blob: a8127efc1df064a523b707e8f103aece0f9840aa [file] [log] [blame]
//===-- DataFileCache.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/DataFileCache.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/ModuleList.h"
#include "lldb/Host/FileSystem.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Utility/DataEncoder.h"
#include "lldb/Utility/LLDBLog.h"
#include "lldb/Utility/Log.h"
#include "llvm/Support/CachePruning.h"
using namespace lldb_private;
llvm::CachePruningPolicy DataFileCache::GetLLDBIndexCachePolicy() {
static llvm::CachePruningPolicy policy;
static llvm::once_flag once_flag;
llvm::call_once(once_flag, []() {
// Prune the cache based off of the LLDB settings each time we create a
// cache object.
ModuleListProperties &properties =
ModuleList::GetGlobalModuleListProperties();
// Only scan once an hour. If we have lots of debug sessions we don't want
// to scan this directory too often. A timestamp file is written to the
// directory to ensure different processes don't scan the directory too
// often. This setting doesn't mean that a thread will continually scan the
// cache directory within this process.
policy.Interval = std::chrono::hours(1);
// Get the user settings for pruning.
policy.MaxSizeBytes = properties.GetLLDBIndexCacheMaxByteSize();
policy.MaxSizePercentageOfAvailableSpace =
properties.GetLLDBIndexCacheMaxPercent();
policy.Expiration =
std::chrono::hours(properties.GetLLDBIndexCacheExpirationDays() * 24);
});
return policy;
}
DataFileCache::DataFileCache(llvm::StringRef path, llvm::CachePruningPolicy policy) {
m_cache_dir.SetPath(path);
pruneCache(path, policy);
// This lambda will get called when the data is gotten from the cache and
// also after the data was set for a given key. We only need to take
// ownership of the data if we are geting the data, so we use the
// m_take_ownership member variable to indicate if we need to take
// ownership.
auto add_buffer = [this](unsigned task, const llvm::Twine &moduleName,
std::unique_ptr<llvm::MemoryBuffer> m) {
if (m_take_ownership)
m_mem_buff_up = std::move(m);
};
llvm::Expected<llvm::FileCache> cache_or_err =
llvm::localCache("LLDBModuleCache", "lldb-module", path, add_buffer);
if (cache_or_err)
m_cache_callback = std::move(*cache_or_err);
else {
Log *log = GetLog(LLDBLog::Modules);
LLDB_LOG_ERROR(log, cache_or_err.takeError(),
"failed to create lldb index cache directory: {0}");
}
}
std::unique_ptr<llvm::MemoryBuffer>
DataFileCache::GetCachedData(llvm::StringRef key) {
std::lock_guard<std::mutex> guard(m_mutex);
const unsigned task = 1;
m_take_ownership = true;
// If we call the "m_cache_callback" function and the data is cached, it will
// call the "add_buffer" lambda function from the constructor which will in
// turn take ownership of the member buffer that is passed to the callback and
// put it into a member variable.
llvm::Expected<llvm::AddStreamFn> add_stream_or_err =
m_cache_callback(task, key, "");
m_take_ownership = false;
// At this point we either already called the "add_buffer" lambda with
// the data or we haven't. We can tell if we got the cached data by checking
// the add_stream function pointer value below.
if (add_stream_or_err) {
llvm::AddStreamFn &add_stream = *add_stream_or_err;
// If the "add_stream" is nullptr, then the data was cached and we already
// called the "add_buffer" lambda. If it is valid, then if we were to call
// the add_stream function it would cause a cache file to get generated
// and we would be expected to fill in the data. In this function we only
// want to check if the data was cached, so we don't want to call
// "add_stream" in this function.
if (!add_stream)
return std::move(m_mem_buff_up);
} else {
Log *log = GetLog(LLDBLog::Modules);
LLDB_LOG_ERROR(log, add_stream_or_err.takeError(),
"failed to get the cache add stream callback for key: {0}");
}
// Data was not cached.
return std::unique_ptr<llvm::MemoryBuffer>();
}
bool DataFileCache::SetCachedData(llvm::StringRef key,
llvm::ArrayRef<uint8_t> data) {
std::lock_guard<std::mutex> guard(m_mutex);
const unsigned task = 2;
// If we call this function and the data is cached, it will call the
// add_buffer lambda function from the constructor which will ignore the
// data.
llvm::Expected<llvm::AddStreamFn> add_stream_or_err =
m_cache_callback(task, key, "");
// If we reach this code then we either already called the callback with
// the data or we haven't. We can tell if we had the cached data by checking
// the CacheAddStream function pointer value below.
if (add_stream_or_err) {
llvm::AddStreamFn &add_stream = *add_stream_or_err;
// If the "add_stream" is nullptr, then the data was cached. If it is
// valid, then if we call the add_stream function with a task it will
// cause the file to get generated, but we only want to check if the data
// is cached here, so we don't want to call it here. Note that the
// add_buffer will also get called in this case after the data has been
// provided, but we won't take ownership of the memory buffer as we just
// want to write the data.
if (add_stream) {
llvm::Expected<std::unique_ptr<llvm::CachedFileStream>> file_or_err =
add_stream(task, "");
if (file_or_err) {
llvm::CachedFileStream *cfs = file_or_err->get();
cfs->OS->write((const char *)data.data(), data.size());
return true;
} else {
Log *log = GetLog(LLDBLog::Modules);
LLDB_LOG_ERROR(log, file_or_err.takeError(),
"failed to get the cache file stream for key: {0}");
}
}
} else {
Log *log = GetLog(LLDBLog::Modules);
LLDB_LOG_ERROR(log, add_stream_or_err.takeError(),
"failed to get the cache add stream callback for key: {0}");
}
return false;
}
FileSpec DataFileCache::GetCacheFilePath(llvm::StringRef key) {
FileSpec cache_file(m_cache_dir);
std::string filename("llvmcache-");
filename += key.str();
cache_file.AppendPathComponent(filename);
return cache_file;
}
Status DataFileCache::RemoveCacheFile(llvm::StringRef key) {
FileSpec cache_file = GetCacheFilePath(key);
FileSystem &fs = FileSystem::Instance();
if (!fs.Exists(cache_file))
return Status();
return fs.RemoveFile(cache_file);
}
CacheSignature::CacheSignature(lldb_private::Module *module) {
Clear();
UUID uuid = module->GetUUID();
if (uuid.IsValid())
m_uuid = uuid;
std::time_t mod_time = 0;
mod_time = llvm::sys::toTimeT(module->GetModificationTime());
if (mod_time != 0)
m_mod_time = mod_time;
mod_time = llvm::sys::toTimeT(module->GetObjectModificationTime());
if (mod_time != 0)
m_obj_mod_time = mod_time;
}
CacheSignature::CacheSignature(lldb_private::ObjectFile *objfile) {
Clear();
UUID uuid = objfile->GetUUID();
if (uuid.IsValid())
m_uuid = uuid;
std::time_t mod_time = 0;
// Grab the modification time of the object file's file. It isn't always the
// same as the module's file when you have a executable file as the main
// executable, and you have a object file for a symbol file.
FileSystem &fs = FileSystem::Instance();
mod_time = llvm::sys::toTimeT(fs.GetModificationTime(objfile->GetFileSpec()));
if (mod_time != 0)
m_mod_time = mod_time;
mod_time =
llvm::sys::toTimeT(objfile->GetModule()->GetObjectModificationTime());
if (mod_time != 0)
m_obj_mod_time = mod_time;
}
enum SignatureEncoding {
eSignatureUUID = 1u,
eSignatureModTime = 2u,
eSignatureObjectModTime = 3u,
eSignatureEnd = 255u,
};
bool CacheSignature::Encode(DataEncoder &encoder) const {
if (!IsValid())
return false; // Invalid signature, return false!
if (m_uuid) {
llvm::ArrayRef<uint8_t> uuid_bytes = m_uuid->GetBytes();
encoder.AppendU8(eSignatureUUID);
encoder.AppendU8(uuid_bytes.size());
encoder.AppendData(uuid_bytes);
}
if (m_mod_time) {
encoder.AppendU8(eSignatureModTime);
encoder.AppendU32(*m_mod_time);
}
if (m_obj_mod_time) {
encoder.AppendU8(eSignatureObjectModTime);
encoder.AppendU32(*m_obj_mod_time);
}
encoder.AppendU8(eSignatureEnd);
return true;
}
bool CacheSignature::Decode(const lldb_private::DataExtractor &data,
lldb::offset_t *offset_ptr) {
Clear();
while (uint8_t sig_encoding = data.GetU8(offset_ptr)) {
switch (sig_encoding) {
case eSignatureUUID: {
const uint8_t length = data.GetU8(offset_ptr);
const uint8_t *bytes = (const uint8_t *)data.GetData(offset_ptr, length);
if (bytes != nullptr && length > 0)
m_uuid = UUID(llvm::ArrayRef<uint8_t>(bytes, length));
} break;
case eSignatureModTime: {
uint32_t mod_time = data.GetU32(offset_ptr);
if (mod_time > 0)
m_mod_time = mod_time;
} break;
case eSignatureObjectModTime: {
uint32_t mod_time = data.GetU32(offset_ptr);
if (mod_time > 0)
m_obj_mod_time = mod_time;
} break;
case eSignatureEnd:
// The definition of is valid changed to only be valid if the UUID is
// valid so make sure that if we attempt to decode an old cache file
// that we will fail to decode the cache file if the signature isn't
// considered valid.
return IsValid();
default:
break;
}
}
return false;
}
uint32_t ConstStringTable::Add(ConstString s) {
auto pos = m_string_to_offset.find(s);
if (pos != m_string_to_offset.end())
return pos->second;
const uint32_t offset = m_next_offset;
m_strings.push_back(s);
m_string_to_offset[s] = offset;
m_next_offset += s.GetLength() + 1;
return offset;
}
static const llvm::StringRef kStringTableIdentifier("STAB");
bool ConstStringTable::Encode(DataEncoder &encoder) {
// Write an 4 character code into the stream. This will help us when decoding
// to make sure we find this identifier when decoding the string table to make
// sure we have the rigth data. It also helps to identify the string table
// when dumping the hex bytes in a cache file.
encoder.AppendData(kStringTableIdentifier);
size_t length_offset = encoder.GetByteSize();
encoder.AppendU32(0); // Total length of all strings which will be fixed up.
size_t strtab_offset = encoder.GetByteSize();
encoder.AppendU8(0); // Start the string table with an empty string.
for (auto s: m_strings) {
// Make sure all of the offsets match up with what we handed out!
assert(m_string_to_offset.find(s)->second ==
encoder.GetByteSize() - strtab_offset);
// Append the C string into the encoder
encoder.AppendCString(s.GetStringRef());
}
// Fixup the string table length.
encoder.PutU32(length_offset, encoder.GetByteSize() - strtab_offset);
return true;
}
bool StringTableReader::Decode(const lldb_private::DataExtractor &data,
lldb::offset_t *offset_ptr) {
llvm::StringRef identifier((const char *)data.GetData(offset_ptr, 4), 4);
if (identifier != kStringTableIdentifier)
return false;
const uint32_t length = data.GetU32(offset_ptr);
// We always have at least one byte for the empty string at offset zero.
if (length == 0)
return false;
const char *bytes = (const char *)data.GetData(offset_ptr, length);
if (bytes == nullptr)
return false;
m_data = llvm::StringRef(bytes, length);
return true;
}
llvm::StringRef StringTableReader::Get(uint32_t offset) const {
if (offset >= m_data.size())
return llvm::StringRef();
return llvm::StringRef(m_data.data() + offset);
}