StateType event_state = | 
|  | Process::ProcessEventData::GetStateFromEvent(event_sp.get()); | 
|  | if (event_state == eStateInvalid) | 
|  | return false; | 
|  |  | 
|  | switch (event_state) { | 
|  | case eStateInvalid: | 
|  | case eStateUnloaded: | 
|  | case eStateAttaching: | 
|  | case eStateLaunching: | 
|  | case eStateStepping: | 
|  | case eStateDetached: | 
|  | if (stream) | 
|  | stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), | 
|  | StateAsCString(event_state)); | 
|  | if (event_state == eStateDetached) | 
|  | pop_process_io_handler = true; | 
|  | break; | 
|  |  | 
|  | case eStateConnected: | 
|  | case eStateRunning: | 
|  | // Don't be chatty when we run... | 
|  | break; | 
|  |  | 
|  | case eStateExited: | 
|  | if (stream) | 
|  | process_sp->GetStatus(*stream); | 
|  | pop_process_io_handler = true; | 
|  | break; | 
|  |  | 
|  | case eStateStopped: | 
|  | case eStateCrashed: | 
|  | case eStateSuspended: | 
|  | // Make sure the program hasn't been auto-restarted: | 
|  | if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { | 
|  | if (stream) { | 
|  | size_t num_reasons = | 
|  | Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); | 
|  | if (num_reasons > 0) { | 
|  | // FIXME: Do we want to report this, or would that just be annoyingly | 
|  | // chatty? | 
|  | if (num_reasons == 1) { | 
|  | const char *reason = | 
|  | Process::ProcessEventData::GetRestartedReasonAtIndex( | 
|  | event_sp.get(), 0); | 
|  | stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", | 
|  | process_sp->GetID(), | 
|  | reason ? reason : "<UNKNOWN REASON>"); | 
|  | } else { | 
|  | stream->Printf("Process %" PRIu64 | 
|  | " stopped and restarted, reasons:\n", | 
|  | process_sp->GetID()); | 
|  |  | 
|  | for (size_t i = 0; i < num_reasons; i++) { | 
|  | const char *reason = | 
|  | Process::ProcessEventData::GetRestartedReasonAtIndex( | 
|  | event_sp.get(), i); | 
|  | stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | StopInfoSP curr_thread_stop_info_sp; | 
|  | // Lock the thread list so it doesn't change on us, this is the scope for | 
|  | // the locker: | 
|  | { | 
|  | ThreadList &thread_list = process_sp->GetThreadList(); | 
|  | std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); | 
|  |  | 
|  | ThreadSP curr_thread(thread_list.GetSelectedThread()); | 
|  |  | 
|  | if (curr_thread && curr_thread->IsValid()) | 
|  | curr_thread_stop_info_sp = curr_thread->GetStopInfo(); | 
|  | bool prefer_curr_thread = curr_thread_stop_info_sp && | 
|  | curr_thread_stop_info_sp->ShouldSelect(); | 
|  |  | 
|  | if (!prefer_curr_thread) { | 
|  | // Prefer a thread that has just completed its plan over another | 
|  | // thread as current thread. | 
|  | ThreadSP plan_thread; | 
|  | ThreadSP other_thread; | 
|  |  | 
|  | for (ThreadSP thread : thread_list.Threads()) { | 
|  | StopInfoSP stop_info = thread->GetStopInfo(); | 
|  | if (!stop_info || !stop_info->ShouldSelect()) | 
|  | continue; | 
|  | StopReason thread_stop_reason = stop_info->GetStopReason(); | 
|  | if (thread_stop_reason == eStopReasonPlanComplete) { | 
|  | if (!plan_thread) | 
|  | plan_thread = thread; | 
|  | } else if (!other_thread) { | 
|  | other_thread = thread; | 
|  | } | 
|  | } | 
|  | if (plan_thread) | 
|  | thread_list.SetSelectedThreadByID(plan_thread->GetID()); | 
|  | else if (other_thread) | 
|  | thread_list.SetSelectedThreadByID(other_thread->GetID()); | 
|  | else { | 
|  | ThreadSP thread; | 
|  | if (curr_thread && curr_thread->IsValid()) | 
|  | thread = curr_thread; | 
|  | else | 
|  | thread = thread_list.GetThreadAtIndex(0); | 
|  |  | 
|  | if (thread) | 
|  | thread_list.SetSelectedThreadByID(thread->GetID()); | 
|  | } | 
|  | } | 
|  | } | 
|  | // Drop the ThreadList mutex by here, since GetThreadStatus below might | 
|  | // have to run code, e.g. for Data formatters, and if we hold the | 
|  | // ThreadList mutex, then the process is going to have a hard time | 
|  | // restarting the process. | 
|  | if (stream) { | 
|  | Debugger &debugger = process_sp->GetTarget().GetDebugger(); | 
|  | if (debugger.GetTargetList().GetSelectedTarget().get() == | 
|  | &process_sp->GetTarget()) { | 
|  | ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); | 
|  |  | 
|  | if (!thread_sp || !thread_sp->IsValid()) | 
|  | return false; | 
|  |  | 
|  | const bool only_threads_with_stop_reason = true; | 
|  | const uint32_t start_frame = | 
|  | thread_sp->GetSelectedFrameIndex(select_most_relevant); | 
|  | const uint32_t num_frames = 1; | 
|  | const uint32_t num_frames_with_source = 1; | 
|  | const bool stop_format = true; | 
|  |  | 
|  | process_sp->GetStatus(*stream); | 
|  | process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, | 
|  | start_frame, num_frames, | 
|  | num_frames_with_source, | 
|  | stop_format); | 
|  | if (curr_thread_stop_info_sp) { | 
|  | lldb::addr_t crashing_address; | 
|  | ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( | 
|  | curr_thread_stop_info_sp, &crashing_address); | 
|  | if (valobj_sp) { | 
|  | const ValueObject::GetExpressionPathFormat format = | 
|  | ValueObject::GetExpressionPathFormat:: | 
|  | eGetExpressionPathFormatHonorPointers; | 
|  | stream->PutCString("Likely cause: "); | 
|  | valobj_sp->GetExpressionPath(*stream, format); | 
|  | stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( | 
|  | process_sp->GetTarget().shared_from_this()); | 
|  | if (target_idx != UINT32_MAX) | 
|  | stream->Printf("Target %d: (", target_idx); | 
|  | else | 
|  | stream->Printf("Target <unknown index>: ("); | 
|  | process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); | 
|  | stream->Printf(") stopped.\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Pop the process IO handler | 
|  | pop_process_io_handler = true; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (handle_pop && pop_process_io_handler) | 
|  | process_sp->PopProcessIOHandler(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Process::HijackProcessEvents(ListenerSP listener_sp) { | 
|  | if (listener_sp) { | 
|  | return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | | 
|  | eBroadcastBitInterrupt); | 
|  | } else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Process::RestoreProcessEvents() { RestoreBroadcaster(); } | 
|  |  | 
|  | StateType Process::GetStateChangedEvents(EventSP &event_sp, | 
|  | const Timeout<std::micro> &timeout, | 
|  | ListenerSP hijack_listener_sp) { | 
|  | Log *log = GetLog(LLDBLog::Process); | 
|  | LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); | 
|  |  | 
|  | ListenerSP listener_sp = hijack_listener_sp; | 
|  | if (!listener_sp) | 
|  | listener_sp = GetPrimaryListener(); | 
|  |  | 
|  | StateType state = eStateInvalid; | 
|  | if (listener_sp->GetEventForBroadcasterWithType( | 
|  | this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, | 
|  | timeout)) { | 
|  | if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) | 
|  | state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); | 
|  | else | 
|  | LLDB_LOG(log, "got no event or was interrupted."); | 
|  | } | 
|  |  | 
|  | LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); | 
|  | return state; | 
|  | } | 
|  |  | 
|  | Event *Process::PeekAtStateChangedEvents() { | 
|  | Log *log = GetLog(LLDBLog::Process); | 
|  |  | 
|  | LLDB_LOGF(log, "Process::%s...", __FUNCTION__); | 
|  |  | 
|  | Event *event_ptr; | 
|  | event_ptr = GetPrimaryListener()->PeekAtNextEventForBroadcasterWithType( | 
|  | this, eBroadcastBitStateChanged); | 
|  | if (log) { | 
|  | if (event_ptr) { | 
|  | LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, | 
|  | StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); | 
|  | } else { | 
|  | LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); | 
|  | } | 
|  | } | 
|  | return event_ptr; | 
|  | } | 
|  |  | 
|  | StateType | 
|  | Process::GetStateChangedEventsPrivate(EventSP &event_sp, | 
|  | const Timeout<std::micro> &timeout) { | 
|  | Log *log = GetLog(LLDBLog::Process); | 
|  | LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); | 
|  |  | 
|  | StateType state = eStateInvalid; | 
|  | if (m_private_state_listener_sp->GetEventForBroadcasterWithType( | 
|  | &m_private_state_broadcaster, | 
|  | eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, | 
|  | timeout)) | 
|  | if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) | 
|  | state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); | 
|  |  | 
|  | LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, | 
|  | state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); | 
|  | return state; | 
|  | } | 
|  |  | 
|  | bool Process::GetEventsPrivate(EventSP &event_sp, | 
|  | const Timeout<std::micro> &timeout, | 
|  | bool control_only) { | 
|  | Log *log = GetLog(LLDBLog::Process); | 
|  | LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); | 
|  |  | 
|  | if (control_only) | 
|  | return m_private_state_listener_sp->GetEventForBroadcaster( | 
|  | &m_private_state_control_broadcaster, event_sp, timeout); | 
|  | else | 
|  | return m_private_state_listener_sp->GetEvent(event_sp, timeout); | 
|  | } | 
|  |  | 
|  | bool Process::IsRunning() const { | 
|  | return StateIsRunningState(m_public_state.GetValue()); | 
|  | } | 
|  |  | 
|  | int Process::GetExitStatus() { | 
|  | std::lock_guard<std::mutex> guard(m_exit_status_mutex); | 
|  |  | 
|  | if (m_public_state.GetValue() == eStateExited) | 
|  | return m_exit_status; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | const char *Process::GetExitDescription() { | 
|  | std::lock_guard<std::mutex> guard(m_exit_status_mutex); | 
|  |  | 
|  | if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) | 
|  | return m_exit_string.c_str(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool Process::SetExitStatus(int status, llvm::StringRef exit_string) { | 
|  | // Use a mutex to protect setting the exit status. | 
|  | std::lock_guard<std::mutex> guard(m_exit_status_mutex); | 
|  | Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); | 
|  | LLDB_LOG(log, "(plugin = {0} status = {1} ({1:x8}), description=\"{2}\")", | 
|  | GetPluginName(), status, exit_string); | 
|  |  | 
|  | // We were already in the exited state | 
|  | if (m_private_state.GetValue() == eStateExited) { | 
|  | LLDB_LOG( | 
|  | log, | 
|  | "(plugin = {0}) ignoring exit status because state was already set " | 
|  | "to eStateExited", | 
|  | GetPluginName()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | telemetry::ScopedDispatcher<telemetry::ProcessExitInfo> helper; | 
|  |  | 
|  | UUID module_uuid; | 
|  | // Need this check because the pointer may not be valid at this point. | 
|  | if (TargetSP target_sp = m_target_wp.lock()) { | 
|  | helper.SetDebugger(&target_sp->GetDebugger()); | 
|  | if (ModuleSP mod = target_sp->GetExecutableModule()) | 
|  | module_uuid = mod->GetUUID(); | 
|  | } | 
|  |  | 
|  | helper.DispatchNow([&](telemetry::ProcessExitInfo *info) { | 
|  | info->module_uuid = module_uuid; | 
|  | info->pid = m_pid; | 
|  | info->is_start_entry = true; | 
|  | info->exit_desc = {status, exit_string.str()}; | 
|  | }); | 
|  |  | 
|  | helper.DispatchOnExit( | 
|  | [module_uuid, pid = m_pid](telemetry::ProcessExitInfo *info) { | 
|  | info->module_uuid = module_uuid; | 
|  | info->pid = pid; | 
|  | }); | 
|  |  | 
|  | m_exit_status = status; | 
|  | if (!exit_string.empty()) | 
|  | m_exit_string = exit_string.str(); | 
|  | else | 
|  | m_exit_string.clear(); | 
|  |  | 
|  | // Clear the last natural stop ID since it has a strong reference to this | 
|  | // process | 
|  | m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); | 
|  |  | 
|  | SetPrivateState(eStateExited); | 
|  |  | 
|  | // Allow subclasses to do some cleanup | 
|  | DidExit(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Process::IsAlive() { | 
|  | switch (m_private_state.GetValue()) { | 
|  | case eStateConnected: | 
|  | case eStateAttaching: | 
|  | case eStateLaunching: | 
|  | case eStateStopped: | 
|  | case eStateRunning: | 
|  | case eStateStepping: | 
|  | case eStateCrashed: | 
|  | case eStateSuspended: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // This static callback can be used to watch for local child processes on the | 
|  | // current host. The child process exits, the process will be found in the | 
|  | // global target list (we want to be completely sure that the | 
|  | // lldb_private::Process doesn't go away before we can deliver the signal. | 
|  | bool Process::SetProcessExitStatus( | 
|  | lldb::pid_t pid, bool exited, | 
|  | int signo,      // Zero for no signal | 
|  | int exit_status // Exit value of process if signal is zero | 
|  | ) { | 
|  | Log *log = GetLog(LLDBLog::Process); | 
|  | LLDB_LOGF(log, | 
|  | "Process::SetProcessExitStatus (pid=%" PRIu64 | 
|  | ", exited=%i, signal=%i, exit_status=%i)\n", | 
|  | pid, exited, signo, exit_status); | 
|  |  | 
|  | if (exited) { | 
|  | TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); | 
|  | if (target_sp) { | 
|  | ProcessSP process_sp(target_sp->GetProcessSP()); | 
|  | if (process_sp) { | 
|  | llvm::StringRef signal_str = | 
|  | process_sp->GetUnixSignals()->GetSignalAsStringRef(signo); | 
|  | process_sp->SetExitStatus(exit_status, signal_str); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Process::UpdateThreadList(ThreadList &old_thread_list, | 
|  | ThreadList &new_thread_list) { | 
|  | m_thread_plans.ClearThreadCache(); | 
|  | return DoUpdateThreadList(old_thread_list, new_thread_list); | 
|  | } | 
|  |  | 
|  | void Process::UpdateThreadListIfNeeded() { | 
|  | const uint32_t stop_id = GetStopID(); | 
|  | if (m_thread_list.GetSize(false) == 0 || | 
|  | stop_id != m_thread_list.GetStopID()) { | 
|  | bool clear_unused_threads = true; | 
|  | const StateType state = GetPrivateState(); | 
|  | if (StateIsStoppedState(state, true)) { | 
|  | std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); | 
|  | m_thread_list.SetStopID(stop_id); | 
|  |  | 
|  | // m_thread_list does have its own mutex, but we need to hold onto the | 
|  | // mutex between the call to UpdateThreadList(...) and the | 
|  | // os->UpdateThreadList(...) so it doesn't change on us | 
|  | ThreadList &old_thread_list = m_thread_list; | 
|  | ThreadList real_thread_list(*this); | 
|  | ThreadList new_thread_list(*this); | 
|  | // Always update the thread list with the protocol specific thread list, | 
|  | // but only update if "true" is returned | 
|  | if (UpdateThreadList(m_thread_list_real, real_thread_list)) { | 
|  | // Don't call into the OperatingSystem to update the thread list if we | 
|  | // are shutting down, since that may call back into the SBAPI's, | 
|  | // requiring the API lock which is already held by whoever is shutting | 
|  | // us down, causing a deadlock. | 
|  | OperatingSystem *os = GetOperatingSystem(); | 
|  | if (os && !m_destroy_in_process) { | 
|  | // Clear any old backing threads where memory threads might have been | 
|  | // backed by actual threads from the lldb_private::Process subclass | 
|  | size_t num_old_threads = old_thread_list.GetSize(false); | 
|  | for (size_t i = 0; i < num_old_threads; ++i) | 
|  | old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); | 
|  | // See if the OS plugin reports all threads.  If it does, then | 
|  | // it is safe to clear unseen thread's plans here.  Otherwise we | 
|  | // should preserve them in case they show up again: | 
|  | clear_unused_threads = os->DoesPluginReportAllThreads(); | 
|  |  | 
|  | // Turn off dynamic types to ensure we don't run any expressions. | 
|  | // Objective-C can run an expression to determine if a SBValue is a | 
|  | // dynamic type or not and we need to avoid this. OperatingSystem | 
|  | // plug-ins can't run expressions that require running code... | 
|  |  | 
|  | Target &target = GetTarget(); | 
|  | const lldb::DynamicValueType saved_prefer_dynamic = | 
|  | target.GetPreferDynamicValue(); | 
|  | if (saved_prefer_dynamic != lldb::eNoDynamicValues) | 
|  | target.SetPreferDynamicValue(lldb::eNoDynamicValues); | 
|  |  | 
|  | // Now let the OperatingSystem plug-in update the thread list | 
|  |  | 
|  | os->UpdateThreadList( | 
|  | old_thread_list, // Old list full of threads created by OS plug-in | 
|  | real_thread_list, // The actual thread list full of threads | 
|  | // created by each lldb_private::Process | 
|  | // subclass | 
|  | new_thread_list); // The new thread list that we will show to the | 
|  | // user that gets filled in | 
|  |  | 
|  | if (saved_prefer_dynamic != lldb::eNoDynamicValues) | 
|  | target.SetPreferDynamicValue(saved_prefer_dynamic); | 
|  | } else { | 
|  | // No OS plug-in, the new thread list is the same as the real thread | 
|  | // list. | 
|  | new_thread_list = real_thread_list; | 
|  | } | 
|  |  | 
|  | m_thread_list_real.Update(real_thread_list); | 
|  | m_thread_list.Update(new_thread_list); | 
|  | m_thread_list.SetStopID(stop_id); | 
|  |  | 
|  | if (GetLastNaturalStopID() != m_extended_thread_stop_id) { | 
|  | // Clear any extended threads that we may have accumulated previously | 
|  | m_extended_thread_list.Clear(); | 
|  | m_extended_thread_stop_id = GetLastNaturalStopID(); | 
|  |  | 
|  | m_queue_list.Clear(); | 
|  | m_queue_list_stop_id = GetLastNaturalStopID(); | 
|  | } | 
|  | } | 
|  | // Now update the plan stack map. | 
|  | // If we do have an OS plugin, any absent real threads in the | 
|  | // m_thread_list have already been removed from the ThreadPlanStackMap. | 
|  | // So any remaining threads are OS Plugin threads, and those we want to | 
|  | // preserve in case they show up again. | 
|  | m_thread_plans.Update(m_thread_list, clear_unused_threads); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { | 
|  | return m_thread_plans.Find(tid); | 
|  | } | 
|  |  | 
|  | bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { | 
|  | return m_thread_plans.PrunePlansForTID(tid); | 
|  | } | 
|  |  | 
|  | void Process::PruneThreadPlans() { | 
|  | m_thread_plans.Update(GetThreadList(), true, false); | 
|  | } | 
|  |  | 
|  | bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, | 
|  | lldb::DescriptionLevel desc_level, | 
|  | bool internal, bool condense_trivial, | 
|  | bool skip_unreported_plans) { | 
|  | return m_thread_plans.DumpPlansForTID( | 
|  | strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans); | 
|  | } | 
|  | void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, | 
|  | bool internal, bool condense_trivial, | 
|  | bool skip_unreported_plans) { | 
|  | m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial, | 
|  | skip_unreported_plans); | 
|  | } | 
|  |  | 
|  | void Process::UpdateQueueListIfNeeded() { | 
|  | if (m_system_runtime_up) { | 
|  | if (m_queue_list.GetSize() == 0 || | 
|  | m_queue_list_stop_id != GetLastNaturalStopID()) { | 
|  | const StateType state = GetPrivateState(); | 
|  | if (StateIsStoppedState(state, true)) { | 
|  | m_system_runtime_up->PopulateQueueList(m_queue_list); | 
|  | m_queue_list_stop_id = GetLastNaturalStopID(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { | 
|  | OperatingSystem *os = GetOperatingSystem(); | 
|  | if (os) | 
|  | return os->CreateThread(tid, context); | 
|  | return ThreadSP(); | 
|  | } | 
|  |  | 
|  | uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { | 
|  | return AssignIndexIDToThread(thread_id); | 
|  | } | 
|  |  | 
|  | bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { | 
|  | return (m_thread_id_to_index_id_map.find(thread_id) != | 
|  | m_thread_id_to_index_id_map.end()); | 
|  | } | 
|  |  | 
|  | uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { | 
|  | auto [iterator, inserted] = | 
|  | m_thread_id_to_index_id_map.try_emplace(thread_id, m_thread_index_id + 1); | 
|  | if (inserted) | 
|  | ++m_thread_index_id; | 
|  |  | 
|  | return iterator->second; | 
|  | } | 
|  |  | 
|  | StateType Process::GetState() { | 
|  | if (CurrentThreadPosesAsPrivateStateThread()) | 
|  | return m_private_state.GetValue(); | 
|  | else | 
|  | return m_public_state.GetValue(); | 
|  | } | 
|  |  | 
|  | void Process::SetPublicState(StateType new_state, bool restarted) { | 
|  | const bool new_state_is_stopped = StateIsStoppedState(new_state, false); | 
|  | if (new_state_is_stopped) { | 
|  | // This will only set the time if the public stop time has no value, so | 
|  | // it is ok to call this multiple times. With a public stop we can't look | 
|  | // at the stop ID because many private stops might have happened, so we | 
|  | // can't check for a stop ID of zero. This allows the "statistics" command | 
|  | // to dump the time it takes to reach somewhere in your code, like a | 
|  | // breakpoint you set. | 
|  | GetTarget().GetStatistics().SetFirstPublicStopTime(); | 
|  | } | 
|  |  | 
|  | Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); | 
|  | LLDB_LOGF(log, "(plugin = %s, state = %s, restarted = %i)", | 
|  | GetPluginName().data(), StateAsCString(new_state), restarted); | 
|  | const StateType old_state = m_public_state.GetValue(); | 
|  | m_public_state.SetValue(new_state); | 
|  |  | 
|  | // On the transition from Run to Stopped, we unlock the writer end of the run | 
|  | // lock.  The lock gets locked in Resume, which is the public API to tell the | 
|  | // program to run. | 
|  | if (!StateChangedIsExternallyHijacked()) { | 
|  | if (new_state == eStateDetached) { | 
|  | LLDB_LOGF(log, | 
|  | "(plugin = %s, state = %s) -- unlocking run lock for detach", | 
|  | GetPluginName().data(), StateAsCString(new_state)); | 
|  | m_public_run_lock.SetStopped(); | 
|  | } else { | 
|  | const bool old_state_is_stopped = StateIsStoppedState(old_state, false); | 
|  | if ((old_state_is_stopped != new_state_is_stopped)) { | 
|  | if (new_state_is_stopped && !restarted) { | 
|  | LLDB_LOGF(log, "(plugin = %s, state = %s) -- unlocking run lock", | 
|  | GetPluginName().data(), StateAsCString(new_state)); | 
|  | m_public_run_lock.SetStopped(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Status Process::Resume() { | 
|  | Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); | 
|  | LLDB_LOGF(log, "(plugin = %s) -- locking run lock", GetPluginName().data()); | 
|  | if (!m_public_run_lock.SetRunning()) { | 
|  | LLDB_LOGF(log, "(plugin = %s) -- SetRunning failed, not resuming.", | 
|  | GetPluginName().data()); | 
|  | return Status::FromErrorString( | 
|  | "resume request failed - process already running"); | 
|  | } | 
|  | Status error = PrivateResume(); | 
|  | if (!error.Success()) { | 
|  | // Undo running state change | 
|  | m_public_run_lock.SetStopped(); | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | Status Process::ResumeSynchronous(Stream *stream) { | 
|  | Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); | 
|  | LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); | 
|  | if (!m_public_run_lock.SetRunning()) { | 
|  | LLDB_LOGF(log, "Process::Resume: -- SetRunning failed, not resuming."); | 
|  | return Status::FromErrorString( | 
|  | "resume request failed: process already running"); | 
|  | } | 
|  |  | 
|  | ListenerSP listener_sp( | 
|  | Listener::MakeListener(ResumeSynchronousHijackListenerName.data())); | 
|  | HijackProcessEvents(listener_sp); | 
|  |  | 
|  | Status error = PrivateResume(); | 
|  | if (error.Success()) { | 
|  | StateType state = | 
|  | WaitForProcessToStop(std::nullopt, nullptr, true, listener_sp, stream, | 
|  | true /* use_run_lock */, SelectMostRelevantFrame); | 
|  | const bool must_be_alive = | 
|  | false; // eStateExited is ok, so this must be false | 
|  | if (!StateIsStoppedState(state, must_be_alive)) | 
|  | error = Status::FromErrorStringWithFormat( | 
|  | "process not in stopped state after synchronous resume: %s", | 
|  | StateAsCString(state)); | 
|  | } else { | 
|  | // Undo running state change | 
|  | m_public_run_lock.SetStopped(); | 
|  | } | 
|  |  | 
|  | // Undo the hijacking of process events... | 
|  | RestoreProcessEvents(); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | bool Process::StateChangedIsExternallyHijacked() { | 
|  | if (IsHijackedForEvent(eBroadcastBitStateChanged)) { | 
|  | llvm::StringRef hijacking_name = GetHijackingListenerName(); | 
|  | if (!hijacking_name.starts_with("lldb.internal")) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Process::StateChangedIsHijackedForSynchronousResume() { | 
|  | if (IsHijackedForEvent(eBroadcastBitStateChanged)) { | 
|  | llvm::StringRef hijacking_name = GetHijackingListenerName(); | 
|  | if (hijacking_name == ResumeSynchronousHijackListenerName) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | StateType Process::GetPrivateState() { return m_private_state.GetValue(); } | 
|  |  | 
|  | void Process::SetPrivateState(StateType new_state) { | 
|  | // Use m_destructing not m_finalizing here.  If we are finalizing a process | 
|  | // that we haven't started tearing down, we'd like to be able to nicely | 
|  | // detach if asked, but that requires the event system be live.  That will | 
|  | // not be true for an in-the-middle-of-being-destructed Process, since the | 
|  | // event system relies on Process::shared_from_this, which may have already | 
|  | // been destroyed. | 
|  | if (m_destructing) | 
|  | return; | 
|  |  | 
|  | Log *log(GetLog(LLDBLog::State | LLDBLog::Process | LLDBLog::Unwind)); | 
|  | bool state_changed = false; | 
|  |  | 
|  | LLDB_LOGF(log, "(plugin = %s, state = %s)", GetPluginName().data(), | 
|  | StateAsCString(new_state)); | 
|  |  | 
|  | std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); | 
|  | std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); | 
|  |  | 
|  | const StateType old_state = m_private_state.GetValueNoLock(); | 
|  | state_changed = old_state != new_state; | 
|  |  | 
|  | const bool old_state_is_stopped = StateIsStoppedState(old_state, false); | 
|  | const bool new_state_is_stopped = StateIsStoppedState(new_state, false); | 
|  | if (old_state_is_stopped != new_state_is_stopped) { | 
|  | if (new_state_is_stopped) | 
|  | m_private_run_lock.SetStopped(); | 
|  | else | 
|  | m_private_run_lock.SetRunning(); | 
|  | } | 
|  |  | 
|  | if (state_changed) { | 
|  | m_private_state.SetValueNoLock(new_state); | 
|  | EventSP event_sp( | 
|  | new Event(eBroadcastBitStateChanged, | 
|  | new ProcessEventData(shared_from_this(), new_state))); | 
|  | if (StateIsStoppedState(new_state, false)) { | 
|  | // Note, this currently assumes that all threads in the list stop when | 
|  | // the process stops.  In the future we will want to support a debugging | 
|  | // model where some threads continue to run while others are stopped. | 
|  | // When that happens we will either need a way for the thread list to | 
|  | // identify which threads are stopping or create a special thread list | 
|  | // containing only threads which actually stopped. | 
|  | // | 
|  | // The process plugin is responsible for managing the actual behavior of | 
|  | // the threads and should have stopped any threads that are going to stop | 
|  | // before we get here. | 
|  | m_thread_list.DidStop(); | 
|  |  | 
|  | if (m_mod_id.BumpStopID() == 0) | 
|  | GetTarget().GetStatistics().SetFirstPrivateStopTime(); | 
|  |  | 
|  | if (!m_mod_id.IsLastResumeForUserExpression()) | 
|  | m_mod_id.SetStopEventForLastNaturalStopID(event_sp); | 
|  | m_memory_cache.Clear(); | 
|  | LLDB_LOGF(log, "(plugin = %s, state = %s, stop_id = %u", | 
|  | GetPluginName().data(), StateAsCString(new_state), | 
|  | m_mod_id.GetStopID()); | 
|  | } | 
|  |  | 
|  | m_private_state_broadcaster.BroadcastEvent(event_sp); | 
|  | } else { | 
|  | LLDB_LOGF(log, "(plugin = %s, state = %s) state didn't change. Ignoring...", | 
|  | GetPluginName().data(), StateAsCString(new_state)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Process::SetRunningUserExpression(bool on) { | 
|  | m_mod_id.SetRunningUserExpression(on); | 
|  | } | 
|  |  | 
|  | void Process::SetRunningUtilityFunction(bool on) { | 
|  | m_mod_id.SetRunningUtilityFunction(on); | 
|  | } | 
|  |  | 
|  | addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } | 
|  |  | 
|  | const lldb::ABISP &Process::GetABI() { | 
|  | if (!m_abi_sp) | 
|  | m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); | 
|  | return m_abi_sp; | 
|  | } | 
|  |  | 
|  | std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { | 
|  | std::vector<LanguageRuntime *> language_runtimes; | 
|  |  | 
|  | if (m_finalizing) | 
|  | return language_runtimes; | 
|  |  | 
|  | std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); | 
|  | // Before we pass off a copy of the language runtimes, we must make sure that | 
|  | // our collection is properly populated. It's possible that some of the | 
|  | // language runtimes were not loaded yet, either because nobody requested it | 
|  | // yet or the proper condition for loading wasn't yet met (e.g. libc++.so | 
|  | // hadn't been loaded). | 
|  | for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { | 
|  | if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) | 
|  | language_runtimes.emplace_back(runtime); | 
|  | } | 
|  |  | 
|  | return language_runtimes; | 
|  | } | 
|  |  | 
|  | LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { | 
|  | if (m_finalizing) | 
|  | return nullptr; | 
|  |  | 
|  | LanguageRuntime *runtime = nullptr; | 
|  |  | 
|  | std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); | 
|  | LanguageRuntimeCollection::iterator pos; | 
|  | pos = m_language_runtimes.find(language); | 
|  | if (pos == m_language_runtimes.end() || !pos->second) { | 
|  | lldb::LanguageRuntimeSP runtime_sp( | 
|  | LanguageRuntime::FindPlugin(this, language)); | 
|  |  | 
|  | m_language_runtimes[language] = runtime_sp; | 
|  | runtime = runtime_sp.get(); | 
|  | } else | 
|  | runtime = pos->second.get(); | 
|  |  | 
|  | if (runtime) | 
|  | // It's possible that a language runtime can support multiple LanguageTypes, | 
|  | // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, | 
|  | // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the | 
|  | // primary language type and make sure that our runtime supports it. | 
|  | assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); | 
|  |  | 
|  | return runtime; | 
|  | } | 
|  |  | 
|  | bool Process::IsPossibleDynamicValue(ValueObject &in_value) { | 
|  | if (m_finalizing) | 
|  | return false; | 
|  |  | 
|  | if (in_value.IsDynamic()) | 
|  | return false; | 
|  | LanguageType known_type = in_value.GetObjectRuntimeLanguage(); | 
|  |  | 
|  | if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { | 
|  | LanguageRuntime *runtime = GetLanguageRuntime(known_type); | 
|  | return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; | 
|  | } | 
|  |  | 
|  | for (LanguageRuntime *runtime : GetLanguageRuntimes()) { | 
|  | if (runtime->CouldHaveDynamicValue(in_value)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { | 
|  | m_dynamic_checkers_up.reset(dynamic_checkers); | 
|  | } | 
|  |  | 
|  | StopPointSiteList<BreakpointSite> &Process::GetBreakpointSiteList() { | 
|  | return m_breakpoint_site_list; | 
|  | } | 
|  |  | 
|  | const StopPointSiteList<BreakpointSite> & | 
|  | Process::GetBreakpointSiteList() const { | 
|  | return m_breakpoint_site_list; | 
|  | } | 
|  |  | 
|  | void Process::DisableAllBreakpointSites() { | 
|  | m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { | 
|  | //        bp_site->SetEnabled(true); | 
|  | DisableBreakpointSite(bp_site); | 
|  | }); | 
|  | } | 
|  |  | 
|  | Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { | 
|  | Status error(DisableBreakpointSiteByID(break_id)); | 
|  |  | 
|  | if (error.Success()) | 
|  | m_breakpoint_site_list.Remove(break_id); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { | 
|  | Status error; | 
|  | BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); | 
|  | if (bp_site_sp) { | 
|  | if (bp_site_sp->IsEnabled()) | 
|  | error = DisableBreakpointSite(bp_site_sp.get()); | 
|  | } else { | 
|  | error = Status::FromErrorStringWithFormat( | 
|  | "invalid breakpoint site ID: %" PRIu64, break_id); | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { | 
|  | Status error; | 
|  | BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); | 
|  | if (bp_site_sp) { | 
|  | if (!bp_site_sp->IsEnabled()) | 
|  | error = EnableBreakpointSite(bp_site_sp.get()); | 
|  | } else { | 
|  | error = Status::FromErrorStringWithFormat( | 
|  | "invalid breakpoint site ID: %" PRIu64, break_id); | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | lldb::break_id_t | 
|  | Process::CreateBreakpointSite(const BreakpointLocationSP &constituent, | 
|  | bool use_hardware) { | 
|  | addr_t load_addr = LLDB_INVALID_ADDRESS; | 
|  |  | 
|  | bool show_error = true; | 
|  | switch (GetState()) { | 
|  | case eStateInvalid: | 
|  | case eStateUnloaded: | 
|  | case eStateConnected: | 
|  | case eStateAttaching: | 
|  | case eStateLaunching: | 
|  | case eStateDetached: | 
|  | case eStateExited: | 
|  | show_error = false; | 
|  | break; | 
|  |  | 
|  | case eStateStopped: | 
|  | case eStateRunning: | 
|  | case eStateStepping: | 
|  | case eStateCrashed: | 
|  | case eStateSuspended: | 
|  | show_error = IsAlive(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Reset the IsIndirect flag here, in case the location changes from pointing | 
|  | // to a indirect symbol to a regular symbol. | 
|  | constituent->SetIsIndirect(false); | 
|  |  | 
|  | if (constituent->ShouldResolveIndirectFunctions()) { | 
|  | Symbol *symbol = constituent->GetAddress().CalculateSymbolContextSymbol(); | 
|  | if (symbol && symbol->IsIndirect()) { | 
|  | Status error; | 
|  | Address symbol_address = symbol->GetAddress(); | 
|  | load_addr = ResolveIndirectFunction(&symbol_address, error); | 
|  | if (!error.Success() && show_error) { | 
|  | GetTarget().GetDebugger().GetAsyncErrorStream()->Printf( | 
|  | "warning: failed to resolve indirect function at 0x%" PRIx64 | 
|  | " for breakpoint %i.%i: %s\n", | 
|  | symbol->GetLoadAddress(&GetTarget()), | 
|  | constituent->GetBreakpoint().GetID(), constituent->GetID(), | 
|  | error.AsCString() ? error.AsCString() : "unknown error"); | 
|  | return LLDB_INVALID_BREAK_ID; | 
|  | } | 
|  | Address resolved_address(load_addr); | 
|  | load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); | 
|  | constituent->SetIsIndirect(true); | 
|  | } else | 
|  | load_addr = constituent->GetAddress().GetOpcodeLoadAddress(&GetTarget()); | 
|  | } else | 
|  | load_addr = constituent->GetAddress().GetOpcodeLoadAddress(&GetTarget()); | 
|  |  | 
|  | if (load_addr != LLDB_INVALID_ADDRESS) { | 
|  | BreakpointSiteSP bp_site_sp; | 
|  |  | 
|  | // Look up this breakpoint site.  If it exists, then add this new | 
|  | // constituent, otherwise create a new breakpoint site and add it. | 
|  |  | 
|  | bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); | 
|  |  | 
|  | if (bp_site_sp) { | 
|  | bp_site_sp->AddConstituent(constituent); | 
|  | constituent->SetBreakpointSite(bp_site_sp); | 
|  | return bp_site_sp->GetID(); | 
|  | } else { | 
|  | bp_site_sp.reset( | 
|  | new BreakpointSite(constituent, load_addr, use_hardware)); | 
|  | if (bp_site_sp) { | 
|  | Status error = EnableBreakpointSite(bp_site_sp.get()); | 
|  | if (error.Success()) { | 
|  | constituent->SetBreakpointSite(bp_site_sp); | 
|  | return m_breakpoint_site_list.Add(bp_site_sp); | 
|  | } else { | 
|  | if (show_error || use_hardware) { | 
|  | // Report error for setting breakpoint... | 
|  | GetTarget().GetDebugger().GetAsyncErrorStream()->Printf( | 
|  | "warning: failed to set breakpoint site at 0x%" PRIx64 | 
|  | " for breakpoint %i.%i: %s\n", | 
|  | load_addr, constituent->GetBreakpoint().GetID(), | 
|  | constituent->GetID(), | 
|  | error.AsCString() ? error.AsCString() : "unknown error"); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | // We failed to enable the breakpoint | 
|  | return LLDB_INVALID_BREAK_ID; | 
|  | } | 
|  |  | 
|  | void Process::RemoveConstituentFromBreakpointSite( | 
|  | lldb::user_id_t constituent_id, lldb::user_id_t constituent_loc_id, | 
|  | BreakpointSiteSP &bp_site_sp) { | 
|  | uint32_t num_constituents = | 
|  | bp_site_sp->RemoveConstituent(constituent_id, constituent_loc_id); | 
|  | if (num_constituents == 0) { | 
|  | // Don't try to disable the site if we don't have a live process anymore. | 
|  | if (IsAlive()) | 
|  | DisableBreakpointSite(bp_site_sp.get()); | 
|  | m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, | 
|  | uint8_t *buf) const { | 
|  | size_t bytes_removed = 0; | 
|  | StopPointSiteList<BreakpointSite> bp_sites_in_range; | 
|  |  | 
|  | if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, | 
|  | bp_sites_in_range)) { | 
|  | bp_sites_in_range.ForEach([bp_addr, size, | 
|  | buf](BreakpointSite *bp_site) -> void { | 
|  | if (bp_site->GetType() == BreakpointSite::eSoftware) { | 
|  | addr_t intersect_addr; | 
|  | size_t intersect_size; | 
|  | size_t opcode_offset; | 
|  | if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, | 
|  | &intersect_size, &opcode_offset)) { | 
|  | assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); | 
|  | assert(bp_addr < intersect_addr + intersect_size && | 
|  | intersect_addr + intersect_size <= bp_addr + size); | 
|  | assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); | 
|  | size_t buf_offset = intersect_addr - bp_addr; | 
|  | ::memcpy(buf + buf_offset, | 
|  | bp_site->GetSavedOpcodeBytes() + opcode_offset, | 
|  | intersect_size); | 
|  | } | 
|  | } | 
|  | }); | 
|  | } | 
|  | return bytes_removed; | 
|  | } | 
|  |  | 
|  | size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { | 
|  | PlatformSP platform_sp(GetTarget().GetPlatform()); | 
|  | if (platform_sp) | 
|  | return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { | 
|  | Status error; | 
|  | assert(bp_site != nullptr); | 
|  | Log *log = GetLog(LLDBLog::Breakpoints); | 
|  | const addr_t bp_addr = bp_site->GetLoadAddress(); | 
|  | LLDB_LOGF( | 
|  | log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, | 
|  | bp_site->GetID(), (uint64_t)bp_addr); | 
|  | if (bp_site->IsEnabled()) { | 
|  | LLDB_LOGF( | 
|  | log, | 
|  | "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 | 
|  | " -- already enabled", | 
|  | bp_site->GetID(), (uint64_t)bp_addr); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | if (bp_addr == LLDB_INVALID_ADDRESS) { | 
|  | error = Status::FromErrorString( | 
|  | "BreakpointSite contains an invalid load address."); | 
|  | return error; | 
|  | } | 
|  | // Ask the lldb::Process subclass to fill in the correct software breakpoint | 
|  | // trap for the breakpoint site | 
|  | const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); | 
|  |  | 
|  | if (bp_opcode_size == 0) { | 
|  | error = Status::FromErrorStringWithFormat( | 
|  | "Process::GetSoftwareBreakpointTrapOpcode() " | 
|  | "returned zero, unable to get breakpoint " | 
|  | "trap for address 0x%" PRIx64, | 
|  | bp_addr); | 
|  | } else { | 
|  | const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); | 
|  |  | 
|  | if (bp_opcode_bytes == nullptr) { | 
|  | error = Status::FromErrorString( | 
|  | "BreakpointSite doesn't contain a valid breakpoint trap opcode."); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | // Save the original opcode by reading it | 
|  | if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, | 
|  | error) == bp_opcode_size) { | 
|  | // Write a software breakpoint in place of the original opcode | 
|  | if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == | 
|  | bp_opcode_size) { | 
|  | uint8_t verify_bp_opcode_bytes[64]; | 
|  | if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, | 
|  | error) == bp_opcode_size) { | 
|  | if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, | 
|  | bp_opcode_size) == 0) { | 
|  | bp_site->SetEnabled(true); | 
|  | bp_site->SetType(BreakpointSite::eSoftware); | 
|  | LLDB_LOGF(log, | 
|  | "Process::EnableSoftwareBreakpoint (site_id = %d) " | 
|  | "addr = 0x%" PRIx64 " -- SUCCESS", | 
|  | bp_site->GetID(), (uint64_t)bp_addr); | 
|  | } else | 
|  | error = Status::FromErrorString( | 
|  | "failed to verify the breakpoint trap in memory."); | 
|  | } else | 
|  | error = Status::FromErrorString( | 
|  | "Unable to read memory to verify breakpoint trap."); | 
|  | } else | 
|  | error = Status::FromErrorString( | 
|  | "Unable to write breakpoint trap to memory."); | 
|  | } else | 
|  | error = Status::FromErrorString( | 
|  | "Unable to read memory at breakpoint address."); | 
|  | } | 
|  | if (log && error.Fail()) | 
|  | LLDB_LOGF( | 
|  | log, | 
|  | "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 | 
|  | " -- FAILED: %s", | 
|  | bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { | 
|  | Status error; | 
|  | assert(bp_site != nullptr); | 
|  | Log *log = GetLog(LLDBLog::Breakpoints); | 
|  | addr_t bp_addr = bp_site->GetLoadAddress(); | 
|  | lldb::user_id_t breakID = bp_site->GetID(); | 
|  | LLDB_LOGF(log, | 
|  | "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 | 
|  | ") addr = 0x%" PRIx64, | 
|  | breakID, (uint64_t)bp_addr); | 
|  |  | 
|  | if (bp_site->IsHardware()) { | 
|  | error = | 
|  | Status::FromErrorString("Breakpoint site is a hardware breakpoint."); | 
|  | } else if (bp_site->IsEnabled()) { | 
|  | const size_t break_op_size = bp_site->GetByteSize(); | 
|  | const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); | 
|  | if (break_op_size > 0) { | 
|  | // Clear a software breakpoint instruction | 
|  | uint8_t curr_break_op[8]; | 
|  | assert(break_op_size <= sizeof(curr_break_op)); | 
|  | bool break_op_found = false; | 
|  |  | 
|  | // Read the breakpoint opcode | 
|  | if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == | 
|  | break_op_size) { | 
|  | bool verify = false; | 
|  | // Make sure the breakpoint opcode exists at this address | 
|  | if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { | 
|  | break_op_found = true; | 
|  | // We found a valid breakpoint opcode at this address, now restore | 
|  | // the saved opcode. | 
|  | if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), | 
|  | break_op_size, error) == break_op_size) { | 
|  | verify = true; | 
|  | } else | 
|  | error = Status::FromErrorString( | 
|  | "Memory write failed when restoring original opcode."); | 
|  | } else { | 
|  | error = Status::FromErrorString( | 
|  | "Original breakpoint trap is no longer in memory."); | 
|  | // Set verify to true and so we can check if the original opcode has | 
|  | // already been restored | 
|  | verify = true; | 
|  | } | 
|  |  | 
|  | if (verify) { | 
|  | uint8_t verify_opcode[8]; | 
|  | assert(break_op_size < sizeof(verify_opcode)); | 
|  | // Verify that our original opcode made it back to the inferior | 
|  | if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == | 
|  | break_op_size) { | 
|  | // compare the memory we just read with the original opcode | 
|  | if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, | 
|  | break_op_size) == 0) { | 
|  | // SUCCESS | 
|  | bp_site->SetEnabled(false); | 
|  | LLDB_LOGF(log, | 
|  | "Process::DisableSoftwareBreakpoint (site_id = %d) " | 
|  | "addr = 0x%" PRIx64 " -- SUCCESS", | 
|  | bp_site->GetID(), (uint64_t)bp_addr); | 
|  | return error; | 
|  | } else { | 
|  | if (break_op_found) | 
|  | error = Status::FromErrorString( | 
|  | "Failed to restore original opcode."); | 
|  | } | 
|  | } else | 
|  | error = | 
|  | Status::FromErrorString("Failed to read memory to verify that " | 
|  | "breakpoint trap was restored."); | 
|  | } | 
|  | } else | 
|  | error = Status::FromErrorString( | 
|  | "Unable to read memory that should contain the breakpoint trap."); | 
|  | } | 
|  | } else { | 
|  | LLDB_LOGF( | 
|  | log, | 
|  | "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 | 
|  | " -- already disabled", | 
|  | bp_site->GetID(), (uint64_t)bp_addr); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | LLDB_LOGF( | 
|  | log, | 
|  | "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 | 
|  | " -- FAILED: %s", | 
|  | bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | // Uncomment to verify memory caching works after making changes to caching | 
|  | // code | 
|  | //#define VERIFY_MEMORY_READS | 
|  |  | 
|  | size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { | 
|  | if (ABISP abi_sp = GetABI()) | 
|  | addr = abi_sp->FixAnyAddress(addr); | 
|  |  | 
|  | error.Clear(); | 
|  | if (!GetDisableMemoryCache()) { | 
|  | #if defined(VERIFY_MEMORY_READS) | 
|  | // Memory caching is enabled, with debug verification | 
|  |  | 
|  | if (buf && size) { | 
|  | // Uncomment the line below to make sure memory caching is working. | 
|  | // I ran this through the test suite and got no assertions, so I am | 
|  | // pretty confident this is working well. If any changes are made to | 
|  | // memory caching, uncomment the line below and test your changes! | 
|  |  | 
|  | // Verify all memory reads by using the cache first, then redundantly | 
|  | // reading the same memory from the inferior and comparing to make sure | 
|  | // everything is exactly the same. | 
|  | std::string verify_buf(size, '\0'); | 
|  | assert(verify_buf.size() == size); | 
|  | const size_t cache_bytes_read = | 
|  | m_memory_cache.Read(this, addr, buf, size, error); | 
|  | Status verify_error; | 
|  | const size_t verify_bytes_read = | 
|  | ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), | 
|  | verify_buf.size(), verify_error); | 
|  | assert(cache_bytes_read == verify_bytes_read); | 
|  | assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); | 
|  | assert(verify_error.Success() == error.Success()); | 
|  | return cache_bytes_read; | 
|  | } | 
|  | return 0; | 
|  | #else  // !defined(VERIFY_MEMORY_READS) | 
|  | // Memory caching is enabled, without debug verification | 
|  |  | 
|  | return m_memory_cache.Read(addr, buf, size, error); | 
|  | #endif // defined (VERIFY_MEMORY_READS) | 
|  | } else { | 
|  | // Memory caching is disabled | 
|  |  | 
|  | return ReadMemoryFromInferior(addr, buf, size, error); | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm::SmallVector<llvm::MutableArrayRef<uint8_t>> | 
|  | Process::ReadMemoryRanges(llvm::ArrayRef<Range<lldb::addr_t, size_t>> ranges, | 
|  | llvm::MutableArrayRef<uint8_t> buffer) { | 
|  | auto total_ranges_len = llvm::sum_of( | 
|  | llvm::map_range(ranges, [](auto range) { return range.size; })); | 
|  | // If the buffer is not large enough, this is a programmer error. | 
|  | // In production builds, gracefully fail by returning a length of 0 for all | 
|  | // ranges. | 
|  | assert(buffer.size() >= total_ranges_len && "provided buffer is too short"); | 
|  | if (buffer.size() < total_ranges_len) { | 
|  | llvm::MutableArrayRef<uint8_t> empty; | 
|  | return {ranges.size(), empty}; | 
|  | } | 
|  |  | 
|  | llvm::SmallVector<llvm::MutableArrayRef<uint8_t>> results; | 
|  |  | 
|  | // While `buffer` has space, take the next requested range and read | 
|  | // memory into a `buffer` piece, then slice it to remove the used memory. | 
|  | for (auto [addr, range_len] : ranges) { | 
|  | Status status; | 
|  | size_t num_bytes_read = | 
|  | ReadMemoryFromInferior(addr, buffer.data(), range_len, status); | 
|  | // FIXME: ReadMemoryFromInferior promises to return 0 in case of errors, but | 
|  | // it doesn't; it never checks for errors. | 
|  | if (status.Fail()) | 
|  | num_bytes_read = 0; | 
|  |  | 
|  | assert(num_bytes_read <= range_len && "read more than requested bytes"); | 
|  | if (num_bytes_read > range_len) { | 
|  | // In production builds, gracefully fail by returning length zero for this | 
|  | // range. | 
|  | results.emplace_back(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | results.push_back(buffer.take_front(num_bytes_read)); | 
|  | // Slice buffer to remove the used memory. | 
|  | buffer = buffer.drop_front(num_bytes_read); | 
|  | } | 
|  |  | 
|  | return results; | 
|  | } | 
|  |  | 
|  | void Process::DoFindInMemory(lldb::addr_t start_addr, lldb::addr_t end_addr, | 
|  | const uint8_t *buf, size_t size, | 
|  | AddressRanges &matches, size_t alignment, | 
|  | size_t max_matches) { | 
|  | // Inputs are already validated in FindInMemory() functions. | 
|  | assert(buf != nullptr); | 
|  | assert(size > 0); | 
|  | assert(alignment > 0); | 
|  | assert(max_matches > 0); | 
|  | assert(start_addr != LLDB_INVALID_ADDRESS); | 
|  | assert(end_addr != LLDB_INVALID_ADDRESS); | 
|  | assert(start_addr < end_addr); | 
|  |  | 
|  | lldb::addr_t start = llvm::alignTo(start_addr, alignment); | 
|  | while (matches.size() < max_matches && (start + size) < end_addr) { | 
|  | const lldb::addr_t found_addr = FindInMemory(start, end_addr, buf, size); | 
|  | if (found_addr == LLDB_INVALID_ADDRESS) | 
|  | break; | 
|  |  | 
|  | if (found_addr % alignment) { | 
|  | // We need to check the alignment because the FindInMemory uses a special | 
|  | // algorithm to efficiently search mememory but doesn't support alignment. | 
|  | start = llvm::alignTo(start + 1, alignment); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | matches.emplace_back(found_addr, size); | 
|  | start = found_addr + alignment; | 
|  | } | 
|  | } | 
|  |  | 
|  | AddressRanges Process::FindRangesInMemory(const uint8_t *buf, uint64_t size, | 
|  | const AddressRanges &ranges, | 
|  | size_t alignment, size_t max_matches, | 
|  | Status &error) { | 
|  | AddressRanges matches; | 
|  | if (buf == nullptr) { | 
|  | error = Status::FromErrorString("buffer is null"); | 
|  | return matches; | 
|  | } | 
|  | if (size == 0) { | 
|  | error = Status::FromErrorString("buffer size is zero"); | 
|  | return matches; | 
|  | } | 
|  | if (ranges.empty()) { | 
|  | error = Status::FromErrorString("empty ranges"); | 
|  | return matches; | 
|  | } | 
|  | if (alignment == 0) { | 
|  | error = Status::FromErrorString("alignment must be greater than zero"); | 
|  | return matches; | 
|  | } | 
|  | if (max_matches == 0) { | 
|  | error = Status::FromErrorString("max_matches must be greater than zero"); | 
|  | return matches; | 
|  | } | 
|  |  | 
|  | int resolved_ranges = 0; | 
|  | Target &target = GetTarget(); | 
|  | for (size_t i = 0; i < ranges.size(); ++i) { | 
|  | if (matches.size() >= max_matches) | 
|  | break; | 
|  | const AddressRange &range = ranges[i]; | 
|  | if (range.IsValid() == false) | 
|  | continue; | 
|  |  | 
|  | const lldb::addr_t start_addr = | 
|  | range.GetBaseAddress().GetLoadAddress(&target); | 
|  | if (start_addr == LLDB_INVALID_ADDRESS) | 
|  | continue; | 
|  |  | 
|  | ++resolved_ranges; | 
|  | const lldb::addr_t end_addr = start_addr + range.GetByteSize(); | 
|  | DoFindInMemory(start_addr, end_addr, buf, size, matches, alignment, | 
|  | max_matches); | 
|  | } | 
|  |  | 
|  | if (resolved_ranges > 0) | 
|  | error.Clear(); | 
|  | else | 
|  | error = Status::FromErrorString("unable to resolve any ranges"); | 
|  |  | 
|  | return matches; | 
|  | } | 
|  |  | 
|  | lldb::addr_t Process::FindInMemory(const uint8_t *buf, uint64_t size, | 
|  | const AddressRange &range, size_t alignment, | 
|  | Status &error) { | 
|  | if (buf == nullptr) { | 
|  | error = Status::FromErrorString("buffer is null"); | 
|  | return LLDB_INVALID_ADDRESS; | 
|  | } | 
|  | if (size == 0) { | 
|  | error = Status::FromErrorString("buffer size is zero"); | 
|  | return LLDB_INVALID_ADDRESS; | 
|  | } | 
|  | if (!range.IsValid()) { | 
|  | error = Status::FromErrorString("range is invalid"); | 
|  | return LLDB_INVALID_ADDRESS; | 
|  | } | 
|  | if (alignment == 0) { | 
|  | error = Status::FromErrorString("alignment must be greater than zero"); | 
|  | return LLDB_INVALID_ADDRESS; | 
|  | } | 
|  |  | 
|  | Target &target = GetTarget(); | 
|  | const lldb::addr_t start_addr = | 
|  | range.GetBaseAddress().GetLoadAddress(&target); | 
|  | if (start_addr == LLDB_INVALID_ADDRESS) { | 
|  | error = Status::FromErrorString("range load address is invalid"); | 
|  | return LLDB_INVALID_ADDRESS; | 
|  | } | 
|  | const lldb::addr_t end_addr = start_addr + range.GetByteSize(); | 
|  |  | 
|  | AddressRanges matches; | 
|  | DoFindInMemory(start_addr, end_addr, buf, size, matches, alignment, 1); | 
|  | if (matches.empty()) | 
|  | return LLDB_INVALID_ADDRESS; | 
|  |  | 
|  | error.Clear(); | 
|  | return matches[0].GetBaseAddress().GetLoadAddress(&target); | 
|  | } | 
|  |  | 
|  | size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, | 
|  | Status &error) { | 
|  | char buf[256]; | 
|  | out_str.clear(); | 
|  | addr_t curr_addr = addr; | 
|  | while (true) { | 
|  | size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); | 
|  | if (length == 0) | 
|  | break; | 
|  | out_str.append(buf, length); | 
|  | // If we got "length - 1" bytes, we didn't get the whole C string, we need | 
|  | // to read some more characters | 
|  | if (length == sizeof(buf) - 1) | 
|  | curr_addr += length; | 
|  | else | 
|  | break; | 
|  | } | 
|  | return out_str.size(); | 
|  | } | 
|  |  | 
|  | // Deprecated in favor of ReadStringFromMemory which has wchar support and | 
|  | // correct code to find null terminators. | 
|  | size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, | 
|  | size_t dst_max_len, | 
|  | Status &result_error) { | 
|  | size_t total_cstr_len = 0; | 
|  | if (dst && dst_max_len) { | 
|  | result_error.Clear(); | 
|  | // NULL out everything just to be safe | 
|  | memset(dst, 0, dst_max_len); | 
|  | addr_t curr_addr = addr; | 
|  | const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); | 
|  | size_t bytes_left = dst_max_len - 1; | 
|  | char *curr_dst = dst; | 
|  |  | 
|  | while (bytes_left > 0) { | 
|  | addr_t cache_line_bytes_left = | 
|  | cache_line_size - (curr_addr % cache_line_size); | 
|  | addr_t bytes_to_read = | 
|  | std::min<addr_t>(bytes_left, cache_line_bytes_left); | 
|  | Status error; | 
|  | size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); | 
|  |  | 
|  | if (bytes_read == 0) { | 
|  | result_error = std::move(error); | 
|  | dst[total_cstr_len] = '\0'; | 
|  | break; | 
|  | } | 
|  | const size_t len = strlen(curr_dst); | 
|  |  | 
|  | total_cstr_len += len; | 
|  |  | 
|  | if (len < bytes_to_read) | 
|  | break; | 
|  |  | 
|  | curr_dst += bytes_read; | 
|  | curr_addr += bytes_read; | 
|  | bytes_left -= bytes_read; | 
|  | } | 
|  | } else { | 
|  | if (dst == nullptr) | 
|  | result_error = Status::FromErrorString("invalid arguments"); | 
|  | else | 
|  | result_error.Clear(); | 
|  | } | 
|  | return total_cstr_len; | 
|  | } | 
|  |  | 
|  | size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, | 
|  | Status &error) { | 
|  | LLDB_SCOPED_TIMER(); | 
|  |  | 
|  | if (ABISP abi_sp = GetABI()) | 
|  | addr = abi_sp->FixAnyAddress(addr); | 
|  |  | 
|  | if (buf == nullptr || size == 0) | 
|  | return 0; | 
|  |  | 
|  | size_t bytes_read = 0; | 
|  | uint8_t *bytes = (uint8_t *)buf; | 
|  |  | 
|  | while (bytes_read < size) { | 
|  | const size_t curr_size = size - bytes_read; | 
|  | const size_t curr_bytes_read = | 
|  | DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); | 
|  | bytes_read += curr_bytes_read; | 
|  | if (curr_bytes_read == curr_size || curr_bytes_read == 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Replace any software breakpoint opcodes that fall into this range back | 
|  | // into "buf" before we return | 
|  | if (bytes_read > 0) | 
|  | RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); | 
|  | return bytes_read; | 
|  | } | 
|  |  | 
|  | lldb::offset_t Process::ReadMemoryInChunks(lldb::addr_t vm_addr, void *buf, | 
|  | lldb::addr_t chunk_size, | 
|  | lldb::offset_t size, | 
|  | ReadMemoryChunkCallback callback) { | 
|  | // Safety check to prevent an infinite loop. | 
|  | if (chunk_size == 0) | 
|  | return 0; | 
|  |  | 
|  | // Buffer for when a NULL buf is provided, initialized | 
|  | // to 0 bytes, we set it to chunk_size and then replace buf | 
|  | // with the new buffer. | 
|  | DataBufferHeap data_buffer; | 
|  | if (!buf) { | 
|  | data_buffer.SetByteSize(chunk_size); | 
|  | buf = data_buffer.GetBytes(); | 
|  | } | 
|  |  | 
|  | uint64_t bytes_remaining = size; | 
|  | uint64_t bytes_read = 0; | 
|  | Status error; | 
|  | while (bytes_remaining > 0) { | 
|  | // Get the next read chunk size as the minimum of the remaining bytes and | 
|  | // the write chunk max size. | 
|  | const lldb::addr_t bytes_to_read = std::min(bytes_remaining, chunk_size); | 
|  | const lldb::addr_t current_addr = vm_addr + bytes_read; | 
|  | const lldb::addr_t bytes_read_for_chunk = | 
|  | ReadMemoryFromInferior(current_addr, buf, bytes_to_read, error); | 
|  |  | 
|  | bytes_read += bytes_read_for_chunk; | 
|  | // If the bytes read in this chunk would cause us to overflow, something | 
|  | // went wrong and we should fail fast. | 
|  | if (bytes_read_for_chunk > bytes_remaining) | 
|  | return 0; | 
|  | else | 
|  | bytes_remaining -= bytes_read_for_chunk; | 
|  |  | 
|  | if (callback(error, current_addr, buf, bytes_read_for_chunk) == | 
|  | IterationAction::Stop) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return bytes_read; | 
|  | } | 
|  |  | 
|  | uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, | 
|  | size_t integer_byte_size, | 
|  | uint64_t fail_value, | 
|  | Status &error) { | 
|  | Scalar scalar; | 
|  | if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, | 
|  | error)) | 
|  | return scalar.ULongLong(fail_value); | 
|  | return fail_value; | 
|  | } | 
|  |  | 
|  | int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, | 
|  | size_t integer_byte_size, | 
|  | int64_t fail_value, | 
|  | Status &error) { | 
|  | Scalar scalar; | 
|  | if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, | 
|  | error)) | 
|  | return scalar.SLongLong(fail_value); | 
|  | return fail_value; | 
|  | } | 
|  |  | 
|  | addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { | 
|  | Scalar scalar; | 
|  | if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, | 
|  | error)) | 
|  | return scalar.ULongLong(LLDB_INVALID_ADDRESS); | 
|  | return LLDB_INVALID_ADDRESS; | 
|  | } | 
|  |  | 
|  | bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, | 
|  | Status &error) { | 
|  | Scalar scalar; | 
|  | const uint32_t addr_byte_size = GetAddressByteSize(); | 
|  | if (addr_byte_size <= 4) | 
|  | scalar = (uint32_t)ptr_value; | 
|  | else | 
|  | scalar = ptr_value; | 
|  | return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == | 
|  | addr_byte_size; | 
|  | } | 
|  |  | 
|  | size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, | 
|  | Status &error) { | 
|  | size_t bytes_written = 0; | 
|  | const uint8_t *bytes = (const uint8_t *)buf; | 
|  |  | 
|  | while (bytes_written < size) { | 
|  | const size_t curr_size = size - bytes_written; | 
|  | const size_t curr_bytes_written = DoWriteMemory( | 
|  | addr + bytes_written, bytes + bytes_written, curr_size, error); | 
|  | bytes_written += curr_bytes_written; | 
|  | if (curr_bytes_written == curr_size || curr_bytes_written == 0) | 
|  | break; | 
|  | } | 
|  | return bytes_written; | 
|  | } | 
|  |  | 
|  | size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, | 
|  | Status &error) { | 
|  | if (ABISP abi_sp = GetABI()) | 
|  | addr = abi_sp->FixAnyAddress(addr); | 
|  |  | 
|  | m_memory_cache.Flush(addr, size); | 
|  |  | 
|  | if (buf == nullptr || size == 0) | 
|  | return 0; | 
|  |  | 
|  | if (TrackMemoryCacheChanges() || !m_allocated_memory_cache.IsInCache(addr)) | 
|  | m_mod_id.BumpMemoryID(); | 
|  |  | 
|  | // We need to write any data that would go where any current software traps | 
|  | // (enabled software breakpoints) any software traps (breakpoints) that we | 
|  | // may have placed in our tasks memory. | 
|  |  | 
|  | StopPointSiteList<BreakpointSite> bp_sites_in_range; | 
|  | if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) | 
|  | return WriteMemoryPrivate(addr, buf, size, error); | 
|  |  | 
|  | // No breakpoint sites overlap | 
|  | if (bp_sites_in_range.IsEmpty()) | 
|  | return WriteMemoryPrivate(addr, buf, size, error); | 
|  |  | 
|  | const uint8_t *ubuf = (const uint8_t *)buf; | 
|  | uint64_t bytes_written = 0; | 
|  |  | 
|  | bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, | 
|  | &error](BreakpointSite *bp) -> void { | 
|  | if (error.Fail()) | 
|  | return; | 
|  |  | 
|  | if (bp->GetType() != BreakpointSite::eSoftware) | 
|  | return; | 
|  |  | 
|  | addr_t intersect_addr; | 
|  | size_t intersect_size; | 
|  | size_t opcode_offset; | 
|  | const bool intersects = bp->IntersectsRange( | 
|  | addr, size, &intersect_addr, &intersect_size, &opcode_offset); | 
|  | UNUSED_IF_ASSERT_DISABLED(intersects); | 
|  | assert(intersects); | 
|  | assert(addr <= intersect_addr && intersect_addr < addr + size); | 
|  | assert(addr < intersect_addr + intersect_size && | 
|  | intersect_addr + intersect_size <= addr + size); | 
|  | assert(opcode_offset + intersect_size <= bp->GetByteSize()); | 
|  |  | 
|  | // Check for bytes before this breakpoint | 
|  | const addr_t curr_addr = addr + bytes_written; | 
|  | if (intersect_addr > curr_addr) { | 
|  | // There are some bytes before this breakpoint that we need to just | 
|  | // write to memory | 
|  | size_t curr_size = intersect_addr - curr_addr; | 
|  | size_t curr_bytes_written = | 
|  | WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); | 
|  | bytes_written += curr_bytes_written; | 
|  | if (curr_bytes_written != curr_size) { | 
|  | // We weren't able to write all of the requested bytes, we are | 
|  | // done looping and will return the number of bytes that we have | 
|  | // written so far. | 
|  | if (error.Success()) | 
|  | error = Status::FromErrorString("could not write all bytes"); | 
|  | } | 
|  | } | 
|  | // Now write any bytes that would cover up any software breakpoints | 
|  | // directly into the breakpoint opcode buffer | 
|  | ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, | 
|  | intersect_size); | 
|  | bytes_written += intersect_size; | 
|  | }); | 
|  |  | 
|  | // Write any remaining bytes after the last breakpoint if we have any left | 
|  | if (bytes_written < size) | 
|  | bytes_written += | 
|  | WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, | 
|  | size - bytes_written, error); | 
|  |  | 
|  | return bytes_written; | 
|  | } | 
|  |  | 
|  | size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, | 
|  | size_t byte_size, Status &error) { | 
|  | if (byte_size == UINT32_MAX) | 
|  | byte_size = scalar.GetByteSize(); | 
|  | if (byte_size > 0) { | 
|  | uint8_t buf[32]; | 
|  | const size_t mem_size = | 
|  | scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); | 
|  | if (mem_size > 0) | 
|  | return WriteMemory(addr, buf, mem_size, error); | 
|  | else | 
|  | error = Status::FromErrorString("failed to get scalar as memory data"); | 
|  | } else { | 
|  | error = Status::FromErrorString("invalid scalar value"); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, | 
|  | bool is_signed, Scalar &scalar, | 
|  | Status &error) { | 
|  | uint64_t uval = 0; | 
|  | if (byte_size == 0) { | 
|  | error = Status::FromErrorString("byte size is zero"); | 
|  | } else if (byte_size & (byte_size - 1)) { | 
|  | error = Status::FromErrorStringWithFormat( | 
|  | "byte size %u is not a power of 2", byte_size); | 
|  | } else if (byte_size <= sizeof(uval)) { | 
|  | const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); | 
|  | if (bytes_read == byte_size) { | 
|  | DataExtractor data(&uval, sizeof(uval), GetByteOrder(), | 
|  | GetAddressByteSize()); | 
|  | lldb::offset_t offset = 0; | 
|  | if (byte_size <= 4) | 
|  | scalar = data.GetMaxU32(&offset, byte_size); | 
|  | else | 
|  | scalar = data.GetMaxU64(&offset, byte_size); | 
|  | if (is_signed) | 
|  | scalar.SignExtend(byte_size * 8); | 
|  | return bytes_read; | 
|  | } | 
|  | } else { | 
|  | error = Status::FromErrorStringWithFormat( | 
|  | "byte size of %u is too large for integer scalar type", byte_size); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { | 
|  | Status error; | 
|  | for (const auto &Entry : entries) { | 
|  | WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), | 
|  | error); | 
|  | if (!error.Success()) | 
|  | break; | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | addr_t Process::AllocateMemory(size_t size, uint32_t permissions, | 
|  | Status &error) { | 
|  | if (GetPrivateState() != eStateStopped) { | 
|  | error = Status::FromErrorString( | 
|  | "cannot allocate memory while process is running"); | 
|  | return LLDB_INVALID_ADDRESS; | 
|  | } | 
|  |  | 
|  | return m_allocated_memory_cache.AllocateMemory(size, permissions, error); | 
|  | } | 
|  |  | 
|  | addr_t Process::CallocateMemory(size_t size, uint32_t permissions, | 
|  | Status &error) { | 
|  | addr_t return_addr = AllocateMemory(size, permissions, error); | 
|  | if (error.Success()) { | 
|  | std::string buffer(size, 0); | 
|  | WriteMemory(return_addr, buffer.c_str(), size, error); | 
|  | } | 
|  | return return_addr; | 
|  | } | 
|  |  | 
|  | bool Process::CanJIT() { | 
|  | if (m_can_jit == eCanJITDontKnow) { | 
|  | Log *log = GetLog(LLDBLog::Process); | 
|  | Status err; | 
|  |  | 
|  | uint64_t allocated_memory = AllocateMemory( | 
|  | 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, | 
|  | err); | 
|  |  | 
|  | if (err.Success()) { | 
|  | m_can_jit = eCanJITYes; | 
|  | LLDB_LOGF(log, | 
|  | "Process::%s pid %" PRIu64 | 
|  | " allocation test passed, CanJIT () is true", | 
|  | __FUNCTION__, GetID()); | 
|  | } else { | 
|  | m_can_jit = eCanJITNo; | 
|  | LLDB_LOGF(log, | 
|  | "Process::%s pid %" PRIu64 | 
|  | " allocation test failed, CanJIT () is false: %s", | 
|  | __FUNCTION__, GetID(), err.AsCString()); | 
|  | } | 
|  |  | 
|  | DeallocateMemory(allocated_memory); | 
|  | } | 
|  |  | 
|  | return m_can_jit == eCanJITYes; | 
|  | } | 
|  |  | 
|  | void Process::SetCanJIT(bool can_jit) { | 
|  | m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); | 
|  | } | 
|  |  | 
|  | void Process::SetCanRunCode(bool can_run_code) { | 
|  | SetCanJIT(can_run_code); | 
|  | m_can_interpret_function_calls = can_run_code; | 
|  | } | 
|  |  | 
|  | Status Process::DeallocateMemory(addr_t ptr) { | 
|  | Status error; | 
|  | if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { | 
|  | error = Status::FromErrorStringWithFormat( | 
|  | "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | bool Process::GetWatchpointReportedAfter() { | 
|  | if (std::optional<bool> subclass_override = DoGetWatchpointReportedAfter()) | 
|  | return *subclass_override; | 
|  |  | 
|  | bool reported_after = true; | 
|  | const ArchSpec &arch = GetTarget().GetArchitecture(); | 
|  | if (!arch.IsValid()) | 
|  | return reported_after; | 
|  | llvm::Triple triple = arch.GetTriple(); | 
|  |  | 
|  | if (triple.isMIPS() || triple.isPPC64() || triple.isRISCV() || | 
|  | triple.isAArch64() || triple.isArmMClass() || triple.isARM() || | 
|  | triple.isLoongArch()) | 
|  | reported_after = false; | 
|  |  | 
|  | return reported_after; | 
|  | } | 
|  |  | 
|  | ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, | 
|  | lldb::addr_t header_addr, | 
|  | size_t size_to_read) { | 
|  | Log *log = GetLog(LLDBLog::Host); | 
|  | if (log) { | 
|  | LLDB_LOGF(log, | 
|  | "Process::ReadModuleFromMemory reading %s binary from memory", | 
|  | file_spec.GetPath().c_str()); | 
|  | } | 
|  | ModuleSP module_sp(new Module(file_spec, ArchSpec())); | 
|  | if (module_sp) { | 
|  | Status error; | 
|  | std::unique_ptr<Progress> progress_up; | 
|  | // Reading an ObjectFile from a local corefile is very fast, | 
|  | // only print a progress update if we're reading from a | 
|  | // live session which might go over gdb remote serial protocol. | 
|  | if (IsLiveDebugSession()) | 
|  | progress_up = std::make_unique<Progress>( | 
|  | "Reading binary from memory", file_spec.GetFilename().GetString()); | 
|  |  | 
|  | ObjectFile *objfile = module_sp->GetMemoryObjectFile( | 
|  | shared_from_this(), header_addr, error, size_to_read); | 
|  | if (objfile) | 
|  | return module_sp; | 
|  | } | 
|  | return ModuleSP(); | 
|  | } | 
|  |  | 
|  | bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, | 
|  | uint32_t &permissions) { | 
|  | MemoryRegionInfo range_info; | 
|  | permissions = 0; | 
|  | Status error(GetMemoryRegionInfo(load_addr, range_info)); | 
|  | if (!error.Success()) | 
|  | return false; | 
|  | if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || | 
|  | range_info.GetWritable() == MemoryRegionInfo::eDontKnow || | 
|  | range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { | 
|  | return false; | 
|  | } | 
|  | permissions = range_info.GetLLDBPermissions(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Status Process::EnableWatchpoint(WatchpointSP wp_sp, bool notify) { | 
|  | Status error; | 
|  | error = Status::FromErrorString("watchpoints are not supported"); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | Status Process::DisableWatchpoint(WatchpointSP wp_sp, bool notify) { | 
|  | Status error; | 
|  | error = Status::FromErrorString("watchpoints are not supported"); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | StateType | 
|  | Process::WaitForProcessStopPrivate(EventSP &event_sp, | 
|  | const Timeout<std::micro> &timeout) { | 
|  | StateType state; | 
|  |  | 
|  | while (true) { | 
|  | event_sp.reset(); | 
|  | state = GetStateChangedEventsPrivate(event_sp, timeout); | 
|  |  | 
|  | if (StateIsStoppedState(state, false)) | 
|  | break; | 
|  |  | 
|  | // If state is invalid, then we timed out | 
|  | if (state == eStateInvalid) | 
|  | break; | 
|  |  | 
|  | if (event_sp) | 
|  | HandlePrivateEvent(event_sp); | 
|  | } | 
|  | return state; | 
|  | } | 
|  |  | 
|  | void Process::LoadOperatingSystemPlugin(bool flush) { | 
|  | std::lock_guard<std::recursive_mutex> guard(m_thread_mutex); | 
|  | if (flush) | 
|  | m_thread_list.Clear(); | 
|  | m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); | 
|  | if (flush) | 
|  | Flush(); | 
|  | } | 
|  |  | 
|  | Status Process::Launch(ProcessLaunchInfo &launch_info) { | 
|  | StateType state_after_launch = eStateInvalid; | 
|  | EventSP first_stop_event_sp; | 
|  | Status status = | 
|  | LaunchPrivate(launch_info, state_after_launch, first_stop_event_sp); | 
|  | if (status.Fail()) | 
|  | return status; | 
|  |  | 
|  | if (state_after_launch != eStateStopped && | 
|  | state_after_launch != eStateCrashed) | 
|  | return Status(); | 
|  |  | 
|  | // Note, the stop event was consumed above, but not handled. This | 
|  | // was done to give DidLaunch a chance to run. The target is either | 
|  | // stopped or crashed. Directly set the state.  This is done to | 
|  | // prevent a stop message with a bunch of spurious output on thread | 
|  | // status, as well as not pop a ProcessIOHandler. | 
|  | SetPublicState(state_after_launch, false); | 
|  |  | 
|  | if (PrivateStateThreadIsValid()) | 
|  | ResumePrivateStateThread(); | 
|  | else | 
|  | StartPrivateStateThread(); | 
|  |  | 
|  | // Target was stopped at entry as was intended. Need to notify the | 
|  | // listeners about it. | 
|  | if (launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) | 
|  | HandlePrivateEvent(first_stop_event_sp); | 
|  |  | 
|  | return Status(); | 
|  | } | 
|  |  | 
|  | Status Process::LaunchPrivate(ProcessLaunchInfo &launch_info, StateType &state, | 
|  | EventSP &event_sp) { | 
|  | Status error; | 
|  | m_abi_sp.reset(); | 
|  | m_dyld_up.reset(); | 
|  | m_jit_loaders_up.reset(); | 
|  | m_system_runtime_up.reset(); | 
|  | m_os_up.reset(); | 
|  | GetTarget().ClearAllLoadedSections(); | 
|  |  | 
|  | { | 
|  | std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); | 
|  | m_process_input_reader.reset(); | 
|  | } | 
|  |  | 
|  | Module *exe_module = GetTarget().GetExecutableModulePointer(); | 
|  |  | 
|  | // The "remote executable path" is hooked up to the local Executable | 
|  | // module.  But we should be able to debug a remote process even if the | 
|  | // executable module only exists on the remote.  However, there needs to | 
|  | // be a way to express this path, without actually having a module. | 
|  | // The way to do that is to set the ExecutableFile in the LaunchInfo. | 
|  | // Figure that out here: | 
|  |  | 
|  | FileSpec exe_spec_to_use; | 
|  | if (!exe_module) { | 
|  | if (!launch_info.GetExecutableFile() && !launch_info.IsScriptedProcess()) { | 
|  | error = Status::FromErrorString("executable module does not exist"); | 
|  | return error; | 
|  | } | 
|  | exe_spec_to_use = launch_info.GetExecutableFile(); | 
|  | } else | 
|  | exe_spec_to_use = exe_module->GetFileSpec(); | 
|  |  | 
|  | if (exe_module && FileSystem::Instance().Exists(exe_module->GetFileSpec())) { | 
|  | // Install anything that might need to be installed prior to launching. | 
|  | // For host systems, this will do nothing, but if we are connected to a | 
|  | // remote platform it will install any needed binaries | 
|  | error = GetTarget().Install(&launch_info); | 
|  | if (error.Fail()) | 
|  | return error; | 
|  | } | 
|  |  | 
|  | // Listen and queue events that are broadcasted during the process launch. | 
|  | ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack")); | 
|  | HijackProcessEvents(listener_sp); | 
|  | auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); }); | 
|  |  | 
|  | if (PrivateStateThreadIsValid()) | 
|  | PausePrivateStateThread(); | 
|  |  | 
|  | error = WillLaunch(exe_module); | 
|  | if (error.Fail()) { | 
|  | std::string local_exec_file_path = exe_spec_to_use.GetPath(); | 
|  | return Status::FromErrorStringWithFormat("file doesn't exist: '%s'", | 
|  | local_exec_file_path.c_str()); | 
|  | } | 
|  |  | 
|  | const bool restarted = false; | 
|  | SetPublicState(eStateLaunching, restarted); | 
|  | m_should_detach = false; | 
|  |  | 
|  | m_public_run_lock.SetRunning(); | 
|  | error = DoLaunch(exe_module, launch_info); | 
|  |  | 
|  | if (error.Fail()) { | 
|  | if (GetID() != LLDB_INVALID_PROCESS_ID) { | 
|  | SetID(LLDB_INVALID_PROCESS_ID); | 
|  | const char *error_string = error.AsCString(); | 
|  | if (error_string == nullptr) | 
|  | error_string = "launch failed"; | 
|  | SetExitStatus(-1, error_string); | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | // Now wait for the process to launch and return control to us, and then | 
|  | // call DidLaunch: | 
|  | state = WaitForProcessStopPrivate(event_sp, seconds(10)); | 
|  |  | 
|  | if (state == eStateInvalid || !event_sp) { | 
|  | // We were able to launch the process, but we failed to catch the | 
|  | // initial stop. | 
|  | error = Status::FromErrorString("failed to catch stop after launch"); | 
|  | SetExitStatus(0, error.AsCString()); | 
|  | Destroy(false); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | if (state == eStateExited) { | 
|  | // We exited while trying to launch somehow.  Don't call DidLaunch | 
|  | // as that's not likely to work, and return an invalid pid. | 
|  | HandlePrivateEvent(event_sp); | 
|  | return Status(); | 
|  | } | 
|  |  | 
|  | if (state == eStateStopped || state == eStateCrashed) { | 
|  | DidLaunch(); | 
|  |  | 
|  | // Now that we know the process type, update its signal responses from the | 
|  | // ones stored in the Target: | 
|  | if (m_unix_signals_sp) | 
|  | GetTarget().UpdateSignalsFromDummy( | 
|  | m_unix_signals_sp, GetTarget().GetDebugger().GetAsyncErrorStream()); | 
|  |  | 
|  | DynamicLoader *dyld = GetDynamicLoader(); | 
|  | if (dyld) | 
|  | dyld->DidLaunch(); | 
|  |  | 
|  | GetJITLoaders().DidLaunch(); | 
|  |  | 
|  | SystemRuntime *system_runtime = GetSystemRuntime(); | 
|  | if (system_runtime) | 
|  | system_runtime->DidLaunch(); | 
|  |  | 
|  | if (!m_os_up) | 
|  | LoadOperatingSystemPlugin(false); | 
|  |  | 
|  | // We successfully launched the process and stopped, now it the | 
|  | // right time to set up signal filters before resuming. | 
|  | UpdateAutomaticSignalFiltering(); | 
|  | return Status(); | 
|  | } | 
|  |  | 
|  | return Status::FromErrorStringWithFormat( | 
|  | "Unexpected process state after the launch: %s, expected %s, " | 
|  | "%s, %s or %s", | 
|  | StateAsCString(state), StateAsCString(eStateInvalid), | 
|  | StateAsCString(eStateExited), StateAsCString(eStateStopped), | 
|  | StateAsCString(eStateCrashed)); | 
|  | } | 
|  |  | 
|  | Status Process::LoadCore() { | 
|  | GetTarget().ClearAllLoadedSections(); | 
|  | Status error = DoLoadCore(); | 
|  | if (error.Success()) { | 
|  | ListenerSP listener_sp( | 
|  | Listener::MakeListener("lldb.process.load_core_listener")); | 
|  | HijackProcessEvents(listener_sp); | 
|  |  | 
|  | if (PrivateStateThreadIsValid()) | 
|  | ResumePrivateStateThread(); | 
|  | else | 
|  | StartPrivateStateThread(); | 
|  |  | 
|  | DynamicLoader *dyld = GetDynamicLoader(); | 
|  | if (dyld) | 
|  | dyld->DidAttach(); | 
|  |  | 
|  | GetJITLoaders().DidAttach(); | 
|  |  | 
|  | SystemRuntime *system_runtime = GetSystemRuntime(); | 
|  | if (system_runtime) | 
|  | system_runtime->DidAttach(); | 
|  |  | 
|  | if (!m_os_up) | 
|  | LoadOperatingSystemPlugin(false); | 
|  |  | 
|  | // We successfully loaded a core file, now pretend we stopped so we can | 
|  | // show all of the threads in the core file and explore the crashed state. | 
|  | SetPrivateState(eStateStopped); | 
|  |  | 
|  | // Wait for a stopped event since we just posted one above... | 
|  | lldb::EventSP event_sp; | 
|  | StateType state = | 
|  | WaitForProcessToStop(std::nullopt, &event_sp, true, listener_sp, | 
|  | nullptr, true, SelectMostRelevantFrame); | 
|  |  | 
|  | if (!StateIsStoppedState(state, false)) { | 
|  | Log *log = GetLog(LLDBLog::Process); | 
|  | LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", | 
|  | StateAsCString(state)); | 
|  | error = Status::FromErrorString( | 
|  | "Did not get stopped event after loading the core file."); | 
|  | } | 
|  | RestoreProcessEvents(); | 
|  | // Since we hijacked the event stream, we will have we won't have run the | 
|  | // stop hooks.  Make sure we do that here: | 
|  | GetTarget().RunStopHooks(/* at_initial_stop= */ true); | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | DynamicLoader *Process::GetDynamicLoader() { | 
|  | if (!m_dyld_up) | 
|  | m_dyld_up.reset(DynamicLoader::FindPlugin(this, "")); | 
|  | return m_dyld_up.get(); | 
|  | } | 
|  |  | 
|  | void Process::SetDynamicLoader(DynamicLoaderUP dyld_up) { | 
|  | m_dyld_up = std::move(dyld_up); | 
|  | } | 
|  |  | 
|  | DataExtractor Process::GetAuxvData() { return DataExtractor(); } | 
|  |  | 
|  | llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | JITLoaderList &Process::GetJITLoaders() { | 
|  | if (!m_jit_loaders_up) { | 
|  | m_jit_loaders_up = std::make_unique<JITLoaderList>(); | 
|  | JITLoader::LoadPlugins(this, *m_jit_loaders_up); | 
|  | } | 
|  | return *m_jit_loaders_up; | 
|  | } | 
|  |  | 
|  | SystemRuntime *Process::GetSystemRuntime() { | 
|  | if (!m_system_runtime_up) | 
|  | m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); | 
|  | return m_system_runtime_up.get(); | 
|  | } | 
|  |  | 
|  | Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, | 
|  | uint32_t exec_count) | 
|  | : NextEventAction(process), m_exec_count(exec_count) { | 
|  | Log *log = GetLog(LLDBLog::Process); | 
|  | LLDB_LOGF( | 
|  | log, | 
|  | "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, | 
|  | __FUNCTION__, static_cast<void *>(process), exec_count); | 
|  | } | 
|  |  | 
|  | Process::NextEventAction::EventActionResult | 
|  | Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { | 
|  | Log *log = GetLog(LLDBLog::Process); | 
|  |  | 
|  | StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); | 
|  | LLDB_LOGF(log, | 
|  | "Process::AttachCompletionHandler::%s called with state %s (%d)", | 
|  | __FUNCTION__, StateAsCString(state), static_cast<int>(state)); | 
|  |  | 
|  | switch (state) { | 
|  | case eStateAttaching: | 
|  | return eEventActionSuccess; | 
|  |  | 
|  | case eStateRunning: | 
|  | case eStateConnected: | 
|  | return eEventActionRetry; | 
|  |  | 
|  | case eStateStopped: | 
|  | case eStateCrashed: | 
|  | // During attach, prior to sending the eStateStopped event, | 
|  | // lldb_private::Process subclasses must set the new process ID. | 
|  | assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); | 
|  | // We don't want these events to be reported, so go set the | 
|  | // ShouldReportStop here: | 
|  | m_process->GetThreadList().SetShouldReportStop(eVoteNo); | 
|  |  | 
|  | if (m_exec_count > 0) { | 
|  | --m_exec_count; | 
|  |  | 
|  | LLDB_LOGF(log, | 
|  | "Process::AttachCompletionHandler::%s state %s: reduced " | 
|  | "remaining exec count to %" PRIu32 ", requesting resume", | 
|  | __FUNCTION__, StateAsCString(state), m_exec_count); | 
|  |  | 
|  | RequestResume(); | 
|  | return eEventActionRetry; | 
|  | } else { | 
|  | LLDB_LOGF(log, | 
|  | "Process::AttachCompletionHandler::%s state %s: no more " | 
|  | "execs expected to start, continuing with attach", | 
|  | __FUNCTION__, StateAsCString(state)); | 
|  |  | 
|  | m_process->CompleteAttach(); | 
|  | return eEventActionSuccess; | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | case eStateExited: | 
|  | case eStateInvalid: | 
|  | break; | 
|  | } | 
|  |  | 
|  | m_exit_string.assign("No valid Process"); | 
|  | return eEventActionExit; | 
|  | } | 
|  |  | 
|  | Process::NextEventAction::EventActionResult | 
|  | Process::AttachCompletionHandler::HandleBeingInterrupted() { | 
|  | return eEventActionSuccess; | 
|  | } | 
|  |  | 
|  | const char *Process::AttachCompletionHandler::GetExitString() { | 
|  | return m_exit_string.c_str(); | 
|  | } | 
|  |  | 
|  | ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { | 
|  | if (m_listener_sp) | 
|  | return m_listener_sp; | 
|  | else | 
|  | return debugger.GetListener(); | 
|  | } | 
|  |  | 
|  | Status Process::WillLaunch(Module *module) { | 
|  | return DoWillLaunch(module); | 
|  | } | 
|  |  | 
|  | Status Process::WillAttachToProcessWithID(lldb::pid_t pid) { | 
|  | return DoWillAttachToProcessWithID(pid); | 
|  | } | 
|  |  | 
|  | Status Process::WillAttachToProcessWithName(const char *process_name, | 
|  | bool wait_for_launch) { | 
|  | return DoWillAttachToProcessWithName(process_name, wait_for_launch); | 
|  | } | 
|  |  | 
|  | Status Process::Attach(ProcessAttachInfo &attach_info) { | 
|  | m_abi_sp.reset(); | 
|  | { | 
|  | std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); | 
|  | m_process_input_reader.reset(); | 
|  | } | 
|  | m_dyld_up.reset(); | 
|  | m_jit_loaders_up.reset(); | 
|  | m_system_runtime_up.reset(); | 
|  | m_os_up.reset(); | 
|  | GetTarget().ClearAllLoadedSections(); | 
|  |  | 
|  | lldb::pid_t attach_pid = attach_info.GetProcessID(); | 
|  | Status error; | 
|  | if (attach_pid == LLDB_INVALID_PROCESS_ID) { | 
|  | char process_name[PATH_MAX]; | 
|  |  | 
|  | if (attach_info.GetExecutableFile().GetPath(process_name, | 
|  | sizeof(process_name))) { | 
|  | const bool wait_for_launch = attach_info.GetWaitForLaunch(); | 
|  |  | 
|  | if (wait_for_launch) { | 
|  | error = WillAttachToProcessWithName(process_name, wait_for_launch); | 
|  | if (error.Success()) { | 
|  | m_public_run_lock.SetRunning(); | 
|  | m_should_detach = true; | 
|  | const bool restarted = false; | 
|  | SetPublicState(eStateAttaching, restarted); | 
|  | // Now attach using these arguments. | 
|  | error = DoAttachToProcessWithName(process_name, attach_info); | 
|  |  | 
|  | if (error.Fail()) { | 
|  | if (GetID() != LLDB_INVALID_PROCESS_ID) { | 
|  | SetID(LLDB_INVALID_PROCESS_ID); | 
|  | if (error.AsCString() == nullptr) | 
|  | error = Status::FromErrorString("attach failed"); | 
|  |  | 
|  | SetExitStatus(-1, error.AsCString()); | 
|  | } | 
|  | } else { | 
|  | SetNextEventAction(new Process::AttachCompletionHandler( | 
|  | this, attach_info.GetResumeCount())); | 
|  | StartPrivateStateThread(); | 
|  | } | 
|  | return error; | 
|  | } | 
|  | } else { | 
|  | ProcessInstanceInfoList process_infos; | 
|  | PlatformSP platform_sp(GetTarget().GetPlatform()); | 
|  |  | 
|  | if (platform_sp) { | 
|  | ProcessInstanceInfoMatch match_info; | 
|  | match_info.GetProcessInfo() = attach_info; | 
|  | match_info.SetNameMatchType(NameMatch::Equals); | 
|  | platform_sp->FindProcesses(match_info, process_infos); | 
|  | const uint32_t num_matches = process_infos.size(); | 
|  | if (num_matches == 1) { | 
|  | attach_pid = process_infos[0].GetProcessID(); | 
|  | // Fall through and attach using the above process ID | 
|  | } else { | 
|  | match_info.GetProcessInfo().GetExecutableFile().GetPath( | 
|  | process_name, sizeof(process_name)); | 
|  | if (num_matches > 1) { | 
|  | StreamString s; | 
|  | ProcessInstanceInfo::DumpTableHeader(s, true, false); | 
|  | for (size_t i = 0; i < num_matches; i++) { | 
|  | process_infos[i].DumpAsTableRow( | 
|  | s, platform_sp->GetUserIDResolver(), true, false); | 
|  | } | 
|  | error = Status::FromErrorStringWithFormat( | 
|  | "more than one process named %s:\n%s", process_name, | 
|  | s.GetData()); | 
|  | } else | 
|  | error = Status::FromErrorStringWithFormat( | 
|  | "could not find a process named %s", process_name); | 
|  | } | 
|  | } else { | 
|  | error = Status::FromErrorString( | 
|  | "invalid platform, can't find processes by name"); | 
|  | return error; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | error = Status::FromErrorString("invalid process name"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (attach_pid != LLDB_INVALID_PROCESS_ID) { | 
|  | error = WillAttachToProcessWithID(attach_pid); | 
|  | if (error.Success()) { | 
|  | m_public_run_lock.SetRunning(); | 
|  |  | 
|  | // Now attach using these arguments. | 
|  | m_should_detach = true; | 
|  | const bool restarted = false; | 
|  | SetPublicState(eStateAttaching, restarted); | 
|  | error = DoAttachToProcessWithID(attach_pid, attach_info); | 
|  |  | 
|  | if (error.Success()) { | 
|  | SetNextEventAction(new Process::AttachCompletionHandler( | 
|  | this, attach_info.GetResumeCount())); | 
|  | StartPrivateStateThread(); | 
|  | } else { | 
|  | if (GetID() != LLDB_INVALID_PROCESS_ID) | 
|  | SetID(LLDB_INVALID_PROCESS_ID); | 
|  |  | 
|  | const char *error_string = error.AsCString(); | 
|  | if (error_string == nullptr) | 
|  | error_string = "attach failed"; | 
|  |  | 
|  | SetExitStatus(-1, error_string); | 
|  | } | 
|  | } | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | void Process::CompleteAttach() { | 
|  | Log *log(GetLog(LLDBLog::Process | LLDBLog::Target)); | 
|  | LLDB_LOGF(log, "Process::%s()", __FUNCTION__); | 
|  |  | 
|  | // Let the process subclass figure out at much as it can about the process | 
|  | // before we go looking for a dynamic loader plug-in. | 
|  | ArchSpec process_arch; | 
|  | DidAttach(process_arch); | 
|  |  | 
|  | if (process_arch.IsValid()) { | 
|  | LLDB_LOG(log, | 
|  | "Process::{0} replacing process architecture with DidAttach() " | 
|  | "architecture: \"{1}\"", | 
|  | __FUNCTION__, process_arch.GetTriple().getTriple()); | 
|  | GetTarget().SetArchitecture(process_arch); | 
|  | } | 
|  |  | 
|  | // We just attached.  If we have a platform, ask it for the process | 
|  | // architecture, and if it isn't the same as the one we've already set, | 
|  | // switch architectures. | 
|  | PlatformSP platform_sp(GetTarget().GetPlatform()); | 
|  | assert(platform_sp); | 
|  | ArchSpec process_host_arch = GetSystemArchitecture(); | 
|  | if (platform_sp) { | 
|  | const ArchSpec &target_arch = GetTarget().GetArchitecture(); | 
|  | if (target_arch.IsValid() && !platform_sp->IsCompatibleArchitecture( | 
|  | target_arch, process_host_arch, | 
|  | ArchSpec::CompatibleMatch, nullptr)) { | 
|  | ArchSpec platform_arch; | 
|  | platform_sp = GetTarget().GetDebugger().GetPlatformList().GetOrCreate( | 
|  | target_arch, process_host_arch, &platform_arch); | 
|  | if (platform_sp) { | 
|  | GetTarget().SetPlatform(platform_sp); | 
|  | GetTarget().SetArchitecture(platform_arch); | 
|  | LLDB_LOG(log, | 
|  | "switching platform to {0} and architecture to {1} based on " | 
|  | "info from attach", | 
|  | platform_sp->GetName(), platform_arch.GetTriple().getTriple()); | 
|  | } | 
|  | } else if (!process_arch.IsValid()) { | 
|  | ProcessInstanceInfo process_info; | 
|  | GetProcessInfo(process_info); | 
|  | const ArchSpec &process_arch = process_info.GetArchitecture(); | 
|  | const ArchSpec &target_arch = GetTarget().GetArchitecture(); | 
|  | if (process_arch.IsValid() && | 
|  | target_arch.IsCompatibleMatch(process_arch) && | 
|  | !target_arch.IsExactMatch(process_arch)) { | 
|  | GetTarget().SetArchitecture(process_arch); | 
|  | LLDB_LOGF(log, | 
|  | "Process::%s switching architecture to %s based on info " | 
|  | "the platform retrieved for pid %" PRIu64, | 
|  | __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), | 
|  | GetID()); | 
|  | } | 
|  | } | 
|  | } | 
|  | // Now that we know the process type, update its signal responses from the | 
|  | // ones stored in the Target: | 
|  | if (m_unix_signals_sp) | 
|  | GetTarget().UpdateSignalsFromDummy( | 
|  | m_unix_signals_sp, GetTarget().GetDebugger().GetAsyncErrorStream()); | 
|  |  | 
|  | // We have completed the attach, now it is time to find the dynamic loader | 
|  | // plug-in | 
|  | DynamicLoader *dyld = GetDynamicLoader(); | 
|  | if (dyld) { | 
|  | dyld->DidAttach(); | 
|  | if (log) { | 
|  | ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); | 
|  | LLDB_LOG(log, | 
|  | "after DynamicLoader::DidAttach(), target " | 
|  | "executable is {0} (using {1} plugin)", | 
|  | exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), | 
|  | dyld->GetPluginName()); | 
|  | } | 
|  | } | 
|  |  | 
|  | GetJITLoaders().DidAttach(); | 
|  |  | 
|  | SystemRuntime *system_runtime = GetSystemRuntime(); | 
|  | if (system_runtime) { | 
|  | system_runtime->DidAttach(); | 
|  | if (log) { | 
|  | ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); | 
|  | LLDB_LOG(log, | 
|  | "after SystemRuntime::DidAttach(), target " | 
|  | "executable is {0} (using {1} plugin)", | 
|  | exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), | 
|  | system_runtime->GetPluginName()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we don't have an operating system plugin loaded yet, see if | 
|  | // LoadOperatingSystemPlugin can find one (and stuff it in m_os_up). | 
|  | if (!m_os_up) | 
|  | LoadOperatingSystemPlugin(false); | 
|  |  | 
|  | if (m_os_up) { | 
|  | // Somebody might have gotten threads before we loaded the OS Plugin above, | 
|  | // so we need to force the update now or the newly loaded plugin won't get | 
|  | // a chance to process the threads. | 
|  | m_thread_list.Clear(); | 
|  | UpdateThreadListIfNeeded(); | 
|  | } | 
|  |  | 
|  | // Figure out which one is the executable, and set that in our target: | 
|  | ModuleSP new_executable_module_sp; | 
|  | for (ModuleSP module_sp : GetTarget().GetImages().Modules()) { | 
|  | if (module_sp && module_sp->IsExecutable()) { | 
|  | if (GetTarget().GetExecutableModulePointer() != module_sp.get()) | 
|  | new_executable_module_sp = module_sp; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (new_executable_module_sp) { | 
|  | GetTarget().SetExecutableModule(new_executable_module_sp, | 
|  | eLoadDependentsNo); | 
|  | if (log) { | 
|  | ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); | 
|  | LLDB_LOGF( | 
|  | log, | 
|  | "Process::%s after looping through modules, target executable is %s", | 
|  | __FUNCTION__, | 
|  | exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() | 
|  | : "<none>"); | 
|  | } | 
|  | } | 
|  | // Since we hijacked the event stream, we will have we won't have run the | 
|  | // stop hooks.  Make sure we do that here: | 
|  | GetTarget().RunStopHooks(/* at_initial_stop= */ true); | 
|  | } | 
|  |  | 
|  | Status Process::ConnectRemote(llvm::StringRef remote_url) { | 
|  | m_abi_sp.reset(); | 
|  | { | 
|  | std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); | 
|  | m_process_input_reader.reset(); | 
|  | } | 
|  |  | 
|  | // Find the process and its architecture.  Make sure it matches the | 
|  | // architecture of the current Target, and if not adjust it. | 
|  |  | 
|  | Status error(DoConnectRemote(remote_url)); | 
|  | if (error.Success()) { | 
|  | if (GetID() != LLDB_INVALID_PROCESS_ID) { | 
|  | EventSP event_sp; | 
|  | StateType state = WaitForProcessStopPrivate(event_sp, std::nullopt); | 
|  |  | 
|  | if (state == eStateStopped || state == eStateCrashed) { | 
|  | // If we attached and actually have a process on the other end, then | 
|  | // this ended up being the equivalent of an attach. | 
|  | CompleteAttach(); | 
|  |  | 
|  | // This delays passing the stopped event to listeners till | 
|  | // CompleteAttach gets a chance to complete... | 
|  | HandlePrivateEvent(event_sp); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (PrivateStateThreadIsValid()) | 
|  | ResumePrivateStateThread(); | 
|  | else | 
|  | StartPrivateStateThread(); | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | void Process::SetBaseDirection(RunDirection direction) { | 
|  | if (m_base_direction == direction) | 
|  | return; | 
|  | m_thread_list.DiscardThreadPlans(); | 
|  | m_base_direction = direction; | 
|  | } | 
|  |  | 
|  | Status Process::PrivateResume() { | 
|  | Log *log(GetLog(LLDBLog::Process | LLDBLog::Step)); | 
|  | LLDB_LOGF(log, | 
|  | "Process::PrivateResume() m_stop_id = %u, public state: %s " | 
|  | "private state: %s", | 
|  | m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), | 
|  | StateAsCString(m_private_state.GetValue())); | 
|  |  | 
|  | // If signals handing status changed we might want to update our signal | 
|  | // filters before resuming. | 
|  | UpdateAutomaticSignalFiltering(); | 
|  | // Clear any crash info we accumulated for this stop, but don't do so if we | 
|  | // are running functions; we don't want to wipe out the real stop's info. | 
|  | if (!GetModID().IsLastResumeForUserExpression()) | 
|  | ResetExtendedCrashInfoDict(); | 
|  |  | 
|  | Status error(WillResume()); | 
|  | // Tell the process it is about to resume before the thread list | 
|  | if (error.Success()) { | 
|  | // Now let the thread list know we are about to resume so it can let all of | 
|  | // our threads know that they are about to be resumed. Threads will each be | 
|  | // called with Thread::WillResume(StateType) where StateType contains the | 
|  | // state that they are supposed to have when the process is resumed | 
|  | // (suspended/running/stepping). Threads should also check their resume | 
|  | // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to | 
|  | // start back up with a signal. | 
|  | RunDirection direction; | 
|  | if (m_thread_list.WillResume(direction)) { | 
|  | LLDB_LOGF(log, "Process::PrivateResume WillResume direction=%d", | 
|  | direction); | 
|  | // Last thing, do the PreResumeActions. | 
|  | if (!RunPreResumeActions()) { | 
|  | error = Status::FromErrorString( | 
|  | "Process::PrivateResume PreResumeActions failed, not resuming."); | 
|  | LLDB_LOGF( | 
|  | log, | 
|  | "Process::PrivateResume PreResumeActions failed, not resuming."); | 
|  | } else { | 
|  | m_mod_id.BumpResumeID(); | 
|  | error = DoResume(direction); | 
|  | if (error.Success()) { | 
|  | DidResume(); | 
|  | m_thread_list.DidResume(); | 
|  | LLDB_LOGF(log, | 
|  | "Process::PrivateResume thinks the process has resumed."); | 
|  | } else { | 
|  | LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); | 
|  | return error; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // Somebody wanted to run without running (e.g. we were faking a step | 
|  | // from one frame of a set of inlined frames that share the same PC to | 
|  | // another.)  So generate a continue & a stopped event, and let the world | 
|  | // handle them. | 
|  | LLDB_LOGF(log, | 
|  | "Process::PrivateResume() asked to simulate a start & stop."); | 
|  |  | 
|  | SetPrivateState(eStateRunning); | 
|  | SetPrivateState(eStateStopped); | 
|  | } | 
|  | } else | 
|  | LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", | 
|  | error.AsCString("<unknown error>")); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { | 
|  | if (!StateIsRunningState(m_public_state.GetValue())) | 
|  | return Status::FromErrorString("Process is not running."); | 
|  |  | 
|  | // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in | 
|  | // case it was already set and some thread plan logic calls halt on its own. | 
|  | m_clear_thread_plans_on_stop |= clear_thread_plans; | 
|  |  | 
|  | ListenerSP halt_listener_sp( | 
|  | Listener::MakeListener("lldb.process.halt_listener")); | 
|  | HijackProcessEvents(halt_listener_sp); | 
|  |  | 
|  | EventSP event_sp; | 
|  |  | 
|  | SendAsyncInterrupt(); | 
|  |  | 
|  | if (m_public_state.GetValue() == eStateAttaching) { | 
|  | // Don't hijack and eat the eStateExited as the code that was doing the | 
|  | // attach will be waiting for this event... | 
|  | RestoreProcessEvents(); | 
|  | Destroy(false); | 
|  | SetExitStatus(SIGKILL, "Cancelled async attach."); | 
|  | return Status(); | 
|  | } | 
|  |  | 
|  | // Wait for the process halt timeout seconds for the process to stop. | 
|  | // If we are going to use the run lock, that means we're stopping out to the | 
|  | // user, so we should also select the most relevant frame. | 
|  | SelectMostRelevant select_most_relevant = | 
|  | use_run_lock ? SelectMostRelevantFrame : DoNoSelectMostRelevantFrame; | 
|  | StateType state = WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true, | 
|  | halt_listener_sp, nullptr, | 
|  | use_run_lock, select_most_relevant); | 
|  | RestoreProcessEvents(); | 
|  |  | 
|  | if (state == eStateInvalid || !event_sp) { | 
|  | // We timed out and didn't get a stop event... | 
|  | return Status::FromErrorStringWithFormat("Halt timed out. State = %s", | 
|  | StateAsCString(GetState())); | 
|  | } | 
|  |  | 
|  | BroadcastEvent(event_sp); | 
|  |  | 
|  | return Status(); | 
|  | } | 
|  |  | 
|  | lldb::addr_t Process::FindInMemory(lldb::addr_t low, lldb::addr_t high, | 
|  | const uint8_t *buf, size_t size) { | 
|  | const size_t region_size = high - low; | 
|  |  | 
|  | if (region_size < size) | 
|  | return LLDB_INVALID_ADDRESS; | 
|  |  | 
|  | // See "Boyer-Moore string search algorithm". | 
|  | std::vector<size_t> bad_char_heuristic(256, size); | 
|  | for (size_t idx = 0; idx < size - 1; idx++) { | 
|  | decltype(bad_char_heuristic)::size_type bcu_idx = buf[idx]; | 
|  | bad_char_heuristic[bcu_idx] = size - idx - 1; | 
|  | } | 
|  |  | 
|  | // Memory we're currently searching through. | 
|  | llvm::SmallVector<uint8_t, 0> mem; | 
|  | // Position of the memory buffer. | 
|  | addr_t mem_pos = low; | 
|  | // Maximum number of bytes read (and buffered). We need to read at least | 
|  | // `size` bytes for a successful match. | 
|  | const size_t max_read_size = std::max<size_t>(size, 0x10000); | 
|  |  | 
|  | for (addr_t cur_addr = low; cur_addr <= (high - size);) { | 
|  | if (cur_addr + size > mem_pos + mem.size()) { | 
|  | // We need to read more data. We don't attempt to reuse the data we've | 
|  | // already read (up to `size-1` bytes from `cur_addr` to | 
|  | // `mem_pos+mem.size()`).  This is fine for patterns much smaller than | 
|  | // max_read_size. For very | 
|  | // long patterns we may need to do something more elaborate. | 
|  | mem.resize_for_overwrite(max_read_size); | 
|  | Status error; | 
|  | mem.resize(ReadMemory(cur_addr, mem.data(), | 
|  | std::min<addr_t>(mem.size(), high - cur_addr), | 
|  | error)); | 
|  | mem_pos = cur_addr; | 
|  | if (size > mem.size()) { | 
|  | // We didn't read enough data. Skip to the next memory region. | 
|  | MemoryRegionInfo info; | 
|  | error = GetMemoryRegionInfo(mem_pos + mem.size(), info); | 
|  | if (error.Fail()) | 
|  | break; | 
|  | cur_addr = info.GetRange().GetRangeEnd(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | int64_t j = size - 1; | 
|  | while (j >= 0 && buf[j] == mem[cur_addr + j - mem_pos]) | 
|  | j--; | 
|  | if (j < 0) | 
|  | return cur_addr; // We have a match. | 
|  | cur_addr += bad_char_heuristic[mem[cur_addr + size - 1 - mem_pos]]; | 
|  | } | 
|  |  | 
|  | return LLDB_INVALID_ADDRESS; | 
|  | } | 
|  |  | 
|  | Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { | 
|  | Status error; | 
|  |  | 
|  | // Check both the public & private states here.  If we're hung evaluating an | 
|  | // expression, for instance, then the public state will be stopped, but we | 
|  | // still need to interrupt. | 
|  | if (m_public_state.GetValue() == eStateRunning || | 
|  | m_private_state.GetValue() == eStateRunning) { | 
|  | Log *log = GetLog(LLDBLog::Process); | 
|  | LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); | 
|  |  | 
|  | ListenerSP listener_sp( | 
|  | Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); | 
|  | HijackProcessEvents(listener_sp); | 
|  |  | 
|  | SendAsyncInterrupt(); | 
|  |  | 
|  | // Consume the interrupt event. | 
|  | StateType state = WaitForProcessToStop(GetInterruptTimeout(), | 
|  | &exit_event_sp, true, listener_sp); | 
|  |  | 
|  | RestoreProcessEvents(); | 
|  |  | 
|  | // If the process exited while we were waiting for it to stop, put the | 
|  | // exited event into the shared pointer passed in and return.  Our caller | 
|  | // doesn't need to do anything else, since they don't have a process | 
|  | // anymore... | 
|  |  | 
|  | if (state == eStateExited || m_private_state.GetValue() == eStateExited) { | 
|  | LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", | 
|  | __FUNCTION__); | 
|  | return error; | 
|  | } else | 
|  | exit_event_sp.reset(); // It is ok to consume any non-exit stop events | 
|  |  | 
|  | if (state != eStateStopped) { | 
|  | LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, | 
|  | StateAsCString(state)); | 
|  | // If we really couldn't stop the process then we should just error out | 
|  | // here, but if the lower levels just bobbled sending the event and we | 
|  | // really are stopped, then continue on. | 
|  | StateType private_state = m_private_state.GetValue(); | 
|  | if (private_state != eStateStopped) { | 
|  | return Status::FromErrorStringWithFormat( | 
|  | "Attempt to stop the target in order to detach timed out. " | 
|  | "State = %s", | 
|  | StateAsCString(GetState())); | 
|  | } | 
|  | } | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | Status Process::Detach(bool keep_stopped) { | 
|  | EventSP exit_event_sp; | 
|  | Status error; | 
|  | m_destroy_in_process = true; | 
|  |  | 
|  | error = WillDetach(); | 
|  |  | 
|  | if (error.Success()) { | 
|  | if (DetachRequiresHalt()) { | 
|  | error = StopForDestroyOrDetach(exit_event_sp); | 
|  | if (!error.Success()) { | 
|  | m_destroy_in_process = false; | 
|  | return error; | 
|  | } else if (exit_event_sp) { | 
|  | // We shouldn't need to do anything else here.  There's no process left | 
|  | // to detach from... | 
|  | StopPrivateStateThread(); | 
|  | m_destroy_in_process = false; | 
|  | return error; | 
|  | } | 
|  | } | 
|  |  | 
|  | m_thread_list.DiscardThreadPlans(); | 
|  | DisableAllBreakpointSites(); | 
|  |  | 
|  | error = DoDetach(keep_stopped); | 
|  | if (error.Success()) { | 
|  | DidDetach(); | 
|  | StopPrivateStateThread(); | 
|  | } else { | 
|  | return error; | 
|  | } | 
|  | } | 
|  | m_destroy_in_process = false; | 
|  |  | 
|  | // If we exited when we were waiting for a process to stop, then forward the | 
|  | // event here so we don't lose the event | 
|  | if (exit_event_sp) { | 
|  | // Directly broadcast our exited event because we shut down our private | 
|  | // state thread above | 
|  | BroadcastEvent(exit_event_sp); | 
|  | } | 
|  |  | 
|  | // If we have been interrupted (to kill us) in the middle of running, we may | 
|  | // not end up propagating the last events through the event system, in which | 
|  | // case we might strand the write lock.  Unlock it here so when we do to tear | 
|  | // down the process we don't get an error destroying the lock. | 
|  |  | 
|  | m_public_run_lock.SetStopped(); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | Status Process::Destroy(bool force_kill) { | 
|  | // If we've already called Process::Finalize then there's nothing useful to | 
|  | // be done here.  Finalize has actually called Destroy already. | 
|  | if (m_finalizing) | 
|  | return {}; | 
|  | return DestroyImpl(force_kill); | 
|  | } | 
|  |  | 
|  | Status Process::DestroyImpl(bool force_kill) { | 
|  | // Tell ourselves we are in the process of destroying the process, so that we | 
|  | // don't do any unnecessary work that might hinder the destruction.  Remember | 
|  | // to set this back to false when we are done.  That way if the attempt | 
|  | // failed and the process stays around for some reason it won't be in a | 
|  | // confused state. | 
|  |  | 
|  | if (force_kill) | 
|  | m_should_detach = false; | 
|  |  | 
|  | if (GetShouldDetach()) { | 
|  | // FIXME: This will have to be a process setting: | 
|  | bool keep_stopped = false; | 
|  | Detach(keep_stopped); | 
|  | } | 
|  |  | 
|  | m_destroy_in_process = true; | 
|  |  | 
|  | Status error(WillDestroy()); | 
|  | if (error.Success()) { | 
|  | EventSP exit_event_sp; | 
|  | if (DestroyRequiresHalt()) { | 
|  | error = StopForDestroyOrDetach(exit_event_sp); | 
|  | } | 
|  |  | 
|  | if (m_public_state.GetValue() == eStateStopped) { | 
|  | // Ditch all thread plans, and remove all our breakpoints: in case we | 
|  | // have to restart the target to kill it, we don't want it hitting a | 
|  | // breakpoint... Only do this if we've stopped, however, since if we | 
|  | // didn't manage to halt it above, then we're not going to have much luck | 
|  | // doing this now. | 
|  | m_thread_list.DiscardThreadPlans(); | 
|  | DisableAllBreakpointSites(); | 
|  | } | 
|  |  | 
|  | error = DoDestroy(); | 
|  | if (error.Success()) { | 
|  | DidDestroy(); | 
|  | StopPrivateStateThread(); | 
|  | } | 
|  | m_stdio_communication.StopReadThread(); | 
|  | m_stdio_communication.Disconnect(); | 
|  | m_stdin_forward = false; | 
|  |  | 
|  | { | 
|  | std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); | 
|  | if (m_process_input_reader) { | 
|  | m_process_input_reader->SetIsDone(true); | 
|  | m_process_input_reader->Cancel(); | 
|  | m_process_input_reader.reset(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we exited when we were waiting for a process to stop, then forward | 
|  | // the event here so we don't lose the event | 
|  | if (exit_event_sp) { | 
|  | // Directly broadcast our exited event because we shut down our private | 
|  | // state thread above | 
|  | BroadcastEvent(exit_event_sp); | 
|  | } | 
|  |  | 
|  | // If we have been interrupted (to kill us) in the middle of running, we | 
|  | // may not end up propagating the last events through the event system, in | 
|  | // which case we might strand the write lock.  Unlock it here so when we do | 
|  | // to tear down the process we don't get an error destroying the lock. | 
|  | m_public_run_lock.SetStopped(); | 
|  | } | 
|  |  | 
|  | m_destroy_in_process = false; | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | Status Process::Signal(int signal) { | 
|  | Status error(WillSignal()); | 
|  | if (error.Success()) { | 
|  | error = DoSignal(signal); | 
|  | if (error.Success()) | 
|  | DidSignal(); | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { | 
|  | assert(signals_sp && "null signals_sp"); | 
|  | m_unix_signals_sp = std::move(signals_sp); | 
|  | } | 
|  |  | 
|  | const lldb::UnixSignalsSP &Process::GetUnixSignals() { | 
|  | assert(m_unix_signals_sp && "null m_unix_signals_sp"); | 
|  | return m_unix_signals_sp; | 
|  | } | 
|  |  | 
|  | lldb::ByteOrder Process::GetByteOrder() const { | 
|  | return GetTarget().GetArchitecture().GetByteOrder(); | 
|  | } | 
|  |  | 
|  | uint32_t Process::GetAddressByteSize() const { | 
|  | return GetTarget().GetArchitecture().GetAddressByteSize(); | 
|  | } | 
|  |  | 
|  | bool Process::ShouldBroadcastEvent(Event *event_ptr) { | 
|  | const StateType state = | 
|  | Process::ProcessEventData::GetStateFromEvent(event_ptr); | 
|  | bool return_value = true; | 
|  | Log *log(GetLog(LLDBLog::Events | LLDBLog::Process)); | 
|  |  | 
|  | switch (state) { | 
|  | case eStateDetached: | 
|  | case eStateExited: | 
|  | case eStateUnloaded: | 
|  | m_stdio_communication.SynchronizeWithReadThread(); | 
|  | m_stdio_communication.StopReadThread(); | 
|  | m_stdio_communication.Disconnect(); | 
|  | m_stdin_forward = false; | 
|  |  | 
|  | [[fallthrough]]; | 
|  | case eStateConnected: | 
|  | case eStateAttaching: | 
|  | case eStateLaunching: | 
|  | // These events indicate changes in the state of the debugging session, | 
|  | // always report them. | 
|  | return_value = true; | 
|  | break; | 
|  | case eStateInvalid: | 
|  | // We stopped for no apparent reason, don't report it. | 
|  | return_value = false; | 
|  | break; | 
|  | case eStateRunning: | 
|  | case eStateStepping: | 
|  | // If we've started the target running, we handle the cases where we are | 
|  | // already running and where there is a transition from stopped to running | 
|  | // differently. running -> running: Automatically suppress extra running | 
|  | // events stopped -> running: Report except when there is one or more no | 
|  | // votes | 
|  | //     and no yes votes. | 
|  | SynchronouslyNotifyStateChanged(state); | 
|  | if (m_force_next_event_delivery) | 
|  | return_value = true; | 
|  | else { | 
|  | switch (m_last_broadcast_state) { | 
|  | case eStateRunning: | 
|  | case eStateStepping: | 
|  | // We always suppress multiple runnings with no PUBLIC stop in between. | 
|  | return_value = false; | 
|  | break; | 
|  | default: | 
|  | // TODO: make this work correctly. For now always report | 
|  | // run if we aren't running so we don't miss any running events. If I | 
|  | // run the lldb/test/thread/a.out file and break at main.cpp:58, run | 
|  | // and hit the breakpoints on multiple threads, then somehow during the | 
|  | // stepping over of all breakpoints no run gets reported. | 
|  |  | 
|  | // This is a transition from stop to run. | 
|  | switch (m_thread_list.ShouldReportRun(event_ptr)) { | 
|  | case eVoteYes: | 
|  | case eVoteNoOpinion: | 
|  | return_value = true; | 
|  | break; | 
|  | case eVoteNo: | 
|  | return_value = false; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case eStateStopped: | 
|  | case eStateCrashed: | 
|  | case eStateSuspended: | 
|  | // We've stopped.  First see if we're going to restart the target. If we | 
|  | // are going to stop, then we always broadcast the event. If we aren't | 
|  | // going to stop, let the thread plans decide if we're going to report this | 
|  | // event. If no thread has an opinion, we don't report it. | 
|  |  | 
|  | m_stdio_communication.SynchronizeWithReadThread(); | 
|  | RefreshStateAfterStop(); | 
|  | if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { | 
|  | LLDB_LOGF(log, | 
|  | "Process::ShouldBroadcastEvent (%p) stopped due to an " | 
|  | "interrupt, state: %s", | 
|  | static_cast<void *>(event_ptr), StateAsCString(state)); | 
|  | // Even though we know we are going to stop, we should let the threads | 
|  | // have a look at the stop, so they can properly set their state. | 
|  | m_thread_list.ShouldStop(event_ptr); | 
|  | return_value = true; | 
|  | } else { | 
|  | bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); | 
|  | bool should_resume = false; | 
|  |  | 
|  | // It makes no sense to ask "ShouldStop" if we've already been | 
|  | // restarted... Asking the thread list is also not likely to go well, | 
|  | // since we are running again. So in that case just report the event. | 
|  |  | 
|  | if (!was_restarted) | 
|  | should_resume = !m_thread_list.ShouldStop(event_ptr); | 
|  |  | 
|  | if (was_restarted || should_resume || m_resume_requested) { | 
|  | Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr); | 
|  | LLDB_LOGF(log, | 
|  | "Process::ShouldBroadcastEvent: should_resume: %i state: " | 
|  | "%s was_restarted: %i report_stop_vote: %d.", | 
|  | should_resume, StateAsCString(state), was_restarted, | 
|  | report_stop_vote); | 
|  |  | 
|  | switch (report_stop_vote) { | 
|  | case eVoteYes: | 
|  | return_value = true; | 
|  | break; | 
|  | case eVoteNoOpinion: | 
|  | case eVoteNo: | 
|  | return_value = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!was_restarted) { | 
|  | LLDB_LOGF(log, | 
|  | "Process::ShouldBroadcastEvent (%p) Restarting process " | 
|  | "from state: %s", | 
|  | static_cast<void *>(event_ptr), StateAsCString(state)); | 
|  | ProcessEventData::SetRestartedInEvent(event_ptr, true); | 
|  | PrivateResume(); | 
|  | } | 
|  | } else { | 
|  | return_value = true; | 
|  | SynchronouslyNotifyStateChanged(state); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Forcing the next event delivery is a one shot deal.  So reset it here. | 
|  | m_force_next_event_delivery = false; | 
|  |  | 
|  | // We do some coalescing of events (for instance two consecutive running | 
|  | // events get coalesced.) But we only coalesce against events we actually | 
|  | // broadcast.  So we use m_last_broadcast_state to track that.  NB - you | 
|  | // can't use "m_public_state.GetValue()" for that purpose, as was originally | 
|  | // done, because the PublicState reflects the last event pulled off the | 
|  | // queue, and there may be several events stacked up on the queue unserviced. | 
|  | // So the PublicState may not reflect the last broadcasted event yet. | 
|  | // m_last_broadcast_state gets updated here. | 
|  |  | 
|  | if (return_value) | 
|  | m_last_broadcast_state = state; | 
|  |  | 
|  | LLDB_LOGF(log, | 
|  | "Process::ShouldBroadcastEvent (%p) => new state: %s, last " | 
|  | "broadcast state: %s - %s", | 
|  | static_cast<void *>(event_ptr), StateAsCString(state), | 
|  | StateAsCString(m_last_broadcast_state), | 
|  | return_value ? "YES" : "NO"); | 
|  | return return_value; | 
|  | } | 
|  |  | 
|  | bool Process::StartPrivateStateThread(bool is_secondary_thread) { | 
|  | Log *log = GetLog(LLDBLog::Events); | 
|  |  | 
|  | bool already_running = PrivateStateThreadIsValid(); | 
|  | LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, | 
|  | already_running ? " already running" | 
|  | : " starting private state thread"); | 
|  |  | 
|  | if (!is_secondary_thread && already_running) | 
|  | return true; | 
|  |  | 
|  | // Create a thread that watches our internal state and controls which events | 
|  | // make it to clients (into the DCProcess event queue). | 
|  | char thread_name[1024]; | 
|  | uint32_t max_len = llvm::get_max_thread_name_length(); | 
|  | if (max_len > 0 && max_len <= 30) { | 
|  | // On platforms with abbreviated thread name lengths, choose thread names | 
|  | // that fit within the limit. | 
|  | if (already_running) | 
|  | snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); | 
|  | else | 
|  | snprintf(thread_name, sizeof(thread_name), "intern-state"); | 
|  | } else { | 
|  | if (already_running) | 
|  | snprintf(thread_name, sizeof(thread_name), | 
|  | "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", | 
|  | GetID()); | 
|  | else | 
|  | snprintf(thread_name, sizeof(thread_name), | 
|  | "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); | 
|  | } | 
|  |  | 
|  | llvm::Expected<HostThread> private_state_thread = | 
|  | ThreadLauncher::LaunchThread( | 
|  | thread_name, | 
|  | [this, is_secondary_thread] { | 
|  | return RunPrivateStateThread(is_secondary_thread); | 
|  | }, | 
|  | 8 * 1024 * 1024); | 
|  | if (!private_state_thread) { | 
|  | LLDB_LOG_ERROR(GetLog(LLDBLog::Host), private_state_thread.takeError(), | 
|  | "failed to launch host thread: {0}"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | assert(private_state_thread->IsJoinable()); | 
|  | m_private_state_thread = *private_state_thread; | 
|  | ResumePrivateStateThread(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void Process::PausePrivateStateThread() { | 
|  | ControlPrivateStateThread(eBroadcastInternalStateControlPause); | 
|  | } | 
|  |  | 
|  | void Process::ResumePrivateStateThread() { | 
|  | ControlPrivateStateThread(eBroadcastInternalStateControlResume); | 
|  | } | 
|  |  | 
|  | void Process::StopPrivateStateThread() { | 
|  | if (m_private_state_thread.IsJoinable()) | 
|  | ControlPrivateStateThread(eBroadcastInternalStateControlStop); | 
|  | else { | 
|  | Log *log = GetLog(LLDBLog::Process); | 
|  | LLDB_LOGF( | 
|  | log, | 
|  | "Went to stop the private state thread, but it was already invalid."); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Process::ControlPrivateStateThread(uint32_t signal) { | 
|  | Log *log = GetLog(LLDBLog::Process); | 
|  |  | 
|  | assert(signal == eBroadcastInternalStateControlStop || | 
|  | signal == eBroadcastInternalStateControlPause || | 
|  | signal == eBroadcastInternalStateControlResume); | 
|  |  | 
|  | LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); | 
|  |  | 
|  | // Signal the private state thread | 
|  | if (m_private_state_thread.IsJoinable()) { | 
|  | // Broadcast the event. | 
|  | // It is important to do this outside of the if below, because it's | 
|  | // possible that the thread state is invalid but that the thread is waiting | 
|  | // on a control event instead of simply being on its way out (this should | 
|  | // not happen, but it apparently can). | 
|  | LLDB_LOGF(log, "Sending control event of type: %d.", signal); | 
|  | std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); | 
|  | m_private_state_control_broadcaster.BroadcastEvent(signal, | 
|  | event_receipt_sp); | 
|  |  | 
|  | // Wait for the event receipt or for the private state thread to exit | 
|  | bool receipt_received = false; | 
|  | if (PrivateStateThreadIsValid()) { | 
|  | while (!receipt_received) { | 
|  | // Check for a receipt for n seconds and then check if the private | 
|  | // state thread is still around. | 
|  | receipt_received = | 
|  | event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); | 
|  | if (!receipt_received) { | 
|  | // Check if the private state thread is still around. If it isn't | 
|  | // then we are done waiting | 
|  | if (!PrivateStateThreadIsValid()) | 
|  | break; // Private state thread exited or is exiting, we are done | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (signal == eBroadcastInternalStateControlStop) { | 
|  | thread_result_t result = {}; | 
|  | m_private_state_thread.Join(&result); | 
|  | m_private_state_thread.Reset(); | 
|  | } | 
|  | } else { | 
|  | LLDB_LOGF( | 
|  | log, | 
|  | "Private state thread already dead, no need to signal it to stop."); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Process::SendAsyncInterrupt(Thread *thread) { | 
|  | if (thread != nullptr) | 
|  | m_interrupt_tid = thread->GetProtocolID(); | 
|  | else | 
|  | m_interrupt_tid = LLDB_INVALID_THREAD_ID; | 
|  | if (PrivateStateThreadIsValid()) | 
|  | m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, | 
|  | nullptr); | 
|  | else | 
|  | BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); | 
|  | } | 
|  |  | 
|  | void Process::HandlePrivateEvent(EventSP &event_sp) { | 
|  | Log *log = GetLog(LLDBLog::Process); | 
|  | m_resume_requested = false; | 
|  |  | 
|  | const StateType new_state = | 
|  | Process::ProcessEventData::GetStateFromEvent(event_sp.get()); | 
|  |  | 
|  | // First check to see if anybody wants a shot at this event: | 
|  | if (m_next_event_action_up) { | 
|  | NextEventAction::EventActionResult action_result = | 
|  | m_next_event_action_up->PerformAction(event_sp); | 
|  | LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); | 
|  |  | 
|  | switch (action_result) { | 
|  | case NextEventAction::eEventActionSuccess: | 
|  | SetNextEventAction(nullptr); | 
|  | break; | 
|  |  | 
|  | case NextEventAction::eEventActionRetry: | 
|  | break; | 
|  |  | 
|  | case NextEventAction::eEventActionExit: | 
|  | // Handle Exiting Here.  If we already got an exited event, we should | 
|  | // just propagate it.  Otherwise, swallow this event, and set our state | 
|  | // to exit so the next event will kill us. | 
|  | if (new_state != eStateExited) { | 
|  | // FIXME: should cons up an exited event, and discard this one. | 
|  | SetExitStatus(0, m_next_event_action_up->GetExitString()); | 
|  | SetNextEventAction(nullptr); | 
|  | return; | 
|  | } | 
|  | SetNextEventAction(nullptr); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if we should broadcast this state to external clients? | 
|  | const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); | 
|  |  | 
|  | if (should_broadcast) { | 
|  | const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); | 
|  | if (log) { | 
|  | LLDB_LOGF(log, | 
|  | "Process::%s (pid = %" PRIu64 | 
|  | ") broadcasting new state %s (old state %s) to %s", | 
|  | __FUNCTION__, GetID(), StateAsCString(new_state), | 
|  | StateAsCString(GetState()), | 
|  | is_hijacked ? "hijacked" : "public"); | 
|  | } | 
|  | Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); | 
|  | if (StateIsRunningState(new_state)) { | 
|  | // Only push the input handler if we aren't fowarding events, as this | 
|  | // means the curses GUI is in use... Or don't push it if we are launching | 
|  | // since it will come up stopped. | 
|  | if (!GetTarget().GetDebugger().IsForwardingEvents() && | 
|  | new_state != eStateLaunching && new_state != eStateAttaching) { | 
|  | PushProcessIOHandler(); | 
|  | m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, | 
|  | eBroadcastAlways); | 
|  | LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", | 
|  | __FUNCTION__, m_iohandler_sync.GetValue()); | 
|  | } | 
|  | } else if (StateIsStoppedState(new_state, false)) { | 
|  | if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { | 
|  | // If the lldb_private::Debugger is handling the events, we don't want | 
|  | // to pop the process IOHandler here, we want to do it when we receive | 
|  | // the stopped event so we can carefully control when the process | 
|  | // IOHandler is popped because when we stop we want to display some | 
|  | // text stating how and why we stopped, then maybe some | 
|  | // process/thread/frame info, and then we want the "(lldb) " prompt to | 
|  | // show up. If we pop the process IOHandler here, then we will cause | 
|  | // the command interpreter to become the top IOHandler after the | 
|  | // process pops off and it will update its prompt right away... See the | 
|  | // Debugger.cpp file where it calls the function as | 
|  | // "process_sp->PopProcessIOHandler()" to see where I am talking about. | 
|  | // Otherwise we end up getting overlapping "(lldb) " prompts and | 
|  | // garbled output. | 
|  | // | 
|  | // If we aren't handling the events in the debugger (which is indicated | 
|  | // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or | 
|  | // we are hijacked, then we always pop the process IO handler manually. | 
|  | // Hijacking happens when the internal process state thread is running | 
|  | // thread plans, or when commands want to run in synchronous mode and | 
|  | // they call "process->WaitForProcessToStop()". An example of something | 
|  | // that will hijack the events is a simple expression: | 
|  | // | 
|  | //  (lldb) expr (int)puts("hello") | 
|  | // | 
|  | // This will cause the internal process state thread to resume and halt | 
|  | // the process (and _it_ will hijack the eBroadcastBitStateChanged | 
|  | // events) and we do need the IO handler to be pushed and popped | 
|  | // correctly. | 
|  |  | 
|  | if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) | 
|  | PopProcessIOHandler(); | 
|  | } | 
|  | } | 
|  |  | 
|  | BroadcastEvent(event_sp); | 
|  | } else { | 
|  | if (log) { | 
|  | LLDB_LOGF( | 
|  | log, | 
|  | "Process::%s (pid = %" PRIu64 | 
|  | ") suppressing state %s (old state %s): should_broadcast == false", | 
|  | __FUNCTION__, GetID(), StateAsCString(new_state), | 
|  | StateAsCString(GetState())); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Status Process::HaltPrivate() { | 
|  | EventSP event_sp; | 
|  | Status error(WillHalt()); | 
|  | if (error.Fail()) | 
|  | return error; | 
|  |  | 
|  | // Ask the process subclass to actually halt our process | 
|  | bool caused_stop; | 
|  | error = DoHalt(caused_stop); | 
|  |  | 
|  | DidHalt(); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { | 
|  | bool control_only = true; | 
|  |  | 
|  | Log *log = GetLog(LLDBLog::Process); | 
|  | LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", | 
|  | __FUNCTION__, static_cast<void *>(this), GetID()); | 
|  |  | 
|  | bool exit_now = false; | 
|  | bool interrupt_requested = false; | 
|  | while (!exit_now) { | 
|  | EventSP event_sp; | 
|  | GetEventsPrivate(event_sp, std::nullopt, control_only); | 
|  | if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { | 
|  | LLDB_LOGF(log, | 
|  | "Process::%s (arg = %p, pid = %" PRIu64 | 
|  | ") got a control event: %d", | 
|  | __FUNCTION__, static_cast<void *>(this), GetID(), | 
|  | event_sp->GetType()); | 
|  |  | 
|  | switch (event_sp->GetType()) { | 
|  | case eBroadcastInternalStateControlStop: | 
|  | exit_now = true; | 
|  | break; // doing any internal state management below | 
|  |  | 
|  | case eBroadcastInternalStateControlPause: | 
|  | control_only = true; | 
|  | break; | 
|  |  | 
|  | case eBroadcastInternalStateControlResume: | 
|  | control_only = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | continue; | 
|  | } else if (event_sp->GetType() == eBroadcastBitInterrupt) { | 
|  | if (m_public_state.GetValue() == eStateAttaching) { | 
|  | LLDB_LOGF(log, | 
|  | "Process::%s (arg = %p, pid = %" PRIu64 | 
|  | ") woke up with an interrupt while attaching - " | 
|  | "forwarding interrupt.", | 
|  | __FUNCTION__, static_cast<void *>(this), GetID()); | 
|  | // The server may be spinning waiting for a process to appear, in which | 
|  | // case we should tell it to stop doing that.  Normally, we don't NEED | 
|  | // to do that because we will next close the communication to the stub | 
|  | // and that will get it to shut down.  But there are remote debugging | 
|  | // cases where relying on that side-effect causes the shutdown to be | 
|  | // flakey, so we should send a positive signal to interrupt the wait. | 
|  | Status error = HaltPrivate(); | 
|  | BroadcastEvent(eBroadcastBitInterrupt, nullptr); | 
|  | } else if (StateIsRunningState(m_last_broadcast_state)) { | 
|  | LLDB_LOGF(log, | 
|  | "Process::%s (arg = %p, pid = %" PRIu64 | 
|  | ") woke up with an interrupt - Halting.", | 
|  | __FUNCTION__, static_cast<void *>(this), GetID()); | 
|  | Status error = HaltPrivate(); | 
|  | if (error.Fail() && log) | 
|  | LLDB_LOGF(log, | 
|  | "Process::%s (arg = %p, pid = %" PRIu64 | 
|  | ") failed to halt the process: %s", | 
|  | __FUNCTION__, static_cast<void *>(this), GetID(), | 
|  | error.AsCString()); | 
|  | // Halt should generate a stopped event. Make a note of the fact that | 
|  | // we were doing the interrupt, so we can set the interrupted flag | 
|  | // after we receive the event. We deliberately set this to true even if | 
|  | // HaltPrivate failed, so that we can interrupt on the next natural | 
|  | // stop. | 
|  | interrupt_requested = true; | 
|  | } else { | 
|  | // This can happen when someone (e.g. Process::Halt) sees that we are | 
|  | // running and sends an interrupt request, but the process actually | 
|  | // stops before we receive it. In that case, we can just ignore the | 
|  | // request. We use m_last_broadcast_state, because the Stopped event | 
|  | // may not have been popped of the event queue yet, which is when the | 
|  | // public state gets updated. | 
|  | LLDB_LOGF(log, | 
|  | "Process::%s ignoring interrupt as we have already stopped.", | 
|  | __FUNCTION__); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const StateType internal_state = | 
|  | Process::ProcessEventData::GetStateFromEvent(event_sp.get()); | 
|  |  | 
|  | if (internal_state != eStateInvalid) { | 
|  | if (m_clear_thread_plans_on_stop && | 
|  | StateIsStoppedState(internal_state, true)) { | 
|  | m_clear_thread_plans_on_stop = false; | 
|  | m_thread_list.DiscardThreadPlans(); | 
|  | } | 
|  |  | 
|  | if (interrupt_requested) { | 
|  | if (StateIsStoppedState(internal_state, true)) { | 
|  | // Only mark interrupt event if it is not thread specific async | 
|  | // interrupt. | 
|  | if (m_interrupt_tid == LLDB_INVALID_THREAD_ID) { | 
|  | // We requested the interrupt, so mark this as such in the stop | 
|  | // event so clients can tell an interrupted process from a natural | 
|  | // stop | 
|  | ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); | 
|  | } | 
|  | interrupt_requested = false; | 
|  | } else if (log) { | 
|  | LLDB_LOGF(log, | 
|  | "Process::%s interrupt_requested, but a non-stopped " | 
|  | "state '%s' received.", | 
|  | __FUNCTION__, StateAsCString(internal_state)); | 
|  | } | 
|  | } | 
|  |  | 
|  | HandlePrivateEvent(event_sp); | 
|  | } | 
|  |  | 
|  | if (internal_state == eStateInvalid || internal_state == eStateExited || | 
|  | internal_state == eStateDetached) { | 
|  | LLDB_LOGF(log, | 
|  | "Process::%s (arg = %p, pid = %" PRIu64 | 
|  | ") about to exit with internal state %s...", | 
|  | __FUNCTION__, static_cast<void *>(this), GetID(), | 
|  | StateAsCString(internal_state)); | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Verify log is still enabled before attempting to write to it... | 
|  | LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", | 
|  | __FUNCTION__, static_cast<void *>(this), GetID()); | 
|  |  | 
|  | // If we are a secondary thread, then the primary thread we are working for | 
|  | // will have already acquired the public_run_lock, and isn't done with what | 
|  | // it was doing yet, so don't try to change it on the way out. | 
|  | if (!is_secondary_thread) | 
|  | m_public_run_lock.SetStopped(); | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | // Process Event Data | 
|  |  | 
|  | Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {} | 
|  |  | 
|  | Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, | 
|  | StateType state) | 
|  | : EventData(), m_process_wp(), m_state(state) { | 
|  | if (process_sp) | 
|  | m_process_wp = process_sp; | 
|  | } | 
|  |  | 
|  | Process::ProcessEventData::~ProcessEventData() = default; | 
|  |  | 
|  | llvm::StringRef Process::ProcessEventData::GetFlavorString() { | 
|  | return "Process::ProcessEventData"; | 
|  | } | 
|  |  | 
|  | llvm::StringRef Process::ProcessEventData::GetFlavor() const { | 
|  | return ProcessEventData::GetFlavorString(); | 
|  | } | 
|  |  | 
|  | bool Process::ProcessEventData::ShouldStop(Event *event_ptr, | 
|  | bool &found_valid_stopinfo) { | 
|  | found_valid_stopinfo = false; | 
|  |  | 
|  | ProcessSP process_sp(m_process_wp.lock()); | 
|  | if (!process_sp) | 
|  | return false; | 
|  |  | 
|  | ThreadList &curr_thread_list = process_sp->GetThreadList(); | 
|  | uint32_t num_threads = curr_thread_list.GetSize(); | 
|  |  | 
|  | // The actions might change one of the thread's stop_info's opinions about | 
|  | // whether we should stop the process, so we need to query that as we go. | 
|  |  | 
|  | // One other complication here, is that we try to catch any case where the | 
|  | // target has run (except for expressions) and immediately exit, but if we | 
|  | // get that wrong (which is possible) then the thread list might have | 
|  | // changed, and that would cause our iteration here to crash.  We could | 
|  | // make a copy of the thread list, but we'd really like to also know if it | 
|  | // has changed at all, so we store the original thread ID's of all threads and | 
|  | // check what we get back against this list & bag out if anything differs. | 
|  | std::vector<std::pair<ThreadSP, size_t>> not_suspended_threads; | 
|  | for (uint32_t idx = 0; idx < num_threads; ++idx) { | 
|  | lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); | 
|  |  | 
|  | /* | 
|  | Filter out all suspended threads, they could not be the reason | 
|  | of stop and no need to perform any actions on them. | 
|  | */ | 
|  | if (thread_sp->GetResumeState() != eStateSuspended) | 
|  | not_suspended_threads.emplace_back(thread_sp, thread_sp->GetIndexID()); | 
|  | } | 
|  |  | 
|  | // Use this to track whether we should continue from here.  We will only | 
|  | // continue the target running if no thread says we should stop.  Of course | 
|  | // if some thread's PerformAction actually sets the target running, then it | 
|  | // doesn't matter what the other threads say... | 
|  |  | 
|  | bool still_should_stop = false; | 
|  |  | 
|  | // Sometimes - for instance if we have a bug in the stub we are talking to, | 
|  | // we stop but no thread has a valid stop reason.  In that case we should | 
|  | // just stop, because we have no way of telling what the right thing to do | 
|  | // is, and it's better to let the user decide than continue behind their | 
|  | // backs. | 
|  |  | 
|  | for (auto [thread_sp, thread_index] : not_suspended_threads) { | 
|  | if (curr_thread_list.GetSize() != num_threads) { | 
|  | Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); | 
|  | LLDB_LOGF( | 
|  | log, | 
|  | "Number of threads changed from %u to %u while processing event.", | 
|  | num_threads, curr_thread_list.GetSize()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (thread_sp->GetIndexID() != thread_index) { | 
|  | Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); | 
|  | LLDB_LOG(log, | 
|  | "The thread {0} changed from {1} to {2} while processing event.", | 
|  | thread_sp.get(), thread_index, thread_sp->GetIndexID()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); | 
|  | if (stop_info_sp && stop_info_sp->IsValid()) { | 
|  | found_valid_stopinfo = true; | 
|  | bool this_thread_wants_to_stop; | 
|  | if (stop_info_sp->GetOverrideShouldStop()) { | 
|  | this_thread_wants_to_stop = | 
|  | stop_info_sp->GetOverriddenShouldStopValue(); | 
|  | } else { | 
|  | stop_info_sp->PerformAction(event_ptr); | 
|  | // The stop action might restart the target.  If it does, then we | 
|  | // want to mark that in the event so that whoever is receiving it | 
|  | // will know to wait for the running event and reflect that state | 
|  | // appropriately. We also need to stop processing actions, since they | 
|  | // aren't expecting the target to be running. | 
|  |  | 
|  | // Clear the selected frame which may have been set as part of utility | 
|  | // expressions that have been run as part of this stop. If we didn't | 
|  | // clear this, then StopInfo::GetSuggestedStackFrameIndex would not | 
|  | // take affect when we next called SelectMostRelevantFrame. | 
|  | // PerformAction should not be the one setting a selected frame, instead | 
|  | // this should be done via GetSuggestedStackFrameIndex. | 
|  | thread_sp->ClearSelectedFrameIndex(); | 
|  |  | 
|  | // FIXME: we might have run. | 
|  | if (stop_info_sp->HasTargetRunSinceMe()) { | 
|  | SetRestarted(true); | 
|  | break; | 
|  | } | 
|  |  | 
|  | this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); | 
|  | } | 
|  |  | 
|  | if (!still_should_stop) | 
|  | still_should_stop = this_thread_wants_to_stop; | 
|  | } | 
|  | } | 
|  |  | 
|  | return still_should_stop; | 
|  | } | 
|  |  | 
|  | bool Process::ProcessEventData::ForwardEventToPendingListeners( | 
|  | Event *event_ptr) { | 
|  | // STDIO and the other async event notifications should always be forwarded. | 
|  | if (event_ptr->GetType() != Process::eBroadcastBitStateChanged) | 
|  | return true; | 
|  |  | 
|  | // For state changed events, if the update state is zero, we are handling | 
|  | // this on the private state thread.  We should wait for the public event. | 
|  | return m_update_state == 1; | 
|  | } | 
|  |  | 
|  | void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { | 
|  | // We only have work to do for state changed events: | 
|  | if (event_ptr->GetType() != Process::eBroadcastBitStateChanged) | 
|  | return; | 
|  |  | 
|  | ProcessSP process_sp(m_process_wp.lock()); | 
|  |  | 
|  | if (!process_sp) | 
|  | return; | 
|  |  | 
|  | // This function gets called twice for each event, once when the event gets | 
|  | // pulled off of the private process event queue, and then any number of | 
|  | // times, first when it gets pulled off of the public event queue, then other | 
|  | // times when we're pretending that this is where we stopped at the end of | 
|  | // expression evaluation.  m_update_state is used to distinguish these three | 
|  | // cases; it is 0 when we're just pulling it off for private handling, and > | 
|  | // 1 for expression evaluation, and we don't want to do the breakpoint | 
|  | // command handling then. | 
|  | if (m_update_state != 1) | 
|  | return; | 
|  |  | 
|  | process_sp->SetPublicState( | 
|  | m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); | 
|  |  | 
|  | if (m_state == eStateStopped && !m_restarted) { | 
|  | // Let process subclasses know we are about to do a public stop and do | 
|  | // anything they might need to in order to speed up register and memory | 
|  | // accesses. | 
|  | process_sp->WillPublicStop(); | 
|  | } | 
|  |  | 
|  | // If this is a halt event, even if the halt stopped with some reason other | 
|  | // than a plain interrupt (e.g. we had already stopped for a breakpoint when | 
|  | // the halt request came through) don't do the StopInfo actions, as they may | 
|  | // end up restarting the process. | 
|  | if (m_interrupted) | 
|  | return; | 
|  |  | 
|  | // If we're not stopped or have restarted, then skip the StopInfo actions: | 
|  | if (m_state != eStateStopped || m_restarted) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | bool does_anybody_have_an_opinion = false; | 
|  | bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion); | 
|  |  | 
|  | if (GetRestarted()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!still_should_stop && does_anybody_have_an_opinion) { | 
|  | // We've been asked to continue, so do that here. | 
|  | SetRestarted(true); | 
|  | // Use the private resume method here, since we aren't changing the run | 
|  | // lock state. | 
|  | process_sp->PrivateResume(); | 
|  | } else { | 
|  | bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && | 
|  | !process_sp->StateChangedIsHijackedForSynchronousResume(); | 
|  |  | 
|  | if (!hijacked) { | 
|  | // If we didn't restart, run the Stop Hooks here. | 
|  | // Don't do that if state changed events aren't hooked up to the | 
|  | // public (or SyncResume) broadcasters.  StopHooks are just for | 
|  | // real public stops.  They might also restart the target, | 
|  | // so watch for that. | 
|  | if (process_sp->GetTarget().RunStopHooks()) | 
|  | SetRestarted(true); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Process::ProcessEventData::Dump(Stream *s) const { | 
|  | ProcessSP process_sp(m_process_wp.lock()); | 
|  |  | 
|  | if (process_sp) | 
|  | s->Printf(" process = %p (pid = %" PRIu64 "), ", | 
|  | static_cast<void *>(process_sp.get()), process_sp->GetID()); | 
|  | else | 
|  | s->PutCString(" process = NULL, "); | 
|  |  | 
|  | s->Printf("state = %s", StateAsCString(GetState())); | 
|  | } | 
|  |  | 
|  | const Process::ProcessEventData * | 
|  | Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { | 
|  | if (event_ptr) { | 
|  | const EventData *event_data = event_ptr->GetData(); | 
|  | if (event_data && | 
|  | event_data->GetFlavor() == ProcessEventData::GetFlavorString()) | 
|  | return static_cast<const ProcessEventData *>(event_ptr->GetData()); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | ProcessSP | 
|  | Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { | 
|  | ProcessSP process_sp; | 
|  | const ProcessEventData *data = GetEventDataFromEvent(event_ptr); | 
|  | if (data) | 
|  | process_sp = data->GetProcessSP(); | 
|  | return process_sp; | 
|  | } | 
|  |  | 
|  | StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { | 
|  | const ProcessEventData *data = GetEventDataFromEvent(event_ptr); | 
|  | if (data == nullptr) | 
|  | return eStateInvalid; | 
|  | else | 
|  | return data->GetState(); | 
|  | } | 
|  |  | 
|  | bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { | 
|  | const ProcessEventData *data = GetEventDataFromEvent(event_ptr); | 
|  | if (data == nullptr) | 
|  | return false; | 
|  | else | 
|  | return data->GetRestarted(); | 
|  | } | 
|  |  | 
|  | void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, | 
|  | bool new_value) { | 
|  | ProcessEventData *data = | 
|  | const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); | 
|  | if (data != nullptr) | 
|  | data->SetRestarted(new_value); | 
|  | } | 
|  |  | 
|  | size_t | 
|  | Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { | 
|  | ProcessEventData *data = | 
|  | const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); | 
|  | if (data != nullptr) | 
|  | return data->GetNumRestartedReasons(); | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const char * | 
|  | Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, | 
|  | size_t idx) { | 
|  | ProcessEventData *data = | 
|  | const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); | 
|  | if (data != nullptr) | 
|  | return data->GetRestartedReasonAtIndex(idx); | 
|  | else | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, | 
|  | const char *reason) { | 
|  | ProcessEventData *data = | 
|  | const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); | 
|  | if (data != nullptr) | 
|  | data->AddRestartedReason(reason); | 
|  | } | 
|  |  | 
|  | bool Process::ProcessEventData::GetInterruptedFromEvent( | 
|  | const Event *event_ptr) { | 
|  | const ProcessEventData *data = GetEventDataFromEvent(event_ptr); | 
|  | if (data == nullptr) | 
|  | return false; | 
|  | else | 
|  | return data->GetInterrupted(); | 
|  | } | 
|  |  | 
|  | void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, | 
|  | bool new_value) { | 
|  | ProcessEventData *data = | 
|  | const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); | 
|  | if (data != nullptr) | 
|  | data->SetInterrupted(new_value); | 
|  | } | 
|  |  | 
|  | bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { | 
|  | ProcessEventData *data = | 
|  | const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); | 
|  | if (data) { | 
|  | data->SetUpdateStateOnRemoval(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } | 
|  |  | 
|  | void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { | 
|  | exe_ctx.SetTargetPtr(&GetTarget()); | 
|  | exe_ctx.SetProcessPtr(this); | 
|  | exe_ctx.SetThreadPtr(nullptr); | 
|  | exe_ctx.SetFramePtr(nullptr); | 
|  | } | 
|  |  | 
|  | // uint32_t | 
|  | // Process::ListProcessesMatchingName (const char *name, StringList &matches, | 
|  | // std::vector<lldb::pid_t> &pids) | 
|  | //{ | 
|  | //    return 0; | 
|  | //} | 
|  | // | 
|  | // ArchSpec | 
|  | // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) | 
|  | //{ | 
|  | //    return Host::GetArchSpecForExistingProcess (pid); | 
|  | //} | 
|  | // | 
|  | // ArchSpec | 
|  | // Process::GetArchSpecForExistingProcess (const char *process_name) | 
|  | //{ | 
|  | //    return Host::GetArchSpecForExistingProcess (process_name); | 
|  | //} | 
|  |  | 
|  | EventSP Process::CreateEventFromProcessState(uint32_t event_type) { | 
|  | auto event_data_sp = | 
|  | std::make_shared<ProcessEventData>(shared_from_this(), GetState()); | 
|  | return std::make_shared<Event>(event_type, event_data_sp); | 
|  | } | 
|  |  | 
|  | void Process::AppendSTDOUT(const char *s, size_t len) { | 
|  | std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); | 
|  | m_stdout_data.append(s, len); | 
|  | auto event_sp = CreateEventFromProcessState(eBroadcastBitSTDOUT); | 
|  | BroadcastEventIfUnique(event_sp); | 
|  | } | 
|  |  | 
|  | void Process::AppendSTDERR(const char *s, size_t len) { | 
|  | std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); | 
|  | m_stderr_data.append(s, len); | 
|  | auto event_sp = CreateEventFromProcessState(eBroadcastBitSTDERR); | 
|  | BroadcastEventIfUnique(event_sp); | 
|  | } | 
|  |  | 
|  | void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { | 
|  | std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); | 
|  | m_profile_data.push_back(one_profile_data); | 
|  | auto event_sp = CreateEventFromProcessState(eBroadcastBitProfileData); | 
|  | BroadcastEventIfUnique(event_sp); | 
|  | } | 
|  |  | 
|  | void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, | 
|  | const StructuredDataPluginSP &plugin_sp) { | 
|  | auto data_sp = std::make_shared<EventDataStructuredData>( | 
|  | shared_from_this(), object_sp, plugin_sp); | 
|  | BroadcastEvent(eBroadcastBitStructuredData, data_sp); | 
|  | } | 
|  |  | 
|  | StructuredDataPluginSP | 
|  | Process::GetStructuredDataPlugin(llvm::StringRef type_name) const { | 
|  | auto find_it = m_structured_data_plugin_map.find(type_name); | 
|  | if (find_it != m_structured_data_plugin_map.end()) | 
|  | return find_it->second; | 
|  | else | 
|  | return StructuredDataPluginSP(); | 
|  | } | 
|  |  | 
|  | size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { | 
|  | std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); | 
|  | if (m_profile_data.empty()) | 
|  | return 0; | 
|  |  | 
|  | std::string &one_profile_data = m_profile_data.front(); | 
|  | size_t bytes_available = one_profile_data.size(); | 
|  | if (bytes_available > 0) { | 
|  | Log *log = GetLog(LLDBLog::Process); | 
|  | LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", | 
|  | static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); | 
|  | if (bytes_available > buf_size) { | 
|  | memcpy(buf, one_profile_data.c_str(), buf_size); | 
|  | one_profile_data.erase(0, buf_size); | 
|  | bytes_available = buf_size; | 
|  | } else { | 
|  | memcpy(buf, one_profile_data.c_str(), bytes_available); | 
|  | m_profile_data.erase(m_profile_data.begin()); | 
|  | } | 
|  | } | 
|  | return bytes_available; | 
|  | } | 
|  |  | 
|  | // Process STDIO | 
|  |  | 
|  | size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { | 
|  | std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); | 
|  | size_t bytes_available = m_stdout_data.size(); | 
|  | if (bytes_available > 0) { | 
|  | Log *log = GetLog(LLDBLog::Process); | 
|  | LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", | 
|  | static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); | 
|  | if (bytes_available > buf_size) { | 
|  | memcpy(buf, m_stdout_data.c_str(), buf_size); | 
|  | m_stdout_data.erase(0, buf_size); | 
|  | bytes_available = buf_size; | 
|  | } else { | 
|  | memcpy(buf, m_stdout_data.c_str(), bytes_available); | 
|  | m_stdout_data.clear(); | 
|  | } | 
|  | } | 
|  | return bytes_available; | 
|  | } | 
|  |  | 
|  | size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { | 
|  | std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); | 
|  | size_t bytes_available = m_stderr_data.size(); | 
|  | if (bytes_available > 0) { | 
|  | Log *log = GetLog(LLDBLog::Process); | 
|  | LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", | 
|  | static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); | 
|  | if (bytes_available > buf_size) { | 
|  | memcpy(buf, m_stderr_data.c_str(), buf_size); | 
|  | m_stderr_data.erase(0, buf_size); | 
|  | bytes_available = buf_size; | 
|  | } else { | 
|  | memcpy(buf, m_stderr_data.c_str(), bytes_available); | 
|  | m_stderr_data.clear(); | 
|  | } | 
|  | } | 
|  | return bytes_available; | 
|  | } | 
|  |  | 
|  | void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, | 
|  | size_t src_len) { | 
|  | Process *process = (Process *)baton; | 
|  | process->AppendSTDOUT(static_cast<const char *>(src), src_len); | 
|  | } | 
|  |  | 
|  | class IOHandlerProcessSTDIO : public IOHandler { | 
|  | public: | 
|  | IOHandlerProcessSTDIO(Process *process, int write_fd) | 
|  | : IOHandler(process->GetTarget().GetDebugger(), | 
|  | IOHandler::Type::ProcessIO), | 
|  | m_process(process), | 
|  | m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false), | 
|  | m_write_file(write_fd, File::eOpenOptionWriteOnly, false) { | 
|  | m_pipe.CreateNew(); | 
|  | } | 
|  |  | 
|  | ~IOHandlerProcessSTDIO() override = default; | 
|  |  | 
|  | void SetIsRunning(bool running) { | 
|  | std::lock_guard<std::mutex> guard(m_mutex); | 
|  | SetIsDone(!running); | 
|  | m_is_running = running; | 
|  | } | 
|  |  | 
|  | // Each IOHandler gets to run until it is done. It should read data from the | 
|  | // "in" and place output into "out" and "err and return when done. | 
|  | void Run() override { | 
|  | if (!m_read_file.IsValid() || !m_write_file.IsValid() || | 
|  | !m_pipe.CanRead() || !m_pipe.CanWrite()) { | 
|  | SetIsDone(true); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SetIsDone(false); | 
|  | const int read_fd = m_read_file.GetDescriptor(); | 
|  | Terminal terminal(read_fd); | 
|  | TerminalState terminal_state(terminal, false); | 
|  | // FIXME: error handling? | 
|  | llvm::consumeError(terminal.SetCanonical(false)); | 
|  | llvm::consumeError(terminal.SetEcho(false)); | 
|  | // FD_ZERO, FD_SET are not supported on windows | 
|  | #ifndef _WIN32 | 
|  | const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); | 
|  | SetIsRunning(true); | 
|  | while (true) { | 
|  | { | 
|  | std::lock_guard<std::mutex> guard(m_mutex); | 
|  | if (GetIsDone()) | 
|  | break; | 
|  | } | 
|  |  | 
|  | SelectHelper select_helper; | 
|  | select_helper.FDSetRead(read_fd); | 
|  | select_helper.FDSetRead(pipe_read_fd); | 
|  | Status error = select_helper.Select(); | 
|  |  | 
|  | if (error.Fail()) | 
|  | break; | 
|  |  | 
|  | char ch = 0; | 
|  | size_t n; | 
|  | if (select_helper.FDIsSetRead(read_fd)) { | 
|  | n = 1; | 
|  | if (m_read_file.Read(&ch, n).Success() && n == 1) { | 
|  | if (m_write_file.Write(&ch, n).Fail() || n != 1) | 
|  | break; | 
|  | } else | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (select_helper.FDIsSetRead(pipe_read_fd)) { | 
|  | // Consume the interrupt byte | 
|  | if (llvm::Expected<size_t> bytes_read = m_pipe.Read(&ch, 1)) { | 
|  | if (ch == 'q') | 
|  | break; | 
|  | if (ch == 'i') | 
|  | if (StateIsRunningState(m_process->GetState())) | 
|  | m_process->SendAsyncInterrupt(); | 
|  | } else { | 
|  | LLDB_LOG_ERROR(GetLog(LLDBLog::Process), bytes_read.takeError(), | 
|  | "Pipe read failed: {0}"); | 
|  | } | 
|  | } | 
|  | } | 
|  | SetIsRunning(false); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void Cancel() override { | 
|  | std::lock_guard<std::mutex> guard(m_mutex); | 
|  | SetIsDone(true); | 
|  | // Only write to our pipe to cancel if we are in | 
|  | // IOHandlerProcessSTDIO::Run(). We can end up with a python command that | 
|  | // is being run from the command interpreter: | 
|  | // | 
|  | // (lldb) step_process_thousands_of_times | 
|  | // | 
|  | // In this case the command interpreter will be in the middle of handling | 
|  | // the command and if the process pushes and pops the IOHandler thousands | 
|  | // of times, we can end up writing to m_pipe without ever consuming the | 
|  | // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up | 
|  | // deadlocking when the pipe gets fed up and blocks until data is consumed. | 
|  | if (m_is_running) { | 
|  | char ch = 'q'; // Send 'q' for quit | 
|  | if (llvm::Error err = m_pipe.Write(&ch, 1).takeError()) { | 
|  | LLDB_LOG_ERROR(GetLog(LLDBLog::Process), std::move(err), | 
|  | "Pipe write failed: {0}"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Interrupt() override { | 
|  | // Do only things that are safe to do in an interrupt context (like in a | 
|  | // SIGINT handler), like write 1 byte to a file descriptor. This will | 
|  | // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte | 
|  | // that was written to the pipe and then call | 
|  | // m_process->SendAsyncInterrupt() from a much safer location in code. | 
|  | if (m_active) { | 
|  | char ch = 'i'; // Send 'i' for interrupt | 
|  | return !errorToBool(m_pipe.Write(&ch, 1).takeError()); | 
|  | } else { | 
|  | // This IOHandler might be pushed on the stack, but not being run | 
|  | // currently so do the right thing if we aren't actively watching for | 
|  | // STDIN by sending the interrupt to the process. Otherwise the write to | 
|  | // the pipe above would do nothing. This can happen when the command | 
|  | // interpreter is running and gets a "expression ...". It will be on the | 
|  | // IOHandler thread and sending the input is complete to the delegate | 
|  | // which will cause the expression to run, which will push the process IO | 
|  | // handler, but not run it. | 
|  |  | 
|  | if (StateIsRunningState(m_process->GetState())) { | 
|  | m_process->SendAsyncInterrupt(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void GotEOF() override {} | 
|  |  | 
|  | protected: | 
|  | Process *m_process; | 
|  | NativeFile m_read_file;  // Read from this file (usually actual STDIN for LLDB | 
|  | NativeFile m_write_file; // Write to this file (usually the primary pty for | 
|  | // getting io to debuggee) | 
|  | Pipe m_pipe; | 
|  | std::mutex m_mutex; | 
|  | bool m_is_running = false; | 
|  | }; | 
|  |  | 
|  | void Process::SetSTDIOFileDescriptor(int fd) { | 
|  | // First set up the Read Thread for reading/handling process I/O | 
|  | m_stdio_communication.SetConnection( | 
|  | std::make_unique<ConnectionFileDescriptor>(fd, true)); | 
|  | if (m_stdio_communication.IsConnected()) { | 
|  | m_stdio_communication.SetReadThreadBytesReceivedCallback( | 
|  | STDIOReadThreadBytesReceived, this); | 
|  | m_stdio_communication.StartReadThread(); | 
|  |  | 
|  | // Now read thread is set up, set up input reader. | 
|  | { | 
|  | std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); | 
|  | if (!m_process_input_reader) | 
|  | m_process_input_reader = | 
|  | std::make_shared<IOHandlerProcessSTDIO>(this, fd); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Process::ProcessIOHandlerIsActive() { | 
|  | std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); | 
|  | IOHandlerSP io_handler_sp(m_process_input_reader); | 
|  | if (io_handler_sp) | 
|  | return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Process::PushProcessIOHandler() { | 
|  | std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); | 
|  | IOHandlerSP io_handler_sp(m_process_input_reader); | 
|  | if (io_handler_sp) { | 
|  | Log *log = GetLog(LLDBLog::Process); | 
|  | LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); | 
|  |  | 
|  | io_handler_sp->SetIsDone(false); | 
|  | // If we evaluate an utility function, then we don't cancel the current | 
|  | // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the | 
|  | // existing IOHandler that potentially provides the user interface (e.g. | 
|  | // the IOHandler for Editline). | 
|  | bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); | 
|  | GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, | 
|  | cancel_top_handler); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Process::PopProcessIOHandler() { | 
|  | std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); | 
|  | IOHandlerSP io_handler_sp(m_process_input_reader); | 
|  | if (io_handler_sp) | 
|  | return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The process needs to know about installed plug-ins | 
|  | void Process::SettingsInitialize() { Thread::SettingsInitialize(); } | 
|  |  | 
|  | void Process::SettingsTerminate() { Thread::SettingsTerminate(); } | 
|  |  | 
|  | namespace { | 
|  | // RestorePlanState is used to record the "is private", "is controlling" and | 
|  | // "okay | 
|  | // to discard" fields of the plan we are running, and reset it on Clean or on | 
|  | // destruction. It will only reset the state once, so you can call Clean and | 
|  | // then monkey with the state and it won't get reset on you again. | 
|  |  | 
|  | class RestorePlanState { | 
|  | public: | 
|  | RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) | 
|  | : m_thread_plan_sp(thread_plan_sp) { | 
|  | if (m_thread_plan_sp) { | 
|  | m_private = m_thread_plan_sp->GetPrivate(); | 
|  | m_is_controlling = m_thread_plan_sp->IsControllingPlan(); | 
|  | m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); | 
|  | } | 
|  | } | 
|  |  | 
|  | ~RestorePlanState() { Clean(); } | 
|  |  | 
|  | void Clean() { | 
|  | if (!m_already_reset && m_thread_plan_sp) { | 
|  | m_already_reset = true; | 
|  | m_thread_plan_sp->SetPrivate(m_private); | 
|  | m_thread_plan_sp->SetIsControllingPlan(m_is_controlling); | 
|  | m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); | 
|  | } | 
|  | } | 
|  |  | 
|  | private: | 
|  | lldb::ThreadPlanSP m_thread_plan_sp; | 
|  | bool m_already_reset = false; | 
|  | bool m_private = false; | 
|  | bool m_is_controlling = false; | 
|  | bool m_okay_to_discard = false; | 
|  | }; | 
|  | } // anonymous namespace | 
|  |  | 
|  | static microseconds | 
|  | GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { | 
|  | const milliseconds default_one_thread_timeout(250); | 
|  |  | 
|  | // If the overall wait is forever, then we don't need to worry about it. | 
|  | if (!options.GetTimeout()) { | 
|  | return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() | 
|  | : default_one_thread_timeout; | 
|  | } | 
|  |  | 
|  | // If the one thread timeout is set, use it. | 
|  | if (options.GetOneThreadTimeout()) | 
|  | return *options.GetOneThreadTimeout(); | 
|  |  | 
|  | // Otherwise use half the total timeout, bounded by the | 
|  | // default_one_thread_timeout. | 
|  | return std::min<microseconds>(default_one_thread_timeout, | 
|  | *options.GetTimeout() / 2); | 
|  | } | 
|  |  | 
|  | static Timeout<std::micro> | 
|  | GetExpressionTimeout(const EvaluateExpressionOptions &options, | 
|  | bool before_first_timeout) { | 
|  | // If we are going to run all threads the whole time, or if we are only going | 
|  | // to run one thread, we can just return the overall timeout. | 
|  | if (!options.GetStopOthers() || !options.GetTryAllThreads()) | 
|  | return options.GetTimeout(); | 
|  |  | 
|  | if (before_first_timeout) | 
|  | return GetOneThreadExpressionTimeout(options); | 
|  |  | 
|  | if (!options.GetTimeout()) | 
|  | return std::nullopt; | 
|  | else | 
|  | return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); | 
|  | } | 
|  |  | 
|  | static std::optional<ExpressionResults> | 
|  | HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp, | 
|  | RestorePlanState &restorer, const EventSP &event_sp, | 
|  | EventSP &event_to_broadcast_sp, | 
|  | const EvaluateExpressionOptions &options, | 
|  | bool handle_interrupts) { | 
|  | Log *log = GetLog(LLDBLog::Step | LLDBLog::Process); | 
|  |  | 
|  | ThreadSP thread_sp = thread_plan_sp->GetTarget() | 
|  | .GetProcessSP() | 
|  | ->GetThreadList() | 
|  | .FindThreadByID(thread_id); | 
|  | if (!thread_sp) { | 
|  | LLDB_LOG(log, | 
|  | "The thread on which we were running the " | 
|  | "expression: tid = {0}, exited while " | 
|  | "the expression was running.", | 
|  | thread_id); | 
|  | return eExpressionThreadVanished; | 
|  | } | 
|  |  | 
|  | ThreadPlanSP plan = thread_sp->GetCompletedPlan(); | 
|  | if (plan == thread_plan_sp && plan->PlanSucceeded()) { | 
|  | LLDB_LOG(log, "execution completed successfully"); | 
|  |  | 
|  | // Restore the plan state so it will get reported as intended when we are | 
|  | // done. | 
|  | restorer.Clean(); | 
|  | return eExpressionCompleted; | 
|  | } | 
|  |  | 
|  | StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); | 
|  | if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && | 
|  | stop_info_sp->ShouldNotify(event_sp.get())) { | 
|  | LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); | 
|  | if (!options.DoesIgnoreBreakpoints()) { | 
|  | // Restore the plan state and then force Private to false.  We are going | 
|  | // to stop because of this plan so we need it to become a public plan or | 
|  | // it won't report correctly when we continue to its termination later | 
|  | // on. | 
|  | restorer.Clean(); | 
|  | thread_plan_sp->SetPrivate(false); | 
|  | event_to_broadcast_sp = event_sp; | 
|  | } | 
|  | return eExpressionHitBreakpoint; | 
|  | } | 
|  |  | 
|  | if (!handle_interrupts && | 
|  | Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) | 
|  | return std::nullopt; | 
|  |  | 
|  | LLDB_LOG(log, "thread plan did not successfully complete"); | 
|  | if (!options.DoesUnwindOnError()) | 
|  | event_to_broadcast_sp = event_sp; | 
|  | return eExpressionInterrupted; | 
|  | } | 
|  |  | 
|  | ExpressionResults | 
|  | Process::RunThreadPlan(ExecutionContext &exe_ctx, | 
|  | lldb::ThreadPlanSP &thread_plan_sp, | 
|  | const EvaluateExpressionOptions &options, | 
|  | DiagnosticManager &diagnostic_manager) { | 
|  | ExpressionResults return_value = eExpressionSetupError; | 
|  |  | 
|  | std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); | 
|  |  | 
|  | if (!thread_plan_sp) { | 
|  | diagnostic_manager.PutString( | 
|  | lldb::eSeverityError, "RunThreadPlan called with empty thread plan."); | 
|  | return eExpressionSetupError; | 
|  | } | 
|  |  | 
|  | if (!thread_plan_sp->ValidatePlan(nullptr)) { | 
|  | diagnostic_manager.PutString( | 
|  | lldb::eSeverityError, | 
|  | "RunThreadPlan called with an invalid thread plan."); | 
|  | return eExpressionSetupError; | 
|  | } | 
|  |  | 
|  | if (exe_ctx.GetProcessPtr() != this) { | 
|  | diagnostic_manager.PutString(lldb::eSeverityError, | 
|  | "RunThreadPlan called on wrong process."); | 
|  | return eExpressionSetupError; | 
|  | } | 
|  |  | 
|  | Thread *thread = exe_ctx.GetThreadPtr(); | 
|  | if (thread == nullptr) { | 
|  | diagnostic_manager.PutString(lldb::eSeverityError, | 
|  | "RunThreadPlan called with invalid thread."); | 
|  | return eExpressionSetupError; | 
|  | } | 
|  |  | 
|  | // Record the thread's id so we can tell when a thread we were using | 
|  | // to run the expression exits during the expression evaluation. | 
|  | lldb::tid_t expr_thread_id = thread->GetID(); | 
|  |  | 
|  | // We need to change some of the thread plan attributes for the thread plan | 
|  | // runner.  This will restore them when we are done: | 
|  |  | 
|  | RestorePlanState thread_plan_restorer(thread_plan_sp); | 
|  |  | 
|  | // We rely on the thread plan we are running returning "PlanCompleted" if | 
|  | // when it successfully completes. For that to be true the plan can't be | 
|  | // private - since private plans suppress themselves in the GetCompletedPlan | 
|  | // call. | 
|  |  | 
|  | thread_plan_sp->SetPrivate(false); | 
|  |  | 
|  | // The plans run with RunThreadPlan also need to be terminal controlling plans | 
|  | // or when they are done we will end up asking the plan above us whether we | 
|  | // should stop, which may give the wrong answer. | 
|  |  | 
|  | thread_plan_sp->SetIsControllingPlan(true); | 
|  | thread_plan_sp->SetOkayToDiscard(false); | 
|  |  | 
|  | // If we are running some utility expression for LLDB, we now have to mark | 
|  | // this in the ProcesModID of this process. This RAII takes care of marking | 
|  | // and reverting the mark it once we are done running the expression. | 
|  | UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); | 
|  |  | 
|  | if (m_private_state.GetValue() != eStateStopped) { | 
|  | diagnostic_manager.PutString( | 
|  | lldb::eSeverityError, | 
|  | "RunThreadPlan called while the private state was not stopped."); | 
|  | return eExpressionSetupError; | 
|  | } | 
|  |  | 
|  | // Save the thread & frame from the exe_ctx for restoration after we run | 
|  | const uint32_t thread_idx_id = thread->GetIndexID(); | 
|  | StackFrameSP selected_frame_sp = | 
|  | thread->GetSelectedFrame(DoNoSelectMostRelevantFrame); | 
|  | if (!selected_frame_sp) { | 
|  | thread->SetSelectedFrame(nullptr); | 
|  | selected_frame_sp = thread->GetSelectedFrame(DoNoSelectMostRelevantFrame); | 
|  | if (!selected_frame_sp) { | 
|  | diagnostic_manager.Printf( | 
|  | lldb::eSeverityError, | 
|  | "RunThreadPlan called without a selected frame on thread %d", | 
|  | thread_idx_id); | 
|  | return eExpressionSetupError; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make sure the timeout values make sense. The one thread timeout needs to | 
|  | // be smaller than the overall timeout. | 
|  | if (options.GetOneThreadTimeout() && options.GetTimeout() && | 
|  | *options.GetTimeout() < *options.GetOneThreadTimeout()) { | 
|  | diagnostic_manager.PutString(lldb::eSeverityError, | 
|  | "RunThreadPlan called with one thread " | 
|  | "timeout greater than total timeout"); | 
|  | return eExpressionSetupError; | 
|  | } | 
|  |  | 
|  | // If the ExecutionContext has a frame, we want to make sure to save/restore | 
|  | // that frame into exe_ctx. This can happen when we run expressions from a | 
|  | // non-selected SBFrame, in which case we don't want some thread-plan | 
|  | // to overwrite the ExecutionContext frame. | 
|  | StackID ctx_frame_id = exe_ctx.HasFrameScope() | 
|  | ? exe_ctx.GetFrameRef().GetStackID() | 
|  | : selected_frame_sp->GetStackID(); | 
|  |  | 
|  | // N.B. Running the target may unset the currently selected thread and frame. | 
|  | // We don't want to do that either, so we should arrange to reset them as | 
|  | // well. | 
|  |  | 
|  | lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); | 
|  |  | 
|  | uint32_t selected_tid; | 
|  | StackID selected_stack_id; | 
|  | if (selected_thread_sp) { | 
|  | selected_tid = selected_thread_sp->GetIndexID(); | 
|  | selected_stack_id = | 
|  | selected_thread_sp->GetSelectedFrame(DoNoSelectMostRelevantFrame) | 
|  | ->GetStackID(); | 
|  | } else { | 
|  | selected_tid = LLDB_INVALID_THREAD_ID; | 
|  | } | 
|  |  | 
|  | HostThread backup_private_state_thread; | 
|  | lldb::StateType old_state = eStateInvalid; | 
|  | lldb::ThreadPlanSP stopper_base_plan_sp; | 
|  |  | 
|  | Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); | 
|  | if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { | 
|  | // Yikes, we are running on the private state thread!  So we can't wait for | 
|  | // public events on this thread, since we are the thread that is generating | 
|  | // public events. The simplest thing to do is to spin up a temporary thread | 
|  | // to handle private state thread events while we are fielding public | 
|  | // events here. | 
|  | LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " | 
|  | "another state thread to handle the events."); | 
|  |  | 
|  | backup_private_state_thread = m_private_state_thread; | 
|  |  | 
|  | // One other bit of business: we want to run just this thread plan and | 
|  | // anything it pushes, and then stop, returning control here. But in the | 
|  | // normal course of things, the plan above us on the stack would be given a | 
|  | // shot at the stop event before deciding to stop, and we don't want that. | 
|  | // So we insert a "stopper" base plan on the stack before the plan we want | 
|  | // to run.  Since base plans always stop and return control to the user, | 
|  | // that will do just what we want. | 
|  | stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); | 
|  | thread->QueueThreadPlan(stopper_base_plan_sp, false); | 
|  | // Have to make sure our public state is stopped, since otherwise the | 
|  | // reporting logic below doesn't work correctly. | 
|  | old_state = m_public_state.GetValue(); | 
|  | m_public_state.SetValueNoLock(eStateStopped); | 
|  |  | 
|  | // Now spin up the private state thread: | 
|  | StartPrivateStateThread(true); | 
|  | } | 
|  |  | 
|  | thread->QueueThreadPlan( | 
|  | thread_plan_sp, false); // This used to pass "true" does that make sense? | 
|  |  | 
|  | if (options.GetDebug()) { | 
|  | // In this case, we aren't actually going to run, we just want to stop | 
|  | // right away. Flush this thread so we will refetch the stacks and show the | 
|  | // correct backtrace. | 
|  | // FIXME: To make this prettier we should invent some stop reason for this, | 
|  | // but that | 
|  | // is only cosmetic, and this functionality is only of use to lldb | 
|  | // developers who can live with not pretty... | 
|  | thread->Flush(); | 
|  | return eExpressionStoppedForDebug; | 
|  | } | 
|  |  | 
|  | ListenerSP listener_sp( | 
|  | Listener::MakeListener("lldb.process.listener.run-thread-plan")); | 
|  |  | 
|  | lldb::EventSP event_to_broadcast_sp; | 
|  |  | 
|  | { | 
|  | // This process event hijacker Hijacks the Public events and its destructor | 
|  | // makes sure that the process events get restored on exit to the function. | 
|  | // | 
|  | // If the event needs to propagate beyond the hijacker (e.g., the process | 
|  | // exits during execution), then the event is put into | 
|  | // event_to_broadcast_sp for rebroadcasting. | 
|  |  | 
|  | ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); | 
|  |  | 
|  | if (log) { | 
|  | StreamString s; | 
|  | thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); | 
|  | LLDB_LOGF(log, | 
|  | "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 | 
|  | " to run thread plan \"%s\".", | 
|  | thread_idx_id, expr_thread_id, s.GetData()); | 
|  | } | 
|  |  | 
|  | bool got_event; | 
|  | lldb::EventSP event_sp; | 
|  | lldb::StateType stop_state = lldb::eStateInvalid; | 
|  |  | 
|  | bool before_first_timeout = true; // This is set to false the first time | 
|  | // that we have to halt the target. | 
|  | bool do_resume = true; | 
|  | bool handle_running_event = true; | 
|  |  | 
|  | // This is just for accounting: | 
|  | uint32_t num_resumes = 0; | 
|  |  | 
|  | // If we are going to run all threads the whole time, or if we are only | 
|  | // going to run one thread, then we don't need the first timeout.  So we | 
|  | // pretend we are after the first timeout already. | 
|  | if (!options.GetStopOthers() || !options.GetTryAllThreads()) | 
|  | before_first_timeout = false; | 
|  |  | 
|  | LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", | 
|  | options.GetStopOthers(), options.GetTryAllThreads(), | 
|  | before_first_timeout); | 
|  |  | 
|  | // This isn't going to work if there are unfetched events on the queue. Are | 
|  | // there cases where we might want to run the remaining events here, and | 
|  | // then try to call the function?  That's probably being too tricky for our | 
|  | // own good. | 
|  |  | 
|  | Event *other_events = listener_sp->PeekAtNextEvent(); | 
|  | if (other_events != nullptr) { | 
|  | diagnostic_manager.PutString( | 
|  | lldb::eSeverityError, | 
|  | "RunThreadPlan called with pending events on the queue."); | 
|  | return eExpressionSetupError; | 
|  | } | 
|  |  | 
|  | // We also need to make sure that the next event is delivered.  We might be | 
|  | // calling a function as part of a thread plan, in which case the last | 
|  | // delivered event could be the running event, and we don't want event | 
|  | // coalescing to cause us to lose OUR running event... | 
|  | ForceNextEventDelivery(); | 
|  |  | 
|  | // This while loop must exit out the bottom, there's cleanup that we need to do | 
|  | // when we are done. So don't call return anywhere within it. | 
|  |  | 
|  | #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT | 
|  | // It's pretty much impossible to write test cases for things like: One | 
|  | // thread timeout expires, I go to halt, but the process already stopped on | 
|  | // the function call stop breakpoint.  Turning on this define will make us | 
|  | // not fetch the first event till after the halt.  So if you run a quick | 
|  | // function, it will have completed, and the completion event will be | 
|  | // waiting, when you interrupt for halt. The expression evaluation should | 
|  | // still succeed. | 
|  | bool miss_first_event = true; | 
|  | #endif | 
|  | while (true) { | 
|  | // We usually want to resume the process if we get to the top of the | 
|  | // loop. The only exception is if we get two running events with no | 
|  | // intervening stop, which can happen, we will just wait for then next | 
|  | // stop event. | 
|  | LLDB_LOGF(log, | 
|  | "Top of while loop: do_resume: %i handle_running_event: %i " | 
|  | "before_first_timeout: %i.", | 
|  | do_resume, handle_running_event, before_first_timeout); | 
|  |  | 
|  | if (do_resume || handle_running_event) { | 
|  | // Do the initial resume and wait for the running event before going | 
|  | // further. | 
|  |  | 
|  | if (do_resume) { | 
|  | num_resumes++; | 
|  | Status resume_error = PrivateResume(); | 
|  | if (!resume_error.Success()) { | 
|  | diagnostic_manager.Printf( | 
|  | lldb::eSeverityError, | 
|  | "couldn't resume inferior the %d time: \"%s\".", num_resumes, | 
|  | resume_error.AsCString()); | 
|  | return_value = eExpressionSetupError; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | got_event = | 
|  | listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); | 
|  | if (!got_event) { | 
|  | LLDB_LOGF(log, | 
|  | "Process::RunThreadPlan(): didn't get any event after " | 
|  | "resume %" PRIu32 ", exiting.", | 
|  | num_resumes); | 
|  |  | 
|  | diagnostic_manager.Printf(lldb::eSeverityError, | 
|  | "didn't get any event after resume %" PRIu32 | 
|  | ", exiting.", | 
|  | num_resumes); | 
|  | return_value = eExpressionSetupError; | 
|  | break; | 
|  | } | 
|  |  | 
|  | stop_state = | 
|  | Process::ProcessEventData::GetStateFromEvent(event_sp.get()); | 
|  |  | 
|  | if (stop_state != eStateRunning) { | 
|  | bool restarted = false; | 
|  |  | 
|  | if (stop_state == eStateStopped) { | 
|  | restarted = Process::ProcessEventData::GetRestartedFromEvent( | 
|  | event_sp.get()); | 
|  | LLDB_LOGF( | 
|  | log, | 
|  | "Process::RunThreadPlan(): didn't get running event after " | 
|  | "resume %d, got %s instead (restarted: %i, do_resume: %i, " | 
|  | "handle_running_event: %i).", | 
|  | num_resumes, StateAsCString(stop_state), restarted, do_resume, | 
|  | handle_running_event); | 
|  | } | 
|  |  | 
|  | if (restarted) { | 
|  | // This is probably an overabundance of caution, I don't think I | 
|  | // should ever get a stopped & restarted event here.  But if I do, | 
|  | // the best thing is to Halt and then get out of here. | 
|  | const bool clear_thread_plans = false; | 
|  | const bool use_run_lock = false; | 
|  | Halt(clear_thread_plans, use_run_lock); | 
|  | } | 
|  |  | 
|  | diagnostic_manager.Printf( | 
|  | lldb::eSeverityError, | 
|  | "didn't get running event after initial resume, got %s instead.", | 
|  | StateAsCString(stop_state)); | 
|  | return_value = eExpressionSetupError; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (log) | 
|  | log->PutCString("Process::RunThreadPlan(): resuming succeeded."); | 
|  | // We need to call the function synchronously, so spin waiting for it | 
|  | // to return. If we get interrupted while executing, we're going to | 
|  | // lose our context, and won't be able to gather the result at this | 
|  | // point. We set the timeout AFTER the resume, since the resume takes | 
|  | // some time and we don't want to charge that to the timeout. | 
|  | } else { | 
|  | if (log) | 
|  | log->PutCString("Process::RunThreadPlan(): waiting for next event."); | 
|  | } | 
|  |  | 
|  | do_resume = true; | 
|  | handle_running_event = true; | 
|  |  | 
|  | // Now wait for the process to stop again: | 
|  | event_sp.reset(); | 
|  |  | 
|  | Timeout<std::micro> timeout = | 
|  | GetExpressionTimeout(options, before_first_timeout); | 
|  | if (log) { | 
|  | if (timeout) { | 
|  | auto now = system_clock::now(); | 
|  | LLDB_LOGF(log, | 
|  | "Process::RunThreadPlan(): about to wait - now is %s - " | 
|  | "endpoint is %s", | 
|  | llvm::to_string(now).c_str(), | 
|  | llvm::to_string(now + *timeout).c_str()); | 
|  | } else { | 
|  | LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT | 
|  | // See comment above... | 
|  | if (miss_first_event) { | 
|  | std::this_thread::sleep_for(std::chrono::milliseconds(1)); | 
|  | miss_first_event = false; | 
|  | got_event = false; | 
|  | } else | 
|  | #endif | 
|  | got_event = listener_sp->GetEvent(event_sp, timeout); | 
|  |  | 
|  | if (got_event) { | 
|  | if (event_sp) { | 
|  | bool keep_going = false; | 
|  | if (event_sp->GetType() == eBroadcastBitInterrupt) { | 
|  | const bool clear_thread_plans = false; | 
|  | const bool use_run_lock = false; | 
|  | Halt(clear_thread_plans, use_run_lock); | 
|  | return_value = eExpressionInterrupted; | 
|  | diagnostic_manager.PutString(lldb::eSeverityInfo, | 
|  | "execution halted by user interrupt."); | 
|  | LLDB_LOGF(log, "Process::RunThreadPlan(): Got  interrupted by " | 
|  | "eBroadcastBitInterrupted, exiting."); | 
|  | break; | 
|  | } else { | 
|  | stop_state = | 
|  | Process::ProcessEventData::GetStateFromEvent(event_sp.get()); | 
|  | LLDB_LOGF(log, | 
|  | "Process::RunThreadPlan(): in while loop, got event: %s.", | 
|  | StateAsCString(stop_state)); | 
|  |  | 
|  | switch (stop_state) { | 
|  | case lldb::eStateStopped: { | 
|  | if (Process::ProcessEventData::GetRestartedFromEvent( | 
|  | event_sp.get())) { | 
|  | // If we were restarted, we just need to go back up to fetch | 
|  | // another event. | 
|  | LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " | 
|  | "restart, so we'll continue waiting."); | 
|  | keep_going = true; | 
|  | do_resume = false; | 
|  | handle_running_event = true; | 
|  | } else { | 
|  | const bool handle_interrupts = true; | 
|  | return_value = *HandleStoppedEvent( | 
|  | expr_thread_id, thread_plan_sp, thread_plan_restorer, | 
|  | event_sp, event_to_broadcast_sp, options, | 
|  | handle_interrupts); | 
|  | if (return_value == eExpressionThreadVanished) | 
|  | keep_going = false; | 
|  | } | 
|  | } break; | 
|  |  | 
|  | case lldb::eStateRunning: | 
|  | // This shouldn't really happen, but sometimes we do get two | 
|  | // running events without an intervening stop, and in that case | 
|  | // we should just go back to waiting for the stop. | 
|  | do_resume = false; | 
|  | keep_going = true; | 
|  | handle_running_event = false; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LLDB_LOGF(log, | 
|  | "Process::RunThreadPlan(): execution stopped with " | 
|  | "unexpected state: %s.", | 
|  | StateAsCString(stop_state)); | 
|  |  | 
|  | if (stop_state == eStateExited) | 
|  | event_to_broadcast_sp = event_sp; | 
|  |  | 
|  | diagnostic_manager.PutString( | 
|  | lldb::eSeverityError, | 
|  | "execution stopped with unexpected state."); | 
|  | return_value = eExpressionInterrupted; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (keep_going) | 
|  | continue; | 
|  | else | 
|  | break; | 
|  | } else { | 
|  | if (log) | 
|  | log->PutCString("Process::RunThreadPlan(): got_event was true, but " | 
|  | "the event pointer was null.  How odd..."); | 
|  | return_value = eExpressionInterrupted; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | // If we didn't get an event that means we've timed out... We will | 
|  | // interrupt the process here.  Depending on what we were asked to do | 
|  | // we will either exit, or try with all threads running for the same | 
|  | // timeout. | 
|  |  | 
|  | if (log) { | 
|  | if (options.GetTryAllThreads()) { | 
|  | if (before_first_timeout) { | 
|  | LLDB_LOG(log, | 
|  | "Running function with one thread timeout timed out."); | 
|  | } else | 
|  | LLDB_LOG(log, "Restarting function with all threads enabled and " | 
|  | "timeout: {0} timed out, abandoning execution.", | 
|  | timeout); | 
|  | } else | 
|  | LLDB_LOG(log, "Running function with timeout: {0} timed out, " | 
|  | "abandoning execution.", | 
|  | timeout); | 
|  | } | 
|  |  | 
|  | // It is possible that between the time we issued the Halt, and we get | 
|  | // around to calling Halt the target could have stopped.  That's fine, | 
|  | // Halt will figure that out and send the appropriate Stopped event. | 
|  | // BUT it is also possible that we stopped & restarted (e.g. hit a | 
|  | // signal with "stop" set to false.)  In | 
|  | // that case, we'll get the stopped & restarted event, and we should go | 
|  | // back to waiting for the Halt's stopped event.  That's what this | 
|  | // while loop does. | 
|  |  | 
|  | bool back_to_top = true; | 
|  | uint32_t try_halt_again = 0; | 
|  | bool do_halt = true; | 
|  | const uint32_t num_retries = 5; | 
|  | while (try_halt_again < num_retries) { | 
|  | Status halt_error; | 
|  | if (do_halt) { | 
|  | LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); | 
|  | const bool clear_thread_plans = false; | 
|  | const bool use_run_lock = false; | 
|  | Halt(clear_thread_plans, use_run_lock); | 
|  | } | 
|  | if (halt_error.Success()) { | 
|  | if (log) | 
|  | log->PutCString("Process::RunThreadPlan(): Halt succeeded."); | 
|  |  | 
|  | got_event = | 
|  | listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); | 
|  |  | 
|  | if (got_event) { | 
|  | stop_state = | 
|  | Process::ProcessEventData::GetStateFromEvent(event_sp.get()); | 
|  | if (log) { | 
|  | LLDB_LOGF(log, | 
|  | "Process::RunThreadPlan(): Stopped with event: %s", | 
|  | StateAsCString(stop_state)); | 
|  | if (stop_state == lldb::eStateStopped && | 
|  | Process::ProcessEventData::GetInterruptedFromEvent( | 
|  | event_sp.get())) | 
|  | log->PutCString("    Event was the Halt interruption event."); | 
|  | } | 
|  |  | 
|  | if (stop_state == lldb::eStateStopped) { | 
|  | if (Process::ProcessEventData::GetRestartedFromEvent( | 
|  | event_sp.get())) { | 
|  | if (log) | 
|  | log->PutCString("Process::RunThreadPlan(): Went to halt " | 
|  | "but got a restarted event, there must be " | 
|  | "an un-restarted stopped event so try " | 
|  | "again...  " | 
|  | "Exiting wait loop."); | 
|  | try_halt_again++; | 
|  | do_halt = false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Between the time we initiated the Halt and the time we | 
|  | // delivered it, the process could have already finished its | 
|  | // job.  Check that here: | 
|  | const bool handle_interrupts = false; | 
|  | if (auto result = HandleStoppedEvent( | 
|  | expr_thread_id, thread_plan_sp, thread_plan_restorer, | 
|  | event_sp, event_to_broadcast_sp, options, | 
|  | handle_interrupts)) { | 
|  | return_value = *result; | 
|  | back_to_top = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!options.GetTryAllThreads()) { | 
|  | if (log) | 
|  | log->PutCString("Process::RunThreadPlan(): try_all_threads " | 
|  | "was false, we stopped so now we're " | 
|  | "quitting."); | 
|  | return_value = eExpressionInterrupted; | 
|  | back_to_top = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (before_first_timeout) { | 
|  | // Set all the other threads to run, and return to the top of | 
|  | // the loop, which will continue; | 
|  | before_first_timeout = false; | 
|  | thread_plan_sp->SetStopOthers(false); | 
|  | if (log) | 
|  | log->PutCString( | 
|  | "Process::RunThreadPlan(): about to resume."); | 
|  |  | 
|  | back_to_top = true; | 
|  | break; | 
|  | } else { | 
|  | // Running all threads failed, so return Interrupted. | 
|  | if (log) | 
|  | log->PutCString("Process::RunThreadPlan(): running all " | 
|  | "threads timed out."); | 
|  | return_value = eExpressionInterrupted; | 
|  | back_to_top = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (log) | 
|  | log->PutCString("Process::RunThreadPlan(): halt said it " | 
|  | "succeeded, but I got no event.  " | 
|  | "I'm getting out of here passing Interrupted."); | 
|  | return_value = eExpressionInterrupted; | 
|  | back_to_top = false; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | try_halt_again++; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!back_to_top || try_halt_again > num_retries) | 
|  | break; | 
|  | else | 
|  | continue; | 
|  | } | 
|  | } // END WAIT LOOP | 
|  |  | 
|  | // If we had to start up a temporary private state thread to run this | 
|  | // thread plan, shut it down now. | 
|  | if (backup_private_state_thread.IsJoinable()) { | 
|  | StopPrivateStateThread(); | 
|  | Status error; | 
|  | m_private_state_thread = backup_private_state_thread; | 
|  | if (stopper_base_plan_sp) { | 
|  | thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); | 
|  | } | 
|  | if (old_state != eStateInvalid) | 
|  | m_public_state.SetValueNoLock(old_state); | 
|  | } | 
|  |  | 
|  | // If our thread went away on us, we need to get out of here without | 
|  | // doing any more work.  We don't have to clean up the thread plan, that | 
|  | // will have happened when the Thread was destroyed. | 
|  | if (return_value == eExpressionThreadVanished) { | 
|  | return return_value; | 
|  | } | 
|  |  | 
|  | if (return_value != eExpressionCompleted && log) { | 
|  | // Print a backtrace into the log so we can figure out where we are: | 
|  | StreamString s; | 
|  | s.PutCString("Thread state after unsuccessful completion: \n"); | 
|  | thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX, | 
|  | /*show_hidden*/ true); | 
|  | log->PutString(s.GetString()); | 
|  | } | 
|  | // Restore the thread state if we are going to discard the plan execution. | 
|  | // There are three cases where this could happen: 1) The execution | 
|  | // successfully completed 2) We hit a breakpoint, and ignore_breakpoints | 
|  | // was true 3) We got some other error, and discard_on_error was true | 
|  | bool should_unwind = (return_value == eExpressionInterrupted && | 
|  | options.DoesUnwindOnError()) || | 
|  | (return_value == eExpressionHitBreakpoint && | 
|  | options.DoesIgnoreBreakpoints()); | 
|  |  | 
|  | if (return_value == eExpressionCompleted || should_unwind) { | 
|  | thread_plan_sp->RestoreThreadState(); | 
|  | } | 
|  |  | 
|  | // Now do some processing on the results of the run: | 
|  | if (return_value == eExpressionInterrupted || | 
|  | return_value == eExpressionHitBreakpoint) { | 
|  | if (log) { | 
|  | StreamString s; | 
|  | if (event_sp) | 
|  | event_sp->Dump(&s); | 
|  | else { | 
|  | log->PutCString("Process::RunThreadPlan(): Stop event that " | 
|  | "interrupted us is NULL."); | 
|  | } | 
|  |  | 
|  | StreamString ts; | 
|  |  | 
|  | const char *event_explanation = nullptr; | 
|  |  | 
|  | do { | 
|  | if (!event_sp) { | 
|  | event_explanation = "<no event>"; | 
|  | break; | 
|  | } else if (event_sp->GetType() == eBroadcastBitInterrupt) { | 
|  | event_explanation = "<user interrupt>"; | 
|  | break; | 
|  | } else { | 
|  | const Process::ProcessEventData *event_data = | 
|  | Process::ProcessEventData::GetEventDataFromEvent( | 
|  | event_sp.get()); | 
|  |  | 
|  | if (!event_data) { | 
|  | event_explanation = "<no event data>"; | 
|  | break; | 
|  | } | 
|  |  | 
|  | Process *process = event_data->GetProcessSP().get(); | 
|  |  | 
|  | if (!process) { | 
|  | event_explanation = "<no process>"; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ThreadList &thread_list = process->GetThreadList(); | 
|  |  | 
|  | uint32_t num_threads = thread_list.GetSize(); | 
|  | uint32_t thread_index; | 
|  |  | 
|  | ts.Printf("<%u threads> ", num_threads); | 
|  |  | 
|  | for (thread_index = 0; thread_index < num_threads; ++thread_index) { | 
|  | Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); | 
|  |  | 
|  | if (!thread) { | 
|  | ts.Printf("<?> "); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); | 
|  | RegisterContext *register_context = | 
|  | thread->GetRegisterContext().get(); | 
|  |  | 
|  | if (register_context) | 
|  | ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); | 
|  | else | 
|  | ts.Printf("[ip unknown] "); | 
|  |  | 
|  | // Show the private stop info here, the public stop info will be | 
|  | // from the last natural stop. | 
|  | lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); | 
|  | if (stop_info_sp) { | 
|  | const char *stop_desc = stop_info_sp->GetDescription(); | 
|  | if (stop_desc) | 
|  | ts.PutCString(stop_desc); | 
|  | } | 
|  | ts.Printf(">"); | 
|  | } | 
|  |  | 
|  | event_explanation = ts.GetData(); | 
|  | } | 
|  | } while (false); | 
|  |  | 
|  | if (event_explanation) | 
|  | LLDB_LOGF(log, | 
|  | "Process::RunThreadPlan(): execution interrupted: %s %s", | 
|  | s.GetData(), event_explanation); | 
|  | else | 
|  | LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", | 
|  | s.GetData()); | 
|  | } | 
|  |  | 
|  | if (should_unwind) { | 
|  | LLDB_LOGF(log, | 
|  | "Process::RunThreadPlan: ExecutionInterrupted - " | 
|  | "discarding thread plans up to %p.", | 
|  | static_cast<void *>(thread_plan_sp.get())); | 
|  | thread->DiscardThreadPlansUpToPlan(thread_plan_sp); | 
|  | } else { | 
|  | LLDB_LOGF(log, | 
|  | "Process::RunThreadPlan: ExecutionInterrupted - for " | 
|  | "plan: %p not discarding.", | 
|  | static_cast<void *>(thread_plan_sp.get())); | 
|  | } | 
|  | } else if (return_value == eExpressionSetupError) { | 
|  | if (log) | 
|  | log->PutCString("Process::RunThreadPlan(): execution set up error."); | 
|  |  | 
|  | if (options.DoesUnwindOnError()) { | 
|  | thread->DiscardThreadPlansUpToPlan(thread_plan_sp); | 
|  | } | 
|  | } else { | 
|  | if (thread->IsThreadPlanDone(thread_plan_sp.get())) { | 
|  | if (log) | 
|  | log->PutCString("Process::RunThreadPlan(): thread plan is done"); | 
|  | return_value = eExpressionCompleted; | 
|  | } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { | 
|  | if (log) | 
|  | log->PutCString( | 
|  | "Process::RunThreadPlan(): thread plan was discarded"); | 
|  | return_value = eExpressionDiscarded; | 
|  | } else { | 
|  | if (log) | 
|  | log->PutCString( | 
|  | "Process::RunThreadPlan(): thread plan stopped in mid course"); | 
|  | if (options.DoesUnwindOnError() && thread_plan_sp) { | 
|  | if (log) | 
|  | log->PutCString("Process::RunThreadPlan(): discarding thread plan " | 
|  | "'cause unwind_on_error is set."); | 
|  | thread->DiscardThreadPlansUpToPlan(thread_plan_sp); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Thread we ran the function in may have gone away because we ran the | 
|  | // target Check that it's still there, and if it is put it back in the | 
|  | // context. Also restore the frame in the context if it is still present. | 
|  | thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); | 
|  | if (thread) { | 
|  | exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); | 
|  | } | 
|  |  | 
|  | // Also restore the current process'es selected frame & thread, since this | 
|  | // function calling may be done behind the user's back. | 
|  |  | 
|  | if (selected_tid != LLDB_INVALID_THREAD_ID) { | 
|  | if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && | 
|  | selected_stack_id.IsValid()) { | 
|  | // We were able to restore the selected thread, now restore the frame: | 
|  | std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); | 
|  | StackFrameSP old_frame_sp = | 
|  | GetThreadList().GetSelectedThread()->GetFrameWithStackID( | 
|  | selected_stack_id); | 
|  | if (old_frame_sp) | 
|  | GetThreadList().GetSelectedThread()->SetSelectedFrame( | 
|  | old_frame_sp.get()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the process exited during the run of the thread plan, notify everyone. | 
|  |  | 
|  | if (event_to_broadcast_sp) { | 
|  | if (log) | 
|  | log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); | 
|  | BroadcastEvent(event_to_broadcast_sp); | 
|  | } | 
|  |  | 
|  | return return_value; | 
|  | } | 
|  |  | 
|  | void Process::GetStatus(Stream &strm) { | 
|  | const StateType state = GetState(); | 
|  | if (StateIsStoppedState(state, false)) { | 
|  | if (state == eStateExited) { | 
|  | int exit_status = GetExitStatus(); | 
|  | const char *exit_description = GetExitDescription(); | 
|  | strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", | 
|  | GetID(), exit_status, exit_status, | 
|  | exit_description ? exit_description : ""); | 
|  | } else { | 
|  | if (state == eStateConnected) | 
|  | strm.Printf("Connected to remote target.\n"); | 
|  | else | 
|  | strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); | 
|  | } | 
|  | } else { | 
|  | strm.Printf("Process %" PRIu64 " is running.\n", GetID()); | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t Process::GetThreadStatus(Stream &strm, | 
|  | bool only_threads_with_stop_reason, | 
|  | uint32_t start_frame, uint32_t num_frames, | 
|  | uint32_t num_frames_with_source, | 
|  | bool stop_format) { | 
|  | size_t num_thread_infos_dumped = 0; | 
|  |  | 
|  | // You can't hold the thread list lock while calling Thread::GetStatus.  That | 
|  | // very well might run code (e.g. if we need it to get return values or | 
|  | // arguments.)  For that to work the process has to be able to acquire it. | 
|  | // So instead copy the thread ID's, and look them up one by one: | 
|  |  | 
|  | uint32_t num_threads; | 
|  | std::vector<lldb::tid_t> thread_id_array; | 
|  | // Scope for thread list locker; | 
|  | { | 
|  | std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); | 
|  | ThreadList &curr_thread_list = GetThreadList(); | 
|  | num_threads = curr_thread_list.GetSize(); | 
|  | uint32_t idx; | 
|  | thread_id_array.resize(num_threads); | 
|  | for (idx = 0; idx < num_threads; ++idx) | 
|  | thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); | 
|  | } | 
|  |  | 
|  | for (uint32_t i = 0; i < num_threads; i++) { | 
|  | ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); | 
|  | if (thread_sp) { | 
|  | if (only_threads_with_stop_reason) { | 
|  | StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); | 
|  | if (!stop_info_sp || !stop_info_sp->ShouldShow()) | 
|  | continue; | 
|  | } | 
|  | thread_sp->GetStatus(strm, start_frame, num_frames, | 
|  | num_frames_with_source, stop_format, | 
|  | /*show_hidden*/ num_frames <= 1); | 
|  | ++num_thread_infos_dumped; | 
|  | } else { | 
|  | Log *log = GetLog(LLDBLog::Process); | 
|  | LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 | 
|  | " vanished while running Thread::GetStatus."); | 
|  | } | 
|  | } | 
|  | return num_thread_infos_dumped; | 
|  | } | 
|  |  | 
|  | void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { | 
|  | m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); | 
|  | } | 
|  |  | 
|  | bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { | 
|  | return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), | 
|  | region.GetByteSize()); | 
|  | } | 
|  |  | 
|  | void Process::AddPreResumeAction(PreResumeActionCallback callback, | 
|  | void *baton) { | 
|  | m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); | 
|  | } | 
|  |  | 
|  | bool Process::RunPreResumeActions() { | 
|  | bool result = true; | 
|  | while (!m_pre_resume_actions.empty()) { | 
|  | struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); | 
|  | m_pre_resume_actions.pop_back(); | 
|  | bool this_result = action.callback(action.baton); | 
|  | if (result) | 
|  | result = this_result; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } | 
|  |  | 
|  | void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) | 
|  | { | 
|  | PreResumeCallbackAndBaton element(callback, baton); | 
|  | auto found_iter = llvm::find(m_pre_resume_actions, element); | 
|  | if (found_iter != m_pre_resume_actions.end()) | 
|  | { | 
|  | m_pre_resume_actions.erase(found_iter); | 
|  | } | 
|  | } | 
|  |  | 
|  | ProcessRunLock &Process::GetRunLock() { | 
|  | if (Process::CurrentThreadIsPrivateStateThread()) | 
|  | return m_private_run_lock; | 
|  | return m_public_run_lock; | 
|  | } | 
|  |  | 
|  | bool Process::CurrentThreadIsPrivateStateThread() | 
|  | { | 
|  | return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); | 
|  | } | 
|  |  | 
|  | bool Process::CurrentThreadPosesAsPrivateStateThread() { | 
|  | // If we haven't started up the private state thread yet, then whatever thread | 
|  | // is fetching this event should be temporarily the private state thread. | 
|  | if (!m_private_state_thread.HasThread()) | 
|  | return true; | 
|  | return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); | 
|  | } | 
|  |  | 
|  | void Process::Flush() { | 
|  | m_thread_list.Flush(); | 
|  | m_extended_thread_list.Flush(); | 
|  | m_extended_thread_stop_id = 0; | 
|  | m_queue_list.Clear(); | 
|  | m_queue_list_stop_id = 0; | 
|  | } | 
|  |  | 
|  | lldb::addr_t Process::GetCodeAddressMask() { | 
|  | if (uint32_t num_bits_setting = GetVirtualAddressableBits()) | 
|  | return AddressableBits::AddressableBitToMask(num_bits_setting); | 
|  |  | 
|  | return m_code_address_mask; | 
|  | } | 
|  |  | 
|  | lldb::addr_t Process::GetDataAddressMask() { | 
|  | if (uint32_t num_bits_setting = GetVirtualAddressableBits()) | 
|  | return AddressableBits::AddressableBitToMask(num_bits_setting); | 
|  |  | 
|  | return m_data_address_mask; | 
|  | } | 
|  |  | 
|  | lldb::addr_t Process::GetHighmemCodeAddressMask() { | 
|  | if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits()) | 
|  | return AddressableBits::AddressableBitToMask(num_bits_setting); | 
|  |  | 
|  | if (m_highmem_code_address_mask != LLDB_INVALID_ADDRESS_MASK) | 
|  | return m_highmem_code_address_mask; | 
|  | return GetCodeAddressMask(); | 
|  | } | 
|  |  | 
|  | lldb::addr_t Process::GetHighmemDataAddressMask() { | 
|  | if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits()) | 
|  | return AddressableBits::AddressableBitToMask(num_bits_setting); | 
|  |  | 
|  | if (m_highmem_data_address_mask != LLDB_INVALID_ADDRESS_MASK) | 
|  | return m_highmem_data_address_mask; | 
|  | return GetDataAddressMask(); | 
|  | } | 
|  |  | 
|  | void Process::SetCodeAddressMask(lldb::addr_t code_address_mask) { | 
|  | LLDB_LOG(GetLog(LLDBLog::Process), | 
|  | "Setting Process code address mask to {0:x}", code_address_mask); | 
|  | m_code_address_mask = code_address_mask; | 
|  | } | 
|  |  | 
|  | void Process::SetDataAddressMask(lldb::addr_t data_address_mask) { | 
|  | LLDB_LOG(GetLog(LLDBLog::Process), | 
|  | "Setting Process data address mask to {0:x}", data_address_mask); | 
|  | m_data_address_mask = data_address_mask; | 
|  | } | 
|  |  | 
|  | void Process::SetHighmemCodeAddressMask(lldb::addr_t code_address_mask) { | 
|  | LLDB_LOG(GetLog(LLDBLog::Process), | 
|  | "Setting Process highmem code address mask to {0:x}", | 
|  | code_address_mask); | 
|  | m_highmem_code_address_mask = code_address_mask; | 
|  | } | 
|  |  | 
|  | void Process::SetHighmemDataAddressMask(lldb::addr_t data_address_mask) { | 
|  | LLDB_LOG(GetLog(LLDBLog::Process), | 
|  | "Setting Process highmem data address mask to {0:x}", | 
|  | data_address_mask); | 
|  | m_highmem_data_address_mask = data_address_mask; | 
|  | } | 
|  |  | 
|  | addr_t Process::FixCodeAddress(addr_t addr) { | 
|  | if (ABISP abi_sp = GetABI()) | 
|  | addr = abi_sp->FixCodeAddress(addr); | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | addr_t Process::FixDataAddress(addr_t addr) { | 
|  | if (ABISP abi_sp = GetABI()) | 
|  | addr = abi_sp->FixDataAddress(addr); | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | addr_t Process::FixAnyAddress(addr_t addr) { | 
|  | if (ABISP abi_sp = GetABI()) | 
|  | addr = abi_sp->FixAnyAddress(addr); | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | void Process::DidExec() { | 
|  | Log *log = GetLog(LLDBLog::Process); | 
|  | LLDB_LOGF(log, "Process::%s()", __FUNCTION__); | 
|  |  | 
|  | Target &target = GetTarget(); | 
|  | target.CleanupProcess(); | 
|  | target.ClearModules(false); | 
|  | m_dynamic_checkers_up.reset(); | 
|  | m_abi_sp.reset(); | 
|  | m_system_runtime_up.reset(); | 
|  | m_os_up.reset(); | 
|  | m_dyld_up.reset(); | 
|  | m_jit_loaders_up.reset(); | 
|  | m_image_tokens.clear(); | 
|  | // After an exec, the inferior is a new process and these memory regions are | 
|  | // no longer allocated. | 
|  | m_allocated_memory_cache.Clear(/*deallocte_memory=*/false); | 
|  | { | 
|  | std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); | 
|  | m_language_runtimes.clear(); | 
|  | } | 
|  | m_instrumentation_runtimes.clear(); | 
|  | m_thread_list.DiscardThreadPlans(); | 
|  | m_memory_cache.Clear(true); | 
|  | DoDidExec(); | 
|  | CompleteAttach(); | 
|  | // Flush the process (threads and all stack frames) after running | 
|  | // CompleteAttach() in case the dynamic loader loaded things in new | 
|  | // locations. | 
|  | Flush(); | 
|  |  | 
|  | // After we figure out what was loaded/unloaded in CompleteAttach, we need to | 
|  | // let the target know so it can do any cleanup it needs to. | 
|  | target.DidExec(); | 
|  | } | 
|  |  | 
|  | addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { | 
|  | if (address == nullptr) { | 
|  | error = Status::FromErrorString("Invalid address argument"); | 
|  | return LLDB_INVALID_ADDRESS; | 
|  | } | 
|  |  | 
|  | addr_t function_addr = LLDB_INVALID_ADDRESS; | 
|  |  | 
|  | addr_t addr = address->GetLoadAddress(&GetTarget()); | 
|  | std::map<addr_t, addr_t>::const_iterator iter = | 
|  | m_resolved_indirect_addresses.find(addr); | 
|  | if (iter != m_resolved_indirect_addresses.end()) { | 
|  | function_addr = (*iter).second; | 
|  | } else { | 
|  | if (!CallVoidArgVoidPtrReturn(address, function_addr)) { | 
|  | Symbol *symbol = address->CalculateSymbolContextSymbol(); | 
|  | error = Status::FromErrorStringWithFormat( | 
|  | "Unable to call resolver for indirect function %s", | 
|  | symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); | 
|  | function_addr = LLDB_INVALID_ADDRESS; | 
|  | } else { | 
|  | if (ABISP abi_sp = GetABI()) | 
|  | function_addr = abi_sp->FixCodeAddress(function_addr); | 
|  | m_resolved_indirect_addresses.insert( | 
|  | std::pair<addr_t, addr_t>(addr, function_addr)); | 
|  | } | 
|  | } | 
|  | return function_addr; | 
|  | } | 
|  |  | 
|  | void Process::ModulesDidLoad(ModuleList &module_list) { | 
|  | // Inform the system runtime of the modified modules. | 
|  | SystemRuntime *sys_runtime = GetSystemRuntime(); | 
|  | if (sys_runtime) | 
|  | sys_runtime->ModulesDidLoad(module_list); | 
|  |  | 
|  | GetJITLoaders().ModulesDidLoad(module_list); | 
|  |  | 
|  | // Give the instrumentation runtimes a chance to be created before informing | 
|  | // them of the modified modules. | 
|  | InstrumentationRuntime::ModulesDidLoad(module_list, this, | 
|  | m_instrumentation_runtimes); | 
|  | for (auto &runtime : m_instrumentation_runtimes) | 
|  | runtime.second->ModulesDidLoad(module_list); | 
|  |  | 
|  | // Give the language runtimes a chance to be created before informing them of | 
|  | // the modified modules. | 
|  | for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { | 
|  | if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) | 
|  | runtime->ModulesDidLoad(module_list); | 
|  | } | 
|  |  | 
|  | // If we don't have an operating system plug-in, try to load one since | 
|  | // loading shared libraries might cause a new one to try and load | 
|  | if (!m_os_up) | 
|  | LoadOperatingSystemPlugin(false); | 
|  |  | 
|  | // Inform the structured-data plugins of the modified modules. | 
|  | for (auto &pair : m_structured_data_plugin_map) { | 
|  | if (pair.second) | 
|  | pair.second->ModulesDidLoad(*this, module_list); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Process::PrintWarningOptimization(const SymbolContext &sc) { | 
|  | if (!GetWarningsOptimization()) | 
|  | return; | 
|  | if (!sc.module_sp || !sc.function || !sc.function->GetIsOptimized()) | 
|  | return; | 
|  | sc.module_sp->ReportWarningOptimization(GetTarget().GetDebugger().GetID()); | 
|  | } | 
|  |  | 
|  | void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) { | 
|  | if (!GetWarningsUnsupportedLanguage()) | 
|  | return; | 
|  | if (!sc.module_sp) | 
|  | return; | 
|  | LanguageType language = sc.GetLanguage(); | 
|  | if (language == eLanguageTypeUnknown || | 
|  | language == lldb::eLanguageTypeAssembly || | 
|  | language == lldb::eLanguageTypeMipsAssembler) | 
|  | return; | 
|  | LanguageSet plugins = | 
|  | PluginManager::GetAllTypeSystemSupportedLanguagesForTypes(); | 
|  | if (plugins[language]) | 
|  | return; | 
|  | sc.module_sp->ReportWarningUnsupportedLanguage( | 
|  | language, GetTarget().GetDebugger().GetID()); | 
|  | } | 
|  |  | 
|  | bool Process::GetProcessInfo(ProcessInstanceInfo &info) { | 
|  | info.Clear(); | 
|  |  | 
|  | PlatformSP platform_sp = GetTarget().GetPlatform(); | 
|  | if (!platform_sp) | 
|  | return false; | 
|  |  | 
|  | return platform_sp->GetProcessInfo(GetID(), info); | 
|  | } | 
|  |  | 
|  | lldb_private::UUID Process::FindModuleUUID(const llvm::StringRef path) { | 
|  | return lldb_private::UUID(); | 
|  | } | 
|  |  | 
|  | ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { | 
|  | ThreadCollectionSP threads; | 
|  |  | 
|  | const MemoryHistorySP &memory_history = | 
|  | MemoryHistory::FindPlugin(shared_from_this()); | 
|  |  | 
|  | if (!memory_history) { | 
|  | return threads; | 
|  | } | 
|  |  | 
|  | threads = std::make_shared<ThreadCollection>( | 
|  | memory_history->GetHistoryThreads(addr)); | 
|  |  | 
|  | return threads; | 
|  | } | 
|  |  | 
|  | InstrumentationRuntimeSP | 
|  | Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { | 
|  | InstrumentationRuntimeCollection::iterator pos; | 
|  | pos = m_instrumentation_runtimes.find(type); | 
|  | if (pos == m_instrumentation_runtimes.end()) { | 
|  | return InstrumentationRuntimeSP(); | 
|  | } else | 
|  | return (*pos).second; | 
|  | } | 
|  |  | 
|  | bool Process::GetModuleSpec(const FileSpec &module_file_spec, | 
|  | const ArchSpec &arch, ModuleSpec &module_spec) { | 
|  | module_spec.Clear(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | size_t Process::AddImageToken(lldb::addr_t image_ptr) { | 
|  | m_image_tokens.push_back(image_ptr); | 
|  | return m_image_tokens.size() - 1; | 
|  | } | 
|  |  | 
|  | lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { | 
|  | if (token < m_image_tokens.size()) | 
|  | return m_image_tokens[token]; | 
|  | return LLDB_INVALID_IMAGE_TOKEN; | 
|  | } | 
|  |  | 
|  | void Process::ResetImageToken(size_t token) { | 
|  | if (token < m_image_tokens.size()) | 
|  | m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN; | 
|  | } | 
|  |  | 
|  | Address | 
|  | Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, | 
|  | AddressRange range_bounds) { | 
|  | Target &target = GetTarget(); | 
|  | DisassemblerSP disassembler_sp; | 
|  | InstructionList *insn_list = nullptr; | 
|  |  | 
|  | Address retval = default_stop_addr; | 
|  |  | 
|  | if (!target.GetUseFastStepping()) | 
|  | return retval; | 
|  | if (!default_stop_addr.IsValid()) | 
|  | return retval; | 
|  |  | 
|  | const char *plugin_name = nullptr; | 
|  | const char *flavor = nullptr; | 
|  | const char *cpu = nullptr; | 
|  | const char *features = nullptr; | 
|  | disassembler_sp = Disassembler::DisassembleRange( | 
|  | target.GetArchitecture(), plugin_name, flavor, cpu, features, GetTarget(), | 
|  | range_bounds); | 
|  | if (disassembler_sp) | 
|  | insn_list = &disassembler_sp->GetInstructionList(); | 
|  |  | 
|  | if (insn_list == nullptr) { | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | size_t insn_offset = | 
|  | insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); | 
|  | if (insn_offset == UINT32_MAX) { | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction( | 
|  | insn_offset, false /* ignore_calls*/, nullptr); | 
|  | if (branch_index == UINT32_MAX) { | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | if (branch_index > insn_offset) { | 
|  | Address next_branch_insn_address = | 
|  | insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); | 
|  | if (next_branch_insn_address.IsValid() && | 
|  | range_bounds.ContainsFileAddress(next_branch_insn_address)) { | 
|  | retval = next_branch_insn_address; | 
|  | } | 
|  | } | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | Status Process::GetMemoryRegionInfo(lldb::addr_t load_addr, | 
|  | MemoryRegionInfo &range_info) { | 
|  | if (const lldb::ABISP &abi = GetABI()) | 
|  | load_addr = abi->FixAnyAddress(load_addr); | 
|  | Status error = DoGetMemoryRegionInfo(load_addr, range_info); | 
|  | // Reject a region that does not contain the requested address. | 
|  | if (error.Success() && !range_info.GetRange().Contains(load_addr)) | 
|  | error = Status::FromErrorString("Invalid memory region"); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | Status Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { | 
|  | Status error; | 
|  |  | 
|  | lldb::addr_t range_end = 0; | 
|  | const lldb::ABISP &abi = GetABI(); | 
|  |  | 
|  | region_list.clear(); | 
|  | do { | 
|  | lldb_private::MemoryRegionInfo region_info; | 
|  | error = GetMemoryRegionInfo(range_end, region_info); | 
|  | // GetMemoryRegionInfo should only return an error if it is unimplemented. | 
|  | if (error.Fail()) { | 
|  | region_list.clear(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // We only check the end address, not start and end, because we assume that | 
|  | // the start will not have non-address bits until the first unmappable | 
|  | // region. We will have exited the loop by that point because the previous | 
|  | // region, the last mappable region, will have non-address bits in its end | 
|  | // address. | 
|  | range_end = region_info.GetRange().GetRangeEnd(); | 
|  | if (region_info.GetMapped() == MemoryRegionInfo::eYes) { | 
|  | region_list.push_back(std::move(region_info)); | 
|  | } | 
|  | } while ( | 
|  | // For a process with no non-address bits, all address bits | 
|  | // set means the end of memory. | 
|  | range_end != LLDB_INVALID_ADDRESS && | 
|  | // If we have non-address bits and some are set then the end | 
|  | // is at or beyond the end of mappable memory. | 
|  | !(abi && (abi->FixAnyAddress(range_end) != range_end))); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | Status | 
|  | Process::ConfigureStructuredData(llvm::StringRef type_name, | 
|  | const StructuredData::ObjectSP &config_sp) { | 
|  | // If you get this, the Process-derived class needs to implement a method to | 
|  | // enable an already-reported asynchronous structured data feature. See | 
|  | // ProcessGDBRemote for an example implementation over gdb-remote. | 
|  | return Status::FromErrorString("unimplemented"); | 
|  | } | 
|  |  | 
|  | void Process::MapSupportedStructuredDataPlugins( | 
|  | const StructuredData::Array &supported_type_names) { | 
|  | Log *log = GetLog(LLDBLog::Process); | 
|  |  | 
|  | // Bail out early if there are no type names to map. | 
|  | if (supported_type_names.GetSize() == 0) { | 
|  | LLDB_LOG(log, "no structured data types supported"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // These StringRefs are backed by the input parameter. | 
|  | std::set<llvm::StringRef> type_names; | 
|  |  | 
|  | LLDB_LOG(log, | 
|  | "the process supports the following async structured data types:"); | 
|  |  | 
|  | supported_type_names.ForEach( | 
|  | [&type_names, &log](StructuredData::Object *object) { | 
|  | // There shouldn't be null objects in the array. | 
|  | if (!object) | 
|  | return false; | 
|  |  | 
|  | // All type names should be strings. | 
|  | const llvm::StringRef type_name = object->GetStringValue(); | 
|  | if (type_name.empty()) | 
|  | return false; | 
|  |  | 
|  | type_names.insert(type_name); | 
|  | LLDB_LOG(log, "- {0}", type_name); | 
|  | return true; | 
|  | }); | 
|  |  | 
|  | // For each StructuredDataPlugin, if the plugin handles any of the types in | 
|  | // the supported_type_names, map that type name to that plugin. Stop when | 
|  | // we've consumed all the type names. | 
|  | // FIXME: should we return an error if there are type names nobody | 
|  | // supports? | 
|  | for (uint32_t plugin_index = 0; !type_names.empty(); plugin_index++) { | 
|  | auto create_instance = | 
|  | PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( | 
|  | plugin_index); | 
|  | if (!create_instance) | 
|  | break; | 
|  |  | 
|  | // Create the plugin. | 
|  | StructuredDataPluginSP plugin_sp = (*create_instance)(*this); | 
|  | if (!plugin_sp) { | 
|  | // This plugin doesn't think it can work with the process. Move on to the | 
|  | // next. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // For any of the remaining type names, map any that this plugin supports. | 
|  | std::vector<llvm::StringRef> names_to_remove; | 
|  | for (llvm::StringRef type_name : type_names) { | 
|  | if (plugin_sp->SupportsStructuredDataType(type_name)) { | 
|  | m_structured_data_plugin_map.insert( | 
|  | std::make_pair(type_name, plugin_sp)); | 
|  | names_to_remove.push_back(type_name); | 
|  | LLDB_LOG(log, "using plugin {0} for type name {1}", | 
|  | plugin_sp->GetPluginName(), type_name); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Remove the type names that were consumed by this plugin. | 
|  | for (llvm::StringRef type_name : names_to_remove) | 
|  | type_names.erase(type_name); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Process::RouteAsyncStructuredData( | 
|  | const StructuredData::ObjectSP object_sp) { | 
|  | // Nothing to do if there's no data. | 
|  | if (!object_sp) | 
|  | return false; | 
|  |  | 
|  | // The contract is this must be a dictionary, so we can look up the routing | 
|  | // key via the top-level 'type' string value within the dictionary. | 
|  | StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); | 
|  | if (!dictionary) | 
|  | return false; | 
|  |  | 
|  | // Grab the async structured type name (i.e. the feature/plugin name). | 
|  | llvm::StringRef type_name; | 
|  | if (!dictionary->GetValueForKeyAsString("type", type_name)) | 
|  | return false; | 
|  |  | 
|  | // Check if there's a plugin registered for this type name. | 
|  | auto find_it = m_structured_data_plugin_map.find(type_name); | 
|  | if (find_it == m_structured_data_plugin_map.end()) { | 
|  | // We don't have a mapping for this structured data type. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Route the structured data to the plugin. | 
|  | find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Status Process::UpdateAutomaticSignalFiltering() { | 
|  | // Default implementation does nothign. | 
|  | // No automatic signal filtering to speak of. | 
|  | return Status(); | 
|  | } | 
|  |  | 
|  | UtilityFunction *Process::GetLoadImageUtilityFunction( | 
|  | Platform *platform, | 
|  | llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { | 
|  | if (platform != GetTarget().GetPlatform().get()) | 
|  | return nullptr; | 
|  | llvm::call_once(m_dlopen_utility_func_flag_once, | 
|  | [&] { m_dlopen_utility_func_up = factory(); }); | 
|  | return m_dlopen_utility_func_up.get(); | 
|  | } | 
|  |  | 
|  | llvm::Expected<TraceSupportedResponse> Process::TraceSupported() { | 
|  | if (!IsLiveDebugSession()) | 
|  | return llvm::createStringError(llvm::inconvertibleErrorCode(), | 
|  | "Can't trace a non-live process."); | 
|  | return llvm::make_error<UnimplementedError>(); | 
|  | } | 
|  |  | 
|  | bool Process::CallVoidArgVoidPtrReturn(const Address *address, | 
|  | addr_t &returned_func, | 
|  | bool trap_exceptions) { | 
|  | Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); | 
|  | if (thread == nullptr || address == nullptr) | 
|  | return false; | 
|  |  | 
|  | EvaluateExpressionOptions options; | 
|  | options.SetStopOthers(true); | 
|  | options.SetUnwindOnError(true); | 
|  | options.SetIgnoreBreakpoints(true); | 
|  | options.SetTryAllThreads(true); | 
|  | options.SetDebug(false); | 
|  | options.SetTimeout(GetUtilityExpressionTimeout()); | 
|  | options.SetTrapExceptions(trap_exceptions); | 
|  |  | 
|  | auto type_system_or_err = | 
|  | GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); | 
|  | if (!type_system_or_err) { | 
|  | llvm::consumeError(type_system_or_err.takeError()); | 
|  | return false; | 
|  | } | 
|  | auto ts = *type_system_or_err; | 
|  | if (!ts) | 
|  | return false; | 
|  | CompilerType void_ptr_type = | 
|  | ts->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); | 
|  | lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( | 
|  | *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); | 
|  | if (call_plan_sp) { | 
|  | DiagnosticManager diagnostics; | 
|  |  | 
|  | StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); | 
|  | if (frame) { | 
|  | ExecutionContext exe_ctx; | 
|  | frame->CalculateExecutionContext(exe_ctx); | 
|  | ExpressionResults result = | 
|  | RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); | 
|  | if (result == eExpressionCompleted) { | 
|  | returned_func = | 
|  | call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( | 
|  | LLDB_INVALID_ADDRESS); | 
|  |  | 
|  | if (GetAddressByteSize() == 4) { | 
|  | if (returned_func == UINT32_MAX) | 
|  | return false; | 
|  | } else if (GetAddressByteSize() == 8) { | 
|  | if (returned_func == UINT64_MAX) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() { | 
|  | Architecture *arch = GetTarget().GetArchitecturePlugin(); | 
|  | const MemoryTagManager *tag_manager = | 
|  | arch ? arch->GetMemoryTagManager() : nullptr; | 
|  | if (!arch || !tag_manager) { | 
|  | return llvm::createStringError( | 
|  | llvm::inconvertibleErrorCode(), | 
|  | "This architecture does not support memory tagging"); | 
|  | } | 
|  |  | 
|  | if (!SupportsMemoryTagging()) { | 
|  | return llvm::createStringError(llvm::inconvertibleErrorCode(), | 
|  | "Process does not support memory tagging"); | 
|  | } | 
|  |  | 
|  | return tag_manager; | 
|  | } | 
|  |  | 
|  | llvm::Expected<std::vector<lldb::addr_t>> | 
|  | Process::ReadMemoryTags(lldb::addr_t addr, size_t len) { | 
|  | llvm::Expected<const MemoryTagManager *> tag_manager_or_err = | 
|  | GetMemoryTagManager(); | 
|  | if (!tag_manager_or_err) | 
|  | return tag_manager_or_err.takeError(); | 
|  |  | 
|  | const MemoryTagManager *tag_manager = *tag_manager_or_err; | 
|  | llvm::Expected<std::vector<uint8_t>> tag_data = | 
|  | DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType()); | 
|  | if (!tag_data) | 
|  | return tag_data.takeError(); | 
|  |  | 
|  | return tag_manager->UnpackTagsData(*tag_data, | 
|  | len / tag_manager->GetGranuleSize()); | 
|  | } | 
|  |  | 
|  | Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len, | 
|  | const std::vector<lldb::addr_t> &tags) { | 
|  | llvm::Expected<const MemoryTagManager *> tag_manager_or_err = | 
|  | GetMemoryTagManager(); | 
|  | if (!tag_manager_or_err) | 
|  | return Status::FromError(tag_manager_or_err.takeError()); | 
|  |  | 
|  | const MemoryTagManager *tag_manager = *tag_manager_or_err; | 
|  | llvm::Expected<std::vector<uint8_t>> packed_tags = | 
|  | tag_manager->PackTags(tags); | 
|  | if (!packed_tags) { | 
|  | return Status::FromError(packed_tags.takeError()); | 
|  | } | 
|  |  | 
|  | return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(), | 
|  | *packed_tags); | 
|  | } | 
|  |  | 
|  | // Create a CoreFileMemoryRange from a MemoryRegionInfo | 
|  | static CoreFileMemoryRange | 
|  | CreateCoreFileMemoryRange(const MemoryRegionInfo ®ion) { | 
|  | const addr_t addr = region.GetRange().GetRangeBase(); | 
|  | llvm::AddressRange range(addr, addr + region.GetRange().GetByteSize()); | 
|  | return {range, region.GetLLDBPermissions()}; | 
|  | } | 
|  |  | 
|  | // Add dirty pages to the core file ranges and return true if dirty pages | 
|  | // were added. Return false if the dirty page information is not valid or in | 
|  | // the region. | 
|  | static bool AddDirtyPages(const MemoryRegionInfo ®ion, | 
|  | CoreFileMemoryRanges &ranges) { | 
|  | const auto &dirty_page_list = region.GetDirtyPageList(); | 
|  | if (!dirty_page_list) | 
|  | return false; | 
|  | const uint32_t lldb_permissions = region.GetLLDBPermissions(); | 
|  | const addr_t page_size = region.GetPageSize(); | 
|  | if (page_size == 0) | 
|  | return false; | 
|  | llvm::AddressRange range(0, 0); | 
|  | for (addr_t page_addr : *dirty_page_list) { | 
|  | if (range.empty()) { | 
|  | // No range yet, initialize the range with the current dirty page. | 
|  | range = llvm::AddressRange(page_addr, page_addr + page_size); | 
|  | } else { | 
|  | if (range.end() == page_addr) { | 
|  | // Combine consective ranges. | 
|  | range = llvm::AddressRange(range.start(), page_addr + page_size); | 
|  | } else { | 
|  | // Add previous contiguous range and init the new range with the | 
|  | // current dirty page. | 
|  | ranges.Append(range.start(), range.size(), {range, lldb_permissions}); | 
|  | range = llvm::AddressRange(page_addr, page_addr + page_size); | 
|  | } | 
|  | } | 
|  | } | 
|  | // The last range | 
|  | if (!range.empty()) | 
|  | ranges.Append(range.start(), range.size(), {range, lldb_permissions}); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Given a region, add the region to \a ranges. | 
|  | // | 
|  | // Only add the region if it isn't empty and if it has some permissions. | 
|  | // If \a try_dirty_pages is true, then try to add only the dirty pages for a | 
|  | // given region. If the region has dirty page information, only dirty pages | 
|  | // will be added to \a ranges, else the entire range will be added to \a | 
|  | // ranges. | 
|  | static void AddRegion(const MemoryRegionInfo ®ion, bool try_dirty_pages, | 
|  | CoreFileMemoryRanges &ranges) { | 
|  | // Don't add empty ranges. | 
|  | if (region.GetRange().GetByteSize() == 0) | 
|  | return; | 
|  | // Don't add ranges with no read permissions. | 
|  | if ((region.GetLLDBPermissions() & lldb::ePermissionsReadable) == 0) | 
|  | return; | 
|  | if (try_dirty_pages && AddDirtyPages(region, ranges)) | 
|  | return; | 
|  |  | 
|  | ranges.Append(region.GetRange().GetRangeBase(), | 
|  | region.GetRange().GetByteSize(), | 
|  | CreateCoreFileMemoryRange(region)); | 
|  | } | 
|  |  | 
|  | static void SaveDynamicLoaderSections(Process &process, | 
|  | const SaveCoreOptions &options, | 
|  | CoreFileMemoryRanges &ranges, | 
|  | std::set<addr_t> &stack_ends) { | 
|  | DynamicLoader *dyld = process.GetDynamicLoader(); | 
|  | if (!dyld) | 
|  | return; | 
|  |  | 
|  | std::vector<MemoryRegionInfo> dynamic_loader_mem_regions; | 
|  | std::function<bool(const lldb_private::Thread &)> save_thread_predicate = | 
|  | [&](const lldb_private::Thread &t) -> bool { | 
|  | return options.ShouldThreadBeSaved(t.GetID()); | 
|  | }; | 
|  | dyld->CalculateDynamicSaveCoreRanges(process, dynamic_loader_mem_regions, | 
|  | save_thread_predicate); | 
|  | for (const auto ®ion : dynamic_loader_mem_regions) { | 
|  | // The Dynamic Loader can give us regions that could include a truncated | 
|  | // stack | 
|  | if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0) | 
|  | AddRegion(region, true, ranges); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void SaveOffRegionsWithStackPointers(Process &process, | 
|  | const SaveCoreOptions &core_options, | 
|  | const MemoryRegionInfos ®ions, | 
|  | CoreFileMemoryRanges &ranges, | 
|  | std::set<addr_t> &stack_ends) { | 
|  | const bool try_dirty_pages = true; | 
|  |  | 
|  | // Before we take any dump, we want to save off the used portions of the | 
|  | // stacks and mark those memory regions as saved. This prevents us from saving | 
|  | // the unused portion of the stack below the stack pointer. Saving space on | 
|  | // the dump. | 
|  | for (lldb::ThreadSP thread_sp : process.GetThreadList().Threads()) { | 
|  | if (!thread_sp) | 
|  | continue; | 
|  | StackFrameSP frame_sp = thread_sp->GetStackFrameAtIndex(0); | 
|  | if (!frame_sp) | 
|  | continue; | 
|  | RegisterContextSP reg_ctx_sp = frame_sp->GetRegisterContext(); | 
|  | if (!reg_ctx_sp) | 
|  | continue; | 
|  | const addr_t sp = reg_ctx_sp->GetSP(); | 
|  | const size_t red_zone = process.GetABI()->GetRedZoneSize(); | 
|  | lldb_private::MemoryRegionInfo sp_region; | 
|  | if (process.GetMemoryRegionInfo(sp, sp_region).Success()) { | 
|  | const size_t stack_head = (sp - red_zone); | 
|  | const size_t stack_size = sp_region.GetRange().GetRangeEnd() - stack_head; | 
|  | // Even if the SaveCoreOption doesn't want us to save the stack | 
|  | // we still need to populate the stack_ends set so it doesn't get saved | 
|  | // off in other calls | 
|  | sp_region.GetRange().SetRangeBase(stack_head); | 
|  | sp_region.GetRange().SetByteSize(stack_size); | 
|  | const addr_t range_end = sp_region.GetRange().GetRangeEnd(); | 
|  | stack_ends.insert(range_end); | 
|  | // This will return true if the threadlist the user specified is empty, | 
|  | // or contains the thread id from thread_sp. | 
|  | if (core_options.ShouldThreadBeSaved(thread_sp->GetID())) { | 
|  | AddRegion(sp_region, try_dirty_pages, ranges); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Save all memory regions that are not empty or have at least some permissions | 
|  | // for a full core file style. | 
|  | static void GetCoreFileSaveRangesFull(Process &process, | 
|  | const MemoryRegionInfos ®ions, | 
|  | CoreFileMemoryRanges &ranges, | 
|  | std::set<addr_t> &stack_ends) { | 
|  |  | 
|  | // Don't add only dirty pages, add full regions. | 
|  | const bool try_dirty_pages = false; | 
|  | for (const auto ®ion : regions) | 
|  | if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0) | 
|  | AddRegion(region, try_dirty_pages, ranges); | 
|  | } | 
|  |  | 
|  | // Save only the dirty pages to the core file. Make sure the process has at | 
|  | // least some dirty pages, as some OS versions don't support reporting what | 
|  | // pages are dirty within an memory region. If no memory regions have dirty | 
|  | // page information fall back to saving out all ranges with write permissions. | 
|  | static void GetCoreFileSaveRangesDirtyOnly(Process &process, | 
|  | const MemoryRegionInfos ®ions, | 
|  | CoreFileMemoryRanges &ranges, | 
|  | std::set<addr_t> &stack_ends) { | 
|  |  | 
|  | // Iterate over the regions and find all dirty pages. | 
|  | bool have_dirty_page_info = false; | 
|  | for (const auto ®ion : regions) { | 
|  | if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 && | 
|  | AddDirtyPages(region, ranges)) | 
|  | have_dirty_page_info = true; | 
|  | } | 
|  |  | 
|  | if (!have_dirty_page_info) { | 
|  | // We didn't find support for reporting dirty pages from the process | 
|  | // plug-in so fall back to any region with write access permissions. | 
|  | const bool try_dirty_pages = false; | 
|  | for (const auto ®ion : regions) | 
|  | if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 && | 
|  | region.GetWritable() == MemoryRegionInfo::eYes) | 
|  | AddRegion(region, try_dirty_pages, ranges); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Save all thread stacks to the core file. Some OS versions support reporting | 
|  | // when a memory region is stack related. We check on this information, but we | 
|  | // also use the stack pointers of each thread and add those in case the OS | 
|  | // doesn't support reporting stack memory. This function also attempts to only | 
|  | // emit dirty pages from the stack if the memory regions support reporting | 
|  | // dirty regions as this will make the core file smaller. If the process | 
|  | // doesn't support dirty regions, then it will fall back to adding the full | 
|  | // stack region. | 
|  | static void GetCoreFileSaveRangesStackOnly(Process &process, | 
|  | const MemoryRegionInfos ®ions, | 
|  | CoreFileMemoryRanges &ranges, | 
|  | std::set<addr_t> &stack_ends) { | 
|  | const bool try_dirty_pages = true; | 
|  | // Some platforms support annotating the region information that tell us that | 
|  | // it comes from a thread stack. So look for those regions first. | 
|  |  | 
|  | for (const auto ®ion : regions) { | 
|  | // Save all the stack memory ranges not associated with a stack pointer. | 
|  | if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 && | 
|  | region.IsStackMemory() == MemoryRegionInfo::eYes) | 
|  | AddRegion(region, try_dirty_pages, ranges); | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: We should refactor CoreFileMemoryRanges to use the lldb range type, and | 
|  | // then add an intersect method on it, or MemoryRegionInfo. | 
|  | static MemoryRegionInfo Intersect(const MemoryRegionInfo &lhs, | 
|  | const MemoryRegionInfo::RangeType &rhs) { | 
|  |  | 
|  | MemoryRegionInfo region_info; | 
|  | region_info.SetLLDBPermissions(lhs.GetLLDBPermissions()); | 
|  | region_info.GetRange() = lhs.GetRange().Intersect(rhs); | 
|  |  | 
|  | return region_info; | 
|  | } | 
|  |  | 
|  | static void GetUserSpecifiedCoreFileSaveRanges(Process &process, | 
|  | const MemoryRegionInfos ®ions, | 
|  | const SaveCoreOptions &options, | 
|  | CoreFileMemoryRanges &ranges) { | 
|  | const auto &option_ranges = options.GetCoreFileMemoryRanges(); | 
|  | if (option_ranges.IsEmpty()) | 
|  | return; | 
|  |  | 
|  | for (const auto &range : regions) { | 
|  | auto *entry = option_ranges.FindEntryThatIntersects(range.GetRange()); | 
|  | if (entry) { | 
|  | if (*entry != range.GetRange()) { | 
|  | AddRegion(Intersect(range, *entry), true, ranges); | 
|  | } else { | 
|  | // If they match, add the range directly. | 
|  | AddRegion(range, true, ranges); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Status Process::CalculateCoreFileSaveRanges(const SaveCoreOptions &options, | 
|  | CoreFileMemoryRanges &ranges) { | 
|  | lldb_private::MemoryRegionInfos regions; | 
|  | Status err = GetMemoryRegions(regions); | 
|  | SaveCoreStyle core_style = options.GetStyle(); | 
|  | if (err.Fail()) | 
|  | return err; | 
|  | if (regions.empty()) | 
|  | return Status::FromErrorString( | 
|  | "failed to get any valid memory regions from the process"); | 
|  | if (core_style == eSaveCoreUnspecified) | 
|  | return Status::FromErrorString( | 
|  | "callers must set the core_style to something other than " | 
|  | "eSaveCoreUnspecified"); | 
|  |  | 
|  | GetUserSpecifiedCoreFileSaveRanges(*this, regions, options, ranges); | 
|  |  | 
|  | std::set<addr_t> stack_ends; | 
|  | // For fully custom set ups, we don't want to even look at threads if there | 
|  | // are no threads specified. | 
|  | if (core_style != lldb::eSaveCoreCustomOnly || | 
|  | options.HasSpecifiedThreads()) { | 
|  | SaveOffRegionsWithStackPointers(*this, options, regions, ranges, | 
|  | stack_ends); | 
|  | // Save off the dynamic loader sections, so if we are on an architecture | 
|  | // that supports Thread Locals, that we include those as well. | 
|  | SaveDynamicLoaderSections(*this, options, ranges, stack_ends); | 
|  | } | 
|  |  | 
|  | switch (core_style) { | 
|  | case eSaveCoreUnspecified: | 
|  | case eSaveCoreCustomOnly: | 
|  | break; | 
|  |  | 
|  | case eSaveCoreFull: | 
|  | GetCoreFileSaveRangesFull(*this, regions, ranges, stack_ends); | 
|  | break; | 
|  |  | 
|  | case eSaveCoreDirtyOnly: | 
|  | GetCoreFileSaveRangesDirtyOnly(*this, regions, ranges, stack_ends); | 
|  | break; | 
|  |  | 
|  | case eSaveCoreStackOnly: | 
|  | GetCoreFileSaveRangesStackOnly(*this, regions, ranges, stack_ends); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (err.Fail()) | 
|  | return err; | 
|  |  | 
|  | if (ranges.IsEmpty()) | 
|  | return Status::FromErrorStringWithFormat( | 
|  | "no valid address ranges found for core style"); | 
|  |  | 
|  | return ranges.FinalizeCoreFileSaveRanges(); | 
|  | } | 
|  |  | 
|  | std::vector<ThreadSP> | 
|  | Process::CalculateCoreFileThreadList(const SaveCoreOptions &core_options) { | 
|  | std::vector<ThreadSP> thread_list; | 
|  | for (const lldb::ThreadSP &thread_sp : m_thread_list.Threads()) { | 
|  | if (core_options.ShouldThreadBeSaved(thread_sp->GetID())) { | 
|  | thread_list.push_back(thread_sp); | 
|  | } | 
|  | } | 
|  |  | 
|  | return thread_list; | 
|  | } | 
|  |  | 
|  | void Process::SetAddressableBitMasks(AddressableBits bit_masks) { | 
|  | uint32_t low_memory_addr_bits = bit_masks.GetLowmemAddressableBits(); | 
|  | uint32_t high_memory_addr_bits = bit_masks.GetHighmemAddressableBits(); | 
|  |  | 
|  | if (low_memory_addr_bits == 0 && high_memory_addr_bits == 0) | 
|  | return; | 
|  |  | 
|  | if (low_memory_addr_bits != 0) { | 
|  | addr_t low_addr_mask = | 
|  | AddressableBits::AddressableBitToMask(low_memory_addr_bits); | 
|  | SetCodeAddressMask(low_addr_mask); | 
|  | SetDataAddressMask(low_addr_mask); | 
|  | } | 
|  |  | 
|  | if (high_memory_addr_bits != 0) { | 
|  | addr_t high_addr_mask = | 
|  | AddressableBits::AddressableBitToMask(high_memory_addr_bits); | 
|  | SetHighmemCodeAddressMask(high_addr_mask); | 
|  | SetHighmemDataAddressMask(high_addr_mask); | 
|  | } | 
|  | } |