blob: 871683a605686febc037546b7ce4085a13493732 [file] [log] [blame]
//===-- ProcessGDBRemote.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Host/Config.h"
#include <cerrno>
#include <cstdlib>
#if LLDB_ENABLE_POSIX
#include <netinet/in.h>
#include <sys/mman.h>
#include <sys/socket.h>
#include <unistd.h>
#endif
#include <sys/stat.h>
#if defined(__APPLE__)
#include <sys/sysctl.h>
#endif
#include <ctime>
#include <sys/types.h>
#include "lldb/Breakpoint/Watchpoint.h"
#include "lldb/Breakpoint/WatchpointAlgorithms.h"
#include "lldb/Breakpoint/WatchpointResource.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/ModuleSpec.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Value.h"
#include "lldb/DataFormatters/FormatManager.h"
#include "lldb/Host/ConnectionFileDescriptor.h"
#include "lldb/Host/FileSystem.h"
#include "lldb/Host/HostThread.h"
#include "lldb/Host/PosixApi.h"
#include "lldb/Host/PseudoTerminal.h"
#include "lldb/Host/StreamFile.h"
#include "lldb/Host/ThreadLauncher.h"
#include "lldb/Host/XML.h"
#include "lldb/Interpreter/CommandInterpreter.h"
#include "lldb/Interpreter/CommandObject.h"
#include "lldb/Interpreter/CommandObjectMultiword.h"
#include "lldb/Interpreter/CommandReturnObject.h"
#include "lldb/Interpreter/OptionArgParser.h"
#include "lldb/Interpreter/OptionGroupBoolean.h"
#include "lldb/Interpreter/OptionGroupUInt64.h"
#include "lldb/Interpreter/OptionValueProperties.h"
#include "lldb/Interpreter/Options.h"
#include "lldb/Interpreter/Property.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Target/ABI.h"
#include "lldb/Target/DynamicLoader.h"
#include "lldb/Target/MemoryRegionInfo.h"
#include "lldb/Target/RegisterFlags.h"
#include "lldb/Target/SystemRuntime.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/TargetList.h"
#include "lldb/Target/ThreadPlanCallFunction.h"
#include "lldb/Utility/Args.h"
#include "lldb/Utility/FileSpec.h"
#include "lldb/Utility/LLDBLog.h"
#include "lldb/Utility/State.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/Utility/Timer.h"
#include <algorithm>
#include <csignal>
#include <map>
#include <memory>
#include <mutex>
#include <optional>
#include <sstream>
#include <thread>
#include "GDBRemoteRegisterContext.h"
#include "GDBRemoteRegisterFallback.h"
#include "Plugins/Process/Utility/GDBRemoteSignals.h"
#include "Plugins/Process/Utility/InferiorCallPOSIX.h"
#include "Plugins/Process/Utility/StopInfoMachException.h"
#include "ProcessGDBRemote.h"
#include "ProcessGDBRemoteLog.h"
#include "ThreadGDBRemote.h"
#include "lldb/Host/Host.h"
#include "lldb/Utility/StringExtractorGDBRemote.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/FormatAdapters.h"
#include "llvm/Support/Threading.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUGSERVER_BASENAME "debugserver"
using namespace lldb;
using namespace lldb_private;
using namespace lldb_private::process_gdb_remote;
LLDB_PLUGIN_DEFINE(ProcessGDBRemote)
namespace lldb {
// Provide a function that can easily dump the packet history if we know a
// ProcessGDBRemote * value (which we can get from logs or from debugging). We
// need the function in the lldb namespace so it makes it into the final
// executable since the LLDB shared library only exports stuff in the lldb
// namespace. This allows you to attach with a debugger and call this function
// and get the packet history dumped to a file.
void DumpProcessGDBRemotePacketHistory(void *p, const char *path) {
auto file = FileSystem::Instance().Open(
FileSpec(path), File::eOpenOptionWriteOnly | File::eOpenOptionCanCreate);
if (!file) {
llvm::consumeError(file.takeError());
return;
}
StreamFile stream(std::move(file.get()));
((Process *)p)->DumpPluginHistory(stream);
}
} // namespace lldb
namespace {
#define LLDB_PROPERTIES_processgdbremote
#include "ProcessGDBRemoteProperties.inc"
enum {
#define LLDB_PROPERTIES_processgdbremote
#include "ProcessGDBRemotePropertiesEnum.inc"
};
class PluginProperties : public Properties {
public:
static llvm::StringRef GetSettingName() {
return ProcessGDBRemote::GetPluginNameStatic();
}
PluginProperties() : Properties() {
m_collection_sp = std::make_shared<OptionValueProperties>(GetSettingName());
m_collection_sp->Initialize(g_processgdbremote_properties);
}
~PluginProperties() override = default;
uint64_t GetPacketTimeout() {
const uint32_t idx = ePropertyPacketTimeout;
return GetPropertyAtIndexAs<uint64_t>(
idx, g_processgdbremote_properties[idx].default_uint_value);
}
bool SetPacketTimeout(uint64_t timeout) {
const uint32_t idx = ePropertyPacketTimeout;
return SetPropertyAtIndex(idx, timeout);
}
FileSpec GetTargetDefinitionFile() const {
const uint32_t idx = ePropertyTargetDefinitionFile;
return GetPropertyAtIndexAs<FileSpec>(idx, {});
}
bool GetUseSVR4() const {
const uint32_t idx = ePropertyUseSVR4;
return GetPropertyAtIndexAs<bool>(
idx, g_processgdbremote_properties[idx].default_uint_value != 0);
}
bool GetUseGPacketForReading() const {
const uint32_t idx = ePropertyUseGPacketForReading;
return GetPropertyAtIndexAs<bool>(idx, true);
}
};
} // namespace
static PluginProperties &GetGlobalPluginProperties() {
static PluginProperties g_settings;
return g_settings;
}
// TODO Randomly assigning a port is unsafe. We should get an unused
// ephemeral port from the kernel and make sure we reserve it before passing it
// to debugserver.
#if defined(__APPLE__)
#define LOW_PORT (IPPORT_RESERVED)
#define HIGH_PORT (IPPORT_HIFIRSTAUTO)
#else
#define LOW_PORT (1024u)
#define HIGH_PORT (49151u)
#endif
llvm::StringRef ProcessGDBRemote::GetPluginDescriptionStatic() {
return "GDB Remote protocol based debugging plug-in.";
}
void ProcessGDBRemote::Terminate() {
PluginManager::UnregisterPlugin(ProcessGDBRemote::CreateInstance);
}
lldb::ProcessSP ProcessGDBRemote::CreateInstance(
lldb::TargetSP target_sp, ListenerSP listener_sp,
const FileSpec *crash_file_path, bool can_connect) {
lldb::ProcessSP process_sp;
if (crash_file_path == nullptr)
process_sp = std::shared_ptr<ProcessGDBRemote>(
new ProcessGDBRemote(target_sp, listener_sp));
return process_sp;
}
void ProcessGDBRemote::DumpPluginHistory(Stream &s) {
GDBRemoteCommunicationClient &gdb_comm(GetGDBRemote());
gdb_comm.DumpHistory(s);
}
std::chrono::seconds ProcessGDBRemote::GetPacketTimeout() {
return std::chrono::seconds(GetGlobalPluginProperties().GetPacketTimeout());
}
ArchSpec ProcessGDBRemote::GetSystemArchitecture() {
return m_gdb_comm.GetHostArchitecture();
}
bool ProcessGDBRemote::CanDebug(lldb::TargetSP target_sp,
bool plugin_specified_by_name) {
if (plugin_specified_by_name)
return true;
// For now we are just making sure the file exists for a given module
Module *exe_module = target_sp->GetExecutableModulePointer();
if (exe_module) {
ObjectFile *exe_objfile = exe_module->GetObjectFile();
// We can't debug core files...
switch (exe_objfile->GetType()) {
case ObjectFile::eTypeInvalid:
case ObjectFile::eTypeCoreFile:
case ObjectFile::eTypeDebugInfo:
case ObjectFile::eTypeObjectFile:
case ObjectFile::eTypeSharedLibrary:
case ObjectFile::eTypeStubLibrary:
case ObjectFile::eTypeJIT:
return false;
case ObjectFile::eTypeExecutable:
case ObjectFile::eTypeDynamicLinker:
case ObjectFile::eTypeUnknown:
break;
}
return FileSystem::Instance().Exists(exe_module->GetFileSpec());
}
// However, if there is no executable module, we return true since we might
// be preparing to attach.
return true;
}
// ProcessGDBRemote constructor
ProcessGDBRemote::ProcessGDBRemote(lldb::TargetSP target_sp,
ListenerSP listener_sp)
: Process(target_sp, listener_sp),
m_debugserver_pid(LLDB_INVALID_PROCESS_ID), m_register_info_sp(nullptr),
m_async_broadcaster(nullptr, "lldb.process.gdb-remote.async-broadcaster"),
m_async_listener_sp(
Listener::MakeListener("lldb.process.gdb-remote.async-listener")),
m_async_thread_state_mutex(), m_thread_ids(), m_thread_pcs(),
m_jstopinfo_sp(), m_jthreadsinfo_sp(), m_continue_c_tids(),
m_continue_C_tids(), m_continue_s_tids(), m_continue_S_tids(),
m_max_memory_size(0), m_remote_stub_max_memory_size(0),
m_addr_to_mmap_size(), m_thread_create_bp_sp(),
m_waiting_for_attach(false), m_command_sp(), m_breakpoint_pc_offset(0),
m_initial_tid(LLDB_INVALID_THREAD_ID), m_allow_flash_writes(false),
m_erased_flash_ranges(), m_vfork_in_progress_count(0) {
m_async_broadcaster.SetEventName(eBroadcastBitAsyncThreadShouldExit,
"async thread should exit");
m_async_broadcaster.SetEventName(eBroadcastBitAsyncContinue,
"async thread continue");
m_async_broadcaster.SetEventName(eBroadcastBitAsyncThreadDidExit,
"async thread did exit");
Log *log = GetLog(GDBRLog::Async);
const uint32_t async_event_mask =
eBroadcastBitAsyncContinue | eBroadcastBitAsyncThreadShouldExit;
if (m_async_listener_sp->StartListeningForEvents(
&m_async_broadcaster, async_event_mask) != async_event_mask) {
LLDB_LOGF(log,
"ProcessGDBRemote::%s failed to listen for "
"m_async_broadcaster events",
__FUNCTION__);
}
const uint64_t timeout_seconds =
GetGlobalPluginProperties().GetPacketTimeout();
if (timeout_seconds > 0)
m_gdb_comm.SetPacketTimeout(std::chrono::seconds(timeout_seconds));
m_use_g_packet_for_reading =
GetGlobalPluginProperties().GetUseGPacketForReading();
}
// Destructor
ProcessGDBRemote::~ProcessGDBRemote() {
// m_mach_process.UnregisterNotificationCallbacks (this);
Clear();
// We need to call finalize on the process before destroying ourselves to
// make sure all of the broadcaster cleanup goes as planned. If we destruct
// this class, then Process::~Process() might have problems trying to fully
// destroy the broadcaster.
Finalize(true /* destructing */);
// The general Finalize is going to try to destroy the process and that
// SHOULD shut down the async thread. However, if we don't kill it it will
// get stranded and its connection will go away so when it wakes up it will
// crash. So kill it for sure here.
StopAsyncThread();
KillDebugserverProcess();
}
bool ProcessGDBRemote::ParsePythonTargetDefinition(
const FileSpec &target_definition_fspec) {
ScriptInterpreter *interpreter =
GetTarget().GetDebugger().GetScriptInterpreter();
Status error;
StructuredData::ObjectSP module_object_sp(
interpreter->LoadPluginModule(target_definition_fspec, error));
if (module_object_sp) {
StructuredData::DictionarySP target_definition_sp(
interpreter->GetDynamicSettings(module_object_sp, &GetTarget(),
"gdb-server-target-definition", error));
if (target_definition_sp) {
StructuredData::ObjectSP target_object(
target_definition_sp->GetValueForKey("host-info"));
if (target_object) {
if (auto host_info_dict = target_object->GetAsDictionary()) {
StructuredData::ObjectSP triple_value =
host_info_dict->GetValueForKey("triple");
if (auto triple_string_value = triple_value->GetAsString()) {
std::string triple_string =
std::string(triple_string_value->GetValue());
ArchSpec host_arch(triple_string.c_str());
if (!host_arch.IsCompatibleMatch(GetTarget().GetArchitecture())) {
GetTarget().SetArchitecture(host_arch);
}
}
}
}
m_breakpoint_pc_offset = 0;
StructuredData::ObjectSP breakpoint_pc_offset_value =
target_definition_sp->GetValueForKey("breakpoint-pc-offset");
if (breakpoint_pc_offset_value) {
if (auto breakpoint_pc_int_value =
breakpoint_pc_offset_value->GetAsSignedInteger())
m_breakpoint_pc_offset = breakpoint_pc_int_value->GetValue();
}
if (m_register_info_sp->SetRegisterInfo(
*target_definition_sp, GetTarget().GetArchitecture()) > 0) {
return true;
}
}
}
return false;
}
static size_t SplitCommaSeparatedRegisterNumberString(
const llvm::StringRef &comma_separated_register_numbers,
std::vector<uint32_t> &regnums, int base) {
regnums.clear();
for (llvm::StringRef x : llvm::split(comma_separated_register_numbers, ',')) {
uint32_t reg;
if (llvm::to_integer(x, reg, base))
regnums.push_back(reg);
}
return regnums.size();
}
void ProcessGDBRemote::BuildDynamicRegisterInfo(bool force) {
if (!force && m_register_info_sp)
return;
m_register_info_sp = std::make_shared<GDBRemoteDynamicRegisterInfo>();
// Check if qHostInfo specified a specific packet timeout for this
// connection. If so then lets update our setting so the user knows what the
// timeout is and can see it.
const auto host_packet_timeout = m_gdb_comm.GetHostDefaultPacketTimeout();
if (host_packet_timeout > std::chrono::seconds(0)) {
GetGlobalPluginProperties().SetPacketTimeout(host_packet_timeout.count());
}
// Register info search order:
// 1 - Use the target definition python file if one is specified.
// 2 - If the target definition doesn't have any of the info from the
// target.xml (registers) then proceed to read the target.xml.
// 3 - Fall back on the qRegisterInfo packets.
// 4 - Use hardcoded defaults if available.
FileSpec target_definition_fspec =
GetGlobalPluginProperties().GetTargetDefinitionFile();
if (!FileSystem::Instance().Exists(target_definition_fspec)) {
// If the filename doesn't exist, it may be a ~ not having been expanded -
// try to resolve it.
FileSystem::Instance().Resolve(target_definition_fspec);
}
if (target_definition_fspec) {
// See if we can get register definitions from a python file
if (ParsePythonTargetDefinition(target_definition_fspec))
return;
Debugger::ReportError("target description file " +
target_definition_fspec.GetPath() +
" failed to parse",
GetTarget().GetDebugger().GetID());
}
const ArchSpec &target_arch = GetTarget().GetArchitecture();
const ArchSpec &remote_host_arch = m_gdb_comm.GetHostArchitecture();
const ArchSpec &remote_process_arch = m_gdb_comm.GetProcessArchitecture();
// Use the process' architecture instead of the host arch, if available
ArchSpec arch_to_use;
if (remote_process_arch.IsValid())
arch_to_use = remote_process_arch;
else
arch_to_use = remote_host_arch;
if (!arch_to_use.IsValid())
arch_to_use = target_arch;
if (GetGDBServerRegisterInfo(arch_to_use))
return;
char packet[128];
std::vector<DynamicRegisterInfo::Register> registers;
uint32_t reg_num = 0;
for (StringExtractorGDBRemote::ResponseType response_type =
StringExtractorGDBRemote::eResponse;
response_type == StringExtractorGDBRemote::eResponse; ++reg_num) {
const int packet_len =
::snprintf(packet, sizeof(packet), "qRegisterInfo%x", reg_num);
assert(packet_len < (int)sizeof(packet));
UNUSED_IF_ASSERT_DISABLED(packet_len);
StringExtractorGDBRemote response;
if (m_gdb_comm.SendPacketAndWaitForResponse(packet, response) ==
GDBRemoteCommunication::PacketResult::Success) {
response_type = response.GetResponseType();
if (response_type == StringExtractorGDBRemote::eResponse) {
llvm::StringRef name;
llvm::StringRef value;
DynamicRegisterInfo::Register reg_info;
while (response.GetNameColonValue(name, value)) {
if (name.equals("name")) {
reg_info.name.SetString(value);
} else if (name.equals("alt-name")) {
reg_info.alt_name.SetString(value);
} else if (name.equals("bitsize")) {
if (!value.getAsInteger(0, reg_info.byte_size))
reg_info.byte_size /= CHAR_BIT;
} else if (name.equals("offset")) {
value.getAsInteger(0, reg_info.byte_offset);
} else if (name.equals("encoding")) {
const Encoding encoding = Args::StringToEncoding(value);
if (encoding != eEncodingInvalid)
reg_info.encoding = encoding;
} else if (name.equals("format")) {
if (!OptionArgParser::ToFormat(value.str().c_str(), reg_info.format, nullptr)
.Success())
reg_info.format =
llvm::StringSwitch<Format>(value)
.Case("binary", eFormatBinary)
.Case("decimal", eFormatDecimal)
.Case("hex", eFormatHex)
.Case("float", eFormatFloat)
.Case("vector-sint8", eFormatVectorOfSInt8)
.Case("vector-uint8", eFormatVectorOfUInt8)
.Case("vector-sint16", eFormatVectorOfSInt16)
.Case("vector-uint16", eFormatVectorOfUInt16)
.Case("vector-sint32", eFormatVectorOfSInt32)
.Case("vector-uint32", eFormatVectorOfUInt32)
.Case("vector-float32", eFormatVectorOfFloat32)
.Case("vector-uint64", eFormatVectorOfUInt64)
.Case("vector-uint128", eFormatVectorOfUInt128)
.Default(eFormatInvalid);
} else if (name.equals("set")) {
reg_info.set_name.SetString(value);
} else if (name.equals("gcc") || name.equals("ehframe")) {
value.getAsInteger(0, reg_info.regnum_ehframe);
} else if (name.equals("dwarf")) {
value.getAsInteger(0, reg_info.regnum_dwarf);
} else if (name.equals("generic")) {
reg_info.regnum_generic = Args::StringToGenericRegister(value);
} else if (name.equals("container-regs")) {
SplitCommaSeparatedRegisterNumberString(value, reg_info.value_regs, 16);
} else if (name.equals("invalidate-regs")) {
SplitCommaSeparatedRegisterNumberString(value, reg_info.invalidate_regs, 16);
}
}
assert(reg_info.byte_size != 0);
registers.push_back(reg_info);
} else {
break; // ensure exit before reg_num is incremented
}
} else {
break;
}
}
if (registers.empty())
registers = GetFallbackRegisters(arch_to_use);
AddRemoteRegisters(registers, arch_to_use);
}
Status ProcessGDBRemote::DoWillLaunch(lldb_private::Module *module) {
return WillLaunchOrAttach();
}
Status ProcessGDBRemote::DoWillAttachToProcessWithID(lldb::pid_t pid) {
return WillLaunchOrAttach();
}
Status ProcessGDBRemote::DoWillAttachToProcessWithName(const char *process_name,
bool wait_for_launch) {
return WillLaunchOrAttach();
}
Status ProcessGDBRemote::DoConnectRemote(llvm::StringRef remote_url) {
Log *log = GetLog(GDBRLog::Process);
Status error(WillLaunchOrAttach());
if (error.Fail())
return error;
error = ConnectToDebugserver(remote_url);
if (error.Fail())
return error;
StartAsyncThread();
lldb::pid_t pid = m_gdb_comm.GetCurrentProcessID();
if (pid == LLDB_INVALID_PROCESS_ID) {
// We don't have a valid process ID, so note that we are connected and
// could now request to launch or attach, or get remote process listings...
SetPrivateState(eStateConnected);
} else {
// We have a valid process
SetID(pid);
GetThreadList();
StringExtractorGDBRemote response;
if (m_gdb_comm.GetStopReply(response)) {
SetLastStopPacket(response);
Target &target = GetTarget();
if (!target.GetArchitecture().IsValid()) {
if (m_gdb_comm.GetProcessArchitecture().IsValid()) {
target.SetArchitecture(m_gdb_comm.GetProcessArchitecture());
} else {
if (m_gdb_comm.GetHostArchitecture().IsValid()) {
target.SetArchitecture(m_gdb_comm.GetHostArchitecture());
}
}
}
const StateType state = SetThreadStopInfo(response);
if (state != eStateInvalid) {
SetPrivateState(state);
} else
error.SetErrorStringWithFormat(
"Process %" PRIu64 " was reported after connecting to "
"'%s', but state was not stopped: %s",
pid, remote_url.str().c_str(), StateAsCString(state));
} else
error.SetErrorStringWithFormat("Process %" PRIu64
" was reported after connecting to '%s', "
"but no stop reply packet was received",
pid, remote_url.str().c_str());
}
LLDB_LOGF(log,
"ProcessGDBRemote::%s pid %" PRIu64
": normalizing target architecture initial triple: %s "
"(GetTarget().GetArchitecture().IsValid() %s, "
"m_gdb_comm.GetHostArchitecture().IsValid(): %s)",
__FUNCTION__, GetID(),
GetTarget().GetArchitecture().GetTriple().getTriple().c_str(),
GetTarget().GetArchitecture().IsValid() ? "true" : "false",
m_gdb_comm.GetHostArchitecture().IsValid() ? "true" : "false");
if (error.Success() && !GetTarget().GetArchitecture().IsValid() &&
m_gdb_comm.GetHostArchitecture().IsValid()) {
// Prefer the *process'* architecture over that of the *host*, if
// available.
if (m_gdb_comm.GetProcessArchitecture().IsValid())
GetTarget().SetArchitecture(m_gdb_comm.GetProcessArchitecture());
else
GetTarget().SetArchitecture(m_gdb_comm.GetHostArchitecture());
}
LLDB_LOGF(log,
"ProcessGDBRemote::%s pid %" PRIu64
": normalized target architecture triple: %s",
__FUNCTION__, GetID(),
GetTarget().GetArchitecture().GetTriple().getTriple().c_str());
return error;
}
Status ProcessGDBRemote::WillLaunchOrAttach() {
Status error;
m_stdio_communication.Clear();
return error;
}
// Process Control
Status ProcessGDBRemote::DoLaunch(lldb_private::Module *exe_module,
ProcessLaunchInfo &launch_info) {
Log *log = GetLog(GDBRLog::Process);
Status error;
LLDB_LOGF(log, "ProcessGDBRemote::%s() entered", __FUNCTION__);
uint32_t launch_flags = launch_info.GetFlags().Get();
FileSpec stdin_file_spec{};
FileSpec stdout_file_spec{};
FileSpec stderr_file_spec{};
FileSpec working_dir = launch_info.GetWorkingDirectory();
const FileAction *file_action;
file_action = launch_info.GetFileActionForFD(STDIN_FILENO);
if (file_action) {
if (file_action->GetAction() == FileAction::eFileActionOpen)
stdin_file_spec = file_action->GetFileSpec();
}
file_action = launch_info.GetFileActionForFD(STDOUT_FILENO);
if (file_action) {
if (file_action->GetAction() == FileAction::eFileActionOpen)
stdout_file_spec = file_action->GetFileSpec();
}
file_action = launch_info.GetFileActionForFD(STDERR_FILENO);
if (file_action) {
if (file_action->GetAction() == FileAction::eFileActionOpen)
stderr_file_spec = file_action->GetFileSpec();
}
if (log) {
if (stdin_file_spec || stdout_file_spec || stderr_file_spec)
LLDB_LOGF(log,
"ProcessGDBRemote::%s provided with STDIO paths via "
"launch_info: stdin=%s, stdout=%s, stderr=%s",
__FUNCTION__,
stdin_file_spec ? stdin_file_spec.GetPath().c_str() : "<null>",
stdout_file_spec ? stdout_file_spec.GetPath().c_str() : "<null>",
stderr_file_spec ? stderr_file_spec.GetPath().c_str() : "<null>");
else
LLDB_LOGF(log,
"ProcessGDBRemote::%s no STDIO paths given via launch_info",
__FUNCTION__);
}
const bool disable_stdio = (launch_flags & eLaunchFlagDisableSTDIO) != 0;
if (stdin_file_spec || disable_stdio) {
// the inferior will be reading stdin from the specified file or stdio is
// completely disabled
m_stdin_forward = false;
} else {
m_stdin_forward = true;
}
// ::LogSetBitMask (GDBR_LOG_DEFAULT);
// ::LogSetOptions (LLDB_LOG_OPTION_THREADSAFE |
// LLDB_LOG_OPTION_PREPEND_TIMESTAMP |
// LLDB_LOG_OPTION_PREPEND_PROC_AND_THREAD);
// ::LogSetLogFile ("/dev/stdout");
error = EstablishConnectionIfNeeded(launch_info);
if (error.Success()) {
PseudoTerminal pty;
const bool disable_stdio = (launch_flags & eLaunchFlagDisableSTDIO) != 0;
PlatformSP platform_sp(GetTarget().GetPlatform());
if (disable_stdio) {
// set to /dev/null unless redirected to a file above
if (!stdin_file_spec)
stdin_file_spec.SetFile(FileSystem::DEV_NULL,
FileSpec::Style::native);
if (!stdout_file_spec)
stdout_file_spec.SetFile(FileSystem::DEV_NULL,
FileSpec::Style::native);
if (!stderr_file_spec)
stderr_file_spec.SetFile(FileSystem::DEV_NULL,
FileSpec::Style::native);
} else if (platform_sp && platform_sp->IsHost()) {
// If the debugserver is local and we aren't disabling STDIO, lets use
// a pseudo terminal to instead of relying on the 'O' packets for stdio
// since 'O' packets can really slow down debugging if the inferior
// does a lot of output.
if ((!stdin_file_spec || !stdout_file_spec || !stderr_file_spec) &&
!errorToBool(pty.OpenFirstAvailablePrimary(O_RDWR | O_NOCTTY))) {
FileSpec secondary_name(pty.GetSecondaryName());
if (!stdin_file_spec)
stdin_file_spec = secondary_name;
if (!stdout_file_spec)
stdout_file_spec = secondary_name;
if (!stderr_file_spec)
stderr_file_spec = secondary_name;
}
LLDB_LOGF(
log,
"ProcessGDBRemote::%s adjusted STDIO paths for local platform "
"(IsHost() is true) using secondary: stdin=%s, stdout=%s, "
"stderr=%s",
__FUNCTION__,
stdin_file_spec ? stdin_file_spec.GetPath().c_str() : "<null>",
stdout_file_spec ? stdout_file_spec.GetPath().c_str() : "<null>",
stderr_file_spec ? stderr_file_spec.GetPath().c_str() : "<null>");
}
LLDB_LOGF(log,
"ProcessGDBRemote::%s final STDIO paths after all "
"adjustments: stdin=%s, stdout=%s, stderr=%s",
__FUNCTION__,
stdin_file_spec ? stdin_file_spec.GetPath().c_str() : "<null>",
stdout_file_spec ? stdout_file_spec.GetPath().c_str() : "<null>",
stderr_file_spec ? stderr_file_spec.GetPath().c_str() : "<null>");
if (stdin_file_spec)
m_gdb_comm.SetSTDIN(stdin_file_spec);
if (stdout_file_spec)
m_gdb_comm.SetSTDOUT(stdout_file_spec);
if (stderr_file_spec)
m_gdb_comm.SetSTDERR(stderr_file_spec);
m_gdb_comm.SetDisableASLR(launch_flags & eLaunchFlagDisableASLR);
m_gdb_comm.SetDetachOnError(launch_flags & eLaunchFlagDetachOnError);
m_gdb_comm.SendLaunchArchPacket(
GetTarget().GetArchitecture().GetArchitectureName());
const char *launch_event_data = launch_info.GetLaunchEventData();
if (launch_event_data != nullptr && *launch_event_data != '\0')
m_gdb_comm.SendLaunchEventDataPacket(launch_event_data);
if (working_dir) {
m_gdb_comm.SetWorkingDir(working_dir);
}
// Send the environment and the program + arguments after we connect
m_gdb_comm.SendEnvironment(launch_info.GetEnvironment());
{
// Scope for the scoped timeout object
GDBRemoteCommunication::ScopedTimeout timeout(m_gdb_comm,
std::chrono::seconds(10));
// Since we can't send argv0 separate from the executable path, we need to
// make sure to use the actual executable path found in the launch_info...
Args args = launch_info.GetArguments();
if (FileSpec exe_file = launch_info.GetExecutableFile())
args.ReplaceArgumentAtIndex(0, exe_file.GetPath(false));
if (llvm::Error err = m_gdb_comm.LaunchProcess(args)) {
error.SetErrorStringWithFormatv("Cannot launch '{0}': {1}",
args.GetArgumentAtIndex(0),
llvm::fmt_consume(std::move(err)));
} else {
SetID(m_gdb_comm.GetCurrentProcessID());
}
}
if (GetID() == LLDB_INVALID_PROCESS_ID) {
LLDB_LOGF(log, "failed to connect to debugserver: %s",
error.AsCString());
KillDebugserverProcess();
return error;
}
StringExtractorGDBRemote response;
if (m_gdb_comm.GetStopReply(response)) {
SetLastStopPacket(response);
const ArchSpec &process_arch = m_gdb_comm.GetProcessArchitecture();
if (process_arch.IsValid()) {
GetTarget().MergeArchitecture(process_arch);
} else {
const ArchSpec &host_arch = m_gdb_comm.GetHostArchitecture();
if (host_arch.IsValid())
GetTarget().MergeArchitecture(host_arch);
}
SetPrivateState(SetThreadStopInfo(response));
if (!disable_stdio) {
if (pty.GetPrimaryFileDescriptor() != PseudoTerminal::invalid_fd)
SetSTDIOFileDescriptor(pty.ReleasePrimaryFileDescriptor());
}
}
} else {
LLDB_LOGF(log, "failed to connect to debugserver: %s", error.AsCString());
}
return error;
}
Status ProcessGDBRemote::ConnectToDebugserver(llvm::StringRef connect_url) {
Status error;
// Only connect if we have a valid connect URL
Log *log = GetLog(GDBRLog::Process);
if (!connect_url.empty()) {
LLDB_LOGF(log, "ProcessGDBRemote::%s Connecting to %s", __FUNCTION__,
connect_url.str().c_str());
std::unique_ptr<ConnectionFileDescriptor> conn_up(
new ConnectionFileDescriptor());
if (conn_up) {
const uint32_t max_retry_count = 50;
uint32_t retry_count = 0;
while (!m_gdb_comm.IsConnected()) {
if (conn_up->Connect(connect_url, &error) == eConnectionStatusSuccess) {
m_gdb_comm.SetConnection(std::move(conn_up));
break;
}
retry_count++;
if (retry_count >= max_retry_count)
break;
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
}
}
if (!m_gdb_comm.IsConnected()) {
if (error.Success())
error.SetErrorString("not connected to remote gdb server");
return error;
}
// We always seem to be able to open a connection to a local port so we need
// to make sure we can then send data to it. If we can't then we aren't
// actually connected to anything, so try and do the handshake with the
// remote GDB server and make sure that goes alright.
if (!m_gdb_comm.HandshakeWithServer(&error)) {
m_gdb_comm.Disconnect();
if (error.Success())
error.SetErrorString("not connected to remote gdb server");
return error;
}
m_gdb_comm.GetEchoSupported();
m_gdb_comm.GetThreadSuffixSupported();
m_gdb_comm.GetListThreadsInStopReplySupported();
m_gdb_comm.GetHostInfo();
m_gdb_comm.GetVContSupported('c');
m_gdb_comm.GetVAttachOrWaitSupported();
m_gdb_comm.EnableErrorStringInPacket();
// First dispatch any commands from the platform:
auto handle_cmds = [&] (const Args &args) -> void {
for (const Args::ArgEntry &entry : args) {
StringExtractorGDBRemote response;
m_gdb_comm.SendPacketAndWaitForResponse(
entry.c_str(), response);
}
};
PlatformSP platform_sp = GetTarget().GetPlatform();
if (platform_sp) {
handle_cmds(platform_sp->GetExtraStartupCommands());
}
// Then dispatch any process commands:
handle_cmds(GetExtraStartupCommands());
return error;
}
void ProcessGDBRemote::DidLaunchOrAttach(ArchSpec &process_arch) {
Log *log = GetLog(GDBRLog::Process);
BuildDynamicRegisterInfo(false);
// See if the GDB server supports qHostInfo or qProcessInfo packets. Prefer
// qProcessInfo as it will be more specific to our process.
const ArchSpec &remote_process_arch = m_gdb_comm.GetProcessArchitecture();
if (remote_process_arch.IsValid()) {
process_arch = remote_process_arch;
LLDB_LOG(log, "gdb-remote had process architecture, using {0} {1}",
process_arch.GetArchitectureName(),
process_arch.GetTriple().getTriple());
} else {
process_arch = m_gdb_comm.GetHostArchitecture();
LLDB_LOG(log,
"gdb-remote did not have process architecture, using gdb-remote "
"host architecture {0} {1}",
process_arch.GetArchitectureName(),
process_arch.GetTriple().getTriple());
}
AddressableBits addressable_bits = m_gdb_comm.GetAddressableBits();
SetAddressableBitMasks(addressable_bits);
if (process_arch.IsValid()) {
const ArchSpec &target_arch = GetTarget().GetArchitecture();
if (target_arch.IsValid()) {
LLDB_LOG(log, "analyzing target arch, currently {0} {1}",
target_arch.GetArchitectureName(),
target_arch.GetTriple().getTriple());
// If the remote host is ARM and we have apple as the vendor, then
// ARM executables and shared libraries can have mixed ARM
// architectures.
// You can have an armv6 executable, and if the host is armv7, then the
// system will load the best possible architecture for all shared
// libraries it has, so we really need to take the remote host
// architecture as our defacto architecture in this case.
if ((process_arch.GetMachine() == llvm::Triple::arm ||
process_arch.GetMachine() == llvm::Triple::thumb) &&
process_arch.GetTriple().getVendor() == llvm::Triple::Apple) {
GetTarget().SetArchitecture(process_arch);
LLDB_LOG(log,
"remote process is ARM/Apple, "
"setting target arch to {0} {1}",
process_arch.GetArchitectureName(),
process_arch.GetTriple().getTriple());
} else {
// Fill in what is missing in the triple
const llvm::Triple &remote_triple = process_arch.GetTriple();
llvm::Triple new_target_triple = target_arch.GetTriple();
if (new_target_triple.getVendorName().size() == 0) {
new_target_triple.setVendor(remote_triple.getVendor());
if (new_target_triple.getOSName().size() == 0) {
new_target_triple.setOS(remote_triple.getOS());
if (new_target_triple.getEnvironmentName().size() == 0)
new_target_triple.setEnvironment(remote_triple.getEnvironment());
}
ArchSpec new_target_arch = target_arch;
new_target_arch.SetTriple(new_target_triple);
GetTarget().SetArchitecture(new_target_arch);
}
}
LLDB_LOG(log,
"final target arch after adjustments for remote architecture: "
"{0} {1}",
target_arch.GetArchitectureName(),
target_arch.GetTriple().getTriple());
} else {
// The target doesn't have a valid architecture yet, set it from the
// architecture we got from the remote GDB server
GetTarget().SetArchitecture(process_arch);
}
}
// Target and Process are reasonably initailized;
// load any binaries we have metadata for / set load address.
LoadStubBinaries();
MaybeLoadExecutableModule();
// Find out which StructuredDataPlugins are supported by the debug monitor.
// These plugins transmit data over async $J packets.
if (StructuredData::Array *supported_packets =
m_gdb_comm.GetSupportedStructuredDataPlugins())
MapSupportedStructuredDataPlugins(*supported_packets);
// If connected to LLDB ("native-signals+"), use signal defs for
// the remote platform. If connected to GDB, just use the standard set.
if (!m_gdb_comm.UsesNativeSignals()) {
SetUnixSignals(std::make_shared<GDBRemoteSignals>());
} else {
PlatformSP platform_sp = GetTarget().GetPlatform();
if (platform_sp && platform_sp->IsConnected())
SetUnixSignals(platform_sp->GetUnixSignals());
else
SetUnixSignals(UnixSignals::Create(GetTarget().GetArchitecture()));
}
}
void ProcessGDBRemote::LoadStubBinaries() {
// The remote stub may know about the "main binary" in
// the context of a firmware debug session, and can
// give us a UUID and an address/slide of where the
// binary is loaded in memory.
UUID standalone_uuid;
addr_t standalone_value;
bool standalone_value_is_offset;
if (m_gdb_comm.GetProcessStandaloneBinary(standalone_uuid, standalone_value,
standalone_value_is_offset)) {
ModuleSP module_sp;
if (standalone_uuid.IsValid()) {
const bool force_symbol_search = true;
const bool notify = true;
const bool set_address_in_target = true;
const bool allow_memory_image_last_resort = false;
DynamicLoader::LoadBinaryWithUUIDAndAddress(
this, "", standalone_uuid, standalone_value,
standalone_value_is_offset, force_symbol_search, notify,
set_address_in_target, allow_memory_image_last_resort);
}
}
// The remote stub may know about a list of binaries to
// force load into the process -- a firmware type situation
// where multiple binaries are present in virtual memory,
// and we are only given the addresses of the binaries.
// Not intended for use with userland debugging, when we use
// a DynamicLoader plugin that knows how to find the loaded
// binaries, and will track updates as binaries are added.
std::vector<addr_t> bin_addrs = m_gdb_comm.GetProcessStandaloneBinaries();
if (bin_addrs.size()) {
UUID uuid;
const bool value_is_slide = false;
for (addr_t addr : bin_addrs) {
const bool notify = true;
// First see if this is a special platform
// binary that may determine the DynamicLoader and
// Platform to be used in this Process and Target.
if (GetTarget()
.GetDebugger()
.GetPlatformList()
.LoadPlatformBinaryAndSetup(this, addr, notify))
continue;
const bool force_symbol_search = true;
const bool set_address_in_target = true;
const bool allow_memory_image_last_resort = false;
// Second manually load this binary into the Target.
DynamicLoader::LoadBinaryWithUUIDAndAddress(
this, llvm::StringRef(), uuid, addr, value_is_slide,
force_symbol_search, notify, set_address_in_target,
allow_memory_image_last_resort);
}
}
}
void ProcessGDBRemote::MaybeLoadExecutableModule() {
ModuleSP module_sp = GetTarget().GetExecutableModule();
if (!module_sp)
return;
std::optional<QOffsets> offsets = m_gdb_comm.GetQOffsets();
if (!offsets)
return;
bool is_uniform =
size_t(llvm::count(offsets->offsets, offsets->offsets[0])) ==
offsets->offsets.size();
if (!is_uniform)
return; // TODO: Handle non-uniform responses.
bool changed = false;
module_sp->SetLoadAddress(GetTarget(), offsets->offsets[0],
/*value_is_offset=*/true, changed);
if (changed) {
ModuleList list;
list.Append(module_sp);
m_process->GetTarget().ModulesDidLoad(list);
}
}
void ProcessGDBRemote::DidLaunch() {
ArchSpec process_arch;
DidLaunchOrAttach(process_arch);
}
Status ProcessGDBRemote::DoAttachToProcessWithID(
lldb::pid_t attach_pid, const ProcessAttachInfo &attach_info) {
Log *log = GetLog(GDBRLog::Process);
Status error;
LLDB_LOGF(log, "ProcessGDBRemote::%s()", __FUNCTION__);
// Clear out and clean up from any current state
Clear();
if (attach_pid != LLDB_INVALID_PROCESS_ID) {
error = EstablishConnectionIfNeeded(attach_info);
if (error.Success()) {
m_gdb_comm.SetDetachOnError(attach_info.GetDetachOnError());
char packet[64];
const int packet_len =
::snprintf(packet, sizeof(packet), "vAttach;%" PRIx64, attach_pid);
SetID(attach_pid);
auto data_sp =
std::make_shared<EventDataBytes>(llvm::StringRef(packet, packet_len));
m_async_broadcaster.BroadcastEvent(eBroadcastBitAsyncContinue, data_sp);
} else
SetExitStatus(-1, error.AsCString());
}
return error;
}
Status ProcessGDBRemote::DoAttachToProcessWithName(
const char *process_name, const ProcessAttachInfo &attach_info) {
Status error;
// Clear out and clean up from any current state
Clear();
if (process_name && process_name[0]) {
error = EstablishConnectionIfNeeded(attach_info);
if (error.Success()) {
StreamString packet;
m_gdb_comm.SetDetachOnError(attach_info.GetDetachOnError());
if (attach_info.GetWaitForLaunch()) {
if (!m_gdb_comm.GetVAttachOrWaitSupported()) {
packet.PutCString("vAttachWait");
} else {
if (attach_info.GetIgnoreExisting())
packet.PutCString("vAttachWait");
else
packet.PutCString("vAttachOrWait");
}
} else
packet.PutCString("vAttachName");
packet.PutChar(';');
packet.PutBytesAsRawHex8(process_name, strlen(process_name),
endian::InlHostByteOrder(),
endian::InlHostByteOrder());
auto data_sp = std::make_shared<EventDataBytes>(packet.GetString());
m_async_broadcaster.BroadcastEvent(eBroadcastBitAsyncContinue, data_sp);
} else
SetExitStatus(-1, error.AsCString());
}
return error;
}
llvm::Expected<TraceSupportedResponse> ProcessGDBRemote::TraceSupported() {
return m_gdb_comm.SendTraceSupported(GetInterruptTimeout());
}
llvm::Error ProcessGDBRemote::TraceStop(const TraceStopRequest &request) {
return m_gdb_comm.SendTraceStop(request, GetInterruptTimeout());
}
llvm::Error ProcessGDBRemote::TraceStart(const llvm::json::Value &request) {
return m_gdb_comm.SendTraceStart(request, GetInterruptTimeout());
}
llvm::Expected<std::string>
ProcessGDBRemote::TraceGetState(llvm::StringRef type) {
return m_gdb_comm.SendTraceGetState(type, GetInterruptTimeout());
}
llvm::Expected<std::vector<uint8_t>>
ProcessGDBRemote::TraceGetBinaryData(const TraceGetBinaryDataRequest &request) {
return m_gdb_comm.SendTraceGetBinaryData(request, GetInterruptTimeout());
}
void ProcessGDBRemote::DidExit() {
// When we exit, disconnect from the GDB server communications
m_gdb_comm.Disconnect();
}
void ProcessGDBRemote::DidAttach(ArchSpec &process_arch) {
// If you can figure out what the architecture is, fill it in here.
process_arch.Clear();
DidLaunchOrAttach(process_arch);
}
Status ProcessGDBRemote::WillResume() {
m_continue_c_tids.clear();
m_continue_C_tids.clear();
m_continue_s_tids.clear();
m_continue_S_tids.clear();
m_jstopinfo_sp.reset();
m_jthreadsinfo_sp.reset();
return Status();
}
Status ProcessGDBRemote::DoResume() {
Status error;
Log *log = GetLog(GDBRLog::Process);
LLDB_LOGF(log, "ProcessGDBRemote::Resume()");
ListenerSP listener_sp(
Listener::MakeListener("gdb-remote.resume-packet-sent"));
if (listener_sp->StartListeningForEvents(
&m_gdb_comm, GDBRemoteClientBase::eBroadcastBitRunPacketSent)) {
listener_sp->StartListeningForEvents(
&m_async_broadcaster,
ProcessGDBRemote::eBroadcastBitAsyncThreadDidExit);
const size_t num_threads = GetThreadList().GetSize();
StreamString continue_packet;
bool continue_packet_error = false;
if (m_gdb_comm.HasAnyVContSupport()) {
std::string pid_prefix;
if (m_gdb_comm.GetMultiprocessSupported())
pid_prefix = llvm::formatv("p{0:x-}.", GetID());
if (m_continue_c_tids.size() == num_threads ||
(m_continue_c_tids.empty() && m_continue_C_tids.empty() &&
m_continue_s_tids.empty() && m_continue_S_tids.empty())) {
// All threads are continuing
if (m_gdb_comm.GetMultiprocessSupported())
continue_packet.Format("vCont;c:{0}-1", pid_prefix);
else
continue_packet.PutCString("c");
} else {
continue_packet.PutCString("vCont");
if (!m_continue_c_tids.empty()) {
if (m_gdb_comm.GetVContSupported('c')) {
for (tid_collection::const_iterator
t_pos = m_continue_c_tids.begin(),
t_end = m_continue_c_tids.end();
t_pos != t_end; ++t_pos)
continue_packet.Format(";c:{0}{1:x-}", pid_prefix, *t_pos);
} else
continue_packet_error = true;
}
if (!continue_packet_error && !m_continue_C_tids.empty()) {
if (m_gdb_comm.GetVContSupported('C')) {
for (tid_sig_collection::const_iterator
s_pos = m_continue_C_tids.begin(),
s_end = m_continue_C_tids.end();
s_pos != s_end; ++s_pos)
continue_packet.Format(";C{0:x-2}:{1}{2:x-}", s_pos->second,
pid_prefix, s_pos->first);
} else
continue_packet_error = true;
}
if (!continue_packet_error && !m_continue_s_tids.empty()) {
if (m_gdb_comm.GetVContSupported('s')) {
for (tid_collection::const_iterator
t_pos = m_continue_s_tids.begin(),
t_end = m_continue_s_tids.end();
t_pos != t_end; ++t_pos)
continue_packet.Format(";s:{0}{1:x-}", pid_prefix, *t_pos);
} else
continue_packet_error = true;
}
if (!continue_packet_error && !m_continue_S_tids.empty()) {
if (m_gdb_comm.GetVContSupported('S')) {
for (tid_sig_collection::const_iterator
s_pos = m_continue_S_tids.begin(),
s_end = m_continue_S_tids.end();
s_pos != s_end; ++s_pos)
continue_packet.Format(";S{0:x-2}:{1}{2:x-}", s_pos->second,
pid_prefix, s_pos->first);
} else
continue_packet_error = true;
}
if (continue_packet_error)
continue_packet.Clear();
}
} else
continue_packet_error = true;
if (continue_packet_error) {
// Either no vCont support, or we tried to use part of the vCont packet
// that wasn't supported by the remote GDB server. We need to try and
// make a simple packet that can do our continue
const size_t num_continue_c_tids = m_continue_c_tids.size();
const size_t num_continue_C_tids = m_continue_C_tids.size();
const size_t num_continue_s_tids = m_continue_s_tids.size();
const size_t num_continue_S_tids = m_continue_S_tids.size();
if (num_continue_c_tids > 0) {
if (num_continue_c_tids == num_threads) {
// All threads are resuming...
m_gdb_comm.SetCurrentThreadForRun(-1);
continue_packet.PutChar('c');
continue_packet_error = false;
} else if (num_continue_c_tids == 1 && num_continue_C_tids == 0 &&
num_continue_s_tids == 0 && num_continue_S_tids == 0) {
// Only one thread is continuing
m_gdb_comm.SetCurrentThreadForRun(m_continue_c_tids.front());
continue_packet.PutChar('c');
continue_packet_error = false;
}
}
if (continue_packet_error && num_continue_C_tids > 0) {
if ((num_continue_C_tids + num_continue_c_tids) == num_threads &&
num_continue_C_tids > 0 && num_continue_s_tids == 0 &&
num_continue_S_tids == 0) {
const int continue_signo = m_continue_C_tids.front().second;
// Only one thread is continuing
if (num_continue_C_tids > 1) {
// More that one thread with a signal, yet we don't have vCont
// support and we are being asked to resume each thread with a
// signal, we need to make sure they are all the same signal, or we
// can't issue the continue accurately with the current support...
if (num_continue_C_tids > 1) {
continue_packet_error = false;
for (size_t i = 1; i < m_continue_C_tids.size(); ++i) {
if (m_continue_C_tids[i].second != continue_signo)
continue_packet_error = true;
}
}
if (!continue_packet_error)
m_gdb_comm.SetCurrentThreadForRun(-1);
} else {
// Set the continue thread ID
continue_packet_error = false;
m_gdb_comm.SetCurrentThreadForRun(m_continue_C_tids.front().first);
}
if (!continue_packet_error) {
// Add threads continuing with the same signo...
continue_packet.Printf("C%2.2x", continue_signo);
}
}
}
if (continue_packet_error && num_continue_s_tids > 0) {
if (num_continue_s_tids == num_threads) {
// All threads are resuming...
m_gdb_comm.SetCurrentThreadForRun(-1);
continue_packet.PutChar('s');
continue_packet_error = false;
} else if (num_continue_c_tids == 0 && num_continue_C_tids == 0 &&
num_continue_s_tids == 1 && num_continue_S_tids == 0) {
// Only one thread is stepping
m_gdb_comm.SetCurrentThreadForRun(m_continue_s_tids.front());
continue_packet.PutChar('s');
continue_packet_error = false;
}
}
if (!continue_packet_error && num_continue_S_tids > 0) {
if (num_continue_S_tids == num_threads) {
const int step_signo = m_continue_S_tids.front().second;
// Are all threads trying to step with the same signal?
continue_packet_error = false;
if (num_continue_S_tids > 1) {
for (size_t i = 1; i < num_threads; ++i) {
if (m_continue_S_tids[i].second != step_signo)
continue_packet_error = true;
}
}
if (!continue_packet_error) {
// Add threads stepping with the same signo...
m_gdb_comm.SetCurrentThreadForRun(-1);
continue_packet.Printf("S%2.2x", step_signo);
}
} else if (num_continue_c_tids == 0 && num_continue_C_tids == 0 &&
num_continue_s_tids == 0 && num_continue_S_tids == 1) {
// Only one thread is stepping with signal
m_gdb_comm.SetCurrentThreadForRun(m_continue_S_tids.front().first);
continue_packet.Printf("S%2.2x", m_continue_S_tids.front().second);
continue_packet_error = false;
}
}
}
if (continue_packet_error) {
error.SetErrorString("can't make continue packet for this resume");
} else {
EventSP event_sp;
if (!m_async_thread.IsJoinable()) {
error.SetErrorString("Trying to resume but the async thread is dead.");
LLDB_LOGF(log, "ProcessGDBRemote::DoResume: Trying to resume but the "
"async thread is dead.");
return error;
}
auto data_sp =
std::make_shared<EventDataBytes>(continue_packet.GetString());
m_async_broadcaster.BroadcastEvent(eBroadcastBitAsyncContinue, data_sp);
if (!listener_sp->GetEvent(event_sp, std::chrono::seconds(5))) {
error.SetErrorString("Resume timed out.");
LLDB_LOGF(log, "ProcessGDBRemote::DoResume: Resume timed out.");
} else if (event_sp->BroadcasterIs(&m_async_broadcaster)) {
error.SetErrorString("Broadcast continue, but the async thread was "
"killed before we got an ack back.");
LLDB_LOGF(log,
"ProcessGDBRemote::DoResume: Broadcast continue, but the "
"async thread was killed before we got an ack back.");
return error;
}
}
}
return error;
}
void ProcessGDBRemote::ClearThreadIDList() {
std::lock_guard<std::recursive_mutex> guard(m_thread_list_real.GetMutex());
m_thread_ids.clear();
m_thread_pcs.clear();
}
size_t ProcessGDBRemote::UpdateThreadIDsFromStopReplyThreadsValue(
llvm::StringRef value) {
m_thread_ids.clear();
lldb::pid_t pid = m_gdb_comm.GetCurrentProcessID();
StringExtractorGDBRemote thread_ids{value};
do {
auto pid_tid = thread_ids.GetPidTid(pid);
if (pid_tid && pid_tid->first == pid) {
lldb::tid_t tid = pid_tid->second;
if (tid != LLDB_INVALID_THREAD_ID &&
tid != StringExtractorGDBRemote::AllProcesses)
m_thread_ids.push_back(tid);
}
} while (thread_ids.GetChar() == ',');
return m_thread_ids.size();
}
size_t ProcessGDBRemote::UpdateThreadPCsFromStopReplyThreadsValue(
llvm::StringRef value) {
m_thread_pcs.clear();
for (llvm::StringRef x : llvm::split(value, ',')) {
lldb::addr_t pc;
if (llvm::to_integer(x, pc, 16))
m_thread_pcs.push_back(pc);
}
return m_thread_pcs.size();
}
bool ProcessGDBRemote::UpdateThreadIDList() {
std::lock_guard<std::recursive_mutex> guard(m_thread_list_real.GetMutex());
if (m_jthreadsinfo_sp) {
// If we have the JSON threads info, we can get the thread list from that
StructuredData::Array *thread_infos = m_jthreadsinfo_sp->GetAsArray();
if (thread_infos && thread_infos->GetSize() > 0) {
m_thread_ids.clear();
m_thread_pcs.clear();
thread_infos->ForEach([this](StructuredData::Object *object) -> bool {
StructuredData::Dictionary *thread_dict = object->GetAsDictionary();
if (thread_dict) {
// Set the thread stop info from the JSON dictionary
SetThreadStopInfo(thread_dict);
lldb::tid_t tid = LLDB_INVALID_THREAD_ID;
if (thread_dict->GetValueForKeyAsInteger<lldb::tid_t>("tid", tid))
m_thread_ids.push_back(tid);
}
return true; // Keep iterating through all thread_info objects
});
}
if (!m_thread_ids.empty())
return true;
} else {
// See if we can get the thread IDs from the current stop reply packets
// that might contain a "threads" key/value pair
if (m_last_stop_packet) {
// Get the thread stop info
StringExtractorGDBRemote &stop_info = *m_last_stop_packet;
const std::string &stop_info_str = std::string(stop_info.GetStringRef());
m_thread_pcs.clear();
const size_t thread_pcs_pos = stop_info_str.find(";thread-pcs:");
if (thread_pcs_pos != std::string::npos) {
const size_t start = thread_pcs_pos + strlen(";thread-pcs:");
const size_t end = stop_info_str.find(';', start);
if (end != std::string::npos) {
std::string value = stop_info_str.substr(start, end - start);
UpdateThreadPCsFromStopReplyThreadsValue(value);
}
}
const size_t threads_pos = stop_info_str.find(";threads:");
if (threads_pos != std::string::npos) {
const size_t start = threads_pos + strlen(";threads:");
const size_t end = stop_info_str.find(';', start);
if (end != std::string::npos) {
std::string value = stop_info_str.substr(start, end - start);
if (UpdateThreadIDsFromStopReplyThreadsValue(value))
return true;
}
}
}
}
bool sequence_mutex_unavailable = false;
m_gdb_comm.GetCurrentThreadIDs(m_thread_ids, sequence_mutex_unavailable);
if (sequence_mutex_unavailable) {
return false; // We just didn't get the list
}
return true;
}
bool ProcessGDBRemote::DoUpdateThreadList(ThreadList &old_thread_list,
ThreadList &new_thread_list) {
// locker will keep a mutex locked until it goes out of scope
Log *log = GetLog(GDBRLog::Thread);
LLDB_LOGV(log, "pid = {0}", GetID());
size_t num_thread_ids = m_thread_ids.size();
// The "m_thread_ids" thread ID list should always be updated after each stop
// reply packet, but in case it isn't, update it here.
if (num_thread_ids == 0) {
if (!UpdateThreadIDList())
return false;
num_thread_ids = m_thread_ids.size();
}
ThreadList old_thread_list_copy(old_thread_list);
if (num_thread_ids > 0) {
for (size_t i = 0; i < num_thread_ids; ++i) {
tid_t tid = m_thread_ids[i];
ThreadSP thread_sp(
old_thread_list_copy.RemoveThreadByProtocolID(tid, false));
if (!thread_sp) {
thread_sp = std::make_shared<ThreadGDBRemote>(*this, tid);
LLDB_LOGV(log, "Making new thread: {0} for thread ID: {1:x}.",
thread_sp.get(), thread_sp->GetID());
} else {
LLDB_LOGV(log, "Found old thread: {0} for thread ID: {1:x}.",
thread_sp.get(), thread_sp->GetID());
}
SetThreadPc(thread_sp, i);
new_thread_list.AddThreadSortedByIndexID(thread_sp);
}
}
// Whatever that is left in old_thread_list_copy are not present in
// new_thread_list. Remove non-existent threads from internal id table.
size_t old_num_thread_ids = old_thread_list_copy.GetSize(false);
for (size_t i = 0; i < old_num_thread_ids; i++) {
ThreadSP old_thread_sp(old_thread_list_copy.GetThreadAtIndex(i, false));
if (old_thread_sp) {
lldb::tid_t old_thread_id = old_thread_sp->GetProtocolID();
m_thread_id_to_index_id_map.erase(old_thread_id);
}
}
return true;
}
void ProcessGDBRemote::SetThreadPc(const ThreadSP &thread_sp, uint64_t index) {
if (m_thread_ids.size() == m_thread_pcs.size() && thread_sp.get() &&
GetByteOrder() != eByteOrderInvalid) {
ThreadGDBRemote *gdb_thread =
static_cast<ThreadGDBRemote *>(thread_sp.get());
RegisterContextSP reg_ctx_sp(thread_sp->GetRegisterContext());
if (reg_ctx_sp) {
uint32_t pc_regnum = reg_ctx_sp->ConvertRegisterKindToRegisterNumber(
eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
if (pc_regnum != LLDB_INVALID_REGNUM) {
gdb_thread->PrivateSetRegisterValue(pc_regnum, m_thread_pcs[index]);
}
}
}
}
bool ProcessGDBRemote::GetThreadStopInfoFromJSON(
ThreadGDBRemote *thread, const StructuredData::ObjectSP &thread_infos_sp) {
// See if we got thread stop infos for all threads via the "jThreadsInfo"
// packet
if (thread_infos_sp) {
StructuredData::Array *thread_infos = thread_infos_sp->GetAsArray();
if (thread_infos) {
lldb::tid_t tid;
const size_t n = thread_infos->GetSize();
for (size_t i = 0; i < n; ++i) {
StructuredData::Dictionary *thread_dict =
thread_infos->GetItemAtIndex(i)->GetAsDictionary();
if (thread_dict) {
if (thread_dict->GetValueForKeyAsInteger<lldb::tid_t>(
"tid", tid, LLDB_INVALID_THREAD_ID)) {
if (tid == thread->GetID())
return (bool)SetThreadStopInfo(thread_dict);
}
}
}
}
}
return false;
}
bool ProcessGDBRemote::CalculateThreadStopInfo(ThreadGDBRemote *thread) {
// See if we got thread stop infos for all threads via the "jThreadsInfo"
// packet
if (GetThreadStopInfoFromJSON(thread, m_jthreadsinfo_sp))
return true;
// See if we got thread stop info for any threads valid stop info reasons
// threads via the "jstopinfo" packet stop reply packet key/value pair?
if (m_jstopinfo_sp) {
// If we have "jstopinfo" then we have stop descriptions for all threads
// that have stop reasons, and if there is no entry for a thread, then it
// has no stop reason.
thread->GetRegisterContext()->InvalidateIfNeeded(true);
if (!GetThreadStopInfoFromJSON(thread, m_jstopinfo_sp)) {
// If a thread is stopped at a breakpoint site, set that as the stop
// reason even if it hasn't executed the breakpoint instruction yet.
// We will silently step over the breakpoint when we resume execution
// and miss the fact that this thread hit the breakpoint.
const size_t num_thread_ids = m_thread_ids.size();
for (size_t i = 0; i < num_thread_ids; i++) {
if (m_thread_ids[i] == thread->GetID() && m_thread_pcs.size() > i) {
addr_t pc = m_thread_pcs[i];
lldb::BreakpointSiteSP bp_site_sp =
thread->GetProcess()->GetBreakpointSiteList().FindByAddress(pc);
if (bp_site_sp) {
if (bp_site_sp->ValidForThisThread(*thread)) {
thread->SetStopInfo(
StopInfo::CreateStopReasonWithBreakpointSiteID(
*thread, bp_site_sp->GetID()));
return true;
}
}
}
}
thread->SetStopInfo(StopInfoSP());
}
return true;
}
// Fall back to using the qThreadStopInfo packet
StringExtractorGDBRemote stop_packet;
if (GetGDBRemote().GetThreadStopInfo(thread->GetProtocolID(), stop_packet))
return SetThreadStopInfo(stop_packet) == eStateStopped;
return false;
}
void ProcessGDBRemote::ParseExpeditedRegisters(
ExpeditedRegisterMap &expedited_register_map, ThreadSP thread_sp) {
ThreadGDBRemote *gdb_thread = static_cast<ThreadGDBRemote *>(thread_sp.get());
RegisterContextSP gdb_reg_ctx_sp(gdb_thread->GetRegisterContext());
for (const auto &pair : expedited_register_map) {
StringExtractor reg_value_extractor(pair.second);
WritableDataBufferSP buffer_sp(
new DataBufferHeap(reg_value_extractor.GetStringRef().size() / 2, 0));
reg_value_extractor.GetHexBytes(buffer_sp->GetData(), '\xcc');
uint32_t lldb_regnum = gdb_reg_ctx_sp->ConvertRegisterKindToRegisterNumber(
eRegisterKindProcessPlugin, pair.first);
gdb_thread->PrivateSetRegisterValue(lldb_regnum, buffer_sp->GetData());
}
}
ThreadSP ProcessGDBRemote::SetThreadStopInfo(
lldb::tid_t tid, ExpeditedRegisterMap &expedited_register_map,
uint8_t signo, const std::string &thread_name, const std::string &reason,
const std::string &description, uint32_t exc_type,
const std::vector<addr_t> &exc_data, addr_t thread_dispatch_qaddr,
bool queue_vars_valid, // Set to true if queue_name, queue_kind and
// queue_serial are valid
LazyBool associated_with_dispatch_queue, addr_t dispatch_queue_t,
std::string &queue_name, QueueKind queue_kind, uint64_t queue_serial) {
if (tid == LLDB_INVALID_THREAD_ID)
return nullptr;
ThreadSP thread_sp;
// Scope for "locker" below
{
// m_thread_list_real does have its own mutex, but we need to hold onto the
// mutex between the call to m_thread_list_real.FindThreadByID(...) and the
// m_thread_list_real.AddThread(...) so it doesn't change on us
std::lock_guard<std::recursive_mutex> guard(m_thread_list_real.GetMutex());
thread_sp = m_thread_list_real.FindThreadByProtocolID(tid, false);
if (!thread_sp) {
// Create the thread if we need to
thread_sp = std::make_shared<ThreadGDBRemote>(*this, tid);
m_thread_list_real.AddThread(thread_sp);
}
}
ThreadGDBRemote *gdb_thread = static_cast<ThreadGDBRemote *>(thread_sp.get());
RegisterContextSP reg_ctx_sp(gdb_thread->GetRegisterContext());
reg_ctx_sp->InvalidateIfNeeded(true);
auto iter = std::find(m_thread_ids.begin(), m_thread_ids.end(), tid);
if (iter != m_thread_ids.end())
SetThreadPc(thread_sp, iter - m_thread_ids.begin());
ParseExpeditedRegisters(expedited_register_map, thread_sp);
if (reg_ctx_sp->ReconfigureRegisterInfo()) {
// Now we have changed the offsets of all the registers, so the values
// will be corrupted.
reg_ctx_sp->InvalidateAllRegisters();
// Expedited registers values will never contain registers that would be
// resized by a reconfigure. So we are safe to continue using these
// values.
ParseExpeditedRegisters(expedited_register_map, thread_sp);
}
thread_sp->SetName(thread_name.empty() ? nullptr : thread_name.c_str());
gdb_thread->SetThreadDispatchQAddr(thread_dispatch_qaddr);
// Check if the GDB server was able to provide the queue name, kind and serial
// number
if (queue_vars_valid)
gdb_thread->SetQueueInfo(std::move(queue_name), queue_kind, queue_serial,
dispatch_queue_t, associated_with_dispatch_queue);
else
gdb_thread->ClearQueueInfo();
gdb_thread->SetAssociatedWithLibdispatchQueue(associated_with_dispatch_queue);
if (dispatch_queue_t != LLDB_INVALID_ADDRESS)
gdb_thread->SetQueueLibdispatchQueueAddress(dispatch_queue_t);
// Make sure we update our thread stop reason just once, but don't overwrite
// the stop info for threads that haven't moved:
StopInfoSP current_stop_info_sp = thread_sp->GetPrivateStopInfo(false);
if (thread_sp->GetTemporaryResumeState() == eStateSuspended &&
current_stop_info_sp) {
thread_sp->SetStopInfo(current_stop_info_sp);
return thread_sp;
}
if (!thread_sp->StopInfoIsUpToDate()) {
thread_sp->SetStopInfo(StopInfoSP());
// If there's a memory thread backed by this thread, we need to use it to
// calculate StopInfo.
if (ThreadSP memory_thread_sp = m_thread_list.GetBackingThread(thread_sp))
thread_sp = memory_thread_sp;
if (exc_type != 0) {
const size_t exc_data_size = exc_data.size();
thread_sp->SetStopInfo(
StopInfoMachException::CreateStopReasonWithMachException(
*thread_sp, exc_type, exc_data_size,
exc_data_size >= 1 ? exc_data[0] : 0,
exc_data_size >= 2 ? exc_data[1] : 0,
exc_data_size >= 3 ? exc_data[2] : 0));
} else {
bool handled = false;
bool did_exec = false;
// debugserver can send reason = "none" which is equivalent
// to no reason.
if (!reason.empty() && reason != "none") {
if (reason == "trace") {
addr_t pc = thread_sp->GetRegisterContext()->GetPC();
lldb::BreakpointSiteSP bp_site_sp =
thread_sp->GetProcess()->GetBreakpointSiteList().FindByAddress(
pc);
// If the current pc is a breakpoint site then the StopInfo should be
// set to Breakpoint Otherwise, it will be set to Trace.
if (bp_site_sp && bp_site_sp->ValidForThisThread(*thread_sp)) {
thread_sp->SetStopInfo(
StopInfo::CreateStopReasonWithBreakpointSiteID(
*thread_sp, bp_site_sp->GetID()));
} else
thread_sp->SetStopInfo(
StopInfo::CreateStopReasonToTrace(*thread_sp));
handled = true;
} else if (reason == "breakpoint") {
addr_t pc = thread_sp->GetRegisterContext()->GetPC();
lldb::BreakpointSiteSP bp_site_sp =
thread_sp->GetProcess()->GetBreakpointSiteList().FindByAddress(
pc);
if (bp_site_sp) {
// If the breakpoint is for this thread, then we'll report the hit,
// but if it is for another thread, we can just report no reason.
// We don't need to worry about stepping over the breakpoint here,
// that will be taken care of when the thread resumes and notices
// that there's a breakpoint under the pc.
handled = true;
if (bp_site_sp->ValidForThisThread(*thread_sp)) {
thread_sp->SetStopInfo(
StopInfo::CreateStopReasonWithBreakpointSiteID(
*thread_sp, bp_site_sp->GetID()));
} else {
StopInfoSP invalid_stop_info_sp;
thread_sp->SetStopInfo(invalid_stop_info_sp);
}
}
} else if (reason == "trap") {
// Let the trap just use the standard signal stop reason below...
} else if (reason == "watchpoint") {
// We will have between 1 and 3 fields in the description.
//
// \a wp_addr which is the original start address that
// lldb requested be watched, or an address that the
// hardware reported. This address should be within the
// range of a currently active watchpoint region - lldb
// should be able to find a watchpoint with this address.
//
// \a wp_index is the hardware watchpoint register number.
//
// \a wp_hit_addr is the actual address reported by the hardware,
// which may be outside the range of a region we are watching.
//
// On MIPS, we may get a false watchpoint exception where an
// access to the same 8 byte granule as a watchpoint will trigger,
// even if the access was not within the range of the watched
// region. When we get a \a wp_hit_addr outside the range of any
// set watchpoint, continue execution without making it visible to
// the user.
//
// On ARM, a related issue where a large access that starts
// before the watched region (and extends into the watched
// region) may report a hit address before the watched region.
// lldb will not find the "nearest" watchpoint to
// disable/step/re-enable it, so one of the valid watchpoint
// addresses should be provided as \a wp_addr.
StringExtractor desc_extractor(description.c_str());
// FIXME NativeThreadLinux::SetStoppedByWatchpoint sends this
// up as
// <address within wp range> <wp hw index> <actual accessed addr>
// but this is not reading the <wp hw index>. Seems like it
// wouldn't work on MIPS, where that third field is important.
addr_t wp_addr = desc_extractor.GetU64(LLDB_INVALID_ADDRESS);
addr_t wp_hit_addr = desc_extractor.GetU64(LLDB_INVALID_ADDRESS);
watch_id_t watch_id = LLDB_INVALID_WATCH_ID;
bool silently_continue = false;
WatchpointResourceSP wp_resource_sp;
if (wp_hit_addr != LLDB_INVALID_ADDRESS) {
wp_resource_sp =
m_watchpoint_resource_list.FindByAddress(wp_hit_addr);
// On MIPS, \a wp_hit_addr outside the range of a watched
// region means we should silently continue, it is a false hit.
ArchSpec::Core core = GetTarget().GetArchitecture().GetCore();
if (!wp_resource_sp && core >= ArchSpec::kCore_mips_first &&
core <= ArchSpec::kCore_mips_last)
silently_continue = true;
}
if (!wp_resource_sp && wp_addr != LLDB_INVALID_ADDRESS)
wp_resource_sp = m_watchpoint_resource_list.FindByAddress(wp_addr);
if (!wp_resource_sp) {
Log *log(GetLog(GDBRLog::Watchpoints));
LLDB_LOGF(log, "failed to find watchpoint");
watch_id = LLDB_INVALID_SITE_ID;
} else {
// LWP_TODO: This is hardcoding a single Watchpoint in a
// Resource, need to add
// StopInfo::CreateStopReasonWithWatchpointResource which
// represents all watchpoints that were tripped at this stop.
watch_id = wp_resource_sp->GetConstituentAtIndex(0)->GetID();
}
thread_sp->SetStopInfo(StopInfo::CreateStopReasonWithWatchpointID(
*thread_sp, watch_id, silently_continue));
handled = true;
} else if (reason == "exception") {
thread_sp->SetStopInfo(StopInfo::CreateStopReasonWithException(
*thread_sp, description.c_str()));
handled = true;
} else if (reason == "exec") {
did_exec = true;
thread_sp->SetStopInfo(
StopInfo::CreateStopReasonWithExec(*thread_sp));
handled = true;
} else if (reason == "processor trace") {
thread_sp->SetStopInfo(StopInfo::CreateStopReasonProcessorTrace(
*thread_sp, description.c_str()));
} else if (reason == "fork") {
StringExtractor desc_extractor(description.c_str());
lldb::pid_t child_pid =
desc_extractor.GetU64(LLDB_INVALID_PROCESS_ID);
lldb::tid_t child_tid = desc_extractor.GetU64(LLDB_INVALID_THREAD_ID);
thread_sp->SetStopInfo(
StopInfo::CreateStopReasonFork(*thread_sp, child_pid, child_tid));
handled = true;
} else if (reason == "vfork") {
StringExtractor desc_extractor(description.c_str());
lldb::pid_t child_pid =
desc_extractor.GetU64(LLDB_INVALID_PROCESS_ID);
lldb::tid_t child_tid = desc_extractor.GetU64(LLDB_INVALID_THREAD_ID);
thread_sp->SetStopInfo(StopInfo::CreateStopReasonVFork(
*thread_sp, child_pid, child_tid));
handled = true;
} else if (reason == "vforkdone") {
thread_sp->SetStopInfo(
StopInfo::CreateStopReasonVForkDone(*thread_sp));
handled = true;
}
} else if (!signo) {
addr_t pc = thread_sp->GetRegisterContext()->GetPC();
lldb::BreakpointSiteSP bp_site_sp =
thread_sp->GetProcess()->GetBreakpointSiteList().FindByAddress(pc);
// If a thread is stopped at a breakpoint site, set that as the stop
// reason even if it hasn't executed the breakpoint instruction yet.
// We will silently step over the breakpoint when we resume execution
// and miss the fact that this thread hit the breakpoint.
if (bp_site_sp && bp_site_sp->ValidForThisThread(*thread_sp)) {
thread_sp->SetStopInfo(StopInfo::CreateStopReasonWithBreakpointSiteID(
*thread_sp, bp_site_sp->GetID()));
handled = true;
}
}
if (!handled && signo && !did_exec) {
if (signo == SIGTRAP) {
// Currently we are going to assume SIGTRAP means we are either
// hitting a breakpoint or hardware single stepping.
handled = true;
addr_t pc =
thread_sp->GetRegisterContext()->GetPC() + m_breakpoint_pc_offset;
lldb::BreakpointSiteSP bp_site_sp =
thread_sp->GetProcess()->GetBreakpointSiteList().FindByAddress(
pc);
if (bp_site_sp) {
// If the breakpoint is for this thread, then we'll report the hit,
// but if it is for another thread, we can just report no reason.
// We don't need to worry about stepping over the breakpoint here,
// that will be taken care of when the thread resumes and notices
// that there's a breakpoint under the pc.
if (bp_site_sp->ValidForThisThread(*thread_sp)) {
if (m_breakpoint_pc_offset != 0)
thread_sp->GetRegisterContext()->SetPC(pc);
thread_sp->SetStopInfo(
StopInfo::CreateStopReasonWithBreakpointSiteID(
*thread_sp, bp_site_sp->GetID()));
} else {
StopInfoSP invalid_stop_info_sp;
thread_sp->SetStopInfo(invalid_stop_info_sp);
}
} else {
// If we were stepping then assume the stop was the result of the
// trace. If we were not stepping then report the SIGTRAP.
// FIXME: We are still missing the case where we single step over a
// trap instruction.
if (thread_sp->GetTemporaryResumeState() == eStateStepping)
thread_sp->SetStopInfo(
StopInfo::CreateStopReasonToTrace(*thread_sp));
else
thread_sp->SetStopInfo(StopInfo::CreateStopReasonWithSignal(
*thread_sp, signo, description.c_str()));
}
}
if (!handled)
thread_sp->SetStopInfo(StopInfo::CreateStopReasonWithSignal(
*thread_sp, signo, description.c_str()));
}
if (!description.empty()) {
lldb::StopInfoSP stop_info_sp(thread_sp->GetStopInfo());
if (stop_info_sp) {
const char *stop_info_desc = stop_info_sp->GetDescription();
if (!stop_info_desc || !stop_info_desc[0])
stop_info_sp->SetDescription(description.c_str());
} else {
thread_sp->SetStopInfo(StopInfo::CreateStopReasonWithException(
*thread_sp, description.c_str()));
}
}
}
}
return thread_sp;
}
lldb::ThreadSP
ProcessGDBRemote::SetThreadStopInfo(StructuredData::Dictionary *thread_dict) {
static constexpr llvm::StringLiteral g_key_tid("tid");
static constexpr llvm::StringLiteral g_key_name("name");
static constexpr llvm::StringLiteral g_key_reason("reason");
static constexpr llvm::StringLiteral g_key_metype("metype");
static constexpr llvm::StringLiteral g_key_medata("medata");
static constexpr llvm::StringLiteral g_key_qaddr("qaddr");
static constexpr llvm::StringLiteral g_key_dispatch_queue_t(
"dispatch_queue_t");
static constexpr llvm::StringLiteral g_key_associated_with_dispatch_queue(
"associated_with_dispatch_queue");
static constexpr llvm::StringLiteral g_key_queue_name("qname");
static constexpr llvm::StringLiteral g_key_queue_kind("qkind");
static constexpr llvm::StringLiteral g_key_queue_serial_number("qserialnum");
static constexpr llvm::StringLiteral g_key_registers("registers");
static constexpr llvm::StringLiteral g_key_memory("memory");
static constexpr llvm::StringLiteral g_key_description("description");
static constexpr llvm::StringLiteral g_key_signal("signal");
// Stop with signal and thread info
lldb::tid_t tid = LLDB_INVALID_THREAD_ID;
uint8_t signo = 0;
std::string value;
std::string thread_name;
std::string reason;
std::string description;
uint32_t exc_type = 0;
std::vector<addr_t> exc_data;
addr_t thread_dispatch_qaddr = LLDB_INVALID_ADDRESS;
ExpeditedRegisterMap expedited_register_map;
bool queue_vars_valid = false;
addr_t dispatch_queue_t = LLDB_INVALID_ADDRESS;
LazyBool associated_with_dispatch_queue = eLazyBoolCalculate;
std::string queue_name;
QueueKind queue_kind = eQueueKindUnknown;
uint64_t queue_serial_number = 0;
// Iterate through all of the thread dictionary key/value pairs from the
// structured data dictionary
// FIXME: we're silently ignoring invalid data here
thread_dict->ForEach([this, &tid, &expedited_register_map, &thread_name,
&signo, &reason, &description, &exc_type, &exc_data,
&thread_dispatch_qaddr, &queue_vars_valid,
&associated_with_dispatch_queue, &dispatch_queue_t,
&queue_name, &queue_kind, &queue_serial_number](
llvm::StringRef key,
StructuredData::Object *object) -> bool {
if (key == g_key_tid) {
// thread in big endian hex
tid = object->GetUnsignedIntegerValue(LLDB_INVALID_THREAD_ID);
} else if (key == g_key_metype) {
// exception type in big endian hex
exc_type = object->GetUnsignedIntegerValue(0);
} else if (key == g_key_medata) {
// exception data in big endian hex
StructuredData::Array *array = object->GetAsArray();
if (array) {
array->ForEach([&exc_data](StructuredData::Object *object) -> bool {
exc_data.push_back(object->GetUnsignedIntegerValue());
return true; // Keep iterating through all array items
});
}
} else if (key == g_key_name) {
thread_name = std::string(object->GetStringValue());
} else if (key == g_key_qaddr) {
thread_dispatch_qaddr =
object->GetUnsignedIntegerValue(LLDB_INVALID_ADDRESS);
} else if (key == g_key_queue_name) {
queue_vars_valid = true;
queue_name = std::string(object->GetStringValue());
} else if (key == g_key_queue_kind) {
std::string queue_kind_str = std::string(object->GetStringValue());
if (queue_kind_str == "serial") {
queue_vars_valid = true;
queue_kind = eQueueKindSerial;
} else if (queue_kind_str == "concurrent") {
queue_vars_valid = true;
queue_kind = eQueueKindConcurrent;
}
} else if (key == g_key_queue_serial_number) {
queue_serial_number = object->GetUnsignedIntegerValue(0);
if (queue_serial_number != 0)
queue_vars_valid = true;
} else if (key == g_key_dispatch_queue_t) {
dispatch_queue_t = object->GetUnsignedIntegerValue(0);
if (dispatch_queue_t != 0 && dispatch_queue_t != LLDB_INVALID_ADDRESS)
queue_vars_valid = true;
} else if (key == g_key_associated_with_dispatch_queue) {
queue_vars_valid = true;
bool associated = object->GetBooleanValue();
if (associated)
associated_with_dispatch_queue = eLazyBoolYes;
else
associated_with_dispatch_queue = eLazyBoolNo;
} else if (key == g_key_reason) {
reason = std::string(object->GetStringValue());
} else if (key == g_key_description) {
description = std::string(object->GetStringValue());
} else if (key == g_key_registers) {
StructuredData::Dictionary *registers_dict = object->GetAsDictionary();
if (registers_dict) {
registers_dict->ForEach(
[&expedited_register_map](llvm::StringRef key,
StructuredData::Object *object) -> bool {
uint32_t reg;
if (llvm::to_integer(key, reg))
expedited_register_map[reg] =
std::string(object->GetStringValue());
return true; // Keep iterating through all array items
});
}
} else if (key == g_key_memory) {
StructuredData::Array *array = object->GetAsArray();
if (array) {
array->ForEach([this](StructuredData::Object *object) -> bool {
StructuredData::Dictionary *mem_cache_dict =
object->GetAsDictionary();
if (mem_cache_dict) {
lldb::addr_t mem_cache_addr = LLDB_INVALID_ADDRESS;
if (mem_cache_dict->GetValueForKeyAsInteger<lldb::addr_t>(
"address", mem_cache_addr)) {
if (mem_cache_addr != LLDB_INVALID_ADDRESS) {
llvm::StringRef str;
if (mem_cache_dict->GetValueForKeyAsString("bytes", str)) {
StringExtractor bytes(str);
bytes.SetFilePos(0);
const size_t byte_size = bytes.GetStringRef().size() / 2;
WritableDataBufferSP data_buffer_sp(
new DataBufferHeap(byte_size, 0));
const size_t bytes_copied =
bytes.GetHexBytes(data_buffer_sp->GetData(), 0);
if (bytes_copied == byte_size)
m_memory_cache.AddL1CacheData(mem_cache_addr,
data_buffer_sp);
}
}
}
}
return true; // Keep iterating through all array items
});
}
} else if (key == g_key_signal)
signo = object->GetUnsignedIntegerValue(LLDB_INVALID_SIGNAL_NUMBER);
return true; // Keep iterating through all dictionary key/value pairs
});
return SetThreadStopInfo(tid, expedited_register_map, signo, thread_name,
reason, description, exc_type, exc_data,
thread_dispatch_qaddr, queue_vars_valid,
associated_with_dispatch_queue, dispatch_queue_t,
queue_name, queue_kind, queue_serial_number);
}
StateType ProcessGDBRemote::SetThreadStopInfo(StringExtractor &stop_packet) {
lldb::pid_t pid = m_gdb_comm.GetCurrentProcessID();
stop_packet.SetFilePos(0);
const char stop_type = stop_packet.GetChar();
switch (stop_type) {
case 'T':
case 'S': {
// This is a bit of a hack, but it is required. If we did exec, we need to
// clear our thread lists and also know to rebuild our dynamic register
// info before we lookup and threads and populate the expedited register
// values so we need to know this right away so we can cleanup and update
// our registers.
const uint32_t stop_id = GetStopID();
if (stop_id == 0) {
// Our first stop, make sure we have a process ID, and also make sure we
// know about our registers
if (GetID() == LLDB_INVALID_PROCESS_ID && pid != LLDB_INVALID_PROCESS_ID)
SetID(pid);
BuildDynamicRegisterInfo(true);
}
// Stop with signal and thread info
lldb::pid_t stop_pid = LLDB_INVALID_PROCESS_ID;
lldb::tid_t tid = LLDB_INVALID_THREAD_ID;
const uint8_t signo = stop_packet.GetHexU8();
llvm::StringRef key;
llvm::StringRef value;
std::string thread_name;
std::string reason;
std::string description;
uint32_t exc_type = 0;
std::vector<addr_t> exc_data;
addr_t thread_dispatch_qaddr = LLDB_INVALID_ADDRESS;
bool queue_vars_valid =
false; // says if locals below that start with "queue_" are valid
addr_t dispatch_queue_t = LLDB_INVALID_ADDRESS;
LazyBool associated_with_dispatch_queue = eLazyBoolCalculate;
std::string queue_name;
QueueKind queue_kind = eQueueKindUnknown;
uint64_t queue_serial_number = 0;
ExpeditedRegisterMap expedited_register_map;
AddressableBits addressable_bits;
while (stop_packet.GetNameColonValue(key, value)) {
if (key.compare("metype") == 0) {
// exception type in big endian hex
value.getAsInteger(16, exc_type);
} else if (key.compare("medata") == 0) {
// exception data in big endian hex
uint64_t x;
value.getAsInteger(16, x);
exc_data.push_back(x);
} else if (key.compare("thread") == 0) {
// thread-id
StringExtractorGDBRemote thread_id{value};
auto pid_tid = thread_id.GetPidTid(pid);
if (pid_tid) {
stop_pid = pid_tid->first;
tid = pid_tid->second;
} else
tid = LLDB_INVALID_THREAD_ID;
} else if (key.compare("threads") == 0) {
std::lock_guard<std::recursive_mutex> guard(
m_thread_list_real.GetMutex());
UpdateThreadIDsFromStopReplyThreadsValue(value);
} else if (key.compare("thread-pcs") == 0) {
m_thread_pcs.clear();
// A comma separated list of all threads in the current
// process that includes the thread for this stop reply packet
lldb::addr_t pc;
while (!value.empty()) {
llvm::StringRef pc_str;
std::tie(pc_str, value) = value.split(',');
if (pc_str.getAsInteger(16, pc))
pc = LLDB_INVALID_ADDRESS;
m_thread_pcs.push_back(pc);
}
} else if (key.compare("jstopinfo") == 0) {
StringExtractor json_extractor(value);
std::string json;
// Now convert the HEX bytes into a string value
json_extractor.GetHexByteString(json);
// This JSON contains thread IDs and thread stop info for all threads.
// It doesn't contain expedited registers, memory or queue info.
m_jstopinfo_sp = StructuredData::ParseJSON(json);
} else if (key.compare("hexname") == 0) {
StringExtractor name_extractor(value);
std::string name;
// Now convert the HEX bytes into a string value
name_extractor.GetHexByteString(thread_name);
} else if (key.compare("name") == 0) {
thread_name = std::string(value);
} else if (key.compare("qaddr") == 0) {
value.getAsInteger(16, thread_dispatch_qaddr);
} else if (key.compare("dispatch_queue_t") == 0) {
queue_vars_valid = true;
value.getAsInteger(16, dispatch_queue_t);
} else if (key.compare("qname") == 0) {
queue_vars_valid = true;
StringExtractor name_extractor(value);
// Now convert the HEX bytes into a string value
name_extractor.GetHexByteString(queue_name);
} else if (key.compare("qkind") == 0) {
queue_kind = llvm::StringSwitch<QueueKind>(value)
.Case("serial", eQueueKindSerial)
.Case("concurrent", eQueueKindConcurrent)
.Default(eQueueKindUnknown);
queue_vars_valid = queue_kind != eQueueKindUnknown;
} else if (key.compare("qserialnum") == 0) {
if (!value.getAsInteger(0, queue_serial_number))
queue_vars_valid = true;
} else if (key.compare("reason") == 0) {
reason = std::string(value);
} else if (key.compare("description") == 0) {
StringExtractor desc_extractor(value);
// Now convert the HEX bytes into a string value
desc_extractor.GetHexByteString(description);
} else if (key.compare("memory") == 0) {
// Expedited memory. GDB servers can choose to send back expedited
// memory that can populate the L1 memory cache in the process so that
// things like the frame pointer backchain can be expedited. This will
// help stack backtracing be more efficient by not having to send as
// many memory read requests down the remote GDB server.
// Key/value pair format: memory:<addr>=<bytes>;
// <addr> is a number whose base will be interpreted by the prefix:
// "0x[0-9a-fA-F]+" for hex
// "0[0-7]+" for octal
// "[1-9]+" for decimal
// <bytes> is native endian ASCII hex bytes just like the register
// values
llvm::StringRef addr_str, bytes_str;
std::tie(addr_str, bytes_str) = value.split('=');
if (!addr_str.empty() && !bytes_str.empty()) {
lldb::addr_t mem_cache_addr = LLDB_INVALID_ADDRESS;
if (!addr_str.getAsInteger(0, mem_cache_addr)) {
StringExtractor bytes(bytes_str);
const size_t byte_size = bytes.GetBytesLeft() / 2;
WritableDataBufferSP data_buffer_sp(
new DataBufferHeap(byte_size, 0));
const size_t bytes_copied =
bytes.GetHexBytes(data_buffer_sp->GetData(), 0);
if (bytes_copied == byte_size)
m_memory_cache.AddL1CacheData(mem_cache_addr, data_buffer_sp);
}
}
} else if (key.compare("watch") == 0 || key.compare("rwatch") == 0 ||
key.compare("awatch") == 0) {
// Support standard GDB remote stop reply packet 'TAAwatch:addr'
lldb::addr_t wp_addr = LLDB_INVALID_ADDRESS;
value.getAsInteger(16, wp_addr);
WatchpointResourceSP wp_resource_sp =
m_watchpoint_resource_list.FindByAddress(wp_addr);
// Rewrite gdb standard watch/rwatch/awatch to
// "reason:watchpoint" + "description:ADDR",
// which is parsed in SetThreadStopInfo.
reason = "watchpoint";
StreamString ostr;
ostr.Printf("%" PRIu64, wp_addr);
description = std::string(ostr.GetString());
} else if (key.compare("library") == 0) {
auto error = LoadModules();
if (error) {
Log *log(GetLog(GDBRLog::Process));
LLDB_LOG_ERROR(log, std::move(error), "Failed to load modules: {0}");
}
} else if (key.compare("fork") == 0 || key.compare("vfork") == 0) {
// fork includes child pid/tid in thread-id format
StringExtractorGDBRemote thread_id{value};
auto pid_tid = thread_id.GetPidTid(LLDB_INVALID_PROCESS_ID);
if (!pid_tid) {
Log *log(GetLog(GDBRLog::Process));
LLDB_LOG(log, "Invalid PID/TID to fork: {0}", value);
pid_tid = {{LLDB_INVALID_PROCESS_ID, LLDB_INVALID_THREAD_ID}};
}
reason = key.str();
StreamString ostr;
ostr.Printf("%" PRIu64 " %" PRIu64, pid_tid->first, pid_tid->second);
description = std::string(ostr.GetString());
} else if (key.compare("addressing_bits") == 0) {
uint64_t addressing_bits;
if (!value.getAsInteger(0, addressing_bits)) {
addressable_bits.SetAddressableBits(addressing_bits);
}
} else if (key.compare("low_mem_addressing_bits") == 0) {
uint64_t addressing_bits;
if (!value.getAsInteger(0, addressing_bits)) {
addressable_bits.SetLowmemAddressableBits(addressing_bits);
}
} else if (key.compare("high_mem_addressing_bits") == 0) {
uint64_t addressing_bits;
if (!value.getAsInteger(0, addressing_bits)) {
addressable_bits.SetHighmemAddressableBits(addressing_bits);
}
} else if (key.size() == 2 && ::isxdigit(key[0]) && ::isxdigit(key[1])) {
uint32_t reg = UINT32_MAX;
if (!key.getAsInteger(16, reg))
expedited_register_map[reg] = std::string(std::move(value));
}
}
if (stop_pid != LLDB_INVALID_PROCESS_ID && stop_pid != pid) {
Log *log = GetLog(GDBRLog::Process);
LLDB_LOG(log,
"Received stop for incorrect PID = {0} (inferior PID = {1})",
stop_pid, pid);
return eStateInvalid;
}
if (tid == LLDB_INVALID_THREAD_ID) {
// A thread id may be invalid if the response is old style 'S' packet
// which does not provide the
// thread information. So update the thread list and choose the first
// one.
UpdateThreadIDList();
if (!m_thread_ids.empty()) {
tid = m_thread_ids.front();
}
}
SetAddressableBitMasks(addressable_bits);
ThreadSP thread_sp = SetThreadStopInfo(
tid, expedited_register_map, signo, thread_name, reason, description,
exc_type, exc_data, thread_dispatch_qaddr, queue_vars_valid,
associated_with_dispatch_queue, dispatch_queue_t, queue_name,
queue_kind, queue_serial_number);
return eStateStopped;
} break;
case 'W':
case 'X':
// process exited
return eStateExited;
default:
break;
}
return eStateInvalid;
}
void ProcessGDBRemote::RefreshStateAfterStop() {
std::lock_guard<std::recursive_mutex> guard(m_thread_list_real.GetMutex());
m_thread_ids.clear();
m_thread_pcs.clear();
// Set the thread stop info. It might have a "threads" key whose value is a
// list of all thread IDs in the current process, so m_thread_ids might get
// set.
// Check to see if SetThreadStopInfo() filled in m_thread_ids?
if (m_thread_ids.empty()) {
// No, we need to fetch the thread list manually
UpdateThreadIDList();
}
// We might set some stop info's so make sure the thread list is up to
// date before we do that or we might overwrite what was computed here.
UpdateThreadListIfNeeded();
if (m_last_stop_packet)
SetThreadStopInfo(*m_last_stop_packet);
m_last_stop_packet.reset();
// If we have queried for a default thread id
if (m_initial_tid != LLDB_INVALID_THREAD_ID) {
m_thread_list.SetSelectedThreadByID(m_initial_tid);
m_initial_tid = LLDB_INVALID_THREAD_ID;
}
// Let all threads recover from stopping and do any clean up based on the
// previous thread state (if any).
m_thread_list_real.RefreshStateAfterStop();
}
Status ProcessGDBRemote::DoHalt(bool &caused_stop) {
Status error;
if (m_public_state.GetValue() == eStateAttaching) {
// We are being asked to halt during an attach. We used to just close our
// file handle and debugserver will go away, but with remote proxies, it
// is better to send a positive signal, so let's send the interrupt first...
caused_stop = m_gdb_comm.Interrupt(GetInterruptTimeout());
m_gdb_comm.Disconnect();
} else
caused_stop = m_gdb_comm.Interrupt(GetInterruptTimeout());
return error;
}
Status ProcessGDBRemote::DoDetach(bool keep_stopped) {
Status error;
Log *log = GetLog(GDBRLog::Process);
LLDB_LOGF(log, "ProcessGDBRemote::DoDetach(keep_stopped: %i)", keep_stopped);
error = m_gdb_comm.Detach(keep_stopped);
if (log) {
if (error.Success())
log->PutCString(
"ProcessGDBRemote::DoDetach() detach packet sent successfully");
else
LLDB_LOGF(log,
"ProcessGDBRemote::DoDetach() detach packet send failed: %s",
error.AsCString() ? error.AsCString() : "<unknown error>");
}
if (!error.Success())
return error;
// Sleep for one second to let the process get all detached...
StopAsyncThread();
SetPrivateState(eStateDetached);
ResumePrivateStateThread();
// KillDebugserverProcess ();
return error;
}
Status ProcessGDBRemote::DoDestroy() {
Log *log = GetLog(GDBRLog::Process);
LLDB_LOGF(log, "ProcessGDBRemote::DoDestroy()");
// Interrupt if our inferior is running...
int exit_status = SIGABRT;
std::string exit_string;
if (m_gdb_comm.IsConnected()) {
if (m_public_state.GetValue() != eStateAttaching) {
llvm::Expected<int> kill_res = m_gdb_comm.KillProcess(GetID());
if (kill_res) {
exit_status = kill_res.get();
#if defined(__APPLE__)
// For Native processes on Mac OS X, we launch through the Host
// Platform, then hand the process off to debugserver, which becomes
// the parent process through "PT_ATTACH". Then when we go to kill
// the process on Mac OS X we call ptrace(PT_KILL) to kill it, then
// we call waitpid which returns with no error and the correct
// status. But amusingly enough that doesn't seem to actually reap
// the process, but instead it is left around as a Zombie. Probably
// the kernel is in the process of switching ownership back to lldb
// which was the original parent, and gets confused in the handoff.
// Anyway, so call waitpid here to finally reap it.
PlatformSP platform_sp(GetTarget().GetPlatform());
if (platform_sp && platform_sp->IsHost()) {
int status;
::pid_t reap_pid;
reap_pid = waitpid(GetID(), &status, WNOHANG);
LLDB_LOGF(log, "Reaped pid: %d, status: %d.\n", reap_pid, status);
}
#endif
ClearThreadIDList();
exit_string.assign("killed");
} else {
exit_string.assign(llvm::toString(kill_res.takeError()));
}
} else {
exit_string.assign("killed or interrupted while attaching.");
}
} else {
// If we missed setting the exit status on the way out, do it here.
// NB set exit status can be called multiple times, the first one sets the
// status.
exit_string.assign("destroying when not connected to debugserver");
}
SetExitStatus(exit_status, exit_string.c_str());
StopAsyncThread();
KillDebugserverProcess();
return Status();
}
void ProcessGDBRemote::SetLastStopPacket(
const StringExtractorGDBRemote &response) {
const bool did_exec =
response.GetStringRef().find(";reason:exec;") != std::string::npos;
if (did_exec) {
Log *log = GetLog(GDBRLog::Process);
LLDB_LOGF(log, "ProcessGDBRemote::SetLastStopPacket () - detected exec");
m_thread_list_real.Clear();
m_thread_list.Clear();
BuildDynamicRegisterInfo(true);
m_gdb_comm.ResetDiscoverableSettings(did_exec);
}
m_last_stop_packet = response;
}
void ProcessGDBRemote::SetUnixSignals(const UnixSignalsSP &signals_sp) {
Process::SetUnixSignals(std::make_shared<GDBRemoteSignals>(signals_sp));
}
// Process Queries
bool ProcessGDBRemote::IsAlive() {
return m_gdb_comm.IsConnected() && Process::IsAlive();
}
addr_t ProcessGDBRemote::GetImageInfoAddress() {
// request the link map address via the $qShlibInfoAddr packet
lldb::addr_t addr = m_gdb_comm.GetShlibInfoAddr();
// the loaded module list can also provides a link map address
if (addr == LLDB_INVALID_ADDRESS) {
llvm::Expected<LoadedModuleInfoList> list = GetLoadedModuleList();
if (!list) {
Log *log = GetLog(GDBRLog::Process);
LLDB_LOG_ERROR(log, list.takeError(), "Failed to read module list: {0}.");
} else {
addr = list->m_link_map;
}
}
return addr;
}
void ProcessGDBRemote::WillPublicStop() {
// See if the GDB remote client supports the JSON threads info. If so, we
// gather stop info for all threads, expedited registers, expedited memory,
// runtime queue information (iOS and MacOSX only), and more. Expediting
// memory will help stack backtracing be much faster. Expediting registers
// will make sure we don't have to read the thread registers for GPRs.
m_jthreadsinfo_sp = m_gdb_comm.GetThreadsInfo();
if (m_jthreadsinfo_sp) {
// Now set the stop info for each thread and also expedite any registers
// and memory that was in the jThreadsInfo response.
StructuredData::Array *thread_infos = m_jthreadsinfo_sp->GetAsArray();
if (thread_infos) {
const size_t n = thread_infos->GetSize();
for (size_t i = 0; i < n; ++i) {
StructuredData::Dictionary *thread_dict =
thread_infos->GetItemAtIndex(i)->GetAsDictionary();
if (thread_dict)
SetThreadStopInfo(thread_dict);
}
}
}
}
// Process Memory
size_t ProcessGDBRemote::DoReadMemory(addr_t addr, void *buf, size_t size,
Status &error) {
GetMaxMemorySize();
bool binary_memory_read = m_gdb_comm.GetxPacketSupported();
// M and m packets take 2 bytes for 1 byte of memory
size_t max_memory_size =
binary_memory_read ? m_max_memory_size : m_max_memory_size / 2;
if (size > max_memory_size) {
// Keep memory read sizes down to a sane limit. This function will be
// called multiple times in order to complete the task by
// lldb_private::Process so it is ok to do this.
size = max_memory_size;
}
char packet[64];
int packet_len;
packet_len = ::snprintf(packet, sizeof(packet), "%c%" PRIx64 ",%" PRIx64,
binary_memory_read ? 'x' : 'm', (uint64_t)addr,
(uint64_t)size);
assert(packet_len + 1 < (int)sizeof(packet));
UNUSED_IF_ASSERT_DISABLED(packet_len);
StringExtractorGDBRemote response;
if (m_gdb_comm.SendPacketAndWaitForResponse(packet, response,
GetInterruptTimeout()) ==
GDBRemoteCommunication::PacketResult::Success) {
if (response.IsNormalResponse()) {
error.Clear();
if (binary_memory_read) {
// The lower level GDBRemoteCommunication packet receive layer has
// already de-quoted any 0x7d character escaping that was present in
// the packet
size_t data_received_size = response.GetBytesLeft();
if (data_received_size > size) {
// Don't write past the end of BUF if the remote debug server gave us
// too much data for some reason.
data_received_size = size;
}
memcpy(buf, response.GetStringRef().data(), data_received_size);
return data_received_size;
} else {
return response.GetHexBytes(
llvm::MutableArrayRef<uint8_t>((uint8_t *)buf, size), '\xdd');
}
} else if (response.IsErrorResponse())
error.SetErrorStringWithFormat("memory read failed for 0x%" PRIx64, addr);
else if (response.IsUnsupportedResponse())
error.SetErrorStringWithFormat(
"GDB server does not support reading memory");
else
error.SetErrorStringWithFormat(
"unexpected response to GDB server memory read packet '%s': '%s'",
packet, response.GetStringRef().data());
} else {
error.SetErrorStringWithFormat("failed to send packet: '%s'", packet);
}
return 0;
}
bool ProcessGDBRemote::SupportsMemoryTagging() {
return m_gdb_comm.GetMemoryTaggingSupported();
}
llvm::Expected<std::vector<uint8_t>>
ProcessGDBRemote::DoReadMemoryTags(lldb::addr_t addr, size_t len,
int32_t type) {
// By this point ReadMemoryTags has validated that tagging is enabled
// for this target/process/address.
DataBufferSP buffer_sp = m_gdb_comm.ReadMemoryTags(addr, len, type);
if (!buffer_sp) {
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"Error reading memory tags from remote");
}
// Return the raw tag data
llvm::ArrayRef<uint8_t> tag_data = buffer_sp->GetData();
std::vector<uint8_t> got;
got.reserve(tag_data.size());
std::copy(tag_data.begin(), tag_data.end(), std::back_inserter(got));
return got;
}
Status ProcessGDBRemote::DoWriteMemoryTags(lldb::addr_t addr, size_t len,
int32_t type,
const std::vector<uint8_t> &tags) {
// By now WriteMemoryTags should have validated that tagging is enabled
// for this target/process.
return m_gdb_comm.WriteMemoryTags(addr, len, type, tags);
}
Status ProcessGDBRemote::WriteObjectFile(
std::vector<ObjectFile::LoadableData> entries) {
Status error;
// Sort the entries by address because some writes, like those to flash
// memory, must happen in order of increasing address.
std::stable_sort(
std::begin(entries), std::end(entries),
[](const ObjectFile::LoadableData a, const ObjectFile::LoadableData b) {
return a.Dest < b.Dest;
});
m_allow_flash_writes = true;
error = Process::WriteObjectFile(entries);
if (error.Success())
error = FlashDone();
else
// Even though some of the writing failed, try to send a flash done if some
// of the writing succeeded so the flash state is reset to normal, but
// don't stomp on the error status that was set in the write failure since
// that's the one we want to report back.
FlashDone();
m_allow_flash_writes = false;
return error;
}
bool ProcessGDBRemote::HasErased(FlashRange range) {
auto size = m_erased_flash_ranges.GetSize();
for (size_t i = 0; i < size; ++i)
if (m_erased_flash_ranges.GetEntryAtIndex(i)->Contains(range))
return true;
return false;
}
Status ProcessGDBRemote::FlashErase(lldb::addr_t addr, size_t size) {
Status status;
MemoryRegionInfo region;
status = GetMemoryRegionInfo(addr, region);
if (!status.Success())
return status;
// The gdb spec doesn't say if erasures are allowed across multiple regions,
// but we'll disallow it to be safe and to keep the logic simple by worring
// about only one region's block size. DoMemoryWrite is this function's
// primary user, and it can easily keep writes within a single memory region
if (addr + size > region.GetRange().GetRangeEnd()) {
status.SetErrorString("Unable to erase flash in multiple regions");
return status;
}
uint64_t blocksize = region.GetBlocksize();
if (blocksize == 0) {
status.SetErrorString("Unable to erase flash because blocksize is 0");
return status;
}
// Erasures can only be done on block boundary adresses, so round down addr
// and round up size
lldb::addr_t block_start_addr = addr - (addr % blocksize);
size += (addr - block_start_addr);
if ((size % blocksize) != 0)
size += (blocksize - size % blocksize);
FlashRange range(block_start_addr, size);
if (HasErased(range))
return status;
// We haven't erased the entire range, but we may have erased part of it.
// (e.g., block A is already erased and range starts in A and ends in B). So,
// adjust range if necessary to exclude already erased blocks.
if (!m_erased_flash_ranges.IsEmpty()) {
// Assuming that writes and erasures are done in increasing addr order,
// because that is a requirement of the vFlashWrite command. Therefore, we
// only need to look at the last range in the list for overlap.
const auto &last_range = *m_erased_flash_ranges.Back();
if (range.GetRangeBase() < last_range.GetRangeEnd()) {
auto overlap = last_range.GetRangeEnd() - range.GetRangeBase();
// overlap will be less than range.GetByteSize() or else HasErased()
// would have been true
range.SetByteSize(range.GetByteSize() - overlap);
range.SetRangeBase(range.GetRangeBase() + overlap);
}
}
StreamString packet;
packet.Printf("vFlashErase:%" PRIx64 ",%" PRIx64, range.GetRangeBase(),
(uint64_t)range.GetByteSize());
StringExtractorGDBRemote response;
if (m_gdb_comm.SendPacketAndWaitForResponse(packet.GetString(), response,
GetInterruptTimeout()) ==
GDBRemoteCommunication::PacketResult::Success) {
if (response.IsOKResponse()) {
m_erased_flash_ranges.Insert(range, true);
} else {
if (response.IsErrorResponse())
status.SetErrorStringWithFormat("flash erase failed for 0x%" PRIx64,
addr);
else if (response.IsUnsupportedResponse())
status.SetErrorStringWithFormat("GDB server does not support flashing");
else
status.SetErrorStringWithFormat(
"unexpected response to GDB server flash erase packet '%s': '%s'",
packet.GetData(), response.GetStringRef().data());
}
} else {
status.SetErrorStringWithFormat("failed to send packet: '%s'",
packet.GetData());
}
return status;
}
Status ProcessGDBRemote::FlashDone() {
Status status;
// If we haven't erased any blocks, then we must not have written anything
// either, so there is no need to actually send a vFlashDone command
if (m_erased_flash_ranges.IsEmpty())
return status;
StringExtractorGDBRemote response;
if (m_gdb_comm.SendPacketAndWaitForResponse("vFlashDone", response,
GetInterruptTimeout()) ==
GDBRemoteCommunication::PacketResult::Success) {
if (response.IsOKResponse()) {
m_erased_flash_ranges.Clear();
} else {
if (response.IsErrorResponse())
status.SetErrorStringWithFormat("flash done failed");
else if (response.IsUnsupportedResponse())
status.SetErrorStringWithFormat("GDB server does not support flashing");
else
status.SetErrorStringWithFormat(
"unexpected response to GDB server flash done packet: '%s'",
response.GetStringRef().data());
}
} else {
status.SetErrorStringWithFormat("failed to send flash done packet");
}
return status;
}
size_t ProcessGDBRemote::DoWriteMemory(addr_t addr, const void *buf,
size_t size, Status &error) {
GetMaxMemorySize();
// M and m packets take 2 bytes for 1 byte of memory
size_t max_memory_size = m_max_memory_size / 2;
if (size > max_memory_size) {
// Keep memory read sizes down to a sane limit. This function will be
// called multiple times in order to complete the task by
// lldb_private::Process so it is ok to do this.
size = max_memory_size;
}
StreamGDBRemote packet;
MemoryRegionInfo region;
Status region_status = GetMemoryRegionInfo(addr, region);
bool is_flash =
region_status.Success() && region.GetFlash() == MemoryRegionInfo::eYes;
if (is_flash) {
if (!m_allow_flash_writes) {
error.SetErrorString("Writing to flash memory is not allowed");
return 0;
}
// Keep the write within a flash memory region
if (addr + size > region.GetRange().GetRangeEnd())
size = region.GetRange().GetRangeEnd() - addr;
// Flash memory must be erased before it can be written
error = FlashErase(addr, size);
if (!error.Success())
return 0;
packet.Printf("vFlashWrite:%" PRIx64 ":", addr);
packet.PutEscapedBytes(buf, size);
} else {
packet.Printf("M%" PRIx64 ",%" PRIx64 ":", addr, (uint64_t)size);
packet.PutBytesAsRawHex8(buf, size, endian::InlHostByteOrder(),
endian::InlHostByteOrder());
}
StringExtractorGDBRemote response;
if (m_gdb_comm.SendPacketAndWaitForResponse(packet.GetString(), response,
GetInterruptTimeout()) ==
GDBRemoteCommunication::PacketResult::Success) {
if (response.IsOKResponse()) {
error.Clear();
return size;
} else if (response.IsErrorResponse())
error.SetErrorStringWithFormat("memory write failed for 0x%" PRIx64,
addr);
else if (response.IsUnsupportedResponse())
error.SetErrorStringWithFormat(
"GDB server does not support writing memory");
else
error.SetErrorStringWithFormat(
"unexpected response to GDB server memory write packet '%s': '%s'",
packet.GetData(), response.GetStringRef().data());
} else {
error.SetErrorStringWithFormat("failed to send packet: '%s'",
packet.GetData());
}
return 0;
}
lldb::addr_t ProcessGDBRemote::DoAllocateMemory(size_t size,
uint32_t permissions,
Status &error) {
Log *log = GetLog(LLDBLog::Process | LLDBLog::Expressions);
addr_t allocated_addr = LLDB_INVALID_ADDRESS;
if (m_gdb_comm.SupportsAllocDeallocMemory() != eLazyBoolNo) {
allocated_addr = m_gdb_comm.AllocateMemory(size, permissions);
if (allocated_addr != LLDB_INVALID_ADDRESS ||
m_gdb_comm.SupportsAllocDeallocMemory() == eLazyBoolYes)
return allocated_addr;
}
if (m_gdb_comm.SupportsAllocDeallocMemory() == eLazyBoolNo) {
// Call mmap() to create memory in the inferior..
unsigned prot = 0;
if (permissions & lldb::ePermissionsReadable)
prot |= eMmapProtRead;
if (permissions & lldb::ePermissionsWritable)
prot |= eMmapProtWrite;
if (permissions & lldb::ePermissionsExecutable)
prot |= eMmapProtExec;
if (InferiorCallMmap(this, allocated_addr, 0, size, prot,
eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0))
m_addr_to_mmap_size[allocated_addr] = size;
else {
allocated_addr = LLDB_INVALID_ADDRESS;
LLDB_LOGF(log,
"ProcessGDBRemote::%s no direct stub support for memory "
"allocation, and InferiorCallMmap also failed - is stub "
"missing register context save/restore capability?",
__FUNCTION__);
}
}
if (allocated_addr == LLDB_INVALID_ADDRESS)
error.SetErrorStringWithFormat(
"unable to allocate %" PRIu64 " bytes of memory with permissions %s",
(uint64_t)size, GetPermissionsAsCString(permissions));
else
error.Clear();
return allocated_addr;
}
Status ProcessGDBRemote::DoGetMemoryRegionInfo(addr_t load_addr,
MemoryRegionInfo &region_info) {
Status error(m_gdb_comm.GetMemoryRegionInfo(load_addr, region_info));
return error;
}
std::optional<uint32_t> ProcessGDBRemote::GetWatchpointSlotCount() {
return m_gdb_comm.GetWatchpointSlotCount();
}
std::optional<bool> ProcessGDBRemote::DoGetWatchpointReportedAfter() {
return m_gdb_comm.GetWatchpointReportedAfter();
}
Status ProcessGDBRemote::DoDeallocateMemory(lldb::addr_t addr) {
Status error;
LazyBool supported = m_gdb_comm.SupportsAllocDeallocMemory();
switch (supported) {
case eLazyBoolCalculate:
// We should never be deallocating memory without allocating memory first
// so we should never get eLazyBoolCalculate
error.SetErrorString(
"tried to deallocate memory without ever allocating memory");
break;
case eLazyBoolYes:
if (!m_gdb_comm.DeallocateMemory(addr))
error.SetErrorStringWithFormat(
"unable to deallocate memory at 0x%" PRIx64, addr);
break;
case eLazyBoolNo:
// Call munmap() to deallocate memory in the inferior..
{
MMapMap::iterator pos = m_addr_to_mmap_size.find(addr);
if (pos != m_addr_to_mmap_size.end() &&
InferiorCallMunmap(this, addr, pos->second))
m_addr_to_mmap_size.erase(pos);
else
error.SetErrorStringWithFormat(
"unable to deallocate memory at 0x%" PRIx64, addr);
}
break;
}
return error;
}
// Process STDIO
size_t ProcessGDBRemote::PutSTDIN(const char *src, size_t src_len,
Status &error) {
if (m_stdio_communication.IsConnected()) {
ConnectionStatus status;
m_stdio_communication.WriteAll(src, src_len, status, nullptr);
} else if (m_stdin_forward) {
m_gdb_comm.SendStdinNotification(src, src_len);
}
return 0;
}
Status ProcessGDBRemote::EnableBreakpointSite(BreakpointSite *bp_site) {
Status error;
assert(bp_site != nullptr);
// Get logging info
Log *log = GetLog(GDBRLog::Breakpoints);
user_id_t site_id = bp_site->GetID();
// Get the breakpoint address
const addr_t addr = bp_site->GetLoadAddress();
// Log that a breakpoint was requested
LLDB_LOGF(log,
"ProcessGDBRemote::EnableBreakpointSite (size_id = %" PRIu64
") address = 0x%" PRIx64,
site_id, (uint64_t)addr);
// Breakpoint already exists and is enabled
if (bp_site->IsEnabled()) {
LLDB_LOGF(log,
"ProcessGDBRemote::EnableBreakpointSite (size_id = %" PRIu64
") address = 0x%" PRIx64 " -- SUCCESS (already enabled)",
site_id, (uint64_t)addr);
return error;
}
// Get the software breakpoint trap opcode size
const size_t bp_op_size = GetSoftwareBreakpointTrapOpcode(bp_site);
// SupportsGDBStoppointPacket() simply checks a boolean, indicating if this
// breakpoint type is supported by the remote stub. These are set to true by
// default, and later set to false only after we receive an unimplemented
// response when sending a breakpoint packet. This means initially that
// unless we were specifically instructed to use a hardware breakpoint, LLDB
// will attempt to set a software breakpoint. HardwareRequired() also queries
// a boolean variable which indicates if the user specifically asked for
// hardware breakpoints. If true then we will skip over software
// breakpoints.
if (m_gdb_comm.SupportsGDBStoppointPacket(eBreakpointSoftware) &&
(!bp_site->HardwareRequired())) {
// Try to send off a software breakpoint packet ($Z0)
uint8_t error_no = m_gdb_comm.SendGDBStoppointTypePacket(
eBreakpointSoftware, true, addr, bp_op_size, GetInterruptTimeout());
if (error_no == 0) {
// The breakpoint was placed successfully
bp_site->SetEnabled(true);
bp_site->SetType(BreakpointSite::eExternal);
return error;
}
// SendGDBStoppointTypePacket() will return an error if it was unable to
// set this breakpoint. We need to differentiate between a error specific
// to placing this breakpoint or if we have learned that this breakpoint
// type is unsupported. To do this, we must test the support boolean for
// this breakpoint type to see if it now indicates that this breakpoint
// type is unsupported. If they are still supported then we should return
// with the error code. If they are now unsupported, then we would like to
// fall through and try another form of breakpoint.
if (m_gdb_comm.SupportsGDBStoppointPacket(eBreakpointSoftware)) {
if (error_no != UINT8_MAX)
error.SetErrorStringWithFormat(
"error: %d sending the breakpoint request", error_no);
else
error.SetErrorString("error sending the breakpoint request");
return error;
}
// We reach here when software breakpoints have been found to be
// unsupported. For future calls to set a breakpoint, we will not attempt
// to set a breakpoint with a type that is known not to be supported.
LLDB_LOGF(log, "Software breakpoints are unsupported");
// So we will fall through and try a hardware breakpoint
}
// The process of setting a hardware breakpoint is much the same as above.
// We check the supported boolean for this breakpoint type, and if it is
// thought to be supported then we will try to set this breakpoint with a
// hardware breakpoint.
if (m_gdb_comm.SupportsGDBStoppointPacket(eBreakpointHardware)) {
// Try to send off a hardware breakpoint packet ($Z1)
uint8_t error_no = m_gdb_comm.SendGDBStoppointTypePacket(
eBreakpointHardware, true, addr, bp_op_size, GetInterruptTimeout());
if (error_no == 0) {
// The breakpoint was placed successfully
bp_site->SetEnabled(true);
bp_site->SetType(BreakpointSite::eHardware);
return error;
}
// Check if the error was something other then an unsupported breakpoint
// type
if (m_gdb_comm.SupportsGDBStoppointPacket(eBreakpointHardware)) {
// Unable to set this hardware breakpoint
if (error_no != UINT8_MAX)
error.SetErrorStringWithFormat(
"error: %d sending the hardware breakpoint request "
"(hardware breakpoint resources might be exhausted or unavailable)",
error_no);
else
error.SetErrorString("error sending the hardware breakpoint request "
"(hardware breakpoint resources "
"might be exhausted or unavailable)");
return error;
}
// We will reach here when the stub gives an unsupported response to a
// hardware breakpoint
LLDB_LOGF(log, "Hardware breakpoints are unsupported");
// Finally we will falling through to a #trap style breakpoint
}
// Don't fall through when hardware breakpoints were specifically requested
if (bp_site->HardwareRequired()) {
error.SetErrorString("hardware breakpoints are not supported");
return error;
}
// As a last resort we want to place a manual breakpoint. An instruction is
// placed into the process memory using memory write packets.
return EnableSoftwareBreakpoint(bp_site);
}
Status ProcessGDBRemote::DisableBreakpointSite(BreakpointSite *bp_site) {
Status error;
assert(bp_site != nullptr);
addr_t addr = bp_site->GetLoadAddress();
user_id_t site_id = bp_site->GetID();
Log *log = GetLog(GDBRLog::Breakpoints);
LLDB_LOGF(log,
"ProcessGDBRemote::DisableBreakpointSite (site_id = %" PRIu64
") addr = 0x%8.8" PRIx64,
site_id, (uint64_t)addr);
if (bp_site->IsEnabled()) {
const size_t bp_op_size = GetSoftwareBreakpointTrapOpcode(bp_site);
BreakpointSite::Type bp_type = bp_site->GetType();
switch (bp_type) {
case BreakpointSite::eSoftware:
error = DisableSoftwareBreakpoint(bp_site);
break;
case BreakpointSite::eHardware:
if (m_gdb_comm.SendGDBStoppointTypePacket(eBreakpointHardware, false,
addr, bp_op_size,
GetInterruptTimeout()))
error.SetErrorToGenericError();
break;
case BreakpointSite::eExternal: {
if (m_gdb_comm.SendGDBStoppointTypePacket(eBreakpointSoftware, false,
addr, bp_op_size,
GetInterruptTimeout()))
error.SetErrorToGenericError();
} break;
}
if (error.Success())
bp_site->SetEnabled(false);
} else {
LLDB_LOGF(log,
"ProcessGDBRemote::DisableBreakpointSite (site_id = %" PRIu64
") addr = 0x%8.8" PRIx64 " -- SUCCESS (already disabled)",
site_id, (uint64_t)addr);
return error;
}
if (error.Success())
error.SetErrorToGenericError();
return error;
}
// Pre-requisite: wp != NULL.
static GDBStoppointType
GetGDBStoppointType(const WatchpointResourceSP &wp_res_sp) {
assert(wp_res_sp);
bool read = wp_res_sp->WatchpointResourceRead();
bool write = wp_res_sp->WatchpointResourceWrite();
assert((read || write) &&
"WatchpointResource type is neither read nor write");
if (read && write)
return eWatchpointReadWrite;
else if (read)
return eWatchpointRead;
else
return eWatchpointWrite;
}
Status ProcessGDBRemote::EnableWatchpoint(WatchpointSP wp_sp, bool notify) {
Status error;
if (!wp_sp) {
error.SetErrorString("No watchpoint specified");
return error;
}
user_id_t watchID = wp_sp->GetID();
addr_t addr = wp_sp->GetLoadAddress();
Log *log(GetLog(GDBRLog::Watchpoints));
LLDB_LOGF(log, "ProcessGDBRemote::EnableWatchpoint(watchID = %" PRIu64 ")",
watchID);
if (wp_sp->IsEnabled()) {
LLDB_LOGF(log,
"ProcessGDBRemote::EnableWatchpoint(watchID = %" PRIu64
") addr = 0x%8.8" PRIx64 ": watchpoint already enabled.",
watchID, (uint64_t)addr);
return error;
}
bool read = wp_sp->WatchpointRead();
bool write = wp_sp->WatchpointWrite() || wp_sp->WatchpointModify();
size_t size = wp_sp->GetByteSize();
ArchSpec target_arch = GetTarget().GetArchitecture();
WatchpointHardwareFeature supported_features =
m_gdb_comm.GetSupportedWatchpointTypes();
std::vector<WatchpointResourceSP> resources =
WatchpointAlgorithms::AtomizeWatchpointRequest(
addr, size, read, write, supported_features, target_arch);
// LWP_TODO: Now that we know the WP Resources needed to implement this
// Watchpoint, we need to look at currently allocated Resources in the
// Process and if they match, or are within the same memory granule, or
// overlapping memory ranges, then we need to combine them. e.g. one
// Watchpoint watching 1 byte at 0x1002 and a second watchpoint watching 1
// byte at 0x1003, they must use the same hardware watchpoint register
// (Resource) to watch them.
// This may mean that an existing resource changes its type (read to
// read+write) or address range it is watching, in which case the old
// watchpoint needs to be disabled and the new Resource addr/size/type
// watchpoint enabled.
// If we modify a shared Resource to accomodate this newly added Watchpoint,
// and we are unable to set all of the Resources for it in the inferior, we
// will return an error for this Watchpoint and the shared Resource should
// be restored. e.g. this Watchpoint requires three Resources, one which
// is shared with another Watchpoint. We extend the shared Resouce to
// handle both Watchpoints and we try to set two new ones. But if we don't
// have sufficient watchpoint register for all 3, we need to show an error
// for creating this Watchpoint and we should reset the shared Resource to
// its original configuration because it is no longer shared.
bool set_all_resources = true;
std::vector<WatchpointResourceSP> succesfully_set_resources;
for (const auto &wp_res_sp : resources) {
addr_t addr = wp_res_sp->GetLoadAddress();
size_t size = wp_res_sp->GetByteSize();
GDBStoppointType type = GetGDBStoppointType(wp_res_sp);
if (!m_gdb_comm.SupportsGDBStoppointPacket(type) ||
m_gdb_comm.SendGDBStoppointTypePacket(type, true, addr, size,
GetInterruptTimeout())) {
set_all_resources = false;
break;
} else {
succesfully_set_resources.push_back(wp_res_sp);
}
}
if (set_all_resources) {
wp_sp->SetEnabled(true, notify);
for (const auto &wp_res_sp : resources) {
// LWP_TODO: If we expanded/reused an existing Resource,
// it's already in the WatchpointResourceList.
wp_res_sp->AddConstituent(wp_sp);
m_watchpoint_resource_list.Add(wp_res_sp);
}
return error;
} else {
// We failed to allocate one of the resources. Unset all
// of the new resources we did successfully set in the
// process.
for (const auto &wp_res_sp : succesfully_set_resources) {
addr_t addr = wp_res_sp->GetLoadAddress();
size_t size = wp_res_sp->GetByteSize();
GDBStoppointType type = GetGDBStoppointType(wp_res_sp);
m_gdb_comm.SendGDBStoppointTypePacket(type, false, addr, size,
GetInterruptTimeout());
}
error.SetErrorString("Setting one of the watchpoint resources failed");
}
return error;
}
Status ProcessGDBRemote::DisableWatchpoint(WatchpointSP wp_sp, bool notify) {
Status error;
if (!wp_sp) {
error.SetErrorString("Watchpoint argument was NULL.");
return error;
}
user_id_t watchID = wp_sp->GetID();
Log *log(GetLog(GDBRLog::Watchpoints));
addr_t addr = wp_sp->GetLoadAddress();
LLDB_LOGF(log,
"ProcessGDBRemote::DisableWatchpoint (watchID = %" PRIu64
") addr = 0x%8.8" PRIx64,
watchID, (uint64_t)addr);
if (!wp_sp->IsEnabled()) {
LLDB_LOGF(log,
"ProcessGDBRemote::DisableWatchpoint (watchID = %" PRIu64
") addr = 0x%8.8" PRIx64 " -- SUCCESS (already disabled)",
watchID, (uint64_t)addr);
// See also 'class WatchpointSentry' within StopInfo.cpp. This disabling
// attempt might come from the user-supplied actions, we'll route it in
// order for the watchpoint object to intelligently process this action.
wp_sp->SetEnabled(false, notify);
return error;
}
if (wp_sp->IsHardware()) {
bool disabled_all = true;
std::vector<WatchpointResourceSP> unused_resources;
for (const auto &wp_res_sp : m_watchpoint_resource_list.Sites()) {
if (wp_res_sp->ConstituentsContains(wp_sp)) {
GDBStoppointType type = GetGDBStoppointType(wp_res_sp);
addr_t addr = wp_res_sp->GetLoadAddress();
size_t size = wp_res_sp->GetByteSize();
if (m_gdb_comm.SendGDBStoppointTypePacket(type, false, addr, size,
GetInterruptTimeout())) {
disabled_all = false;
} else {
wp_res_sp->RemoveConstituent(wp_sp);
if (wp_res_sp->GetNumberOfConstituents() == 0)
unused_resources.push_back(wp_res_sp);
}
}
}
for (auto &wp_res_sp : unused_resources)
m_watchpoint_resource_list.Remove(wp_res_sp->GetID());
wp_sp->SetEnabled(false, notify);
if (!disabled_all)
error.SetErrorString("Failure disabling one of the watchpoint locations");
}
return error;
}
void ProcessGDBRemote::Clear() {
m_thread_list_real.Clear();
m_thread_list.Clear();
}
Status ProcessGDBRemote::DoSignal(int signo) {
Status error;
Log *log = GetLog(GDBRLog::Process);
LLDB_LOGF(log, "ProcessGDBRemote::DoSignal (signal = %d)", signo);
if (!m_gdb_comm.SendAsyncSignal(signo, GetInterruptTimeout()))
error.SetErrorStringWithFormat("failed to send signal %i", signo);
return error;
}
Status
ProcessGDBRemote::EstablishConnectionIfNeeded(const ProcessInfo &process_info) {
// Make sure we aren't already connected?
if (m_gdb_comm.IsConnected())
return Status();
PlatformSP platform_sp(GetTarget().GetPlatform());
if (platform_sp && !platform_sp->IsHost())
return Status("Lost debug server connection");
auto error = LaunchAndConnectToDebugserver(process_info);
if (error.Fail()) {
const char *error_string = error.AsCString();
if (error_string == nullptr)
error_string = "unable to launch " DEBUGSERVER_BASENAME;
}
return error;
}
#if !defined(_WIN32)
#define USE_SOCKETPAIR_FOR_LOCAL_CONNECTION 1
#endif
#ifdef USE_SOCKETPAIR_FOR_LOCAL_CONNECTION
static bool SetCloexecFlag(int fd) {
#if defined(FD_CLOEXEC)
int flags = ::fcntl(fd, F_GETFD);
if (flags == -1)
return false;
return (::fcntl(fd, F_SETFD, flags | FD_CLOEXEC) == 0);
#else
return false;
#endif
}
#endif
Status ProcessGDBRemote::LaunchAndConnectToDebugserver(
const ProcessInfo &process_info) {
using namespace std::placeholders; // For _1, _2, etc.
Status error;
if (m_debugserver_pid == LLDB_INVALID_PROCESS_ID) {
// If we locate debugserver, keep that located version around
static FileSpec g_debugserver_file_spec;
ProcessLaunchInfo debugserver_launch_info;
// Make debugserver run in its own session so signals generated by special
// terminal key sequences (^C) don't affect debugserver.
debugserver_launch_info.SetLaunchInSeparateProcessGroup(true);
const std::weak_ptr<ProcessGDBRemote> this_wp =
std::static_pointer_cast<ProcessGDBRemote>(shared_from_this());
debugserver_launch_info.SetMonitorProcessCallback(
std::bind(MonitorDebugserverProcess, this_wp, _1, _2, _3));
debugserver_launch_info.SetUserID(process_info.GetUserID());
#if defined(__APPLE__)
// On macOS 11, we need to support x86_64 applications translated to
// arm64. We check whether a binary is translated and spawn the correct
// debugserver accordingly.
int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_PID,
static_cast<int>(process_info.GetProcessID()) };
struct kinfo_proc processInfo;
size_t bufsize = sizeof(processInfo);
if (sysctl(mib, (unsigned)(sizeof(mib)/sizeof(int)), &processInfo,
&bufsize, NULL, 0) == 0 && bufsize > 0) {
if (processInfo.kp_proc.p_flag & P_TRANSLATED) {
FileSpec rosetta_debugserver("/Library/Apple/usr/libexec/oah/debugserver");
debugserver_launch_info.SetExecutableFile(rosetta_debugserver, false);
}
}
#endif
int communication_fd = -1;
#ifdef USE_SOCKETPAIR_FOR_LOCAL_CONNECTION
// Use a socketpair on non-Windows systems for security and performance
// reasons.
int sockets[2]; /* the pair of socket descriptors */
if (socketpair(AF_UNIX, SOCK_STREAM, 0, sockets) == -1) {
error.SetErrorToErrno();
return error;
}
int our_socket = sockets[0];
int gdb_socket = sockets[1];
auto cleanup_our = llvm::make_scope_exit([&]() { close(our_socket); });
auto cleanup_gdb = llvm::make_scope_exit([&]() { close(gdb_socket); });
// Don't let any child processes inherit our communication socket
SetCloexecFlag(our_socket);
communication_fd = gdb_socket;
#endif
error = m_gdb_comm.StartDebugserverProcess(
nullptr, GetTarget().GetPlatform().get(), debugserver_launch_info,
nullptr, nullptr, communication_fd);
if (error.Success())
m_debugserver_pid = debugserver_launch_info.GetProcessID();
else
m_debugserver_pid = LLDB_INVALID_PROCESS_ID;
if (m_debugserver_pid != LLDB_INVALID_PROCESS_ID) {
#ifdef USE_SOCKETPAIR_FOR_LOCAL_CONNECTION
// Our process spawned correctly, we can now set our connection to use
// our end of the socket pair
cleanup_our.release();
m_gdb_comm.SetConnection(
std::make_unique<ConnectionFileDescriptor>(our_socket, true));
#endif
StartAsyncThread();
}
if (error.Fail()) {
Log *log = GetLog(GDBRLog::Process);
LLDB_LOGF(log, "failed to start debugserver process: %s",
error.AsCString());
return error;
}
if (m_gdb_comm.IsConnected()) {
// Finish the connection process by doing the handshake without
// connecting (send NULL URL)
error = ConnectToDebugserver("");
} else {
error.SetErrorString("connection failed");
}
}
return error;
}
void ProcessGDBRemote::MonitorDebugserverProcess(
std::weak_ptr<ProcessGDBRemote> process_wp, lldb::pid_t debugserver_pid,
int signo, // Zero for no signal
int exit_status // Exit value of process if signal is zero
) {
// "debugserver_pid" argument passed in is the process ID for debugserver
// that we are tracking...
Log *log = GetLog(GDBRLog::Process);
LLDB_LOGF(log,
"ProcessGDBRemote::%s(process_wp, pid=%" PRIu64
", signo=%i (0x%x), exit_status=%i)",
__FUNCTION__, debugserver_pid, signo, signo, exit_status);
std::shared_ptr<ProcessGDBRemote> process_sp = process_wp.lock();
LLDB_LOGF(log, "ProcessGDBRemote::%s(process = %p)", __FUNCTION__,
static_cast<void *>(process_sp.get()));
if (!process_sp || process_sp->m_debugserver_pid != debugserver_pid)
return;
// Sleep for a half a second to make sure our inferior process has time to
// set its exit status before we set it incorrectly when both the debugserver
// and the inferior process shut down.
std::this_thread::sleep_for(std::chrono::milliseconds(500));
// If our process hasn't yet exited, debugserver might have died. If the
// process did exit, then we are reaping it.
const StateType state = process_sp->GetState();
if (state != eStateInvalid && state != eStateUnloaded &&
state != eStateExited && state != eStateDetached) {
StreamString stream;
if (signo == 0)
stream.Format(DEBUGSERVER_BASENAME " died with an exit status of {0:x8}",
exit_status);
else {
llvm::StringRef signal_name =
process_sp->GetUnixSignals()->GetSignalAsStringRef(signo);
const char *format_str = DEBUGSERVER_BASENAME " died with signal {0}";
if (!signal_name.empty())
stream.Format(format_str, signal_name);
else
stream.Format(format_str, signo);
}
process_sp->SetExitStatus(-1, stream.GetString());
}
// Debugserver has exited we need to let our ProcessGDBRemote know that it no
// longer has a debugserver instance
process_sp->m_debugserver_pid = LLDB_INVALID_PROCESS_ID;
}
void ProcessGDBRemote::KillDebugserverProcess() {
m_gdb_comm.Disconnect();
if (m_debugserver_pid != LLDB_INVALID_PROCESS_ID) {
Host::Kill(m_debugserver_pid, SIGINT);
m_debugserver_pid = LLDB_INVALID_PROCESS_ID;
}
}
void ProcessGDBRemote::Initialize() {
static llvm::once_flag g_once_flag;
llvm::call_once(g_once_flag, []() {
PluginManager::RegisterPlugin(GetPluginNameStatic(),
GetPluginDescriptionStatic(), CreateInstance,
DebuggerInitialize);
});
}
void ProcessGDBRemote::DebuggerInitialize(Debugger &debugger) {
if (!PluginManager::GetSettingForProcessPlugin(
debugger, PluginProperties::GetSettingName())) {
const bool is_global_setting = true;
PluginManager::CreateSettingForProcessPlugin(
debugger, GetGlobalPluginProperties().GetValueProperties(),
"Properties for the gdb-remote process plug-in.", is_global_setting);
}
}
bool ProcessGDBRemote::StartAsyncThread() {
Log *log = GetLog(GDBRLog::Process);
LLDB_LOGF(log, "ProcessGDBRemote::%s ()", __FUNCTION__);
std::lock_guard<std::recursive_mutex> guard(m_async_thread_state_mutex);
if (!m_async_thread.IsJoinable()) {
// Create a thread that watches our internal state and controls which
// events make it to clients (into the DCProcess event queue).
llvm::Expected<HostThread> async_thread =
ThreadLauncher::LaunchThread("<lldb.process.gdb-remote.async>", [this] {
return ProcessGDBRemote::AsyncThread();
});
if (!async_thread) {
LLDB_LOG_ERROR(GetLog(LLDBLog::Host), async_thread.takeError(),
"failed to launch host thread: {0}");
return false;
}
m_async_thread = *async_thread;
} else
LLDB_LOGF(log,
"ProcessGDBRemote::%s () - Called when Async thread was "
"already running.",
__FUNCTION__);
return m_async_thread.IsJoinable();
}
void ProcessGDBRemote::StopAsyncThread() {
Log *log = GetLog(GDBRLog::Process);
LLDB_LOGF(log, "ProcessGDBRemote::%s ()", __FUNCTION__);
std::lock_guard<std::recursive_mutex> guard(m_async_thread_state_mutex);
if (m_async_thread.IsJoinable()) {
m_async_broadcaster.BroadcastEvent(eBroadcastBitAsyncThreadShouldExit);
// This will shut down the async thread.
m_gdb_comm.Disconnect(); // Disconnect from the debug server.
// Stop the stdio thread
m_async_thread.Join(nullptr);
m_async_thread.Reset();
} else
LLDB_LOGF(
log,
"ProcessGDBRemote::%s () - Called when Async thread was not running.",
__FUNCTION__);
}
thread_result_t ProcessGDBRemote::AsyncThread() {
Log *log = GetLog(GDBRLog::Process);
LLDB_LOGF(log, "ProcessGDBRemote::%s(pid = %" PRIu64 ") thread starting...",
__FUNCTION__, GetID());
EventSP event_sp;
// We need to ignore any packets that come in after we have
// have decided the process has exited. There are some
// situations, for instance when we try to interrupt a running
// process and the interrupt fails, where another packet might
// get delivered after we've decided to give up on the process.
// But once we've decided we are done with the process we will
// not be in a state to do anything useful with new packets.
// So it is safer to simply ignore any remaining packets by
// explicitly checking for eStateExited before reentering the
// fetch loop.
bool done = false;
while (!done && GetPrivateState() != eStateExited) {
LLDB_LOGF(log,
"ProcessGDBRemote::%s(pid = %" PRIu64
") listener.WaitForEvent (NULL, event_sp)...",
__FUNCTION__, GetID());
if (m_async_listener_sp->GetEvent(event_sp, std::nullopt)) {
const uint32_t event_type = event_sp->GetType();
if (event_sp->BroadcasterIs(&m_async_broadcaster)) {
LLDB_LOGF(log,
"ProcessGDBRemote::%s(pid = %" PRIu64
") Got an event of type: %d...",
__FUNCTION__, GetID(), event_type);
switch (event_type) {
case eBroadcastBitAsyncContinue: {
const EventDataBytes *continue_packet =
EventDataBytes::GetEventDataFromEvent(event_sp.get());
if (continue_packet) {
const char *continue_cstr =
(const char *)continue_packet->GetBytes();
const size_t continue_cstr_len = continue_packet->GetByteSize();
LLDB_LOGF(log,
"ProcessGDBRemote::%s(pid = %" PRIu64
") got eBroadcastBitAsyncContinue: %s",
__FUNCTION__, GetID(), continue_cstr);
if (::strstr(continue_cstr, "vAttach") == nullptr)
SetPrivateState(eStateRunning);
StringExtractorGDBRemote response;
StateType stop_state =
GetGDBRemote().SendContinuePacketAndWaitForResponse(
*this, *GetUnixSignals(),
llvm::StringRef(continue_cstr, continue_cstr_len),
GetInterruptTimeout(), response);
// We need to immediately clear the thread ID list so we are sure
// to get a valid list of threads. The thread ID list might be
// contained within the "response", or the stop reply packet that
// caused the stop. So clear it now before we give the stop reply
// packet to the process using the
// SetLastStopPacket()...
ClearThreadIDList();
switch (stop_state) {
case eStateStopped:
case eStateCrashed:
case eStateSuspended:
SetLastStopPacket(response);
SetPrivateState(stop_state);
break;
case eStateExited: {
SetLastStopPacket(response);
ClearThreadIDList();
response.SetFilePos(1);
int exit_status = response.GetHexU8();
std::string desc_string;
if (response.GetBytesLeft() > 0 && response.GetChar('-') == ';') {
llvm::StringRef desc_str;
llvm::StringRef desc_token;
while (response.GetNameColonValue(desc_token, desc_str)) {
if (desc_token != "description")
continue;
StringExtractor extractor(desc_str);
extractor.GetHexByteString(desc_string);
}
}
SetExitStatus(exit_status, desc_string.c_str());
done = true;
break;
}
case eStateInvalid: {
// Check to see if we were trying to attach and if we got back
// the "E87" error code from debugserver -- this indicates that
// the process is not debuggable. Return a slightly more
// helpful error message about why the attach failed.
if (::strstr(continue_cstr, "vAttach") != nullptr &&
response.GetError() == 0x87) {
SetExitStatus(-1, "cannot attach to process due to "
"System Integrity Protection");
} else if (::strstr(continue_cstr, "vAttach") != nullptr &&
response.GetStatus().Fail()) {
SetExitStatus(-1, response.GetStatus().AsCString());
} else {
SetExitStatus(-1, "lost connection");
}
done = true;
break;
}
default:
SetPrivateState(stop_state);
break;
} // switch(stop_state)
} // if (continue_packet)
} // case eBroadcastBitAsyncContinue
break;
case eBroadcastBitAsyncThreadShouldExit:
LLDB_LOGF(log,
"ProcessGDBRemote::%s(pid = %" PRIu64
") got eBroadcastBitAsyncThreadShouldExit...",
__FUNCTION__, GetID());
done = true;
break;
default:
LLDB_LOGF(log,
"ProcessGDBRemote::%s(pid = %" PRIu64
") got unknown event 0x%8.8x",
__FUNCTION__, GetID(), event_type);
done = true;
break;
}
}
} else {
LLDB_LOGF(log,
"ProcessGDBRemote::%s(pid = %" PRIu64
") listener.WaitForEvent (NULL, event_sp) => false",
__FUNCTION__, GetID());
done = true;
}
}
LLDB_LOGF(log, "ProcessGDBRemote::%s(pid = %" PRIu64 ") thread exiting...",
__FUNCTION__, GetID());
return {};
}
// uint32_t
// ProcessGDBRemote::ListProcessesMatchingName (const char *name, StringList
// &matches, std::vector<lldb::pid_t> &pids)
//{
// // If we are planning to launch the debugserver remotely, then we need to
// fire up a debugserver
// // process and ask it for the list of processes. But if we are local, we
// can let the Host do it.
// if (m_local_debugserver)
// {
// return Host::ListProcessesMatchingName (name, matches, pids);
// }
// else
// {
// // FIXME: Implement talking to the remote debugserver.
// return 0;
// }
//
//}
//
bool ProcessGDBRemote::NewThreadNotifyBreakpointHit(
void *baton, StoppointCallbackContext *context, lldb::user_id_t break_id,
lldb::user_id_t break_loc_id) {
// I don't think I have to do anything here, just make sure I notice the new
// thread when it starts to
// run so I can stop it if that's what I want to do.
Log *log = GetLog(LLDBLog::Step);
LLDB_LOGF(log, "Hit New Thread Notification breakpoint.");
return false;
}
Status ProcessGDBRemote::UpdateAutomaticSignalFiltering() {
Log *log = GetLog(GDBRLog::Process);
LLDB_LOG(log, "Check if need to update ignored signals");
// QPassSignals package is not supported by the server, there is no way we
// can ignore any signals on server side.
if (!m_gdb_comm.GetQPassSignalsSupported())
return Status();
// No signals, nothing to send.
if (m_unix_signals_sp == nullptr)
return Status();
// Signals' version hasn't changed, no need to send anything.
uint64_t new_signals_version = m_unix_signals_sp->GetVersion();
if (new_signals_version == m_last_signals_version) {
LLDB_LOG(log, "Signals' version hasn't changed. version={0}",
m_last_signals_version);
return Status();
}
auto signals_to_ignore =
m_unix_signals_sp->GetFilteredSignals(false, false, false);
Status error = m_gdb_comm.SendSignalsToIgnore(signals_to_ignore);
LLDB_LOG(log,
"Signals' version changed. old version={0}, new version={1}, "
"signals ignored={2}, update result={3}",
m_last_signals_version, new_signals_version,
signals_to_ignore.size(), error);
if (error.Success())
m_last_signals_version = new_signals_version;
return error;
}
bool ProcessGDBRemote::StartNoticingNewThreads() {
Log *log = GetLog(LLDBLog::Step);
if (m_thread_create_bp_sp) {
if (log && log->GetVerbose())
LLDB_LOGF(log, "Enabled noticing new thread breakpoint.");
m_thread_create_bp_sp->SetEnabled(true);
} else {
PlatformSP platform_sp(GetTarget().GetPlatform());
if (platform_sp) {
m_thread_create_bp_sp =
platform_sp->SetThreadCreationBreakpoint(GetTarget());
if (m_thread_create_bp_sp) {
if (log && log->GetVerbose())
LLDB_LOGF(
log, "Successfully created new thread notification breakpoint %i",
m_thread_create_bp_sp->GetID());
m_thread_create_bp_sp->SetCallback(
ProcessGDBRemote::NewThreadNotifyBreakpointHit, this, true);
} else {
LLDB_LOGF(log, "Failed to create new thread notification breakpoint.");
}
}
}
return m_thread_create_bp_sp.get() != nullptr;
}
bool ProcessGDBRemote::StopNoticingNewThreads() {
Log *log = GetLog(LLDBLog::Step);
if (log && log->GetVerbose())
LLDB_LOGF(log, "Disabling new thread notification breakpoint.");
if (m_thread_create_bp_sp)
m_thread_create_bp_sp->SetEnabled(false);
return true;
}
DynamicLoader *ProcessGDBRemote::GetDynamicLoader() {
if (m_dyld_up.get() == nullptr)
m_dyld_up.reset(DynamicLoader::FindPlugin(this, ""));
return m_dyld_up.get();
}
Status ProcessGDBRemote::SendEventData(const char *data) {
int return_value;
bool was_supported;
Status error;
return_value = m_gdb_comm.SendLaunchEventDataPacket(data, &was_supported);
if (return_value != 0) {
if (!was_supported)
error.SetErrorString("Sending events is not supported for this process.");
else
error.SetErrorStringWithFormat("Error sending event data: %d.",
return_value);
}
return error;
}
DataExtractor ProcessGDBRemote::GetAuxvData() {
DataBufferSP buf;
if (m_gdb_comm.GetQXferAuxvReadSupported()) {
llvm::Expected<std::string> response = m_gdb_comm.ReadExtFeature("auxv", "");
if (response)
buf = std::make_shared<DataBufferHeap>(response->c_str(),
response->length());
else
LLDB_LOG_ERROR(GetLog(GDBRLog::Process), response.takeError(), "{0}");
}
return DataExtractor(buf, GetByteOrder(), GetAddressByteSize());
}
StructuredData::ObjectSP
ProcessGDBRemote::GetExtendedInfoForThread(lldb::tid_t tid) {
StructuredData::ObjectSP object_sp;
if (m_gdb_comm.GetThreadExtendedInfoSupported()) {
StructuredData::ObjectSP args_dict(new StructuredData::Dictionary());
SystemRuntime *runtime = GetSystemRuntime();
if (runtime) {
runtime->AddThreadExtendedInfoPacketHints(args_dict);
}
args_dict->GetAsDictionary()->AddIntegerItem("thread", tid);
StreamString packet;
packet << "jThreadExtendedInfo:";
args_dict->Dump(packet, false);
// FIXME the final character of a JSON dictionary, '}', is the escape
// character in gdb-remote binary mode. lldb currently doesn't escape
// these characters in its packet output -- so we add the quoted version of
// the } character here manually in case we talk to a debugserver which un-
// escapes the characters at packet read time.
packet << (char)(0x7d ^ 0x20);
StringExtractorGDBRemote response;
response.SetResponseValidatorToJSON();
if (m_gdb_comm.SendPacketAndWaitForResponse(packet.GetString(), response) ==
GDBRemoteCommunication::PacketResult::Success) {
StringExtractorGDBRemote::ResponseType response_type =
response.GetResponseType();
if (response_type == StringExtractorGDBRemote::eResponse) {
if (!response.Empty()) {
object_sp = StructuredData::ParseJSON(response.GetStringRef());
}
}
}
}
return object_sp;
}
StructuredData::ObjectSP ProcessGDBRemote::GetLoadedDynamicLibrariesInfos(
lldb::addr_t image_list_address, lldb::addr_t image_count) {
StructuredData::ObjectSP args_dict(new StructuredData::Dictionary());
args_dict->GetAsDictionary()->AddIntegerItem("image_list_address",
image_list_address);
args_dict->GetAsDictionary()->AddIntegerItem("image_count", image_count);
return GetLoadedDynamicLibrariesInfos_sender(args_dict);
}
StructuredData::ObjectSP ProcessGDBRemote::GetLoadedDynamicLibrariesInfos() {
StructuredData::ObjectSP args_dict(new StructuredData::Dictionary());
args_dict->GetAsDictionary()->AddBooleanItem("fetch_all_solibs", true);
return GetLoadedDynamicLibrariesInfos_sender(args_dict);
}
StructuredData::ObjectSP ProcessGDBRemote::GetLoadedDynamicLibrariesInfos(
const std::vector<lldb::addr_t> &load_addresses) {
StructuredData::ObjectSP args_dict(new StructuredData::Dictionary());
StructuredData::ArraySP addresses(new StructuredData::Array);
for (auto addr : load_addresses)
addresses->AddIntegerItem(addr);
args_dict->GetAsDictionary()->AddItem("solib_addresses", addresses);
return GetLoadedDynamicLibrariesInfos_sender(args_dict);
}
StructuredData::ObjectSP
ProcessGDBRemote::GetLoadedDynamicLibrariesInfos_sender(
StructuredData::ObjectSP args_dict) {
StructuredData::ObjectSP object_sp;
if (m_gdb_comm.GetLoadedDynamicLibrariesInfosSupported()) {
// Scope for the scoped timeout object
GDBRemoteCommunication::ScopedTimeout timeout(m_gdb_comm,
std::chrono::seconds(10));
StreamString packet;
packet << "jGetLoadedDynamicLibrariesInfos:";
args_dict->Dump(packet, false);
// FIXME the final character of a JSON dictionary, '}', is the escape
// character in gdb-remote binary mode. lldb currently doesn't escape
// these characters in its packet output -- so we add the quoted version of
// the } character here manually in case we talk to a debugserver which un-
// escapes the characters at packet read time.
packet << (char)(0x7d ^ 0x20);
StringExtractorGDBRemote response;
response.SetResponseValidatorToJSON();
if (m_gdb_comm.SendPacketAndWaitForResponse(packet.GetString(), response) ==
GDBRemoteCommunication::PacketResult::Success) {
StringExtractorGDBRemote::ResponseType response_type =
response.GetResponseType();
if (response_type == StringExtractorGDBRemote::eResponse) {
if (!response.Empty()) {
object_sp = StructuredData::ParseJSON(response.GetStringRef());
}
}
}
}
return object_sp;
}
StructuredData::ObjectSP ProcessGDBRemote::GetDynamicLoaderProcessState() {
StructuredData::ObjectSP object_sp;
StructuredData::ObjectSP args_dict(new StructuredData::Dictionary());
if (m_gdb_comm.GetDynamicLoaderProcessStateSupported()) {
StringExtractorGDBRemote response;
response.SetResponseValidatorToJSON();
if (m_gdb_comm.SendPacketAndWaitForResponse("jGetDyldProcessState",
response) ==
GDBRemoteCommunication::PacketResult::Success) {
StringExtractorGDBRemote::ResponseType response_type =
response.GetResponseType();
if (response_type == StringExtractorGDBRemote::eResponse) {
if (!response.Empty()) {
object_sp = StructuredData::ParseJSON(response.GetStringRef());
}
}
}
}
return object_sp;
}
StructuredData::ObjectSP ProcessGDBRemote::GetSharedCacheInfo() {
StructuredData::ObjectSP object_sp;
StructuredData::ObjectSP args_dict(new StructuredData::Dictionary());
if (m_gdb_comm.GetSharedCacheInfoSupported()) {
StreamString packet;
packet << "jGetSharedCacheInfo:";
args_dict->Dump(packet, false);
// FIXME the final character of a JSON dictionary, '}', is the escape
// character in gdb-remote binary mode. lldb currently doesn't escape
// these characters in its packet output -- so we add the quoted version of
// the } character here manually in case we talk to a debugserver which un-
// escapes the characters at packet read time.
packet << (char)(0x7d ^ 0x20);
StringExtractorGDBRemote response;
response.SetResponseValidatorToJSON();
if (m_gdb_comm.SendPacketAndWaitForResponse(packet.GetString(), response) ==
GDBRemoteCommunication::PacketResult::Success) {
StringExtractorGDBRemote::ResponseType response_type =
response.GetResponseType();
if (response_type == StringExtractorGDBRemote::eResponse) {
if (!response.Empty()) {
object_sp = StructuredData::ParseJSON(response.GetStringRef());
}
}
}
}
return object_sp;
}
Status ProcessGDBRemote::ConfigureStructuredData(
llvm::StringRef type_name, const StructuredData::ObjectSP &config_sp) {
return m_gdb_comm.ConfigureRemoteStructuredData(type_name, config_sp);
}
// Establish the largest memory read/write payloads we should use. If the
// remote stub has a max packet size, stay under that size.
//
// If the remote stub's max packet size is crazy large, use a reasonable
// largeish default.
//
// If the remote stub doesn't advertise a max packet size, use a conservative
// default.
void ProcessGDBRemote::GetMaxMemorySize() {
const uint64_t reasonable_largeish_default = 128 * 1024;
const uint64_t conservative_default = 512;
if (m_max_memory_size == 0) {
uint64_t stub_max_size = m_gdb_comm.GetRemoteMaxPacketSize();
if (stub_max_size != UINT64_MAX && stub_max_size != 0) {
// Save the stub's claimed maximum packet size
m_remote_stub_max_memory_size = stub_max_size;
// Even if the stub says it can support ginormous packets, don't exceed
// our reasonable largeish default packet size.
if (stub_max_size > reasonable_largeish_default) {
stub_max_size = reasonable_largeish_default;
}
// Memory packet have other overheads too like Maddr,size:#NN Instead of
// calculating the bytes taken by size and addr every time, we take a
// maximum guess here.
if (stub_max_size > 70)
stub_max_size -= 32 + 32 + 6;
else {
// In unlikely scenario that max packet size is less then 70, we will
// hope that data being written is small enough to fit.
Log *log(GetLog(GDBRLog::Comm | GDBRLog::Memory));
if (log)
log->Warning("Packet size is too small. "
"LLDB may face problems while writing memory");
}
m_max_memory_size = stub_max_size;
} else {
m_max_memory_size = conservative_default;
}
}
}
void ProcessGDBRemote::SetUserSpecifiedMaxMemoryTransferSize(
uint64_t user_specified_max) {
if (user_specified_max != 0) {
GetMaxMemorySize();
if (m_remote_stub_max_memory_size != 0) {
if (m_remote_stub_max_memory_size < user_specified_max) {
m_max_memory_size = m_remote_stub_max_memory_size; // user specified a
// packet size too
// big, go as big
// as the remote stub says we can go.
} else {
m_max_memory_size = user_specified_max; // user's packet size is good
}
} else {
m_max_memory_size =
user_specified_max; // user's packet size is probably fine
}
}
}
bool ProcessGDBRemote::GetModuleSpec(const FileSpec &module_file_spec,
const ArchSpec &arch,
ModuleSpec &module_spec) {
Log *log = GetLog(LLDBLog::Platform);
const ModuleCacheKey key(module_file_spec.GetPath(),
arch.GetTriple().getTriple());
auto cached = m_cached_module_specs.find(key);
if (cached != m_cached_module_specs.end()) {
module_spec = cached->second;
return bool(module_spec);
}
if (!m_gdb_comm.GetModuleInfo(module_file_spec, arch, module_spec)) {
LLDB_LOGF(log, "ProcessGDBRemote::%s - failed to get module info for %s:%s",
__FUNCTION__, module_file_spec.GetPath().c_str(),
arch.GetTriple().getTriple().c_str());
return false;
}
if (log) {
StreamString stream;
module_spec.Dump(stream);
LLDB_LOGF(log, "ProcessGDBRemote::%s - got module info for (%s:%s) : %s",
__FUNCTION__, module_file_spec.GetPath().c_str(),
arch.GetTriple().getTriple().c_str(), stream.GetData());
}
m_cached_module_specs[key] = module_spec;
return true;
}
void ProcessGDBRemote::PrefetchModuleSpecs(
llvm::ArrayRef<FileSpec> module_file_specs, const llvm::Triple &triple) {
auto module_specs = m_gdb_comm.GetModulesInfo(module_file_specs, triple);
if (module_specs) {
for (const FileSpec &spec : module_file_specs)
m_cached_module_specs[ModuleCacheKey(spec.GetPath(),
triple.getTriple())] = ModuleSpec();
for (const ModuleSpec &spec : *module_specs)
m_cached_module_specs[ModuleCacheKey(spec.GetFileSpec().GetPath(),
triple.getTriple())] = spec;
}
}
llvm::VersionTuple ProcessGDBRemote::GetHostOSVersion() {
return m_gdb_comm.GetOSVersion();
}
llvm::VersionTuple ProcessGDBRemote::GetHostMacCatalystVersion() {
return m_gdb_comm.GetMacCatalystVersion();
}
namespace {
typedef std::vector<std::string> stringVec;
typedef std::vector<struct GdbServerRegisterInfo> GDBServerRegisterVec;
struct RegisterSetInfo {
ConstString name;
};
typedef std::map<uint32_t, RegisterSetInfo> RegisterSetMap;
struct GdbServerTargetInfo {
std::string arch;
std::string osabi;
stringVec includes;
RegisterSetMap reg_set_map;
};
static std::vector<RegisterFlags::Field> ParseFlagsFields(XMLNode flags_node,
unsigned size) {
Log *log(GetLog(GDBRLog::Process));
const unsigned max_start_bit = size * 8 - 1;
// Process the fields of this set of flags.
std::vector<RegisterFlags::Field> fields;
flags_node.ForEachChildElementWithName("field", [&fields, max_start_bit,
&log](const XMLNode
&field_node) {
std::optional<llvm::StringRef> name;
std::optional<unsigned> start;
std::optional<unsigned> end;
field_node.ForEachAttribute([&name, &start, &end, max_start_bit,
&log](const llvm::StringRef &attr_name,
const llvm::StringRef &attr_value) {
// Note that XML in general requires that each of these attributes only
// appears once, so we don't have to handle that here.
if (attr_name == "name") {
LLDB_LOG(
log,
"ProcessGDBRemote::ParseFlagsFields Found field node name \"{0}\"",
attr_value.data());
name = attr_value;
} else if (attr_name == "start") {
unsigned parsed_start = 0;
if (llvm::to_integer(attr_value, parsed_start)) {
if (parsed_start > max_start_bit) {
LLDB_LOG(log,
"ProcessGDBRemote::ParseFlagsFields Invalid start {0} in "
"field node, "
"cannot be > {1}",
parsed_start, max_start_bit);
} else
start = parsed_start;
} else {
LLDB_LOG(
log,
"ProcessGDBRemote::ParseFlagsFields Invalid start \"{0}\" in "
"field node",
attr_value.data());
}
} else if (attr_name == "end") {
unsigned parsed_end = 0;
if (llvm::to_integer(attr_value, parsed_end))
if (parsed_end > max_start_bit) {
LLDB_LOG(log,
"ProcessGDBRemote::ParseFlagsFields Invalid end {0} in "
"field node, "
"cannot be > {1}",
parsed_end, max_start_bit);
} else
end = parsed_end;
else {
LLDB_LOG(log,
"ProcessGDBRemote::ParseFlagsFields Invalid end \"{0}\" in "
"field node",
attr_value.data());
}
} else if (attr_name == "type") {
// Type is a known attribute but we do not currently use it and it is
// not required.
} else {
LLDB_LOG(
log,
"ProcessGDBRemote::ParseFlagsFields Ignoring unknown attribute "
"\"{0}\" in field node",
attr_name.data());
}
return true; // Walk all attributes of the field.
});
if (name && start && end) {
if (*start > *end) {
LLDB_LOG(
log,
"ProcessGDBRemote::ParseFlagsFields Start {0} > end {1} in field "
"\"{2}\", ignoring",
*start, *end, name->data());
} else {
fields.push_back(RegisterFlags::Field(name->str(), *start, *end));
}
}
return true; // Iterate all "field" nodes.
});
return fields;
}
void ParseFlags(
XMLNode feature_node,
llvm::StringMap<std::unique_ptr<RegisterFlags>> &registers_flags_types) {
Log *log(GetLog(GDBRLog::Process));
feature_node.ForEachChildElementWithName(
"flags",
[&log, &registers_flags_types](const XMLNode &flags_node) -> bool {
LLDB_LOG(log, "ProcessGDBRemote::ParseFlags Found flags node \"{0}\"",
flags_node.GetAttributeValue("id").c_str());
std::optional<llvm::StringRef> id;
std::optional<unsigned> size;
flags_node.ForEachAttribute(
[&id, &size, &log](const llvm::StringRef &name,
const llvm::StringRef &value) {
if (name == "id") {
id = value;
} else if (name == "size") {
unsigned parsed_size = 0;
if (llvm::to_integer(value, parsed_size))
size = parsed_size;
else {
LLDB_LOG(log,
"ProcessGDBRemote::ParseFlags Invalid size \"{0}\" "
"in flags node",
value.data());
}
} else {
LLDB_LOG(log,
"ProcessGDBRemote::ParseFlags Ignoring unknown "
"attribute \"{0}\" in flags node",
name.data());
}
return true; // Walk all attributes.
});
if (id && size) {
// Process the fields of this set of flags.
std::vector<RegisterFlags::Field> fields =
ParseFlagsFields(flags_node, *size);
if (fields.size()) {
// Sort so that the fields with the MSBs are first.
std::sort(fields.rbegin(), fields.rend());
std::vector<RegisterFlags::Field>::const_iterator overlap =
std::adjacent_find(fields.begin(), fields.end(),
[](const RegisterFlags::Field &lhs,
const RegisterFlags::Field &rhs) {
return lhs.Overlaps(rhs);
});
// If no fields overlap, use them.
if (overlap == fields.end()) {
if (registers_flags_types.contains(*id)) {
// In theory you could define some flag set, use it with a
// register then redefine it. We do not know if anyone does
// that, or what they would expect to happen in that case.
//
// LLDB chooses to take the first definition and ignore the rest
// as waiting until everything has been processed is more
// expensive and difficult. This means that pointers to flag
// sets in the register info remain valid if later the flag set
// is redefined. If we allowed redefinitions, LLDB would crash
// when you tried to print a register that used the original
// definition.
LLDB_LOG(
log,
"ProcessGDBRemote::ParseFlags Definition of flags "
"\"{0}\" shadows "
"previous definition, using original definition instead.",
id->data());
} else {
registers_flags_types.insert_or_assign(
*id, std::make_unique<RegisterFlags>(id->str(), *size,
std::move(fields)));
}
} else {
// If any fields overlap, ignore the whole set of flags.
std::vector<RegisterFlags::Field>::const_iterator next =
std::next(overlap);
LLDB_LOG(
log,
"ProcessGDBRemote::ParseFlags Ignoring flags because fields "
"{0} (start: {1} end: {2}) and {3} (start: {4} end: {5}) "
"overlap.",
overlap->GetName().c_str(), overlap->GetStart(),
overlap->GetEnd(), next->GetName().c_str(), next->GetStart(),
next->GetEnd());
}
} else {
LLDB_LOG(
log,
"ProcessGDBRemote::ParseFlags Ignoring definition of flags "
"\"{0}\" because it contains no fields.",
id->data());
}
}
return true; // Keep iterating through all "flags" elements.
});
}
bool ParseRegisters(
XMLNode feature_node, GdbServerTargetInfo &target_info,
std::vector<DynamicRegisterInfo::Register> &registers,
llvm::StringMap<std::unique_ptr<RegisterFlags>> &registers_flags_types) {
if (!feature_node)
return false;
Log *log(GetLog(GDBRLog::Process));
ParseFlags(feature_node, registers_flags_types);
for (const auto &flags : registers_flags_types)
flags.second->log(log);
feature_node.ForEachChildElementWithName(
"reg",
[&target_info, &registers, &registers_flags_types,
log](const XMLNode &reg_node) -> bool {
std::string gdb_group;
std::string gdb_type;
DynamicRegisterInfo::Register reg_info;
bool encoding_set = false;
bool format_set = false;
// FIXME: we're silently ignoring invalid data here
reg_node.ForEachAttribute([&target_info, &gdb_group, &gdb_type,
&encoding_set, &format_set, &reg_info,
log](const llvm::StringRef &name,
const llvm::StringRef &value) -> bool {
if (name == "name") {
reg_info.name.SetString(value);
} else if (name == "bitsize") {
if (llvm::to_integer(value, reg_info.byte_size))
reg_info.byte_size =
llvm::divideCeil(reg_info.byte_size, CHAR_BIT);
} else if (name == "type") {
gdb_type = value.str();
} else if (name == "group") {
gdb_group = value.str();
} else if (name == "regnum") {
llvm::to_integer(value, reg_info.regnum_remote);
} else if (name == "offset") {
llvm::to_integer(value, reg_info.byte_offset);
} else if (name == "altname") {
reg_info.alt_name.SetString(value);
} else if (name == "encoding") {
encoding_set = true;
reg_info.encoding = Args::StringToEncoding(value, eEncodingUint);
} else if (name == "format") {
format_set = true;
if (!OptionArgParser::ToFormat(value.data(), reg_info.format,
nullptr)
.Success())
reg_info.format =
llvm::StringSwitch<lldb::Format>(value)
.Case("vector-sint8", eFormatVectorOfSInt8)
.Case("vector-uint8", eFormatVectorOfUInt8)
.Case("vector-sint16", eFormatVectorOfSInt16)
.Case("vector-uint16", eFormatVectorOfUInt16)
.Case("vector-sint32", eFormatVectorOfSInt32)
.Case("vector-uint32", eFormatVectorOfUInt32)
.Case("vector-float32", eFormatVectorOfFloat32)
.Case("vector-uint64", eFormatVectorOfUInt64)
.Case("vector-uint128", eFormatVectorOfUInt128)
.Default(eFormatInvalid);
} else if (name == "group_id") {
uint32_t set_id = UINT32_MAX;
llvm::to_integer(value, set_id);
RegisterSetMap::const_iterator pos =
target_info.reg_set_map.find(set_id);
if (pos != target_info.reg_set_map.end())
reg_info.set_name = pos->second.name;
} else if (name == "gcc_regnum" || name == "ehframe_regnum") {
llvm::to_integer(value, reg_info.regnum_ehframe);
} else if (name == "dwarf_regnum") {
llvm::to_integer(value, reg_info.regnum_dwarf);
} else if (name == "generic") {
reg_info.regnum_generic = Args::StringToGenericRegister(value);
} else if (name == "value_regnums") {
SplitCommaSeparatedRegisterNumberString(value, reg_info.value_regs,
0);
} else if (name == "invalidate_regnums") {
SplitCommaSeparatedRegisterNumberString(
value, reg_info.invalidate_regs, 0);
} else {
LLDB_LOGF(log,
"ProcessGDBRemote::ParseRegisters unhandled reg "
"attribute %s = %s",
name.data(), value.data());
}
return true; // Keep iterating through all attributes
});
if (!gdb_type.empty()) {
// gdb_type could reference some flags type defined in XML.
llvm::StringMap<std::unique_ptr<RegisterFlags>>::iterator it =
registers_flags_types.find(gdb_type);
if (it != registers_flags_types.end()) {
auto flags_type = it->second.get();
if (reg_info.byte_size == flags_type->GetSize())
reg_info.flags_type = flags_type;
else
LLDB_LOGF(log,
"ProcessGDBRemote::ParseRegisters Size of register "
"flags %s (%d bytes) for "
"register %s does not match the register size (%d "
"bytes). Ignoring this set of flags.",
flags_type->GetID().c_str(), flags_type->GetSize(),
reg_info.name.AsCString(), reg_info.byte_size);
}
// There's a slim chance that the gdb_type name is both a flags type
// and a simple type. Just in case, look for that too (setting both
// does no harm).
if (!gdb_type.empty() && !(encoding_set || format_set)) {
if (llvm::StringRef(gdb_type).starts_with("int")) {
reg_info.format = eFormatHex;
reg_info.encoding = eEncodingUint;
} else if (gdb_type == "data_ptr" || gdb_type == "code_ptr") {
reg_info.format = eFormatAddressInfo;
reg_info.encoding = eEncodingUint;
} else if (gdb_type == "float") {
reg_info.format = eFormatFloat;
reg_info.encoding = eEncodingIEEE754;
} else if (gdb_type == "aarch64v" ||
llvm::StringRef(gdb_type).starts_with("vec") ||
gdb_type == "i387_ext" || gdb_type == "uint128") {
// lldb doesn't handle 128-bit uints correctly (for ymm*h), so
// treat them as vector (similarly to xmm/ymm)
reg_info.format = eFormatVectorOfUInt8;
reg_info.encoding = eEncodingVector;
} else {
LLDB_LOGF(
log,
"ProcessGDBRemote::ParseRegisters Could not determine lldb"
"format and encoding for gdb type %s",
gdb_type.c_str());
}
}
}
// Only update the register set name if we didn't get a "reg_set"
// attribute. "set_name" will be empty if we didn't have a "reg_set"
// attribute.
if (!reg_info.set_name) {
if (!gdb_group.empty()) {
reg_info.set_name.SetCString(gdb_group.c_str());
} else {
// If no register group name provided anywhere,
// we'll create a 'general' register set
reg_info.set_name.SetCString("general");
}
}
if (reg_info.byte_size == 0) {
LLDB_LOGF(log,
"ProcessGDBRemote::%s Skipping zero bitsize register %s",
__FUNCTION__, reg_info.name.AsCString());
} else
registers.push_back(reg_info);
return true; // Keep iterating through all "reg" elements
});
return true;
}
} // namespace
// This method fetches a register description feature xml file from
// the remote stub and adds registers/register groupsets/architecture
// information to the current process. It will call itself recursively
// for nested register definition files. It returns true if it was able
// to fetch and parse an xml file.
bool ProcessGDBRemote::GetGDBServerRegisterInfoXMLAndProcess(
ArchSpec &arch_to_use, std::string xml_filename,
std::vector<DynamicRegisterInfo::Register> &registers) {
// request the target xml file
llvm::Expected<std::string> raw = m_gdb_comm.ReadExtFeature("features", xml_filename);
if (errorToBool(raw.takeError()))
return false;
XMLDocument xml_document;
if (xml_document.ParseMemory(raw->c_str(), raw->size(),
xml_filename.c_str())) {
GdbServerTargetInfo target_info;
std::vector<XMLNode> feature_nodes;
// The top level feature XML file will start with a <target> tag.
XMLNode target_node = xml_document.GetRootElement("target");
if (target_node) {
target_node.ForEachChildElement([&target_info, &feature_nodes](
const XMLNode &node) -> bool {
llvm::StringRef name = node.GetName();
if (name == "architecture") {
node.GetElementText(target_info.arch);
} else if (name == "osabi") {
node.GetElementText(target_info.osabi);
} else if (name == "xi:include" || name == "include") {
std::string href = node.GetAttributeValue("href");
if (!href.empty())
target_info.includes.push_back(href);
} else if (name == "feature") {
feature_nodes.push_back(node);
} else if (name == "groups") {
node.ForEachChildElementWithName(
"group", [&target_info](const XMLNode &node) -> bool {
uint32_t set_id = UINT32_MAX;
RegisterSetInfo set_info;
node.ForEachAttribute(
[&set_id, &set_info](const llvm::StringRef &name,
const llvm::StringRef &value) -> bool {
// FIXME: we're silently ignoring invalid data here
if (name == "id")
llvm::to_integer(value, set_id);
if (name == "name")
set_info.name = ConstString(value);
return true; // Keep iterating through all attributes
});
if (set_id != UINT32_MAX)
target_info.reg_set_map[set_id] = set_info;
return true; // Keep iterating through all "group" elements
});
}
return true; // Keep iterating through all children of the target_node
});
} else {
// In an included XML feature file, we're already "inside" the <target>
// tag of the initial XML file; this included file will likely only have
// a <feature> tag. Need to check for any more included files in this
// <feature> element.
XMLNode feature_node = xml_document.GetRootElement("feature");
if (feature_node) {
feature_nodes.push_back(feature_node);
feature_node.ForEachChildElement([&target_info](
const XMLNode &node) -> bool {
llvm::StringRef name = node.GetName();
if (name == "xi:include" || name == "include") {
std::string href = node.GetAttributeValue("href");
if (!href.empty())
target_info.includes.push_back(href);
}
return true;
});
}
}
// gdbserver does not implement the LLDB packets used to determine host
// or process architecture. If that is the case, attempt to use
// the <architecture/> field from target.xml, e.g.:
//
// <architecture>i386:x86-64</architecture> (seen from VMWare ESXi)
// <architecture>arm</architecture> (seen from Segger JLink on unspecified
// arm board)
if (!arch_to_use.IsValid() && !target_info.arch.empty()) {
// We don't have any information about vendor or OS.
arch_to_use.SetTriple(llvm::StringSwitch<std::string>(target_info.arch)
.Case("i386:x86-64", "x86_64")
.Case("riscv:rv64", "riscv64")
.Case("riscv:rv32", "riscv32")
.Default(target_info.arch) +
"--");
if (arch_to_use.IsValid())
GetTarget().MergeArchitecture(arch_to_use);
}
if (arch_to_use.IsValid()) {
for (auto &feature_node : feature_nodes) {
ParseRegisters(feature_node, target_info, registers,
m_registers_flags_types);
}
for (const auto &include : target_info.includes) {
GetGDBServerRegisterInfoXMLAndProcess(arch_to_use, include,
registers);
}
}
} else {
return false;
}
return true;
}
void ProcessGDBRemote::AddRemoteRegisters(
std::vector<DynamicRegisterInfo::Register> &registers,
const ArchSpec &arch_to_use) {
std::map<uint32_t, uint32_t> remote_to_local_map;
uint32_t remote_regnum = 0;
for (auto it : llvm::enumerate(registers)) {
DynamicRegisterInfo::Register &remote_reg_info = it.value();
// Assign successive remote regnums if missing.
if (remote_reg_info.regnum_remote == LLDB_INVALID_REGNUM)
remote_reg_info.regnum_remote = remote_regnum;
// Create a mapping from remote to local regnos.
remote_to_local_map[remote_reg_info.regnum_remote] = it.index();
remote_regnum = remote_reg_info.regnum_remote + 1;
}
for (DynamicRegisterInfo::Register &remote_reg_info : registers) {
auto proc_to_lldb = [&remote_to_local_map](uint32_t process_regnum) {
auto lldb_regit = remote_to_local_map.find(process_regnum);
return lldb_regit != remote_to_local_map.end() ? lldb_regit->second
: LLDB_INVALID_REGNUM;
};
llvm::transform(remote_reg_info.value_regs,
remote_reg_info.value_regs.begin(), proc_to_lldb);
llvm::transform(remote_reg_info.invalidate_regs,
remote_reg_info.invalidate_regs.begin(), proc_to_lldb);
}
// Don't use Process::GetABI, this code gets called from DidAttach, and
// in that context we haven't set the Target's architecture yet, so the
// ABI is also potentially incorrect.
if (ABISP abi_sp = ABI::FindPlugin(shared_from_this(), arch_to_use))
abi_sp->AugmentRegisterInfo(registers);
m_register_info_sp->SetRegisterInfo(std::move(registers), arch_to_use);
}
// query the target of gdb-remote for extended target information returns
// true on success (got register definitions), false on failure (did not).
bool ProcessGDBRemote::GetGDBServerRegisterInfo(ArchSpec &arch_to_use) {
// Make sure LLDB has an XML parser it can use first
if (!XMLDocument::XMLEnabled())
return false;
// check that we have extended feature read support
if (!m_gdb_comm.GetQXferFeaturesReadSupported())
return false;
// This holds register flags information for the whole of target.xml.
// target.xml may include further documents that
// GetGDBServerRegisterInfoXMLAndProcess will recurse to fetch and process.
// That's why we clear the cache here, and not in
// GetGDBServerRegisterInfoXMLAndProcess. To prevent it being cleared on every
// include read.
m_registers_flags_types.clear();
std::vector<DynamicRegisterInfo::Register> registers;
if (GetGDBServerRegisterInfoXMLAndProcess(arch_to_use, "target.xml",
registers))
AddRemoteRegisters(registers, arch_to_use);
return m_register_info_sp->GetNumRegisters() > 0;
}
llvm::Expected<LoadedModuleInfoList> ProcessGDBRemote::GetLoadedModuleList() {
// Make sure LLDB has an XML parser it can use first
if (!XMLDocument::XMLEnabled())
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"XML parsing not available");
Log *log = GetLog(LLDBLog::Process);
LLDB_LOGF(log, "ProcessGDBRemote::%s", __FUNCTION__);
LoadedModuleInfoList list;
GDBRemoteCommunicationClient &comm = m_gdb_comm;
bool can_use_svr4 = GetGlobalPluginProperties().GetUseSVR4();
// check that we have extended feature read support
if (can_use_svr4 && comm.GetQXferLibrariesSVR4ReadSupported()) {
// request the loaded library list
llvm::Expected<std::string> raw = comm.ReadExtFeature("libraries-svr4", "");
if (!raw)
return raw.takeError();
// parse the xml file in memory
LLDB_LOGF(log, "parsing: %s", raw->c_str());
XMLDocument doc;
if (!doc.ParseMemory(raw->c_str(), raw->size(), "noname.xml"))
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"Error reading noname.xml");
XMLNode root_element = doc.GetRootElement("library-list-svr4");
if (!root_element)
return llvm::createStringError(
llvm::inconvertibleErrorCode(),
"Error finding library-list-svr4 xml element");
// main link map structure
std::string main_lm = root_element.GetAttributeValue("main-lm");
// FIXME: we're silently ignoring invalid data here
if (!main_lm.empty())
llvm::to_integer(main_lm, list.m_link_map);
root_element.ForEachChildElementWithName(
"library", [log, &list](const XMLNode &library) -> bool {
LoadedModuleInfoList::LoadedModuleInfo module;
// FIXME: we're silently ignoring invalid data here
library.ForEachAttribute(
[&module](const llvm::StringRef &name,
const llvm::StringRef &value) -> bool {
uint64_t uint_value = LLDB_INVALID_ADDRESS;
if (name == "name")
module.set_name(value.str());
else if (name == "lm") {
// the address of the link_map struct.
llvm::to_integer(value, uint_value);
module.set_link_map(uint_value);
} else if (name == "l_addr") {
// the displacement as read from the field 'l_addr' of the
// link_map struct.
llvm::to_integer(value, uint_value);
module.set_base(uint_value);
// base address is always a displacement, not an absolute
// value.
module.set_base_is_offset(true);
} else if (name == "l_ld") {
// the memory address of the libraries PT_DYNAMIC section.
llvm::to_integer(value, uint_value);
module.set_dynamic(uint_value);
}
return true; // Keep iterating over all properties of "library"
});
if (log) {
std::string name;
lldb::addr_t lm = 0, base = 0, ld = 0;
bool base_is_offset;
module.get_name(name);
module.get_link_map(lm);
module.get_base(base);
module.get_base_is_offset(base_is_offset);
module.get_dynamic(ld);
LLDB_LOGF(log,
"found (link_map:0x%08" PRIx64 ", base:0x%08" PRIx64
"[%s], ld:0x%08" PRIx64 ", name:'%s')",
lm, base, (base_is_offset ? "offset" : "absolute"), ld,
name.c_str());
}
list.add(module);
return true; // Keep iterating over all "library" elements in the root
// node
});
if (log)
LLDB_LOGF(log, "found %" PRId32 " modules in total",
(int)list.m_list.size());
return list;
} else if (comm.GetQXferLibrariesReadSupported()) {
// request the loaded library list
llvm::Expected<std::string> raw = comm.ReadExtFeature("libraries", "");
if (!raw)
return raw.takeError();
LLDB_LOGF(log, "parsing: %s", raw->c_str());
XMLDocument doc;
if (!doc.ParseMemory(raw->c_str(), raw->size(), "noname.xml"))
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"Error reading noname.xml");
XMLNode root_element = doc.GetRootElement("library-list");
if (!root_element)
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"Error finding library-list xml element");
// FIXME: we're silently ignoring invalid data here
root_element.ForEachChildElementWithName(
"library", [log, &list](const XMLNode &library) -> bool {
LoadedModuleInfoList::LoadedModuleInfo module;
std::string name = library.GetAttributeValue("name");
module.set_name(name);
// The base address of a given library will be the address of its
// first section. Most remotes send only one section for Windows
// targets for example.
const XMLNode &section =
library.FindFirstChildElementWithName("section");
std::string address = section.GetAttributeValue("address");
uint64_t address_value = LLDB_INVALID_ADDRESS;
llvm::to_integer(address, address_value);
module.set_base(address_value);
// These addresses are absolute values.
module.set_base_is_offset(false);
if (log) {
std::string name;
lldb::addr_t base = 0;
bool base_is_offset;
module.get_name(name);
module.get_base(base);
module.get_base_is_offset(base_is_offset);
LLDB_LOGF(log, "found (base:0x%08" PRIx64 "[%s], name:'%s')", base,
(base_is_offset ? "offset" : "absolute"), name.c_str());
}
list.add(module);
return true; // Keep iterating over all "library" elements in the root
// node
});
if (log)
LLDB_LOGF(log, "found %" PRId32 " modules in total",
(int)list.m_list.size());
return list;
} else {
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"Remote libraries not supported");
}
}
lldb::ModuleSP ProcessGDBRemote::LoadModuleAtAddress(const FileSpec &file,
lldb::addr_t link_map,
lldb::addr_t base_addr,
bool value_is_offset) {
DynamicLoader *loader = GetDynamicLoader();
if (!loader)
return nullptr;
return loader->LoadModuleAtAddress(file, link_map, base_addr,
value_is_offset);
}
llvm::Error ProcessGDBRemote::LoadModules() {
using lldb_private::process_gdb_remote::ProcessGDBRemote;
// request a list of loaded libraries from GDBServer
llvm::Expected<LoadedModuleInfoList> module_list = GetLoadedModuleList();
if (!module_list)
return module_list.takeError();
// get a list of all the modules
ModuleList new_modules;
for (LoadedModuleInfoList::LoadedModuleInfo &modInfo : module_list->m_list) {
std::string mod_name;
lldb::addr_t mod_base;
lldb::addr_t link_map;
bool mod_base_is_offset;
bool valid = true;
valid &= modInfo.get_name(mod_name);
valid &= modInfo.get_base(mod_base);
valid &= modInfo.get_base_is_offset(mod_base_is_offset);
if (!valid)
continue;
if (!modInfo.get_link_map(link_map))
link_map = LLDB_INVALID_ADDRESS;
FileSpec file(mod_name);
FileSystem::Instance().Resolve(file);
lldb::ModuleSP module_sp =
LoadModuleAtAddress(file, link_map, mod_base, mod_base_is_offset);
if (module_sp.get())
new_modules.Append(module_sp);
}
if (new_modules.GetSize() > 0) {
ModuleList removed_modules;
Target &target = GetTarget();
ModuleList &loaded_modules = m_process->GetTarget().GetImages();
for (size_t i = 0; i < loaded_modules.GetSize(); ++i) {
const lldb::ModuleSP loaded_module = loaded_modules.GetModuleAtIndex(i);
bool found = false;
for (size_t j = 0; j < new_modules.GetSize(); ++j) {
if (new_modules.GetModuleAtIndex(j).get() == loaded_module.get())
found = true;
}
// The main executable will never be included in libraries-svr4, don't
// remove it
if (!found &&
loaded_module.get() != target.GetExecutableModulePointer()) {
removed_modules.Append(loaded_module);
}
}
loaded_modules.Remove(removed_modules);
m_process->GetTarget().ModulesDidUnload(removed_modules, false);
new_modules.ForEach([&target](const lldb::ModuleSP module_sp) -> bool {
lldb_private::ObjectFile *obj = module_sp->GetObjectFile();
if (!obj)
return true;
if (obj->GetType() != ObjectFile::Type::eTypeExecutable)
return true;
lldb::ModuleSP module_copy_sp = module_sp;
target.SetExecutableModule(module_copy_sp, eLoadDependentsNo);
return false;
});
loaded_modules.AppendIfNeeded(new_modules);
m_process->GetTarget().ModulesDidLoad(new_modules);
}
return llvm::ErrorSuccess();
}
Status ProcessGDBRemote::GetFileLoadAddress(const FileSpec &file,
bool &is_loaded,
lldb::addr_t &load_addr) {
is_loaded = false;
load_addr = LLDB_INVALID_ADDRESS;
std::string file_path = file.GetPath(false);
if (file_path.empty())
return Status("Empty file name specified");
StreamString packet;
packet.PutCString("qFileLoadAddress:");
packet.PutStringAsRawHex8(file_path);
StringExtractorGDBRemote response;
if (m_gdb_comm.SendPacketAndWaitForResponse(packet.GetString(), response) !=
GDBRemoteCommunication::PacketResult::Success)
return Status("Sending qFileLoadAddress packet failed");
if (response.IsErrorResponse()) {
if (response.GetError() == 1) {
// The file is not loaded into the inferior
is_loaded = false;
load_addr = LLDB_INVALID_ADDRESS;
return Status();
}
return Status(
"Fetching file load address from remote server returned an error");
}
if (response.IsNormalResponse()) {
is_loaded = true;
load_addr = response.GetHexMaxU64(false, LLDB_INVALID_ADDRESS);
return Status();
}
return Status(
"Unknown error happened during sending the load address packet");
}
void ProcessGDBRemote::ModulesDidLoad(ModuleList &module_list) {
// We must call the lldb_private::Process::ModulesDidLoad () first before we
// do anything
Process::ModulesDidLoad(module_list);
// After loading shared libraries, we can ask our remote GDB server if it
// needs any symbols.
m_gdb_comm.ServeSymbolLookups(this);
}
void ProcessGDBRemote::HandleAsyncStdout(llvm::StringRef out) {
AppendSTDOUT(out.data(), out.size());
}
static const char *end_delimiter = "--end--;";
static const int end_delimiter_len = 8;
void ProcessGDBRemote::HandleAsyncMisc(llvm::StringRef data) {
std::string input = data.str(); // '1' to move beyond 'A'
if (m_partial_profile_data.length() > 0) {
m_partial_profile_data.append(input);
input = m_partial_profile_data;
m_partial_profile_data.clear();
}
size_t found, pos = 0, len = input.length();
while ((found = input.find(end_delimiter, pos)) != std::string::npos) {
StringExtractorGDBRemote profileDataExtractor(
input.substr(pos, found).c_str());
std::string profile_data =
HarmonizeThreadIdsForProfileData(profileDataExtractor);
BroadcastAsyncProfileData(profile_data);
pos = found + end_delimiter_len;
}
if (pos < len) {
// Last incomplete chunk.
m_partial_profile_data = input.substr(pos);
}
}
std::string ProcessGDBRemote::HarmonizeThreadIdsForProfileData(
StringExtractorGDBRemote &profileDataExtractor) {
std::map<uint64_t, uint32_t> new_thread_id_to_used_usec_map;
std::string output;
llvm::raw_string_ostream output_stream(output);
llvm::StringRef name, value;
// Going to assuming thread_used_usec comes first, else bail out.
while (profileDataExtractor.GetNameColonValue(name, value)) {
if (name.compare("thread_used_id") == 0) {
StringExtractor threadIDHexExtractor(value);
uint64_t thread_id = threadIDHexExtractor.GetHexMaxU64(false, 0);
bool has_used_usec = false;
uint32_t curr_used_usec = 0;
llvm::StringRef usec_name, usec_value;
uint32_t input_file_pos = profileDataExtractor.GetFilePos();
if (profileDataExtractor.GetNameColonValue(usec_name, usec_value)) {
if (usec_name.equals("thread_used_usec")) {
has_used_usec = true;
usec_value.getAsInteger(0, curr_used_usec);
} else {
// We didn't find what we want, it is probably an older version. Bail
// out.
profileDataExtractor.SetFilePos(input_file_pos);
}
}
if (has_used_usec) {
uint32_t prev_used_usec = 0;
std::map<uint64_t, uint32_t>::iterator iterator =
m_thread_id_to_used_usec_map.find(thread_id);
if (iterator != m_thread_id_to_used_usec_map.end()) {
prev_used_usec = m_thread_id_to_used_usec_map[thread_id];
}
uint32_t real_used_usec = curr_used_usec - prev_used_usec;
// A good first time record is one that runs for at least 0.25 sec
bool good_first_time =
(prev_used_usec == 0) && (real_used_usec > 250000);
bool good_subsequent_time =
(prev_used_usec > 0) &&
((real_used_usec > 0) || (HasAssignedIndexIDToThread(thread_id)));
if (good_first_time || good_subsequent_time) {
// We try to avoid doing too many index id reservation, resulting in
// fast increase of index ids.
output_stream << name << ":";
int32_t index_id = AssignIndexIDToThread(thread_id);
output_stream << index_id << ";";
output_stream << usec_name << ":" << usec_value << ";";
} else {
// Skip past 'thread_used_name'.
llvm::StringRef local_name, local_value;
profileDataExtractor.GetNameColonValue(local_name, local_value);
}
// Store current time as previous time so that they can be compared
// later.
new_thread_id_to_used_usec_map[thread_id] = curr_used_usec;
} else {
// Bail out and use old string.
output_stream << name << ":" << value << ";";
}
} else {
output_stream << name << ":" << value << ";";
}
}
output_stream << end_delimiter;
m_thread_id_to_used_usec_map = new_thread_id_to_used_usec_map;
return output_stream.str();
}
void ProcessGDBRemote::HandleStopReply() {
if (GetStopID() != 0)
return;
if (GetID() == LLDB_INVALID_PROCESS_ID) {
lldb::pid_t pid = m_gdb_comm.GetCurrentProcessID();
if (pid != LLDB_INVALID_PROCESS_ID)
SetID(pid);
}
BuildDynamicRegisterInfo(true);
}
llvm::Expected<bool> ProcessGDBRemote::SaveCore(llvm::StringRef outfile) {
if (!m_gdb_comm.GetSaveCoreSupported())
return false;
StreamString packet;
packet.PutCString("qSaveCore;path-hint:");
packet.PutStringAsRawHex8(outfile);
StringExtractorGDBRemote response;
if (m_gdb_comm.SendPacketAndWaitForResponse(packet.GetString(), response) ==
GDBRemoteCommunication::PacketResult::Success) {
// TODO: grab error message from the packet? StringExtractor seems to
// be missing a method for that
if (response.IsErrorResponse())
return llvm::createStringError(
llvm::inconvertibleErrorCode(),
llvm::formatv("qSaveCore returned an error"));
std::string path;
// process the response
for (auto x : llvm::split(response.GetStringRef(), ';')) {
if (x.consume_front("core-path:"))
StringExtractor(x).GetHexByteString(path);
}
// verify that we've gotten what we need
if (path.empty())
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"qSaveCore returned no core path");
// now transfer the core file
FileSpec remote_core{llvm::StringRef(path)};
Platform &platform = *GetTarget().GetPlatform();
Status error = platform.GetFile(remote_core, FileSpec(outfile));
if (platform.IsRemote()) {
// NB: we unlink the file on error too
platform.Unlink(remote_core);
if (error.Fail())
return error.ToError();
}
return true;
}
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"Unable to send qSaveCore");
}
static const char *const s_async_json_packet_prefix = "JSON-async:";
static StructuredData::ObjectSP
ParseStructuredDataPacket(llvm::StringRef packet) {
Log *log = GetLog(GDBRLog::Process);
if (!packet.consume_front(s_async_json_packet_prefix)) {
if (log) {
LLDB_LOGF(
log,
"GDBRemoteCommunicationClientBase::%s() received $J packet "
"but was not a StructuredData packet: packet starts with "
"%s",
__FUNCTION__,
packet.slice(0, strlen(s_async_json_packet_prefix)).str().c_str());
}
return StructuredData::ObjectSP();
}
// This is an asynchronous JSON packet, destined for a StructuredDataPlugin.
StructuredData::ObjectSP json_sp = StructuredData::ParseJSON(packet);
if (log) {
if (json_sp) {
StreamString json_str;
json_sp->Dump(json_str, true);
json_str.Flush();
LLDB_LOGF(log,
"ProcessGDBRemote::%s() "
"received Async StructuredData packet: %s",
__FUNCTION__, json_str.GetData());
} else {
LLDB_LOGF(log,
"ProcessGDBRemote::%s"
"() received StructuredData packet:"
" parse failure",
__FUNCTION__);
}
}
return json_sp;
}
void ProcessGDBRemote::HandleAsyncStructuredDataPacket(llvm::StringRef data) {
auto structured_data_sp = ParseStructuredDataPacket(data);
if (structured_data_sp)
RouteAsyncStructuredData(structured_data_sp);
}
class CommandObjectProcessGDBRemoteSpeedTest : public CommandObjectParsed {
public:
CommandObjectProcessGDBRemoteSpeedTest(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "process plugin packet speed-test",
"Tests packet speeds of various sizes to determine "
"the performance characteristics of the GDB remote "
"connection. ",
nullptr),
m_option_group(),
m_num_packets(LLDB_OPT_SET_1, false, "count", 'c', 0, eArgTypeCount,
"The number of packets to send of each varying size "
"(default is 1000).",
1000),
m_max_send(LLDB_OPT_SET_1, false, "max-send", 's', 0, eArgTypeCount,
"The maximum number of bytes to send in a packet. Sizes "
"increase in powers of 2 while the size is less than or "
"equal to this option value. (default 1024).",
1024),
m_max_recv(LLDB_OPT_SET_1, false, "max-receive", 'r', 0, eArgTypeCount,
"The maximum number of bytes to receive in a packet. Sizes "
"increase in powers of 2 while the size is less than or "
"equal to this option value. (default 1024).",
1024),
m_json(LLDB_OPT_SET_1, false, "json", 'j',
"Print the output as JSON data for easy parsing.", false, true) {
m_option_group.Append(&m_num_packets, LLDB_OPT_SET_ALL, LLDB_OPT_SET_1);
m_option_group.Append(&m_max_send, LLDB_OPT_SET_ALL, LLDB_OPT_SET_1);
m_option_group.Append(&m_max_recv, LLDB_OPT_SET_ALL, LLDB_OPT_SET_1);
m_option_group.Append(&m_json, LLDB_OPT_SET_ALL, LLDB_OPT_SET_1);
m_option_group.Finalize();
}
~CommandObjectProcessGDBRemoteSpeedTest() override = default;
Options *GetOptions() override { return &m_option_group; }
void DoExecute(Args &command, CommandReturnObject &result) override {
const size_t argc = command.GetArgumentCount();
if (argc == 0) {
ProcessGDBRemote *process =
(ProcessGDBRemote *)m_interpreter.GetExecutionContext()
.GetProcessPtr();
if (process) {
StreamSP output_stream_sp = result.GetImmediateOutputStream();
if (!output_stream_sp)
output_stream_sp =
StreamSP(m_interpreter.GetDebugger().GetAsyncOutputStream());
result.SetImmediateOutputStream(output_stream_sp);
const uint32_t num_packets =
(uint32_t)m_num_packets.GetOptionValue().GetCurrentValue();
const uint64_t max_send = m_max_send.GetOptionValue().GetCurrentValue();
const uint64_t max_recv = m_max_recv.GetOptionValue().GetCurrentValue();
const bool json = m_json.GetOptionValue().GetCurrentValue();
const uint64_t k_recv_amount =
4 * 1024 * 1024; // Receive amount in bytes
process->GetGDBRemote().TestPacketSpeed(
num_packets, max_send, max_recv, k_recv_amount, json,
output_stream_sp ? *output_stream_sp : result.GetOutputStream());
result.SetStatus(eReturnStatusSuccessFinishResult);
return;
}
} else {
result.AppendErrorWithFormat("'%s' takes no arguments",
m_cmd_name.c_str());
}
result.SetStatus(eReturnStatusFailed);
}
protected:
OptionGroupOptions m_option_group;
OptionGroupUInt64 m_num_packets;
OptionGroupUInt64 m_max_send;
OptionGroupUInt64 m_max_recv;
OptionGroupBoolean m_json;
};
class CommandObjectProcessGDBRemotePacketHistory : public CommandObjectParsed {
private:
public:
CommandObjectProcessGDBRemotePacketHistory(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "process plugin packet history",
"Dumps the packet history buffer. ", nullptr) {}
~CommandObjectProcessGDBRemotePacketHistory() override = default;
void DoExecute(Args &command, CommandReturnObject &result) override {
ProcessGDBRemote *process =
(ProcessGDBRemote *)m_interpreter.GetExecutionContext().GetProcessPtr();
if (process) {
process->DumpPluginHistory(result.GetOutputStream());
result.SetStatus(eReturnStatusSuccessFinishResult);
return;
}
result.SetStatus(eReturnStatusFailed);
}
};
class CommandObjectProcessGDBRemotePacketXferSize : public CommandObjectParsed {
private:
public:
CommandObjectProcessGDBRemotePacketXferSize(CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "process plugin packet xfer-size",
"Maximum size that lldb will try to read/write one one chunk.",
nullptr) {
AddSimpleArgumentList(eArgTypeUnsignedInteger);
}
~CommandObjectProcessGDBRemotePacketXferSize() override = default;
void DoExecute(Args &command, CommandReturnObject &result) override {
const size_t argc = command.GetArgumentCount();
if (argc == 0) {
result.AppendErrorWithFormat("'%s' takes an argument to specify the max "
"amount to be transferred when "
"reading/writing",
m_cmd_name.c_str());
return;
}
ProcessGDBRemote *process =
(ProcessGDBRemote *)m_interpreter.GetExecutionContext().GetProcessPtr();
if (process) {
const char *packet_size = command.GetArgumentAtIndex(0);
errno = 0;
uint64_t user_specified_max = strtoul(packet_size, nullptr, 10);
if (errno == 0 && user_specified_max != 0) {
process->SetUserSpecifiedMaxMemoryTransferSize(user_specified_max);
result.SetStatus(eReturnStatusSuccessFinishResult);
return;
}
}
result.SetStatus(eReturnStatusFailed);
}
};
class CommandObjectProcessGDBRemotePacketSend : public CommandObjectParsed {
private:
public:
CommandObjectProcessGDBRemotePacketSend(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "process plugin packet send",
"Send a custom packet through the GDB remote "
"protocol and print the answer. "
"The packet header and footer will automatically "
"be added to the packet prior to sending and "
"stripped from the result.",
nullptr) {
AddSimpleArgumentList(eArgTypeNone, eArgRepeatStar);
}
~CommandObjectProcessGDBRemotePacketSend() override = default;
void DoExecute(Args &command, CommandReturnObject &result) override {
const size_t argc = command.GetArgumentCount();
if (argc == 0) {
result.AppendErrorWithFormat(
"'%s' takes a one or more packet content arguments",
m_cmd_name.c_str());
return;
}
ProcessGDBRemote *process =
(ProcessGDBRemote *)m_interpreter.GetExecutionContext().GetProcessPtr();
if (process) {
for (size_t i = 0; i < argc; ++i) {
const char *packet_cstr = command.GetArgumentAtIndex(0);
StringExtractorGDBRemote response;
process->GetGDBRemote().SendPacketAndWaitForResponse(
packet_cstr, response, process->GetInterruptTimeout());
result.SetStatus(eReturnStatusSuccessFinishResult);
Stream &output_strm = result.GetOutputStream();
output_strm.Printf(" packet: %s\n", packet_cstr);
std::string response_str = std::string(response.GetStringRef());
if (strstr(packet_cstr, "qGetProfileData") != nullptr) {
response_str = process->HarmonizeThreadIdsForProfileData(response);
}
if (response_str.empty())
output_strm.PutCString("response: \nerror: UNIMPLEMENTED\n");
else
output_strm.Printf("response: %s\n", response.GetStringRef().data());
}
}
}
};
class CommandObjectProcessGDBRemotePacketMonitor : public CommandObjectRaw {
private:
public:
CommandObjectProcessGDBRemotePacketMonitor(CommandInterpreter &interpreter)
: CommandObjectRaw(interpreter, "process plugin packet monitor",
"Send a qRcmd packet through the GDB remote protocol "
"and print the response."
"The argument passed to this command will be hex "
"encoded into a valid 'qRcmd' packet, sent and the "
"response will be printed.") {}
~CommandObjectProcessGDBRemotePacketMonitor() override = default;
void DoExecute(llvm::StringRef command,
CommandReturnObject &result) override {
if (command.empty()) {
result.AppendErrorWithFormat("'%s' takes a command string argument",
m_cmd_name.c_str());
return;
}
ProcessGDBRemote *process =
(ProcessGDBRemote *)m_interpreter.GetExecutionContext().GetProcessPtr();
if (process) {
StreamString packet;
packet.PutCString("qRcmd,");
packet.PutBytesAsRawHex8(command.data(), command.size());
StringExtractorGDBRemote response;
Stream &output_strm = result.GetOutputStream();
process->GetGDBRemote().SendPacketAndReceiveResponseWithOutputSupport(
packet.GetString(), response, process->GetInterruptTimeout(),
[&output_strm](llvm::StringRef output) { output_strm << output; });
result.SetStatus(eReturnStatusSuccessFinishResult);
output_strm.Printf(" packet: %s\n", packet.GetData());
const std::string &response_str = std::string(response.GetStringRef());
if (response_str.empty())
output_strm.PutCString("response: \nerror: UNIMPLEMENTED\n");
else
output_strm.Printf("response: %s\n", response.GetStringRef().data());
}
}
};
class CommandObjectProcessGDBRemotePacket : public CommandObjectMultiword {
private:
public:
CommandObjectProcessGDBRemotePacket(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "process plugin packet",
"Commands that deal with GDB remote packets.",
nullptr) {
LoadSubCommand(
"history",
CommandObjectSP(
new CommandObjectProcessGDBRemotePacketHistory(interpreter)));
LoadSubCommand(
"send", CommandObjectSP(
new CommandObjectProcessGDBRemotePacketSend(interpreter)));
LoadSubCommand(
"monitor",
CommandObjectSP(
new CommandObjectProcessGDBRemotePacketMonitor(interpreter)));
LoadSubCommand(
"xfer-size",
CommandObjectSP(
new CommandObjectProcessGDBRemotePacketXferSize(interpreter)));
LoadSubCommand("speed-test",
CommandObjectSP(new CommandObjectProcessGDBRemoteSpeedTest(
interpreter)));
}
~CommandObjectProcessGDBRemotePacket() override = default;
};
class CommandObjectMultiwordProcessGDBRemote : public CommandObjectMultiword {
public:
CommandObjectMultiwordProcessGDBRemote(CommandInterpreter &interpreter)
: CommandObjectMultiword(
interpreter, "process plugin",
"Commands for operating on a ProcessGDBRemote process.",
"process plugin <subcommand> [<subcommand-options>]") {
LoadSubCommand(
"packet",
CommandObjectSP(new CommandObjectProcessGDBRemotePacket(interpreter)));
}
~CommandObjectMultiwordProcessGDBRemote() override = default;
};
CommandObject *ProcessGDBRemote::GetPluginCommandObject() {
if (!m_command_sp)
m_command_sp = std::make_shared<CommandObjectMultiwordProcessGDBRemote>(
GetTarget().GetDebugger().GetCommandInterpreter());
return m_command_sp.get();
}
void ProcessGDBRemote::DidForkSwitchSoftwareBreakpoints(bool enable) {
GetBreakpointSiteList().ForEach([this, enable](BreakpointSite *bp_site) {
if (bp_site->IsEnabled() &&
(bp_site->GetType() == BreakpointSite::eSoftware ||
bp_site->GetType() == BreakpointSite::eExternal)) {
m_gdb_comm.SendGDBStoppointTypePacket(
eBreakpointSoftware, enable, bp_site->GetLoadAddress(),
GetSoftwareBreakpointTrapOpcode(bp_site), GetInterruptTimeout());
}
});
}
void ProcessGDBRemote::DidForkSwitchHardwareTraps(bool enable) {
if (m_gdb_comm.SupportsGDBStoppointPacket(eBreakpointHardware)) {
GetBreakpointSiteList().ForEach([this, enable](BreakpointSite *bp_site) {
if (bp_site->IsEnabled() &&
bp_site->GetType() == BreakpointSite::eHardware) {
m_gdb_comm.SendGDBStoppointTypePacket(
eBreakpointHardware, enable, bp_site->GetLoadAddress(),
GetSoftwareBreakpointTrapOpcode(bp_site), GetInterruptTimeout());
}
});
}
for (const auto &wp_res_sp : m_watchpoint_resource_list.Sites()) {
addr_t addr = wp_res_sp->GetLoadAddress();
size_t size = wp_res_sp->GetByteSize();
GDBStoppointType type = GetGDBStoppointType(wp_res_sp);
m_gdb_comm.SendGDBStoppointTypePacket(type, enable, addr, size,
GetInterruptTimeout());
}
}
void ProcessGDBRemote::DidFork(lldb::pid_t child_pid, lldb::tid_t child_tid) {
Log *log = GetLog(GDBRLog::Process);
lldb::pid_t parent_pid = m_gdb_comm.GetCurrentProcessID();
// Any valid TID will suffice, thread-relevant actions will set a proper TID
// anyway.
lldb::tid_t parent_tid = m_thread_ids.front();
lldb::pid_t follow_pid, detach_pid;
lldb::tid_t follow_tid, detach_tid;
switch (GetFollowForkMode()) {
case eFollowParent:
follow_pid = parent_pid;
follow_tid = parent_tid;
detach_pid = child_pid;
detach_tid = child_tid;
break;
case eFollowChild:
follow_pid = child_pid;
follow_tid = child_tid;
detach_pid = parent_pid;
detach_tid = parent_tid;
break;
}
// Switch to the process that is going to be detached.
if (!m_gdb_comm.SetCurrentThread(detach_tid, detach_pid)) {
LLDB_LOG(log, "ProcessGDBRemote::DidFork() unable to set pid/tid");
return;
}
// Disable all software breakpoints in the forked process.
if (m_gdb_comm.SupportsGDBStoppointPacket(eBreakpointSoftware))
DidForkSwitchSoftwareBreakpoints(false);
// Remove hardware breakpoints / watchpoints from parent process if we're
// following child.
if (GetFollowForkMode() == eFollowChild)
DidForkSwitchHardwareTraps(false);
// Switch to the process that is going to be followed
if (!m_gdb_comm.SetCurrentThread(follow_tid, follow_pid) ||
!m_gdb_comm.SetCurrentThreadForRun(follow_tid, follow_pid)) {
LLDB_LOG(log, "ProcessGDBRemote::DidFork() unable to reset pid/tid");
return;
}
LLDB_LOG(log, "Detaching process {0}", detach_pid);
Status error = m_gdb_comm.Detach(false, detach_pid);
if (error.Fail()) {
LLDB_LOG(log, "ProcessGDBRemote::DidFork() detach packet send failed: {0}",
error.AsCString() ? error.AsCString() : "<unknown error>");
return;
}
// Hardware breakpoints/watchpoints are not inherited implicitly,
// so we need to readd them if we're following child.
if (GetFollowForkMode() == eFollowChild) {
DidForkSwitchHardwareTraps(true);
// Update our PID
SetID(child_pid);
}
}
void ProcessGDBRemote::DidVFork(lldb::pid_t child_pid, lldb::tid_t child_tid) {
Log *log = GetLog(GDBRLog::Process);
LLDB_LOG(
log,
"ProcessGDBRemote::DidFork() called for child_pid: {0}, child_tid {1}",
child_pid, child_tid);
++m_vfork_in_progress_count;
// Disable all software breakpoints for the duration of vfork.
if (m_gdb_comm.SupportsGDBStoppointPacket(eBreakpointSoftware))
DidForkSwitchSoftwareBreakpoints(false);
lldb::pid_t detach_pid;
lldb::tid_t detach_tid;
switch (GetFollowForkMode()) {
case eFollowParent:
detach_pid = child_pid;
detach_tid = child_tid;
break;
case eFollowChild:
detach_pid = m_gdb_comm.GetCurrentProcessID();
// Any valid TID will suffice, thread-relevant actions will set a proper TID
// anyway.
detach_tid = m_thread_ids.front();
// Switch to the parent process before detaching it.
if (!m_gdb_comm.SetCurrentThread(detach_tid, detach_pid)) {
LLDB_LOG(log, "ProcessGDBRemote::DidFork() unable to set pid/tid");
return;
}
// Remove hardware breakpoints / watchpoints from the parent process.
DidForkSwitchHardwareTraps(false);
// Switch to the child process.
if (!m_gdb_comm.SetCurrentThread(child_tid, child_pid) ||
!m_gdb_comm.SetCurrentThreadForRun(child_tid, child_pid)) {
LLDB_LOG(log, "ProcessGDBRemote::DidFork() unable to reset pid/tid");
return;
}
break;
}
LLDB_LOG(log, "Detaching process {0}", detach_pid);
Status error = m_gdb_comm.Detach(false, detach_pid);
if (error.Fail()) {
LLDB_LOG(log,
"ProcessGDBRemote::DidFork() detach packet send failed: {0}",
error.AsCString() ? error.AsCString() : "<unknown error>");
return;
}
if (GetFollowForkMode() == eFollowChild) {
// Update our PID
SetID(child_pid);
}
}
void ProcessGDBRemote::DidVForkDone() {
assert(m_vfork_in_progress_count > 0);
--m_vfork_in_progress_count;
// Reenable all software breakpoints that were enabled before vfork.
if (m_gdb_comm.SupportsGDBStoppointPacket(eBreakpointSoftware))
DidForkSwitchSoftwareBreakpoints(true);
}
void ProcessGDBRemote::DidExec() {
// If we are following children, vfork is finished by exec (rather than
// vforkdone that is submitted for parent).
if (GetFollowForkMode() == eFollowChild) {
if (m_vfork_in_progress_count > 0)
--m_vfork_in_progress_count;
}
Process::DidExec();
}