blob: 6c46618b337c230254f05f1e1ca58c3044f4b9cd [file] [log] [blame]
//===-- EmulateInstructionRISCV.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "EmulateInstructionRISCV.h"
#include "Plugins/Process/Utility/RegisterInfoPOSIX_riscv64.h"
#include "Plugins/Process/Utility/lldb-riscv-register-enums.h"
#include "RISCVCInstructions.h"
#include "RISCVInstructions.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Interpreter/OptionValueArray.h"
#include "lldb/Interpreter/OptionValueDictionary.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Utility/ArchSpec.h"
#include "lldb/Utility/LLDBLog.h"
#include "lldb/Utility/Stream.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/MathExtras.h"
#include <optional>
using namespace llvm;
using namespace lldb;
using namespace lldb_private;
LLDB_PLUGIN_DEFINE_ADV(EmulateInstructionRISCV, InstructionRISCV)
namespace lldb_private {
/// Returns all values wrapped in Optional, or std::nullopt if any of the values
/// is std::nullopt.
template <typename... Ts>
static std::optional<std::tuple<Ts...>> zipOpt(std::optional<Ts> &&...ts) {
if ((ts.has_value() && ...))
return std::optional<std::tuple<Ts...>>(std::make_tuple(std::move(*ts)...));
else
return std::nullopt;
}
// The funct3 is the type of compare in B<CMP> instructions.
// funct3 means "3-bits function selector", which RISC-V ISA uses as minor
// opcode. It reuses the major opcode encoding space.
constexpr uint32_t BEQ = 0b000;
constexpr uint32_t BNE = 0b001;
constexpr uint32_t BLT = 0b100;
constexpr uint32_t BGE = 0b101;
constexpr uint32_t BLTU = 0b110;
constexpr uint32_t BGEU = 0b111;
// used in decoder
constexpr int32_t SignExt(uint32_t imm) { return int32_t(imm); }
// used in executor
template <typename T>
constexpr std::enable_if_t<sizeof(T) <= 4, uint64_t> SextW(T value) {
return uint64_t(int64_t(int32_t(value)));
}
// used in executor
template <typename T> constexpr uint64_t ZextD(T value) {
return uint64_t(value);
}
constexpr uint32_t DecodeJImm(uint32_t inst) {
return (uint64_t(int64_t(int32_t(inst & 0x80000000)) >> 11)) // imm[20]
| (inst & 0xff000) // imm[19:12]
| ((inst >> 9) & 0x800) // imm[11]
| ((inst >> 20) & 0x7fe); // imm[10:1]
}
constexpr uint32_t DecodeIImm(uint32_t inst) {
return int64_t(int32_t(inst)) >> 20; // imm[11:0]
}
constexpr uint32_t DecodeBImm(uint32_t inst) {
return (uint64_t(int64_t(int32_t(inst & 0x80000000)) >> 19)) // imm[12]
| ((inst & 0x80) << 4) // imm[11]
| ((inst >> 20) & 0x7e0) // imm[10:5]
| ((inst >> 7) & 0x1e); // imm[4:1]
}
constexpr uint32_t DecodeSImm(uint32_t inst) {
return (uint64_t(int64_t(int32_t(inst & 0xFE000000)) >> 20)) // imm[11:5]
| ((inst & 0xF80) >> 7); // imm[4:0]
}
constexpr uint32_t DecodeUImm(uint32_t inst) {
return SextW(inst & 0xFFFFF000); // imm[31:12]
}
static uint32_t GPREncodingToLLDB(uint32_t reg_encode) {
if (reg_encode == 0)
return gpr_x0_riscv;
if (reg_encode >= 1 && reg_encode <= 31)
return gpr_x1_riscv + reg_encode - 1;
return LLDB_INVALID_REGNUM;
}
static uint32_t FPREncodingToLLDB(uint32_t reg_encode) {
if (reg_encode <= 31)
return fpr_f0_riscv + reg_encode;
return LLDB_INVALID_REGNUM;
}
bool Rd::Write(EmulateInstructionRISCV &emulator, uint64_t value) {
uint32_t lldb_reg = GPREncodingToLLDB(rd);
EmulateInstruction::Context ctx;
ctx.type = EmulateInstruction::eContextRegisterStore;
ctx.SetNoArgs();
RegisterValue registerValue;
registerValue.SetUInt64(value);
return emulator.WriteRegister(ctx, eRegisterKindLLDB, lldb_reg,
registerValue);
}
bool Rd::WriteAPFloat(EmulateInstructionRISCV &emulator, APFloat value) {
uint32_t lldb_reg = FPREncodingToLLDB(rd);
EmulateInstruction::Context ctx;
ctx.type = EmulateInstruction::eContextRegisterStore;
ctx.SetNoArgs();
RegisterValue registerValue;
registerValue.SetUInt64(value.bitcastToAPInt().getZExtValue());
return emulator.WriteRegister(ctx, eRegisterKindLLDB, lldb_reg,
registerValue);
}
std::optional<uint64_t> Rs::Read(EmulateInstructionRISCV &emulator) {
uint32_t lldbReg = GPREncodingToLLDB(rs);
RegisterValue value;
return emulator.ReadRegister(eRegisterKindLLDB, lldbReg, value)
? std::optional<uint64_t>(value.GetAsUInt64())
: std::nullopt;
}
std::optional<int32_t> Rs::ReadI32(EmulateInstructionRISCV &emulator) {
return transformOptional(
Read(emulator), [](uint64_t value) { return int32_t(uint32_t(value)); });
}
std::optional<int64_t> Rs::ReadI64(EmulateInstructionRISCV &emulator) {
return transformOptional(Read(emulator),
[](uint64_t value) { return int64_t(value); });
}
std::optional<uint32_t> Rs::ReadU32(EmulateInstructionRISCV &emulator) {
return transformOptional(Read(emulator),
[](uint64_t value) { return uint32_t(value); });
}
std::optional<APFloat> Rs::ReadAPFloat(EmulateInstructionRISCV &emulator,
bool isDouble) {
uint32_t lldbReg = FPREncodingToLLDB(rs);
RegisterValue value;
if (!emulator.ReadRegister(eRegisterKindLLDB, lldbReg, value))
return std::nullopt;
uint64_t bits = value.GetAsUInt64();
APInt api(64, bits, false);
return APFloat(isDouble ? APFloat(api.bitsToDouble())
: APFloat(api.bitsToFloat()));
}
static bool CompareB(uint64_t rs1, uint64_t rs2, uint32_t funct3) {
switch (funct3) {
case BEQ:
return rs1 == rs2;
case BNE:
return rs1 != rs2;
case BLT:
return int64_t(rs1) < int64_t(rs2);
case BGE:
return int64_t(rs1) >= int64_t(rs2);
case BLTU:
return rs1 < rs2;
case BGEU:
return rs1 >= rs2;
default:
llvm_unreachable("unexpected funct3");
}
}
template <typename T>
constexpr bool is_load =
std::is_same_v<T, LB> || std::is_same_v<T, LH> || std::is_same_v<T, LW> ||
std::is_same_v<T, LD> || std::is_same_v<T, LBU> || std::is_same_v<T, LHU> ||
std::is_same_v<T, LWU>;
template <typename T>
constexpr bool is_store = std::is_same_v<T, SB> || std::is_same_v<T, SH> ||
std::is_same_v<T, SW> || std::is_same_v<T, SD>;
template <typename T>
constexpr bool is_amo_add =
std::is_same_v<T, AMOADD_W> || std::is_same_v<T, AMOADD_D>;
template <typename T>
constexpr bool is_amo_bit_op =
std::is_same_v<T, AMOXOR_W> || std::is_same_v<T, AMOXOR_D> ||
std::is_same_v<T, AMOAND_W> || std::is_same_v<T, AMOAND_D> ||
std::is_same_v<T, AMOOR_W> || std::is_same_v<T, AMOOR_D>;
template <typename T>
constexpr bool is_amo_swap =
std::is_same_v<T, AMOSWAP_W> || std::is_same_v<T, AMOSWAP_D>;
template <typename T>
constexpr bool is_amo_cmp =
std::is_same_v<T, AMOMIN_W> || std::is_same_v<T, AMOMIN_D> ||
std::is_same_v<T, AMOMAX_W> || std::is_same_v<T, AMOMAX_D> ||
std::is_same_v<T, AMOMINU_W> || std::is_same_v<T, AMOMINU_D> ||
std::is_same_v<T, AMOMAXU_W> || std::is_same_v<T, AMOMAXU_D>;
template <typename I>
static std::enable_if_t<is_load<I> || is_store<I>, std::optional<uint64_t>>
LoadStoreAddr(EmulateInstructionRISCV &emulator, I inst) {
return transformOptional(inst.rs1.Read(emulator), [&](uint64_t rs1) {
return rs1 + uint64_t(SignExt(inst.imm));
});
}
// Read T from memory, then load its sign-extended value m_emu to register.
template <typename I, typename T, typename E>
static std::enable_if_t<is_load<I>, bool>
Load(EmulateInstructionRISCV &emulator, I inst, uint64_t (*extend)(E)) {
auto addr = LoadStoreAddr(emulator, inst);
if (!addr)
return false;
return transformOptional(
emulator.ReadMem<T>(*addr),
[&](T t) { return inst.rd.Write(emulator, extend(E(t))); })
.value_or(false);
}
template <typename I, typename T>
static std::enable_if_t<is_store<I>, bool>
Store(EmulateInstructionRISCV &emulator, I inst) {
auto addr = LoadStoreAddr(emulator, inst);
if (!addr)
return false;
return transformOptional(
inst.rs2.Read(emulator),
[&](uint64_t rs2) { return emulator.WriteMem<T>(*addr, rs2); })
.value_or(false);
}
template <typename I>
static std::enable_if_t<is_amo_add<I> || is_amo_bit_op<I> || is_amo_swap<I> ||
is_amo_cmp<I>,
std::optional<uint64_t>>
AtomicAddr(EmulateInstructionRISCV &emulator, I inst, unsigned int align) {
return transformOptional(inst.rs1.Read(emulator),
[&](uint64_t rs1) {
return rs1 % align == 0
? std::optional<uint64_t>(rs1)
: std::nullopt;
})
.value_or(std::nullopt);
}
template <typename I, typename T>
static std::enable_if_t<is_amo_swap<I>, bool>
AtomicSwap(EmulateInstructionRISCV &emulator, I inst, int align,
uint64_t (*extend)(T)) {
auto addr = AtomicAddr(emulator, inst, align);
if (!addr)
return false;
return transformOptional(
zipOpt(emulator.ReadMem<T>(*addr), inst.rs2.Read(emulator)),
[&](auto &&tup) {
auto [tmp, rs2] = tup;
return emulator.WriteMem<T>(*addr, T(rs2)) &&
inst.rd.Write(emulator, extend(tmp));
})
.value_or(false);
}
template <typename I, typename T>
static std::enable_if_t<is_amo_add<I>, bool>
AtomicADD(EmulateInstructionRISCV &emulator, I inst, int align,
uint64_t (*extend)(T)) {
auto addr = AtomicAddr(emulator, inst, align);
if (!addr)
return false;
return transformOptional(
zipOpt(emulator.ReadMem<T>(*addr), inst.rs2.Read(emulator)),
[&](auto &&tup) {
auto [tmp, rs2] = tup;
return emulator.WriteMem<T>(*addr, T(tmp + rs2)) &&
inst.rd.Write(emulator, extend(tmp));
})
.value_or(false);
}
template <typename I, typename T>
static std::enable_if_t<is_amo_bit_op<I>, bool>
AtomicBitOperate(EmulateInstructionRISCV &emulator, I inst, int align,
uint64_t (*extend)(T), T (*operate)(T, T)) {
auto addr = AtomicAddr(emulator, inst, align);
if (!addr)
return false;
return transformOptional(
zipOpt(emulator.ReadMem<T>(*addr), inst.rs2.Read(emulator)),
[&](auto &&tup) {
auto [value, rs2] = tup;
return emulator.WriteMem<T>(*addr, operate(value, T(rs2))) &&
inst.rd.Write(emulator, extend(value));
})
.value_or(false);
}
template <typename I, typename T>
static std::enable_if_t<is_amo_cmp<I>, bool>
AtomicCmp(EmulateInstructionRISCV &emulator, I inst, int align,
uint64_t (*extend)(T), T (*cmp)(T, T)) {
auto addr = AtomicAddr(emulator, inst, align);
if (!addr)
return false;
return transformOptional(
zipOpt(emulator.ReadMem<T>(*addr), inst.rs2.Read(emulator)),
[&](auto &&tup) {
auto [value, rs2] = tup;
return emulator.WriteMem<T>(*addr, cmp(value, T(rs2))) &&
inst.rd.Write(emulator, extend(value));
})
.value_or(false);
}
bool AtomicSequence(EmulateInstructionRISCV &emulator) {
// The atomic sequence is always 4 instructions long:
// example:
// 110cc: 100427af lr.w a5,(s0)
// 110d0: 00079663 bnez a5,110dc
// 110d4: 1ce426af sc.w.aq a3,a4,(s0)
// 110d8: fe069ae3 bnez a3,110cc
// 110dc: ........ <next instruction>
const auto pc = emulator.ReadPC();
if (!pc)
return false;
auto current_pc = *pc;
const auto entry_pc = current_pc;
// The first instruction should be LR.W or LR.D
auto inst = emulator.ReadInstructionAt(current_pc);
if (!inst || (!std::holds_alternative<LR_W>(inst->decoded) &&
!std::holds_alternative<LR_D>(inst->decoded)))
return false;
// The second instruction should be BNE to exit address
inst = emulator.ReadInstructionAt(current_pc += 4);
if (!inst || !std::holds_alternative<B>(inst->decoded))
return false;
auto bne_exit = std::get<B>(inst->decoded);
if (bne_exit.funct3 != BNE)
return false;
// save the exit address to check later
const auto exit_pc = current_pc + SextW(bne_exit.imm);
// The third instruction should be SC.W or SC.D
inst = emulator.ReadInstructionAt(current_pc += 4);
if (!inst || (!std::holds_alternative<SC_W>(inst->decoded) &&
!std::holds_alternative<SC_D>(inst->decoded)))
return false;
// The fourth instruction should be BNE to entry address
inst = emulator.ReadInstructionAt(current_pc += 4);
if (!inst || !std::holds_alternative<B>(inst->decoded))
return false;
auto bne_start = std::get<B>(inst->decoded);
if (bne_start.funct3 != BNE)
return false;
if (entry_pc != current_pc + SextW(bne_start.imm))
return false;
current_pc += 4;
// check the exit address and jump to it
return exit_pc == current_pc && emulator.WritePC(current_pc);
}
template <typename T> static RISCVInst DecodeUType(uint32_t inst) {
return T{Rd{DecodeRD(inst)}, DecodeUImm(inst)};
}
template <typename T> static RISCVInst DecodeJType(uint32_t inst) {
return T{Rd{DecodeRD(inst)}, DecodeJImm(inst)};
}
template <typename T> static RISCVInst DecodeIType(uint32_t inst) {
return T{Rd{DecodeRD(inst)}, Rs{DecodeRS1(inst)}, DecodeIImm(inst)};
}
template <typename T> static RISCVInst DecodeBType(uint32_t inst) {
return T{Rs{DecodeRS1(inst)}, Rs{DecodeRS2(inst)}, DecodeBImm(inst),
DecodeFunct3(inst)};
}
template <typename T> static RISCVInst DecodeSType(uint32_t inst) {
return T{Rs{DecodeRS1(inst)}, Rs{DecodeRS2(inst)}, DecodeSImm(inst)};
}
template <typename T> static RISCVInst DecodeRType(uint32_t inst) {
return T{Rd{DecodeRD(inst)}, Rs{DecodeRS1(inst)}, Rs{DecodeRS2(inst)}};
}
template <typename T> static RISCVInst DecodeRShamtType(uint32_t inst) {
return T{Rd{DecodeRD(inst)}, Rs{DecodeRS1(inst)}, DecodeRS2(inst)};
}
template <typename T> static RISCVInst DecodeRRS1Type(uint32_t inst) {
return T{Rd{DecodeRD(inst)}, Rs{DecodeRS1(inst)}};
}
template <typename T> static RISCVInst DecodeR4Type(uint32_t inst) {
return T{Rd{DecodeRD(inst)}, Rs{DecodeRS1(inst)}, Rs{DecodeRS2(inst)},
Rs{DecodeRS3(inst)}, DecodeRM(inst)};
}
static const InstrPattern PATTERNS[] = {
// RV32I & RV64I (The base integer ISA) //
{"LUI", 0x7F, 0x37, DecodeUType<LUI>},
{"AUIPC", 0x7F, 0x17, DecodeUType<AUIPC>},
{"JAL", 0x7F, 0x6F, DecodeJType<JAL>},
{"JALR", 0x707F, 0x67, DecodeIType<JALR>},
{"B", 0x7F, 0x63, DecodeBType<B>},
{"LB", 0x707F, 0x3, DecodeIType<LB>},
{"LH", 0x707F, 0x1003, DecodeIType<LH>},
{"LW", 0x707F, 0x2003, DecodeIType<LW>},
{"LBU", 0x707F, 0x4003, DecodeIType<LBU>},
{"LHU", 0x707F, 0x5003, DecodeIType<LHU>},
{"SB", 0x707F, 0x23, DecodeSType<SB>},
{"SH", 0x707F, 0x1023, DecodeSType<SH>},
{"SW", 0x707F, 0x2023, DecodeSType<SW>},
{"ADDI", 0x707F, 0x13, DecodeIType<ADDI>},
{"SLTI", 0x707F, 0x2013, DecodeIType<SLTI>},
{"SLTIU", 0x707F, 0x3013, DecodeIType<SLTIU>},
{"XORI", 0x707F, 0x4013, DecodeIType<XORI>},
{"ORI", 0x707F, 0x6013, DecodeIType<ORI>},
{"ANDI", 0x707F, 0x7013, DecodeIType<ANDI>},
{"SLLI", 0xF800707F, 0x1013, DecodeRShamtType<SLLI>},
{"SRLI", 0xF800707F, 0x5013, DecodeRShamtType<SRLI>},
{"SRAI", 0xF800707F, 0x40005013, DecodeRShamtType<SRAI>},
{"ADD", 0xFE00707F, 0x33, DecodeRType<ADD>},
{"SUB", 0xFE00707F, 0x40000033, DecodeRType<SUB>},
{"SLL", 0xFE00707F, 0x1033, DecodeRType<SLL>},
{"SLT", 0xFE00707F, 0x2033, DecodeRType<SLT>},
{"SLTU", 0xFE00707F, 0x3033, DecodeRType<SLTU>},
{"XOR", 0xFE00707F, 0x4033, DecodeRType<XOR>},
{"SRL", 0xFE00707F, 0x5033, DecodeRType<SRL>},
{"SRA", 0xFE00707F, 0x40005033, DecodeRType<SRA>},
{"OR", 0xFE00707F, 0x6033, DecodeRType<OR>},
{"AND", 0xFE00707F, 0x7033, DecodeRType<AND>},
{"LWU", 0x707F, 0x6003, DecodeIType<LWU>},
{"LD", 0x707F, 0x3003, DecodeIType<LD>},
{"SD", 0x707F, 0x3023, DecodeSType<SD>},
{"ADDIW", 0x707F, 0x1B, DecodeIType<ADDIW>},
{"SLLIW", 0xFE00707F, 0x101B, DecodeRShamtType<SLLIW>},
{"SRLIW", 0xFE00707F, 0x501B, DecodeRShamtType<SRLIW>},
{"SRAIW", 0xFE00707F, 0x4000501B, DecodeRShamtType<SRAIW>},
{"ADDW", 0xFE00707F, 0x3B, DecodeRType<ADDW>},
{"SUBW", 0xFE00707F, 0x4000003B, DecodeRType<SUBW>},
{"SLLW", 0xFE00707F, 0x103B, DecodeRType<SLLW>},
{"SRLW", 0xFE00707F, 0x503B, DecodeRType<SRLW>},
{"SRAW", 0xFE00707F, 0x4000503B, DecodeRType<SRAW>},
// RV32M & RV64M (The integer multiplication and division extension) //
{"MUL", 0xFE00707F, 0x2000033, DecodeRType<MUL>},
{"MULH", 0xFE00707F, 0x2001033, DecodeRType<MULH>},
{"MULHSU", 0xFE00707F, 0x2002033, DecodeRType<MULHSU>},
{"MULHU", 0xFE00707F, 0x2003033, DecodeRType<MULHU>},
{"DIV", 0xFE00707F, 0x2004033, DecodeRType<DIV>},
{"DIVU", 0xFE00707F, 0x2005033, DecodeRType<DIVU>},
{"REM", 0xFE00707F, 0x2006033, DecodeRType<REM>},
{"REMU", 0xFE00707F, 0x2007033, DecodeRType<REMU>},
{"MULW", 0xFE00707F, 0x200003B, DecodeRType<MULW>},
{"DIVW", 0xFE00707F, 0x200403B, DecodeRType<DIVW>},
{"DIVUW", 0xFE00707F, 0x200503B, DecodeRType<DIVUW>},
{"REMW", 0xFE00707F, 0x200603B, DecodeRType<REMW>},
{"REMUW", 0xFE00707F, 0x200703B, DecodeRType<REMUW>},
// RV32A & RV64A (The standard atomic instruction extension) //
{"LR_W", 0xF9F0707F, 0x1000202F, DecodeRRS1Type<LR_W>},
{"LR_D", 0xF9F0707F, 0x1000302F, DecodeRRS1Type<LR_D>},
{"SC_W", 0xF800707F, 0x1800202F, DecodeRType<SC_W>},
{"SC_D", 0xF800707F, 0x1800302F, DecodeRType<SC_D>},
{"AMOSWAP_W", 0xF800707F, 0x800202F, DecodeRType<AMOSWAP_W>},
{"AMOADD_W", 0xF800707F, 0x202F, DecodeRType<AMOADD_W>},
{"AMOXOR_W", 0xF800707F, 0x2000202F, DecodeRType<AMOXOR_W>},
{"AMOAND_W", 0xF800707F, 0x6000202F, DecodeRType<AMOAND_W>},
{"AMOOR_W", 0xF800707F, 0x4000202F, DecodeRType<AMOOR_W>},
{"AMOMIN_W", 0xF800707F, 0x8000202F, DecodeRType<AMOMIN_W>},
{"AMOMAX_W", 0xF800707F, 0xA000202F, DecodeRType<AMOMAX_W>},
{"AMOMINU_W", 0xF800707F, 0xC000202F, DecodeRType<AMOMINU_W>},
{"AMOMAXU_W", 0xF800707F, 0xE000202F, DecodeRType<AMOMAXU_W>},
{"AMOSWAP_D", 0xF800707F, 0x800302F, DecodeRType<AMOSWAP_D>},
{"AMOADD_D", 0xF800707F, 0x302F, DecodeRType<AMOADD_D>},
{"AMOXOR_D", 0xF800707F, 0x2000302F, DecodeRType<AMOXOR_D>},
{"AMOAND_D", 0xF800707F, 0x6000302F, DecodeRType<AMOAND_D>},
{"AMOOR_D", 0xF800707F, 0x4000302F, DecodeRType<AMOOR_D>},
{"AMOMIN_D", 0xF800707F, 0x8000302F, DecodeRType<AMOMIN_D>},
{"AMOMAX_D", 0xF800707F, 0xA000302F, DecodeRType<AMOMAX_D>},
{"AMOMINU_D", 0xF800707F, 0xC000302F, DecodeRType<AMOMINU_D>},
{"AMOMAXU_D", 0xF800707F, 0xE000302F, DecodeRType<AMOMAXU_D>},
// RVC (Compressed Instructions) //
{"C_LWSP", 0xE003, 0x4002, DecodeC_LWSP},
{"C_LDSP", 0xE003, 0x6002, DecodeC_LDSP, RV64 | RV128},
{"C_SWSP", 0xE003, 0xC002, DecodeC_SWSP},
{"C_SDSP", 0xE003, 0xE002, DecodeC_SDSP, RV64 | RV128},
{"C_LW", 0xE003, 0x4000, DecodeC_LW},
{"C_LD", 0xE003, 0x6000, DecodeC_LD, RV64 | RV128},
{"C_SW", 0xE003, 0xC000, DecodeC_SW},
{"C_SD", 0xE003, 0xE000, DecodeC_SD, RV64 | RV128},
{"C_J", 0xE003, 0xA001, DecodeC_J},
{"C_JR", 0xF07F, 0x8002, DecodeC_JR},
{"C_JALR", 0xF07F, 0x9002, DecodeC_JALR},
{"C_BNEZ", 0xE003, 0xE001, DecodeC_BNEZ},
{"C_BEQZ", 0xE003, 0xC001, DecodeC_BEQZ},
{"C_LI", 0xE003, 0x4001, DecodeC_LI},
{"C_LUI_ADDI16SP", 0xE003, 0x6001, DecodeC_LUI_ADDI16SP},
{"C_ADDI", 0xE003, 0x1, DecodeC_ADDI},
{"C_ADDIW", 0xE003, 0x2001, DecodeC_ADDIW, RV64 | RV128},
{"C_ADDI4SPN", 0xE003, 0x0, DecodeC_ADDI4SPN},
{"C_SLLI", 0xE003, 0x2, DecodeC_SLLI, RV64 | RV128},
{"C_SRLI", 0xEC03, 0x8001, DecodeC_SRLI, RV64 | RV128},
{"C_SRAI", 0xEC03, 0x8401, DecodeC_SRAI, RV64 | RV128},
{"C_ANDI", 0xEC03, 0x8801, DecodeC_ANDI},
{"C_MV", 0xF003, 0x8002, DecodeC_MV},
{"C_ADD", 0xF003, 0x9002, DecodeC_ADD},
{"C_AND", 0xFC63, 0x8C61, DecodeC_AND},
{"C_OR", 0xFC63, 0x8C41, DecodeC_OR},
{"C_XOR", 0xFC63, 0x8C21, DecodeC_XOR},
{"C_SUB", 0xFC63, 0x8C01, DecodeC_SUB},
{"C_SUBW", 0xFC63, 0x9C01, DecodeC_SUBW, RV64 | RV128},
{"C_ADDW", 0xFC63, 0x9C21, DecodeC_ADDW, RV64 | RV128},
// RV32FC //
{"FLW", 0xE003, 0x6000, DecodeC_FLW, RV32},
{"FSW", 0xE003, 0xE000, DecodeC_FSW, RV32},
{"FLWSP", 0xE003, 0x6002, DecodeC_FLWSP, RV32},
{"FSWSP", 0xE003, 0xE002, DecodeC_FSWSP, RV32},
// RVDC //
{"FLDSP", 0xE003, 0x2002, DecodeC_FLDSP, RV32 | RV64},
{"FSDSP", 0xE003, 0xA002, DecodeC_FSDSP, RV32 | RV64},
{"FLD", 0xE003, 0x2000, DecodeC_FLD, RV32 | RV64},
{"FSD", 0xE003, 0xA000, DecodeC_FSD, RV32 | RV64},
// RV32F (Extension for Single-Precision Floating-Point) //
{"FLW", 0x707F, 0x2007, DecodeIType<FLW>},
{"FSW", 0x707F, 0x2027, DecodeSType<FSW>},
{"FMADD_S", 0x600007F, 0x43, DecodeR4Type<FMADD_S>},
{"FMSUB_S", 0x600007F, 0x47, DecodeR4Type<FMSUB_S>},
{"FNMSUB_S", 0x600007F, 0x4B, DecodeR4Type<FNMSUB_S>},
{"FNMADD_S", 0x600007F, 0x4F, DecodeR4Type<FNMADD_S>},
{"FADD_S", 0xFE00007F, 0x53, DecodeRType<FADD_S>},
{"FSUB_S", 0xFE00007F, 0x8000053, DecodeRType<FSUB_S>},
{"FMUL_S", 0xFE00007F, 0x10000053, DecodeRType<FMUL_S>},
{"FDIV_S", 0xFE00007F, 0x18000053, DecodeRType<FDIV_S>},
{"FSQRT_S", 0xFFF0007F, 0x58000053, DecodeIType<FSQRT_S>},
{"FSGNJ_S", 0xFE00707F, 0x20000053, DecodeRType<FSGNJ_S>},
{"FSGNJN_S", 0xFE00707F, 0x20001053, DecodeRType<FSGNJN_S>},
{"FSGNJX_S", 0xFE00707F, 0x20002053, DecodeRType<FSGNJX_S>},
{"FMIN_S", 0xFE00707F, 0x28000053, DecodeRType<FMIN_S>},
{"FMAX_S", 0xFE00707F, 0x28001053, DecodeRType<FMAX_S>},
{"FCVT_W_S", 0xFFF0007F, 0xC0000053, DecodeIType<FCVT_W_S>},
{"FCVT_WU_S", 0xFFF0007F, 0xC0100053, DecodeIType<FCVT_WU_S>},
{"FMV_X_W", 0xFFF0707F, 0xE0000053, DecodeIType<FMV_X_W>},
{"FEQ_S", 0xFE00707F, 0xA0002053, DecodeRType<FEQ_S>},
{"FLT_S", 0xFE00707F, 0xA0001053, DecodeRType<FLT_S>},
{"FLE_S", 0xFE00707F, 0xA0000053, DecodeRType<FLE_S>},
{"FCLASS_S", 0xFFF0707F, 0xE0001053, DecodeIType<FCLASS_S>},
{"FCVT_S_W", 0xFFF0007F, 0xD0000053, DecodeIType<FCVT_S_W>},
{"FCVT_S_WU", 0xFFF0007F, 0xD0100053, DecodeIType<FCVT_S_WU>},
{"FMV_W_X", 0xFFF0707F, 0xF0000053, DecodeIType<FMV_W_X>},
// RV64F (Extension for Single-Precision Floating-Point) //
{"FCVT_L_S", 0xFFF0007F, 0xC0200053, DecodeIType<FCVT_L_S>},
{"FCVT_LU_S", 0xFFF0007F, 0xC0300053, DecodeIType<FCVT_LU_S>},
{"FCVT_S_L", 0xFFF0007F, 0xD0200053, DecodeIType<FCVT_S_L>},
{"FCVT_S_LU", 0xFFF0007F, 0xD0300053, DecodeIType<FCVT_S_LU>},
// RV32D (Extension for Double-Precision Floating-Point) //
{"FLD", 0x707F, 0x3007, DecodeIType<FLD>},
{"FSD", 0x707F, 0x3027, DecodeSType<FSD>},
{"FMADD_D", 0x600007F, 0x2000043, DecodeR4Type<FMADD_D>},
{"FMSUB_D", 0x600007F, 0x2000047, DecodeR4Type<FMSUB_D>},
{"FNMSUB_D", 0x600007F, 0x200004B, DecodeR4Type<FNMSUB_D>},
{"FNMADD_D", 0x600007F, 0x200004F, DecodeR4Type<FNMADD_D>},
{"FADD_D", 0xFE00007F, 0x2000053, DecodeRType<FADD_D>},
{"FSUB_D", 0xFE00007F, 0xA000053, DecodeRType<FSUB_D>},
{"FMUL_D", 0xFE00007F, 0x12000053, DecodeRType<FMUL_D>},
{"FDIV_D", 0xFE00007F, 0x1A000053, DecodeRType<FDIV_D>},
{"FSQRT_D", 0xFFF0007F, 0x5A000053, DecodeIType<FSQRT_D>},
{"FSGNJ_D", 0xFE00707F, 0x22000053, DecodeRType<FSGNJ_D>},
{"FSGNJN_D", 0xFE00707F, 0x22001053, DecodeRType<FSGNJN_D>},
{"FSGNJX_D", 0xFE00707F, 0x22002053, DecodeRType<FSGNJX_D>},
{"FMIN_D", 0xFE00707F, 0x2A000053, DecodeRType<FMIN_D>},
{"FMAX_D", 0xFE00707F, 0x2A001053, DecodeRType<FMAX_D>},
{"FCVT_S_D", 0xFFF0007F, 0x40100053, DecodeIType<FCVT_S_D>},
{"FCVT_D_S", 0xFFF0007F, 0x42000053, DecodeIType<FCVT_D_S>},
{"FEQ_D", 0xFE00707F, 0xA2002053, DecodeRType<FEQ_D>},
{"FLT_D", 0xFE00707F, 0xA2001053, DecodeRType<FLT_D>},
{"FLE_D", 0xFE00707F, 0xA2000053, DecodeRType<FLE_D>},
{"FCLASS_D", 0xFFF0707F, 0xE2001053, DecodeIType<FCLASS_D>},
{"FCVT_W_D", 0xFFF0007F, 0xC2000053, DecodeIType<FCVT_W_D>},
{"FCVT_WU_D", 0xFFF0007F, 0xC2100053, DecodeIType<FCVT_WU_D>},
{"FCVT_D_W", 0xFFF0007F, 0xD2000053, DecodeIType<FCVT_D_W>},
{"FCVT_D_WU", 0xFFF0007F, 0xD2100053, DecodeIType<FCVT_D_WU>},
// RV64D (Extension for Double-Precision Floating-Point) //
{"FCVT_L_D", 0xFFF0007F, 0xC2200053, DecodeIType<FCVT_L_D>},
{"FCVT_LU_D", 0xFFF0007F, 0xC2300053, DecodeIType<FCVT_LU_D>},
{"FMV_X_D", 0xFFF0707F, 0xE2000053, DecodeIType<FMV_X_D>},
{"FCVT_D_L", 0xFFF0007F, 0xD2200053, DecodeIType<FCVT_D_L>},
{"FCVT_D_LU", 0xFFF0007F, 0xD2300053, DecodeIType<FCVT_D_LU>},
{"FMV_D_X", 0xFFF0707F, 0xF2000053, DecodeIType<FMV_D_X>},
};
std::optional<DecodeResult> EmulateInstructionRISCV::Decode(uint32_t inst) {
Log *log = GetLog(LLDBLog::Unwind);
uint16_t try_rvc = uint16_t(inst & 0x0000ffff);
// check whether the compressed encode could be valid
uint16_t mask = try_rvc & 0b11;
bool is_rvc = try_rvc != 0 && mask != 3;
uint8_t inst_type = RV64;
// if we have ArchSpec::eCore_riscv128 in the future,
// we also need to check it here
if (m_arch.GetCore() == ArchSpec::eCore_riscv32)
inst_type = RV32;
for (const InstrPattern &pat : PATTERNS) {
if ((inst & pat.type_mask) == pat.eigen &&
(inst_type & pat.inst_type) != 0) {
LLDB_LOGF(
log, "EmulateInstructionRISCV::%s: inst(%x at %" PRIx64 ") was decoded to %s",
__FUNCTION__, inst, m_addr, pat.name);
auto decoded = is_rvc ? pat.decode(try_rvc) : pat.decode(inst);
return DecodeResult{decoded, inst, is_rvc, pat};
}
}
LLDB_LOGF(log, "EmulateInstructionRISCV::%s: inst(0x%x) was unsupported",
__FUNCTION__, inst);
return std::nullopt;
}
class Executor {
EmulateInstructionRISCV &m_emu;
bool m_ignore_cond;
bool m_is_rvc;
public:
// also used in EvaluateInstruction()
static uint64_t size(bool is_rvc) { return is_rvc ? 2 : 4; }
private:
uint64_t delta() { return size(m_is_rvc); }
public:
Executor(EmulateInstructionRISCV &emulator, bool ignoreCond, bool is_rvc)
: m_emu(emulator), m_ignore_cond(ignoreCond), m_is_rvc(is_rvc) {}
bool operator()(LUI inst) { return inst.rd.Write(m_emu, SignExt(inst.imm)); }
bool operator()(AUIPC inst) {
return transformOptional(m_emu.ReadPC(),
[&](uint64_t pc) {
return inst.rd.Write(m_emu,
SignExt(inst.imm) + pc);
})
.value_or(false);
}
bool operator()(JAL inst) {
return transformOptional(m_emu.ReadPC(),
[&](uint64_t pc) {
return inst.rd.Write(m_emu, pc + delta()) &&
m_emu.WritePC(SignExt(inst.imm) + pc);
})
.value_or(false);
}
bool operator()(JALR inst) {
return transformOptional(zipOpt(m_emu.ReadPC(), inst.rs1.Read(m_emu)),
[&](auto &&tup) {
auto [pc, rs1] = tup;
return inst.rd.Write(m_emu, pc + delta()) &&
m_emu.WritePC((SignExt(inst.imm) + rs1) &
~1);
})
.value_or(false);
}
bool operator()(B inst) {
return transformOptional(zipOpt(m_emu.ReadPC(), inst.rs1.Read(m_emu),
inst.rs2.Read(m_emu)),
[&](auto &&tup) {
auto [pc, rs1, rs2] = tup;
if (m_ignore_cond ||
CompareB(rs1, rs2, inst.funct3))
return m_emu.WritePC(SignExt(inst.imm) + pc);
return true;
})
.value_or(false);
}
bool operator()(LB inst) {
return Load<LB, uint8_t, int8_t>(m_emu, inst, SextW);
}
bool operator()(LH inst) {
return Load<LH, uint16_t, int16_t>(m_emu, inst, SextW);
}
bool operator()(LW inst) {
return Load<LW, uint32_t, int32_t>(m_emu, inst, SextW);
}
bool operator()(LBU inst) {
return Load<LBU, uint8_t, uint8_t>(m_emu, inst, ZextD);
}
bool operator()(LHU inst) {
return Load<LHU, uint16_t, uint16_t>(m_emu, inst, ZextD);
}
bool operator()(SB inst) { return Store<SB, uint8_t>(m_emu, inst); }
bool operator()(SH inst) { return Store<SH, uint16_t>(m_emu, inst); }
bool operator()(SW inst) { return Store<SW, uint32_t>(m_emu, inst); }
bool operator()(ADDI inst) {
return transformOptional(inst.rs1.ReadI64(m_emu),
[&](int64_t rs1) {
return inst.rd.Write(
m_emu, rs1 + int64_t(SignExt(inst.imm)));
})
.value_or(false);
}
bool operator()(SLTI inst) {
return transformOptional(inst.rs1.ReadI64(m_emu),
[&](int64_t rs1) {
return inst.rd.Write(
m_emu, rs1 < int64_t(SignExt(inst.imm)));
})
.value_or(false);
}
bool operator()(SLTIU inst) {
return transformOptional(inst.rs1.Read(m_emu),
[&](uint64_t rs1) {
return inst.rd.Write(
m_emu, rs1 < uint64_t(SignExt(inst.imm)));
})
.value_or(false);
}
bool operator()(XORI inst) {
return transformOptional(inst.rs1.Read(m_emu),
[&](uint64_t rs1) {
return inst.rd.Write(
m_emu, rs1 ^ uint64_t(SignExt(inst.imm)));
})
.value_or(false);
}
bool operator()(ORI inst) {
return transformOptional(inst.rs1.Read(m_emu),
[&](uint64_t rs1) {
return inst.rd.Write(
m_emu, rs1 | uint64_t(SignExt(inst.imm)));
})
.value_or(false);
}
bool operator()(ANDI inst) {
return transformOptional(inst.rs1.Read(m_emu),
[&](uint64_t rs1) {
return inst.rd.Write(
m_emu, rs1 & uint64_t(SignExt(inst.imm)));
})
.value_or(false);
}
bool operator()(ADD inst) {
return transformOptional(zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
[&](auto &&tup) {
auto [rs1, rs2] = tup;
return inst.rd.Write(m_emu, rs1 + rs2);
})
.value_or(false);
}
bool operator()(SUB inst) {
return transformOptional(zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
[&](auto &&tup) {
auto [rs1, rs2] = tup;
return inst.rd.Write(m_emu, rs1 - rs2);
})
.value_or(false);
}
bool operator()(SLL inst) {
return transformOptional(zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
[&](auto &&tup) {
auto [rs1, rs2] = tup;
return inst.rd.Write(m_emu,
rs1 << (rs2 & 0b111111));
})
.value_or(false);
}
bool operator()(SLT inst) {
return transformOptional(
zipOpt(inst.rs1.ReadI64(m_emu), inst.rs2.ReadI64(m_emu)),
[&](auto &&tup) {
auto [rs1, rs2] = tup;
return inst.rd.Write(m_emu, rs1 < rs2);
})
.value_or(false);
}
bool operator()(SLTU inst) {
return transformOptional(zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
[&](auto &&tup) {
auto [rs1, rs2] = tup;
return inst.rd.Write(m_emu, rs1 < rs2);
})
.value_or(false);
}
bool operator()(XOR inst) {
return transformOptional(zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
[&](auto &&tup) {
auto [rs1, rs2] = tup;
return inst.rd.Write(m_emu, rs1 ^ rs2);
})
.value_or(false);
}
bool operator()(SRL inst) {
return transformOptional(zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
[&](auto &&tup) {
auto [rs1, rs2] = tup;
return inst.rd.Write(m_emu,
rs1 >> (rs2 & 0b111111));
})
.value_or(false);
}
bool operator()(SRA inst) {
return transformOptional(
zipOpt(inst.rs1.ReadI64(m_emu), inst.rs2.Read(m_emu)),
[&](auto &&tup) {
auto [rs1, rs2] = tup;
return inst.rd.Write(m_emu, rs1 >> (rs2 & 0b111111));
})
.value_or(false);
}
bool operator()(OR inst) {
return transformOptional(zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
[&](auto &&tup) {
auto [rs1, rs2] = tup;
return inst.rd.Write(m_emu, rs1 | rs2);
})
.value_or(false);
}
bool operator()(AND inst) {
return transformOptional(zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
[&](auto &&tup) {
auto [rs1, rs2] = tup;
return inst.rd.Write(m_emu, rs1 & rs2);
})
.value_or(false);
}
bool operator()(LWU inst) {
return Load<LWU, uint32_t, uint32_t>(m_emu, inst, ZextD);
}
bool operator()(LD inst) {
return Load<LD, uint64_t, uint64_t>(m_emu, inst, ZextD);
}
bool operator()(SD inst) { return Store<SD, uint64_t>(m_emu, inst); }
bool operator()(SLLI inst) {
return transformOptional(inst.rs1.Read(m_emu),
[&](uint64_t rs1) {
return inst.rd.Write(m_emu, rs1 << inst.shamt);
})
.value_or(false);
}
bool operator()(SRLI inst) {
return transformOptional(inst.rs1.Read(m_emu),
[&](uint64_t rs1) {
return inst.rd.Write(m_emu, rs1 >> inst.shamt);
})
.value_or(false);
}
bool operator()(SRAI inst) {
return transformOptional(inst.rs1.ReadI64(m_emu),
[&](int64_t rs1) {
return inst.rd.Write(m_emu, rs1 >> inst.shamt);
})
.value_or(false);
}
bool operator()(ADDIW inst) {
return transformOptional(inst.rs1.ReadI32(m_emu),
[&](int32_t rs1) {
return inst.rd.Write(
m_emu, SextW(rs1 + SignExt(inst.imm)));
})
.value_or(false);
}
bool operator()(SLLIW inst) {
return transformOptional(inst.rs1.ReadU32(m_emu),
[&](uint32_t rs1) {
return inst.rd.Write(m_emu,
SextW(rs1 << inst.shamt));
})
.value_or(false);
}
bool operator()(SRLIW inst) {
return transformOptional(inst.rs1.ReadU32(m_emu),
[&](uint32_t rs1) {
return inst.rd.Write(m_emu,
SextW(rs1 >> inst.shamt));
})
.value_or(false);
}
bool operator()(SRAIW inst) {
return transformOptional(inst.rs1.ReadI32(m_emu),
[&](int32_t rs1) {
return inst.rd.Write(m_emu,
SextW(rs1 >> inst.shamt));
})
.value_or(false);
}
bool operator()(ADDW inst) {
return transformOptional(zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
[&](auto &&tup) {
auto [rs1, rs2] = tup;
return inst.rd.Write(m_emu,
SextW(uint32_t(rs1 + rs2)));
})
.value_or(false);
}
bool operator()(SUBW inst) {
return transformOptional(zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
[&](auto &&tup) {
auto [rs1, rs2] = tup;
return inst.rd.Write(m_emu,
SextW(uint32_t(rs1 - rs2)));
})
.value_or(false);
}
bool operator()(SLLW inst) {
return transformOptional(
zipOpt(inst.rs1.ReadU32(m_emu), inst.rs2.ReadU32(m_emu)),
[&](auto &&tup) {
auto [rs1, rs2] = tup;
return inst.rd.Write(m_emu, SextW(rs1 << (rs2 & 0b11111)));
})
.value_or(false);
}
bool operator()(SRLW inst) {
return transformOptional(
zipOpt(inst.rs1.ReadU32(m_emu), inst.rs2.ReadU32(m_emu)),
[&](auto &&tup) {
auto [rs1, rs2] = tup;
return inst.rd.Write(m_emu, SextW(rs1 >> (rs2 & 0b11111)));
})
.value_or(false);
}
bool operator()(SRAW inst) {
return transformOptional(
zipOpt(inst.rs1.ReadI32(m_emu), inst.rs2.Read(m_emu)),
[&](auto &&tup) {
auto [rs1, rs2] = tup;
return inst.rd.Write(m_emu, SextW(rs1 >> (rs2 & 0b11111)));
})
.value_or(false);
}
// RV32M & RV64M (Integer Multiplication and Division Extension) //
bool operator()(MUL inst) {
return transformOptional(zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
[&](auto &&tup) {
auto [rs1, rs2] = tup;
return inst.rd.Write(m_emu, rs1 * rs2);
})
.value_or(false);
}
bool operator()(MULH inst) {
return transformOptional(
zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
[&](auto &&tup) {
auto [rs1, rs2] = tup;
// signed * signed
auto mul = APInt(128, rs1, true) * APInt(128, rs2, true);
return inst.rd.Write(m_emu,
mul.ashr(64).trunc(64).getZExtValue());
})
.value_or(false);
}
bool operator()(MULHSU inst) {
return transformOptional(
zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
[&](auto &&tup) {
auto [rs1, rs2] = tup;
// signed * unsigned
auto mul =
APInt(128, rs1, true).zext(128) * APInt(128, rs2, false);
return inst.rd.Write(m_emu,
mul.lshr(64).trunc(64).getZExtValue());
})
.value_or(false);
}
bool operator()(MULHU inst) {
return transformOptional(
zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
[&](auto &&tup) {
auto [rs1, rs2] = tup;
// unsigned * unsigned
auto mul = APInt(128, rs1, false) * APInt(128, rs2, false);
return inst.rd.Write(m_emu,
mul.lshr(64).trunc(64).getZExtValue());
})
.value_or(false);
}
bool operator()(DIV inst) {
return transformOptional(
zipOpt(inst.rs1.ReadI64(m_emu), inst.rs2.ReadI64(m_emu)),
[&](auto &&tup) {
auto [dividend, divisor] = tup;
if (divisor == 0)
return inst.rd.Write(m_emu, UINT64_MAX);
if (dividend == INT64_MIN && divisor == -1)
return inst.rd.Write(m_emu, dividend);
return inst.rd.Write(m_emu, dividend / divisor);
})
.value_or(false);
}
bool operator()(DIVU inst) {
return transformOptional(zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
[&](auto &&tup) {
auto [dividend, divisor] = tup;
if (divisor == 0)
return inst.rd.Write(m_emu, UINT64_MAX);
return inst.rd.Write(m_emu, dividend / divisor);
})
.value_or(false);
}
bool operator()(REM inst) {
return transformOptional(
zipOpt(inst.rs1.ReadI64(m_emu), inst.rs2.ReadI64(m_emu)),
[&](auto &&tup) {
auto [dividend, divisor] = tup;
if (divisor == 0)
return inst.rd.Write(m_emu, dividend);
if (dividend == INT64_MIN && divisor == -1)
return inst.rd.Write(m_emu, 0);
return inst.rd.Write(m_emu, dividend % divisor);
})
.value_or(false);
}
bool operator()(REMU inst) {
return transformOptional(zipOpt(inst.rs1.Read(m_emu), inst.rs2.Read(m_emu)),
[&](auto &&tup) {
auto [dividend, divisor] = tup;
if (divisor == 0)
return inst.rd.Write(m_emu, dividend);
return inst.rd.Write(m_emu, dividend % divisor);
})
.value_or(false);
}
bool operator()(MULW inst) {
return transformOptional(
zipOpt(inst.rs1.ReadI32(m_emu), inst.rs2.ReadI32(m_emu)),
[&](auto &&tup) {
auto [rs1, rs2] = tup;
return inst.rd.Write(m_emu, SextW(rs1 * rs2));
})
.value_or(false);
}
bool operator()(DIVW inst) {
return transformOptional(
zipOpt(inst.rs1.ReadI32(m_emu), inst.rs2.ReadI32(m_emu)),
[&](auto &&tup) {
auto [dividend, divisor] = tup;
if (divisor == 0)
return inst.rd.Write(m_emu, UINT64_MAX);
if (dividend == INT32_MIN && divisor == -1)
return inst.rd.Write(m_emu, SextW(dividend));
return inst.rd.Write(m_emu, SextW(dividend / divisor));
})
.value_or(false);
}
bool operator()(DIVUW inst) {
return transformOptional(
zipOpt(inst.rs1.ReadU32(m_emu), inst.rs2.ReadU32(m_emu)),
[&](auto &&tup) {
auto [dividend, divisor] = tup;
if (divisor == 0)
return inst.rd.Write(m_emu, UINT64_MAX);
return inst.rd.Write(m_emu, SextW(dividend / divisor));
})
.value_or(false);
}
bool operator()(REMW inst) {
return transformOptional(
zipOpt(inst.rs1.ReadI32(m_emu), inst.rs2.ReadI32(m_emu)),
[&](auto &&tup) {
auto [dividend, divisor] = tup;
if (divisor == 0)
return inst.rd.Write(m_emu, SextW(dividend));
if (dividend == INT32_MIN && divisor == -1)
return inst.rd.Write(m_emu, 0);
return inst.rd.Write(m_emu, SextW(dividend % divisor));
})
.value_or(false);
}
bool operator()(REMUW inst) {
return transformOptional(
zipOpt(inst.rs1.ReadU32(m_emu), inst.rs2.ReadU32(m_emu)),
[&](auto &&tup) {
auto [dividend, divisor] = tup;
if (divisor == 0)
return inst.rd.Write(m_emu, SextW(dividend));
return inst.rd.Write(m_emu, SextW(dividend % divisor));
})
.value_or(false);
}
// RV32A & RV64A (The standard atomic instruction extension) //
bool operator()(LR_W) { return AtomicSequence(m_emu); }
bool operator()(LR_D) { return AtomicSequence(m_emu); }
bool operator()(SC_W) {
llvm_unreachable("should be handled in AtomicSequence");
}
bool operator()(SC_D) {
llvm_unreachable("should be handled in AtomicSequence");
}
bool operator()(AMOSWAP_W inst) {
return AtomicSwap<AMOSWAP_W, uint32_t>(m_emu, inst, 4, SextW);
}
bool operator()(AMOADD_W inst) {
return AtomicADD<AMOADD_W, uint32_t>(m_emu, inst, 4, SextW);
}
bool operator()(AMOXOR_W inst) {
return AtomicBitOperate<AMOXOR_W, uint32_t>(
m_emu, inst, 4, SextW, [](uint32_t a, uint32_t b) { return a ^ b; });
}
bool operator()(AMOAND_W inst) {
return AtomicBitOperate<AMOAND_W, uint32_t>(
m_emu, inst, 4, SextW, [](uint32_t a, uint32_t b) { return a & b; });
}
bool operator()(AMOOR_W inst) {
return AtomicBitOperate<AMOOR_W, uint32_t>(
m_emu, inst, 4, SextW, [](uint32_t a, uint32_t b) { return a | b; });
}
bool operator()(AMOMIN_W inst) {
return AtomicCmp<AMOMIN_W, uint32_t>(
m_emu, inst, 4, SextW, [](uint32_t a, uint32_t b) {
return uint32_t(std::min(int32_t(a), int32_t(b)));
});
}
bool operator()(AMOMAX_W inst) {
return AtomicCmp<AMOMAX_W, uint32_t>(
m_emu, inst, 4, SextW, [](uint32_t a, uint32_t b) {
return uint32_t(std::max(int32_t(a), int32_t(b)));
});
}
bool operator()(AMOMINU_W inst) {
return AtomicCmp<AMOMINU_W, uint32_t>(
m_emu, inst, 4, SextW,
[](uint32_t a, uint32_t b) { return std::min(a, b); });
}
bool operator()(AMOMAXU_W inst) {
return AtomicCmp<AMOMAXU_W, uint32_t>(
m_emu, inst, 4, SextW,
[](uint32_t a, uint32_t b) { return std::max(a, b); });
}
bool operator()(AMOSWAP_D inst) {
return AtomicSwap<AMOSWAP_D, uint64_t>(m_emu, inst, 8, ZextD);
}
bool operator()(AMOADD_D inst) {
return AtomicADD<AMOADD_D, uint64_t>(m_emu, inst, 8, ZextD);
}
bool operator()(AMOXOR_D inst) {
return AtomicBitOperate<AMOXOR_D, uint64_t>(
m_emu, inst, 8, ZextD, [](uint64_t a, uint64_t b) { return a ^ b; });
}
bool operator()(AMOAND_D inst) {
return AtomicBitOperate<AMOAND_D, uint64_t>(
m_emu, inst, 8, ZextD, [](uint64_t a, uint64_t b) { return a & b; });
}
bool operator()(AMOOR_D inst) {
return AtomicBitOperate<AMOOR_D, uint64_t>(
m_emu, inst, 8, ZextD, [](uint64_t a, uint64_t b) { return a | b; });
}
bool operator()(AMOMIN_D inst) {
return AtomicCmp<AMOMIN_D, uint64_t>(
m_emu, inst, 8, ZextD, [](uint64_t a, uint64_t b) {
return uint64_t(std::min(int64_t(a), int64_t(b)));
});
}
bool operator()(AMOMAX_D inst) {
return AtomicCmp<AMOMAX_D, uint64_t>(
m_emu, inst, 8, ZextD, [](uint64_t a, uint64_t b) {
return uint64_t(std::max(int64_t(a), int64_t(b)));
});
}
bool operator()(AMOMINU_D inst) {
return AtomicCmp<AMOMINU_D, uint64_t>(
m_emu, inst, 8, ZextD,
[](uint64_t a, uint64_t b) { return std::min(a, b); });
}
bool operator()(AMOMAXU_D inst) {
return AtomicCmp<AMOMAXU_D, uint64_t>(
m_emu, inst, 8, ZextD,
[](uint64_t a, uint64_t b) { return std::max(a, b); });
}
template <typename T>
bool F_Load(T inst, const fltSemantics &(*semantics)(),
unsigned int numBits) {
return transformOptional(inst.rs1.Read(m_emu),
[&](auto &&rs1) {
uint64_t addr = rs1 + uint64_t(inst.imm);
uint64_t bits = *m_emu.ReadMem<uint64_t>(addr);
APFloat f(semantics(), APInt(numBits, bits));
return inst.rd.WriteAPFloat(m_emu, f);
})
.value_or(false);
}
bool operator()(FLW inst) { return F_Load(inst, &APFloat::IEEEsingle, 32); }
template <typename T> bool F_Store(T inst, bool isDouble) {
return transformOptional(zipOpt(inst.rs1.Read(m_emu),
inst.rs2.ReadAPFloat(m_emu, isDouble)),
[&](auto &&tup) {
auto [rs1, rs2] = tup;
uint64_t addr = rs1 + uint64_t(inst.imm);
uint64_t bits =
rs2.bitcastToAPInt().getZExtValue();
return m_emu.WriteMem<uint64_t>(addr, bits);
})
.value_or(false);
}
bool operator()(FSW inst) { return F_Store(inst, false); }
std::tuple<bool, APFloat> FusedMultiplyAdd(APFloat rs1, APFloat rs2,
APFloat rs3) {
auto opStatus = rs1.fusedMultiplyAdd(rs2, rs3, m_emu.GetRoundingMode());
auto res = m_emu.SetAccruedExceptions(opStatus);
return {res, rs1};
}
template <typename T>
bool FMA(T inst, bool isDouble, float rs2_sign, float rs3_sign) {
return transformOptional(zipOpt(inst.rs1.ReadAPFloat(m_emu, isDouble),
inst.rs2.ReadAPFloat(m_emu, isDouble),
inst.rs3.ReadAPFloat(m_emu, isDouble)),
[&](auto &&tup) {
auto [rs1, rs2, rs3] = tup;
rs2.copySign(APFloat(rs2_sign));
rs3.copySign(APFloat(rs3_sign));
auto [res, f] = FusedMultiplyAdd(rs1, rs2, rs3);
return res && inst.rd.WriteAPFloat(m_emu, f);
})
.value_or(false);
}
bool operator()(FMADD_S inst) { return FMA(inst, false, 1.0f, 1.0f); }
bool operator()(FMSUB_S inst) { return FMA(inst, false, 1.0f, -1.0f); }
bool operator()(FNMSUB_S inst) { return FMA(inst, false, -1.0f, 1.0f); }
bool operator()(FNMADD_S inst) { return FMA(inst, false, -1.0f, -1.0f); }
template <typename T>
bool F_Op(T inst, bool isDouble,
APFloat::opStatus (APFloat::*f)(const APFloat &RHS,
APFloat::roundingMode RM)) {
return transformOptional(zipOpt(inst.rs1.ReadAPFloat(m_emu, isDouble),
inst.rs2.ReadAPFloat(m_emu, isDouble)),
[&](auto &&tup) {
auto [rs1, rs2] = tup;
auto res =
((&rs1)->*f)(rs2, m_emu.GetRoundingMode());
inst.rd.WriteAPFloat(m_emu, rs1);
return m_emu.SetAccruedExceptions(res);
})
.value_or(false);
}
bool operator()(FADD_S inst) { return F_Op(inst, false, &APFloat::add); }
bool operator()(FSUB_S inst) { return F_Op(inst, false, &APFloat::subtract); }
bool operator()(FMUL_S inst) { return F_Op(inst, false, &APFloat::multiply); }
bool operator()(FDIV_S inst) { return F_Op(inst, false, &APFloat::divide); }
bool operator()(FSQRT_S inst) {
// TODO: APFloat doesn't have a sqrt function.
return false;
}
template <typename T> bool F_SignInj(T inst, bool isDouble, bool isNegate) {
return transformOptional(zipOpt(inst.rs1.ReadAPFloat(m_emu, isDouble),
inst.rs2.ReadAPFloat(m_emu, isDouble)),
[&](auto &&tup) {
auto [rs1, rs2] = tup;
if (isNegate)
rs2.changeSign();
rs1.copySign(rs2);
return inst.rd.WriteAPFloat(m_emu, rs1);
})
.value_or(false);
}
bool operator()(FSGNJ_S inst) { return F_SignInj(inst, false, false); }
bool operator()(FSGNJN_S inst) { return F_SignInj(inst, false, true); }
template <typename T> bool F_SignInjXor(T inst, bool isDouble) {
return transformOptional(zipOpt(inst.rs1.ReadAPFloat(m_emu, isDouble),
inst.rs2.ReadAPFloat(m_emu, isDouble)),
[&](auto &&tup) {
auto [rs1, rs2] = tup;
// spec: the sign bit is the XOR of the sign bits
// of rs1 and rs2. if rs1 and rs2 have the same
// signs set rs1 to positive else set rs1 to
// negative
if (rs1.isNegative() == rs2.isNegative()) {
rs1.clearSign();
} else {
rs1.clearSign();
rs1.changeSign();
}
return inst.rd.WriteAPFloat(m_emu, rs1);
})
.value_or(false);
}
bool operator()(FSGNJX_S inst) { return F_SignInjXor(inst, false); }
template <typename T>
bool F_MAX_MIN(T inst, bool isDouble,
APFloat (*f)(const APFloat &A, const APFloat &B)) {
return transformOptional(
zipOpt(inst.rs1.ReadAPFloat(m_emu, isDouble),
inst.rs2.ReadAPFloat(m_emu, isDouble)),
[&](auto &&tup) {
auto [rs1, rs2] = tup;
// If both inputs are NaNs, the result is the canonical NaN.
// If only one operand is a NaN, the result is the non-NaN
// operand. Signaling NaN inputs set the invalid operation
// exception flag, even when the result is not NaN.
if (rs1.isNaN() || rs2.isNaN())
m_emu.SetAccruedExceptions(APFloat::opInvalidOp);
if (rs1.isNaN() && rs2.isNaN()) {
auto canonicalNaN = APFloat::getQNaN(rs1.getSemantics());
return inst.rd.WriteAPFloat(m_emu, canonicalNaN);
}
return inst.rd.WriteAPFloat(m_emu, f(rs1, rs2));
})
.value_or(false);
}
bool operator()(FMIN_S inst) { return F_MAX_MIN(inst, false, minnum); }
bool operator()(FMAX_S inst) { return F_MAX_MIN(inst, false, maxnum); }
bool operator()(FCVT_W_S inst) {
return FCVT_i2f<FCVT_W_S, int32_t, float>(inst, false,
&APFloat::convertToFloat);
}
bool operator()(FCVT_WU_S inst) {
return FCVT_i2f<FCVT_WU_S, uint32_t, float>(inst, false,
&APFloat::convertToFloat);
}
template <typename T> bool FMV_f2i(T inst, bool isDouble) {
return transformOptional(
inst.rs1.ReadAPFloat(m_emu, isDouble),
[&](auto &&rs1) {
if (rs1.isNaN()) {
if (isDouble)
return inst.rd.Write(m_emu, 0x7ff8'0000'0000'0000);
else
return inst.rd.Write(m_emu, 0x7fc0'0000);
}
auto bits = rs1.bitcastToAPInt().getZExtValue();
if (isDouble)
return inst.rd.Write(m_emu, bits);
else
return inst.rd.Write(m_emu, uint64_t(bits & 0xffff'ffff));
})
.value_or(false);
}
bool operator()(FMV_X_W inst) { return FMV_f2i(inst, false); }
enum F_CMP {
FEQ,
FLT,
FLE,
};
template <typename T> bool F_Compare(T inst, bool isDouble, F_CMP cmp) {
return transformOptional(
zipOpt(inst.rs1.ReadAPFloat(m_emu, isDouble),
inst.rs2.ReadAPFloat(m_emu, isDouble)),
[&](auto &&tup) {
auto [rs1, rs2] = tup;
if (rs1.isNaN() || rs2.isNaN()) {
if (cmp == FEQ) {
if (rs1.isSignaling() || rs2.isSignaling()) {
auto res =
m_emu.SetAccruedExceptions(APFloat::opInvalidOp);
return res && inst.rd.Write(m_emu, 0);
}
}
auto res = m_emu.SetAccruedExceptions(APFloat::opInvalidOp);
return res && inst.rd.Write(m_emu, 0);
}
switch (cmp) {
case FEQ:
return inst.rd.Write(m_emu,
rs1.compare(rs2) == APFloat::cmpEqual);
case FLT:
return inst.rd.Write(m_emu, rs1.compare(rs2) ==
APFloat::cmpLessThan);
case FLE:
return inst.rd.Write(m_emu, rs1.compare(rs2) !=
APFloat::cmpGreaterThan);
}
llvm_unreachable("unsupported F_CMP");
})
.value_or(false);
}
bool operator()(FEQ_S inst) { return F_Compare(inst, false, FEQ); }
bool operator()(FLT_S inst) { return F_Compare(inst, false, FLT); }
bool operator()(FLE_S inst) { return F_Compare(inst, false, FLE); }
template <typename T> bool FCLASS(T inst, bool isDouble) {
return transformOptional(inst.rs1.ReadAPFloat(m_emu, isDouble),
[&](auto &&rs1) {
uint64_t result = 0;
if (rs1.isInfinity() && rs1.isNegative())
result |= 1 << 0;
// neg normal
if (rs1.isNormal() && rs1.isNegative())
result |= 1 << 1;
// neg subnormal
if (rs1.isDenormal() && rs1.isNegative())
result |= 1 << 2;
if (rs1.isNegZero())
result |= 1 << 3;
if (rs1.isPosZero())
result |= 1 << 4;
// pos normal
if (rs1.isNormal() && !rs1.isNegative())
result |= 1 << 5;
// pos subnormal
if (rs1.isDenormal() && !rs1.isNegative())
result |= 1 << 6;
if (rs1.isInfinity() && !rs1.isNegative())
result |= 1 << 7;
if (rs1.isNaN()) {
if (rs1.isSignaling())
result |= 1 << 8;
else
result |= 1 << 9;
}
return inst.rd.Write(m_emu, result);
})
.value_or(false);
}
bool operator()(FCLASS_S inst) { return FCLASS(inst, false); }
template <typename T, typename E>
bool FCVT_f2i(T inst, std::optional<E> (Rs::*f)(EmulateInstructionRISCV &emu),
const fltSemantics &semantics) {
return transformOptional(((&inst.rs1)->*f)(m_emu),
[&](auto &&rs1) {
APFloat apf(semantics, rs1);
return inst.rd.WriteAPFloat(m_emu, apf);
})
.value_or(false);
}
bool operator()(FCVT_S_W inst) {
return FCVT_f2i(inst, &Rs::ReadI32, APFloat::IEEEsingle());
}
bool operator()(FCVT_S_WU inst) {
return FCVT_f2i(inst, &Rs::ReadU32, APFloat::IEEEsingle());
}
template <typename T, typename E>
bool FMV_i2f(T inst, unsigned int numBits, E (APInt::*f)() const) {
return transformOptional(inst.rs1.Read(m_emu),
[&](auto &&rs1) {
APInt apInt(numBits, rs1);
if (numBits == 32) // a.k.a. float
apInt = APInt(numBits, NanUnBoxing(rs1));
APFloat apf((&apInt->*f)());
return inst.rd.WriteAPFloat(m_emu, apf);
})
.value_or(false);
}
bool operator()(FMV_W_X inst) {
return FMV_i2f(inst, 32, &APInt::bitsToFloat);
}
template <typename I, typename E, typename T>
bool FCVT_i2f(I inst, bool isDouble, T (APFloat::*f)() const) {
return transformOptional(inst.rs1.ReadAPFloat(m_emu, isDouble),
[&](auto &&rs1) {
E res = E((&rs1->*f)());
return inst.rd.Write(m_emu, uint64_t(res));
})
.value_or(false);
}
bool operator()(FCVT_L_S inst) {
return FCVT_i2f<FCVT_L_S, int64_t, float>(inst, false,
&APFloat::convertToFloat);
}
bool operator()(FCVT_LU_S inst) {
return FCVT_i2f<FCVT_LU_S, uint64_t, float>(inst, false,
&APFloat::convertToFloat);
}
bool operator()(FCVT_S_L inst) {
return FCVT_f2i(inst, &Rs::ReadI64, APFloat::IEEEsingle());
}
bool operator()(FCVT_S_LU inst) {
return FCVT_f2i(inst, &Rs::Read, APFloat::IEEEsingle());
}
bool operator()(FLD inst) { return F_Load(inst, &APFloat::IEEEdouble, 64); }
bool operator()(FSD inst) { return F_Store(inst, true); }
bool operator()(FMADD_D inst) { return FMA(inst, true, 1.0f, 1.0f); }
bool operator()(FMSUB_D inst) { return FMA(inst, true, 1.0f, -1.0f); }
bool operator()(FNMSUB_D inst) { return FMA(inst, true, -1.0f, 1.0f); }
bool operator()(FNMADD_D inst) { return FMA(inst, true, -1.0f, -1.0f); }
bool operator()(FADD_D inst) { return F_Op(inst, true, &APFloat::add); }
bool operator()(FSUB_D inst) { return F_Op(inst, true, &APFloat::subtract); }
bool operator()(FMUL_D inst) { return F_Op(inst, true, &APFloat::multiply); }
bool operator()(FDIV_D inst) { return F_Op(inst, true, &APFloat::divide); }
bool operator()(FSQRT_D inst) {
// TODO: APFloat doesn't have a sqrt function.
return false;
}
bool operator()(FSGNJ_D inst) { return F_SignInj(inst, true, false); }
bool operator()(FSGNJN_D inst) { return F_SignInj(inst, true, true); }
bool operator()(FSGNJX_D inst) { return F_SignInjXor(inst, true); }
bool operator()(FMIN_D inst) { return F_MAX_MIN(inst, true, minnum); }
bool operator()(FMAX_D inst) { return F_MAX_MIN(inst, true, maxnum); }
bool operator()(FCVT_S_D inst) {
return transformOptional(inst.rs1.ReadAPFloat(m_emu, true),
[&](auto &&rs1) {
double d = rs1.convertToDouble();
APFloat apf((float(d)));
return inst.rd.WriteAPFloat(m_emu, apf);
})
.value_or(false);
}
bool operator()(FCVT_D_S inst) {
return transformOptional(inst.rs1.ReadAPFloat(m_emu, false),
[&](auto &&rs1) {
float f = rs1.convertToFloat();
APFloat apf((double(f)));
return inst.rd.WriteAPFloat(m_emu, apf);
})
.value_or(false);
}
bool operator()(FEQ_D inst) { return F_Compare(inst, true, FEQ); }
bool operator()(FLT_D inst) { return F_Compare(inst, true, FLT); }
bool operator()(FLE_D inst) { return F_Compare(inst, true, FLE); }
bool operator()(FCLASS_D inst) { return FCLASS(inst, true); }
bool operator()(FCVT_W_D inst) {
return FCVT_i2f<FCVT_W_D, int32_t, double>(inst, true,
&APFloat::convertToDouble);
}
bool operator()(FCVT_WU_D inst) {
return FCVT_i2f<FCVT_WU_D, uint32_t, double>(inst, true,
&APFloat::convertToDouble);
}
bool operator()(FCVT_D_W inst) {
return FCVT_f2i(inst, &Rs::ReadI32, APFloat::IEEEdouble());
}
bool operator()(FCVT_D_WU inst) {
return FCVT_f2i(inst, &Rs::ReadU32, APFloat::IEEEdouble());
}
bool operator()(FCVT_L_D inst) {
return FCVT_i2f<FCVT_L_D, int64_t, double>(inst, true,
&APFloat::convertToDouble);
}
bool operator()(FCVT_LU_D inst) {
return FCVT_i2f<FCVT_LU_D, uint64_t, double>(inst, true,
&APFloat::convertToDouble);
}
bool operator()(FMV_X_D inst) { return FMV_f2i(inst, true); }
bool operator()(FCVT_D_L inst) {
return FCVT_f2i(inst, &Rs::ReadI64, APFloat::IEEEdouble());
}
bool operator()(FCVT_D_LU inst) {
return FCVT_f2i(inst, &Rs::Read, APFloat::IEEEdouble());
}
bool operator()(FMV_D_X inst) {
return FMV_i2f(inst, 64, &APInt::bitsToDouble);
}
bool operator()(INVALID inst) { return false; }
bool operator()(RESERVED inst) { return false; }
bool operator()(EBREAK inst) { return false; }
bool operator()(HINT inst) { return true; }
bool operator()(NOP inst) { return true; }
};
bool EmulateInstructionRISCV::Execute(DecodeResult inst, bool ignore_cond) {
return std::visit(Executor(*this, ignore_cond, inst.is_rvc), inst.decoded);
}
bool EmulateInstructionRISCV::EvaluateInstruction(uint32_t options) {
bool increase_pc = options & eEmulateInstructionOptionAutoAdvancePC;
bool ignore_cond = options & eEmulateInstructionOptionIgnoreConditions;
if (!increase_pc)
return Execute(m_decoded, ignore_cond);
auto old_pc = ReadPC();
if (!old_pc)
return false;
bool success = Execute(m_decoded, ignore_cond);
if (!success)
return false;
auto new_pc = ReadPC();
if (!new_pc)
return false;
// If the pc is not updated during execution, we do it here.
return new_pc != old_pc ||
WritePC(*old_pc + Executor::size(m_decoded.is_rvc));
}
std::optional<DecodeResult>
EmulateInstructionRISCV::ReadInstructionAt(addr_t addr) {
return transformOptional(ReadMem<uint32_t>(addr),
[&](uint32_t inst) { return Decode(inst); })
.value_or(std::nullopt);
}
bool EmulateInstructionRISCV::ReadInstruction() {
auto addr = ReadPC();
m_addr = addr.value_or(LLDB_INVALID_ADDRESS);
if (!addr)
return false;
auto inst = ReadInstructionAt(*addr);
if (!inst)
return false;
m_decoded = *inst;
if (inst->is_rvc)
m_opcode.SetOpcode16(inst->inst, GetByteOrder());
else
m_opcode.SetOpcode32(inst->inst, GetByteOrder());
return true;
}
std::optional<addr_t> EmulateInstructionRISCV::ReadPC() {
bool success = false;
auto addr = ReadRegisterUnsigned(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC,
LLDB_INVALID_ADDRESS, &success);
return success ? std::optional<addr_t>(addr) : std::nullopt;
}
bool EmulateInstructionRISCV::WritePC(addr_t pc) {
EmulateInstruction::Context ctx;
ctx.type = eContextAdvancePC;
ctx.SetNoArgs();
return WriteRegisterUnsigned(ctx, eRegisterKindGeneric,
LLDB_REGNUM_GENERIC_PC, pc);
}
RoundingMode EmulateInstructionRISCV::GetRoundingMode() {
bool success = false;
auto fcsr = ReadRegisterUnsigned(eRegisterKindLLDB, fpr_fcsr_riscv,
LLDB_INVALID_ADDRESS, &success);
if (!success)
return RoundingMode::Invalid;
auto frm = (fcsr >> 5) & 0x7;
switch (frm) {
case 0b000:
return RoundingMode::NearestTiesToEven;
case 0b001:
return RoundingMode::TowardZero;
case 0b010:
return RoundingMode::TowardNegative;
case 0b011:
return RoundingMode::TowardPositive;
case 0b111:
return RoundingMode::Dynamic;
default:
// Reserved for future use.
return RoundingMode::Invalid;
}
}
bool EmulateInstructionRISCV::SetAccruedExceptions(
APFloatBase::opStatus opStatus) {
bool success = false;
auto fcsr = ReadRegisterUnsigned(eRegisterKindLLDB, fpr_fcsr_riscv,
LLDB_INVALID_ADDRESS, &success);
if (!success)
return false;
switch (opStatus) {
case APFloatBase::opInvalidOp:
fcsr |= 1 << 4;
break;
case APFloatBase::opDivByZero:
fcsr |= 1 << 3;
break;
case APFloatBase::opOverflow:
fcsr |= 1 << 2;
break;
case APFloatBase::opUnderflow:
fcsr |= 1 << 1;
break;
case APFloatBase::opInexact:
fcsr |= 1 << 0;
break;
case APFloatBase::opOK:
break;
}
EmulateInstruction::Context ctx;
ctx.type = eContextRegisterStore;
ctx.SetNoArgs();
return WriteRegisterUnsigned(ctx, eRegisterKindLLDB, fpr_fcsr_riscv, fcsr);
}
std::optional<RegisterInfo>
EmulateInstructionRISCV::GetRegisterInfo(RegisterKind reg_kind,
uint32_t reg_index) {
if (reg_kind == eRegisterKindGeneric) {
switch (reg_index) {
case LLDB_REGNUM_GENERIC_PC:
reg_kind = eRegisterKindLLDB;
reg_index = gpr_pc_riscv;
break;
case LLDB_REGNUM_GENERIC_SP:
reg_kind = eRegisterKindLLDB;
reg_index = gpr_sp_riscv;
break;
case LLDB_REGNUM_GENERIC_FP:
reg_kind = eRegisterKindLLDB;
reg_index = gpr_fp_riscv;
break;
case LLDB_REGNUM_GENERIC_RA:
reg_kind = eRegisterKindLLDB;
reg_index = gpr_ra_riscv;
break;
// We may handle LLDB_REGNUM_GENERIC_ARGx when more instructions are
// supported.
default:
llvm_unreachable("unsupported register");
}
}
const RegisterInfo *array =
RegisterInfoPOSIX_riscv64::GetRegisterInfoPtr(m_arch);
const uint32_t length =
RegisterInfoPOSIX_riscv64::GetRegisterInfoCount(m_arch);
if (reg_index >= length || reg_kind != eRegisterKindLLDB)
return {};
return array[reg_index];
}
bool EmulateInstructionRISCV::SetTargetTriple(const ArchSpec &arch) {
return SupportsThisArch(arch);
}
bool EmulateInstructionRISCV::TestEmulation(Stream &out_stream, ArchSpec &arch,
OptionValueDictionary *test_data) {
return false;
}
void EmulateInstructionRISCV::Initialize() {
PluginManager::RegisterPlugin(GetPluginNameStatic(),
GetPluginDescriptionStatic(), CreateInstance);
}
void EmulateInstructionRISCV::Terminate() {
PluginManager::UnregisterPlugin(CreateInstance);
}
lldb_private::EmulateInstruction *
EmulateInstructionRISCV::CreateInstance(const ArchSpec &arch,
InstructionType inst_type) {
if (EmulateInstructionRISCV::SupportsThisInstructionType(inst_type) &&
SupportsThisArch(arch)) {
return new EmulateInstructionRISCV(arch);
}
return nullptr;
}
bool EmulateInstructionRISCV::SupportsThisArch(const ArchSpec &arch) {
return arch.GetTriple().isRISCV();
}
} // namespace lldb_private