blob: 826edd7bab046e6c3144ae3efb6bb74f1d1666b7 [file] [log] [blame]
//===-- DumpDataExtractor.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/DumpDataExtractor.h"
#include "lldb/lldb-defines.h"
#include "lldb/lldb-forward.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/Disassembler.h"
#include "lldb/Core/ModuleList.h"
#include "lldb/Target/ABI.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/ExecutionContextScope.h"
#include "lldb/Target/MemoryRegionInfo.h"
#include "lldb/Target/MemoryTagManager.h"
#include "lldb/Target/MemoryTagMap.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/SectionLoadList.h"
#include "lldb/Target/Target.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/Stream.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include <limits>
#include <memory>
#include <string>
#include <cassert>
#include <cctype>
#include <cinttypes>
#include <cmath>
#include <bitset>
#include <optional>
#include <sstream>
using namespace lldb_private;
using namespace lldb;
#define NON_PRINTABLE_CHAR '.'
static std::optional<llvm::APInt> GetAPInt(const DataExtractor &data,
lldb::offset_t *offset_ptr,
lldb::offset_t byte_size) {
if (byte_size == 0)
return std::nullopt;
llvm::SmallVector<uint64_t, 2> uint64_array;
lldb::offset_t bytes_left = byte_size;
uint64_t u64;
const lldb::ByteOrder byte_order = data.GetByteOrder();
if (byte_order == lldb::eByteOrderLittle) {
while (bytes_left > 0) {
if (bytes_left >= 8) {
u64 = data.GetU64(offset_ptr);
bytes_left -= 8;
} else {
u64 = data.GetMaxU64(offset_ptr, (uint32_t)bytes_left);
bytes_left = 0;
}
uint64_array.push_back(u64);
}
return llvm::APInt(byte_size * 8, llvm::ArrayRef<uint64_t>(uint64_array));
} else if (byte_order == lldb::eByteOrderBig) {
lldb::offset_t be_offset = *offset_ptr + byte_size;
lldb::offset_t temp_offset;
while (bytes_left > 0) {
if (bytes_left >= 8) {
be_offset -= 8;
temp_offset = be_offset;
u64 = data.GetU64(&temp_offset);
bytes_left -= 8;
} else {
be_offset -= bytes_left;
temp_offset = be_offset;
u64 = data.GetMaxU64(&temp_offset, (uint32_t)bytes_left);
bytes_left = 0;
}
uint64_array.push_back(u64);
}
*offset_ptr += byte_size;
return llvm::APInt(byte_size * 8, llvm::ArrayRef<uint64_t>(uint64_array));
}
return std::nullopt;
}
static lldb::offset_t DumpAPInt(Stream *s, const DataExtractor &data,
lldb::offset_t offset, lldb::offset_t byte_size,
bool is_signed, unsigned radix) {
std::optional<llvm::APInt> apint = GetAPInt(data, &offset, byte_size);
if (apint) {
std::string apint_str = toString(*apint, radix, is_signed);
switch (radix) {
case 2:
s->Write("0b", 2);
break;
case 8:
s->Write("0", 1);
break;
case 10:
break;
}
s->Write(apint_str.c_str(), apint_str.size());
}
return offset;
}
/// Dumps decoded instructions to a stream.
static lldb::offset_t DumpInstructions(const DataExtractor &DE, Stream *s,
ExecutionContextScope *exe_scope,
offset_t start_offset,
uint64_t base_addr,
size_t number_of_instructions) {
offset_t offset = start_offset;
TargetSP target_sp;
if (exe_scope)
target_sp = exe_scope->CalculateTarget();
if (target_sp) {
DisassemblerSP disassembler_sp(
Disassembler::FindPlugin(target_sp->GetArchitecture(),
target_sp->GetDisassemblyFlavor(), nullptr));
if (disassembler_sp) {
lldb::addr_t addr = base_addr + start_offset;
lldb_private::Address so_addr;
bool data_from_file = true;
if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr, so_addr)) {
data_from_file = false;
} else {
if (target_sp->GetSectionLoadList().IsEmpty() ||
!target_sp->GetImages().ResolveFileAddress(addr, so_addr))
so_addr.SetRawAddress(addr);
}
size_t bytes_consumed = disassembler_sp->DecodeInstructions(
so_addr, DE, start_offset, number_of_instructions, false,
data_from_file);
if (bytes_consumed) {
offset += bytes_consumed;
const bool show_address = base_addr != LLDB_INVALID_ADDRESS;
const bool show_bytes = false;
const bool show_control_flow_kind = false;
ExecutionContext exe_ctx;
exe_scope->CalculateExecutionContext(exe_ctx);
disassembler_sp->GetInstructionList().Dump(
s, show_address, show_bytes, show_control_flow_kind, &exe_ctx);
}
}
} else
s->Printf("invalid target");
return offset;
}
/// Prints the specific escape sequence of the given character to the stream.
/// If the character doesn't have a known specific escape sequence (e.g., '\a',
/// '\n' but not generic escape sequences such as'\x12'), this function will
/// not modify the stream and return false.
static bool TryDumpSpecialEscapedChar(Stream &s, const char c) {
switch (c) {
case '\033':
// Common non-standard escape code for 'escape'.
s.Printf("\\e");
return true;
case '\a':
s.Printf("\\a");
return true;
case '\b':
s.Printf("\\b");
return true;
case '\f':
s.Printf("\\f");
return true;
case '\n':
s.Printf("\\n");
return true;
case '\r':
s.Printf("\\r");
return true;
case '\t':
s.Printf("\\t");
return true;
case '\v':
s.Printf("\\v");
return true;
case '\0':
s.Printf("\\0");
return true;
default:
return false;
}
}
/// Dump the character to a stream. A character that is not printable will be
/// represented by its escape sequence.
static void DumpCharacter(Stream &s, const char c) {
if (TryDumpSpecialEscapedChar(s, c))
return;
if (llvm::isPrint(c)) {
s.PutChar(c);
return;
}
s.Printf("\\x%2.2hhx", c);
}
/// Dump a floating point type.
template <typename FloatT>
void DumpFloatingPoint(std::ostringstream &ss, FloatT f) {
static_assert(std::is_floating_point<FloatT>::value,
"Only floating point types can be dumped.");
// NaN and Inf are potentially implementation defined and on Darwin it
// seems NaNs are printed without their sign. Manually implement dumping them
// here to avoid having to deal with platform differences.
if (std::isnan(f)) {
if (std::signbit(f))
ss << '-';
ss << "nan";
return;
}
if (std::isinf(f)) {
if (std::signbit(f))
ss << '-';
ss << "inf";
return;
}
ss << f;
}
static std::optional<MemoryTagMap>
GetMemoryTags(lldb::addr_t addr, size_t length,
ExecutionContextScope *exe_scope) {
assert(addr != LLDB_INVALID_ADDRESS);
if (!exe_scope)
return std::nullopt;
TargetSP target_sp = exe_scope->CalculateTarget();
if (!target_sp)
return std::nullopt;
ProcessSP process_sp = target_sp->CalculateProcess();
if (!process_sp)
return std::nullopt;
llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
process_sp->GetMemoryTagManager();
if (!tag_manager_or_err) {
llvm::consumeError(tag_manager_or_err.takeError());
return std::nullopt;
}
MemoryRegionInfos memory_regions;
// Don't check return status, list will be just empty if an error happened.
process_sp->GetMemoryRegions(memory_regions);
llvm::Expected<std::vector<MemoryTagManager::TagRange>> tagged_ranges_or_err =
(*tag_manager_or_err)
->MakeTaggedRanges(addr, addr + length, memory_regions);
// Here we know that our range will not be inverted but we must still check
// for an error.
if (!tagged_ranges_or_err) {
llvm::consumeError(tagged_ranges_or_err.takeError());
return std::nullopt;
}
if (tagged_ranges_or_err->empty())
return std::nullopt;
MemoryTagMap memory_tag_map(*tag_manager_or_err);
for (const MemoryTagManager::TagRange &range : *tagged_ranges_or_err) {
llvm::Expected<std::vector<lldb::addr_t>> tags_or_err =
process_sp->ReadMemoryTags(range.GetRangeBase(), range.GetByteSize());
if (tags_or_err)
memory_tag_map.InsertTags(range.GetRangeBase(), *tags_or_err);
else
llvm::consumeError(tags_or_err.takeError());
}
if (memory_tag_map.Empty())
return std::nullopt;
return memory_tag_map;
}
static void printMemoryTags(const DataExtractor &DE, Stream *s,
lldb::addr_t addr, size_t len,
const std::optional<MemoryTagMap> &memory_tag_map) {
std::vector<std::optional<lldb::addr_t>> tags =
memory_tag_map->GetTags(addr, len);
// Only print if there is at least one tag for this line
if (tags.empty())
return;
s->Printf(" (tag%s:", tags.size() > 1 ? "s" : "");
// Some granules may not be tagged but print something for them
// so that the ordering remains intact.
for (auto tag : tags) {
if (tag)
s->Printf(" 0x%" PRIx64, *tag);
else
s->PutCString(" <no tag>");
}
s->PutCString(")");
}
static const llvm::fltSemantics &GetFloatSemantics(const TargetSP &target_sp,
size_t byte_size) {
if (target_sp) {
auto type_system_or_err =
target_sp->GetScratchTypeSystemForLanguage(eLanguageTypeC);
if (!type_system_or_err)
llvm::consumeError(type_system_or_err.takeError());
else if (auto ts = *type_system_or_err)
return ts->GetFloatTypeSemantics(byte_size);
}
// No target, just make a reasonable guess
switch(byte_size) {
case 2:
return llvm::APFloat::IEEEhalf();
case 4:
return llvm::APFloat::IEEEsingle();
case 8:
return llvm::APFloat::IEEEdouble();
}
return llvm::APFloat::Bogus();
}
lldb::offset_t lldb_private::DumpDataExtractor(
const DataExtractor &DE, Stream *s, offset_t start_offset,
lldb::Format item_format, size_t item_byte_size, size_t item_count,
size_t num_per_line, uint64_t base_addr,
uint32_t item_bit_size, // If zero, this is not a bitfield value, if
// non-zero, the value is a bitfield
uint32_t item_bit_offset, // If "item_bit_size" is non-zero, this is the
// shift amount to apply to a bitfield
ExecutionContextScope *exe_scope, bool show_memory_tags) {
if (s == nullptr)
return start_offset;
if (item_format == eFormatPointer) {
if (item_byte_size != 4 && item_byte_size != 8)
item_byte_size = s->GetAddressByteSize();
}
offset_t offset = start_offset;
std::optional<MemoryTagMap> memory_tag_map;
if (show_memory_tags && base_addr != LLDB_INVALID_ADDRESS)
memory_tag_map =
GetMemoryTags(base_addr, DE.GetByteSize() - offset, exe_scope);
if (item_format == eFormatInstruction)
return DumpInstructions(DE, s, exe_scope, start_offset, base_addr,
item_count);
if ((item_format == eFormatOSType || item_format == eFormatAddressInfo) &&
item_byte_size > 8)
item_format = eFormatHex;
lldb::offset_t line_start_offset = start_offset;
for (uint32_t count = 0; DE.ValidOffset(offset) && count < item_count;
++count) {
// If we are at the beginning or end of a line
// Note that the last line is handled outside this for loop.
if ((count % num_per_line) == 0) {
// If we are at the end of a line
if (count > 0) {
if (item_format == eFormatBytesWithASCII &&
offset > line_start_offset) {
s->Printf("%*s",
static_cast<int>(
(num_per_line - (offset - line_start_offset)) * 3 + 2),
"");
DumpDataExtractor(DE, s, line_start_offset, eFormatCharPrintable, 1,
offset - line_start_offset, SIZE_MAX,
LLDB_INVALID_ADDRESS, 0, 0);
}
if (base_addr != LLDB_INVALID_ADDRESS && memory_tag_map) {
size_t line_len = offset - line_start_offset;
lldb::addr_t line_base =
base_addr +
(offset - start_offset - line_len) / DE.getTargetByteSize();
printMemoryTags(DE, s, line_base, line_len, memory_tag_map);
}
s->EOL();
}
if (base_addr != LLDB_INVALID_ADDRESS)
s->Printf("0x%8.8" PRIx64 ": ",
(uint64_t)(base_addr +
(offset - start_offset) / DE.getTargetByteSize()));
line_start_offset = offset;
} else if (item_format != eFormatChar &&
item_format != eFormatCharPrintable &&
item_format != eFormatCharArray && count > 0) {
s->PutChar(' ');
}
switch (item_format) {
case eFormatBoolean:
if (item_byte_size <= 8)
s->Printf("%s", DE.GetMaxU64Bitfield(&offset, item_byte_size,
item_bit_size, item_bit_offset)
? "true"
: "false");
else {
s->Printf("error: unsupported byte size (%" PRIu64
") for boolean format",
(uint64_t)item_byte_size);
return offset;
}
break;
case eFormatBinary:
if (item_byte_size <= 8) {
uint64_t uval64 = DE.GetMaxU64Bitfield(&offset, item_byte_size,
item_bit_size, item_bit_offset);
// Avoid std::bitset<64>::to_string() since it is missing in earlier
// C++ libraries
std::string binary_value(64, '0');
std::bitset<64> bits(uval64);
for (uint32_t i = 0; i < 64; ++i)
if (bits[i])
binary_value[64 - 1 - i] = '1';
if (item_bit_size > 0)
s->Printf("0b%s", binary_value.c_str() + 64 - item_bit_size);
else if (item_byte_size > 0 && item_byte_size <= 8)
s->Printf("0b%s", binary_value.c_str() + 64 - item_byte_size * 8);
} else {
const bool is_signed = false;
const unsigned radix = 2;
offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix);
}
break;
case eFormatBytes:
case eFormatBytesWithASCII:
for (uint32_t i = 0; i < item_byte_size; ++i) {
s->Printf("%2.2x", DE.GetU8(&offset));
}
// Put an extra space between the groups of bytes if more than one is
// being dumped in a group (item_byte_size is more than 1).
if (item_byte_size > 1)
s->PutChar(' ');
break;
case eFormatChar:
case eFormatCharPrintable:
case eFormatCharArray: {
// Reject invalid item_byte_size.
if (item_byte_size > 8) {
s->Printf("error: unsupported byte size (%" PRIu64 ") for char format",
(uint64_t)item_byte_size);
return offset;
}
// If we are only printing one character surround it with single quotes
if (item_count == 1 && item_format == eFormatChar)
s->PutChar('\'');
const uint64_t ch = DE.GetMaxU64Bitfield(&offset, item_byte_size,
item_bit_size, item_bit_offset);
if (llvm::isPrint(ch))
s->Printf("%c", (char)ch);
else if (item_format != eFormatCharPrintable) {
if (!TryDumpSpecialEscapedChar(*s, ch)) {
if (item_byte_size == 1)
s->Printf("\\x%2.2x", (uint8_t)ch);
else
s->Printf("%" PRIu64, ch);
}
} else {
s->PutChar(NON_PRINTABLE_CHAR);
}
// If we are only printing one character surround it with single quotes
if (item_count == 1 && item_format == eFormatChar)
s->PutChar('\'');
} break;
case eFormatEnum: // Print enum value as a signed integer when we don't get
// the enum type
case eFormatDecimal:
if (item_byte_size <= 8)
s->Printf("%" PRId64,
DE.GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size,
item_bit_offset));
else {
const bool is_signed = true;
const unsigned radix = 10;
offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix);
}
break;
case eFormatUnsigned:
if (item_byte_size <= 8)
s->Printf("%" PRIu64,
DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size,
item_bit_offset));
else {
const bool is_signed = false;
const unsigned radix = 10;
offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix);
}
break;
case eFormatOctal:
if (item_byte_size <= 8)
s->Printf("0%" PRIo64,
DE.GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size,
item_bit_offset));
else {
const bool is_signed = false;
const unsigned radix = 8;
offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix);
}
break;
case eFormatOSType: {
uint64_t uval64 = DE.GetMaxU64Bitfield(&offset, item_byte_size,
item_bit_size, item_bit_offset);
s->PutChar('\'');
for (uint32_t i = 0; i < item_byte_size; ++i) {
uint8_t ch = (uint8_t)(uval64 >> ((item_byte_size - i - 1) * 8));
DumpCharacter(*s, ch);
}
s->PutChar('\'');
} break;
case eFormatCString: {
const char *cstr = DE.GetCStr(&offset);
if (!cstr) {
s->Printf("NULL");
offset = LLDB_INVALID_OFFSET;
} else {
s->PutChar('\"');
while (const char c = *cstr) {
DumpCharacter(*s, c);
++cstr;
}
s->PutChar('\"');
}
} break;
case eFormatPointer:
DumpAddress(s->AsRawOstream(),
DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size,
item_bit_offset),
sizeof(addr_t));
break;
case eFormatComplexInteger: {
size_t complex_int_byte_size = item_byte_size / 2;
if (complex_int_byte_size > 0 && complex_int_byte_size <= 8) {
s->Printf("%" PRIu64,
DE.GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0));
s->Printf(" + %" PRIu64 "i",
DE.GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0));
} else {
s->Printf("error: unsupported byte size (%" PRIu64
") for complex integer format",
(uint64_t)item_byte_size);
return offset;
}
} break;
case eFormatComplex:
if (sizeof(float) * 2 == item_byte_size) {
float f32_1 = DE.GetFloat(&offset);
float f32_2 = DE.GetFloat(&offset);
s->Printf("%g + %gi", f32_1, f32_2);
break;
} else if (sizeof(double) * 2 == item_byte_size) {
double d64_1 = DE.GetDouble(&offset);
double d64_2 = DE.GetDouble(&offset);
s->Printf("%lg + %lgi", d64_1, d64_2);
break;
} else if (sizeof(long double) * 2 == item_byte_size) {
long double ld64_1 = DE.GetLongDouble(&offset);
long double ld64_2 = DE.GetLongDouble(&offset);
s->Printf("%Lg + %Lgi", ld64_1, ld64_2);
break;
} else {
s->Printf("error: unsupported byte size (%" PRIu64
") for complex float format",
(uint64_t)item_byte_size);
return offset;
}
break;
default:
case eFormatDefault:
case eFormatHex:
case eFormatHexUppercase: {
bool wantsuppercase = (item_format == eFormatHexUppercase);
switch (item_byte_size) {
case 1:
case 2:
case 4:
case 8:
if (Target::GetGlobalProperties()
.ShowHexVariableValuesWithLeadingZeroes()) {
s->Printf(wantsuppercase ? "0x%*.*" PRIX64 : "0x%*.*" PRIx64,
(int)(2 * item_byte_size), (int)(2 * item_byte_size),
DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size,
item_bit_offset));
} else {
s->Printf(wantsuppercase ? "0x%" PRIX64 : "0x%" PRIx64,
DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size,
item_bit_offset));
}
break;
default: {
assert(item_bit_size == 0 && item_bit_offset == 0);
const uint8_t *bytes =
(const uint8_t *)DE.GetData(&offset, item_byte_size);
if (bytes) {
s->PutCString("0x");
uint32_t idx;
if (DE.GetByteOrder() == eByteOrderBig) {
for (idx = 0; idx < item_byte_size; ++idx)
s->Printf(wantsuppercase ? "%2.2X" : "%2.2x", bytes[idx]);
} else {
for (idx = 0; idx < item_byte_size; ++idx)
s->Printf(wantsuppercase ? "%2.2X" : "%2.2x",
bytes[item_byte_size - 1 - idx]);
}
}
} break;
}
} break;
case eFormatFloat: {
TargetSP target_sp;
if (exe_scope)
target_sp = exe_scope->CalculateTarget();
std::optional<unsigned> format_max_padding;
if (target_sp)
format_max_padding = target_sp->GetMaxZeroPaddingInFloatFormat();
// Show full precision when printing float values
const unsigned format_precision = 0;
const llvm::fltSemantics &semantics =
GetFloatSemantics(target_sp, item_byte_size);
// Recalculate the byte size in case of a difference. This is possible
// when item_byte_size is 16 (128-bit), because you could get back the
// x87DoubleExtended semantics which has a byte size of 10 (80-bit).
const size_t semantics_byte_size =
(llvm::APFloat::getSizeInBits(semantics) + 7) / 8;
std::optional<llvm::APInt> apint =
GetAPInt(DE, &offset, semantics_byte_size);
if (apint) {
llvm::APFloat apfloat(semantics, *apint);
llvm::SmallVector<char, 256> sv;
if (format_max_padding)
apfloat.toString(sv, format_precision, *format_max_padding);
else
apfloat.toString(sv, format_precision);
s->AsRawOstream() << sv;
} else {
s->Format("error: unsupported byte size ({0}) for float format",
item_byte_size);
return offset;
}
} break;
case eFormatUnicode16:
s->Printf("U+%4.4x", DE.GetU16(&offset));
break;
case eFormatUnicode32:
s->Printf("U+0x%8.8x", DE.GetU32(&offset));
break;
case eFormatAddressInfo: {
addr_t addr = DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size,
item_bit_offset);
s->Printf("0x%*.*" PRIx64, (int)(2 * item_byte_size),
(int)(2 * item_byte_size), addr);
if (exe_scope) {
TargetSP target_sp(exe_scope->CalculateTarget());
lldb_private::Address so_addr;
if (target_sp) {
if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr,
so_addr)) {
s->PutChar(' ');
so_addr.Dump(s, exe_scope, Address::DumpStyleResolvedDescription,
Address::DumpStyleModuleWithFileAddress);
} else {
so_addr.SetOffset(addr);
so_addr.Dump(s, exe_scope,
Address::DumpStyleResolvedPointerDescription);
if (ProcessSP process_sp = exe_scope->CalculateProcess()) {
if (ABISP abi_sp = process_sp->GetABI()) {
addr_t addr_fixed = abi_sp->FixCodeAddress(addr);
if (target_sp->GetSectionLoadList().ResolveLoadAddress(
addr_fixed, so_addr)) {
s->PutChar(' ');
s->Printf("(0x%*.*" PRIx64 ")", (int)(2 * item_byte_size),
(int)(2 * item_byte_size), addr_fixed);
s->PutChar(' ');
so_addr.Dump(s, exe_scope,
Address::DumpStyleResolvedDescription,
Address::DumpStyleModuleWithFileAddress);
}
}
}
}
}
}
} break;
case eFormatHexFloat:
if (sizeof(float) == item_byte_size) {
char float_cstr[256];
llvm::APFloat ap_float(DE.GetFloat(&offset));
ap_float.convertToHexString(float_cstr, 0, false,
llvm::APFloat::rmNearestTiesToEven);
s->Printf("%s", float_cstr);
break;
} else if (sizeof(double) == item_byte_size) {
char float_cstr[256];
llvm::APFloat ap_float(DE.GetDouble(&offset));
ap_float.convertToHexString(float_cstr, 0, false,
llvm::APFloat::rmNearestTiesToEven);
s->Printf("%s", float_cstr);
break;
} else {
s->Printf("error: unsupported byte size (%" PRIu64
") for hex float format",
(uint64_t)item_byte_size);
return offset;
}
break;
// please keep the single-item formats below in sync with
// FormatManager::GetSingleItemFormat if you fail to do so, users will
// start getting different outputs depending on internal implementation
// details they should not care about ||
case eFormatVectorOfChar: // ||
s->PutChar('{'); // \/
offset =
DumpDataExtractor(DE, s, offset, eFormatCharArray, 1, item_byte_size,
item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfSInt8:
s->PutChar('{');
offset =
DumpDataExtractor(DE, s, offset, eFormatDecimal, 1, item_byte_size,
item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfUInt8:
s->PutChar('{');
offset = DumpDataExtractor(DE, s, offset, eFormatHex, 1, item_byte_size,
item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfSInt16:
s->PutChar('{');
offset = DumpDataExtractor(
DE, s, offset, eFormatDecimal, sizeof(uint16_t),
item_byte_size / sizeof(uint16_t), item_byte_size / sizeof(uint16_t),
LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfUInt16:
s->PutChar('{');
offset = DumpDataExtractor(DE, s, offset, eFormatHex, sizeof(uint16_t),
item_byte_size / sizeof(uint16_t),
item_byte_size / sizeof(uint16_t),
LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfSInt32:
s->PutChar('{');
offset = DumpDataExtractor(
DE, s, offset, eFormatDecimal, sizeof(uint32_t),
item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t),
LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfUInt32:
s->PutChar('{');
offset = DumpDataExtractor(DE, s, offset, eFormatHex, sizeof(uint32_t),
item_byte_size / sizeof(uint32_t),
item_byte_size / sizeof(uint32_t),
LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfSInt64:
s->PutChar('{');
offset = DumpDataExtractor(
DE, s, offset, eFormatDecimal, sizeof(uint64_t),
item_byte_size / sizeof(uint64_t), item_byte_size / sizeof(uint64_t),
LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfUInt64:
s->PutChar('{');
offset = DumpDataExtractor(DE, s, offset, eFormatHex, sizeof(uint64_t),
item_byte_size / sizeof(uint64_t),
item_byte_size / sizeof(uint64_t),
LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfFloat16:
s->PutChar('{');
offset =
DumpDataExtractor(DE, s, offset, eFormatFloat, 2, item_byte_size / 2,
item_byte_size / 2, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfFloat32:
s->PutChar('{');
offset =
DumpDataExtractor(DE, s, offset, eFormatFloat, 4, item_byte_size / 4,
item_byte_size / 4, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfFloat64:
s->PutChar('{');
offset =
DumpDataExtractor(DE, s, offset, eFormatFloat, 8, item_byte_size / 8,
item_byte_size / 8, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfUInt128:
s->PutChar('{');
offset =
DumpDataExtractor(DE, s, offset, eFormatHex, 16, item_byte_size / 16,
item_byte_size / 16, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
}
}
// If anything was printed we want to catch the end of the last line.
// Since we will exit the for loop above before we get a chance to append to
// it normally.
if (offset > line_start_offset) {
if (item_format == eFormatBytesWithASCII) {
s->Printf("%*s",
static_cast<int>(
(num_per_line - (offset - line_start_offset)) * 3 + 2),
"");
DumpDataExtractor(DE, s, line_start_offset, eFormatCharPrintable, 1,
offset - line_start_offset, SIZE_MAX,
LLDB_INVALID_ADDRESS, 0, 0);
}
if (base_addr != LLDB_INVALID_ADDRESS && memory_tag_map) {
size_t line_len = offset - line_start_offset;
lldb::addr_t line_base = base_addr + (offset - start_offset - line_len) /
DE.getTargetByteSize();
printMemoryTags(DE, s, line_base, line_len, memory_tag_map);
}
}
return offset; // Return the offset at which we ended up
}
void lldb_private::DumpHexBytes(Stream *s, const void *src, size_t src_len,
uint32_t bytes_per_line,
lldb::addr_t base_addr) {
DataExtractor data(src, src_len, lldb::eByteOrderLittle, 4);
DumpDataExtractor(data, s,
0, // Offset into "src"
lldb::eFormatBytes, // Dump as hex bytes
1, // Size of each item is 1 for single bytes
src_len, // Number of bytes
bytes_per_line, // Num bytes per line
base_addr, // Base address
0, 0); // Bitfield info
}