blob: 183c424fa76921e41047c27e8e66429789676b4d [file] [log] [blame]
//===-- DNBArchImpl.cpp -----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/25/07.
//
//===----------------------------------------------------------------------===//
#if defined(__arm__) || defined(__arm64__) || defined(__aarch64__)
#include "MacOSX/arm/DNBArchImpl.h"
#include "ARM_DWARF_Registers.h"
#include "ARM_ehframe_Registers.h"
#include "DNB.h"
#include "DNBBreakpoint.h"
#include "DNBLog.h"
#include "DNBRegisterInfo.h"
#include "MacOSX/MachProcess.h"
#include "MacOSX/MachThread.h"
#include <inttypes.h>
#include <sys/sysctl.h>
// BCR address match type
#define BCR_M_IMVA_MATCH ((uint32_t)(0u << 21))
#define BCR_M_CONTEXT_ID_MATCH ((uint32_t)(1u << 21))
#define BCR_M_IMVA_MISMATCH ((uint32_t)(2u << 21))
#define BCR_M_RESERVED ((uint32_t)(3u << 21))
// Link a BVR/BCR or WVR/WCR pair to another
#define E_ENABLE_LINKING ((uint32_t)(1u << 20))
// Byte Address Select
#define BAS_IMVA_PLUS_0 ((uint32_t)(1u << 5))
#define BAS_IMVA_PLUS_1 ((uint32_t)(1u << 6))
#define BAS_IMVA_PLUS_2 ((uint32_t)(1u << 7))
#define BAS_IMVA_PLUS_3 ((uint32_t)(1u << 8))
#define BAS_IMVA_0_1 ((uint32_t)(3u << 5))
#define BAS_IMVA_2_3 ((uint32_t)(3u << 7))
#define BAS_IMVA_ALL ((uint32_t)(0xfu << 5))
// Break only in privileged or user mode
#define S_RSVD ((uint32_t)(0u << 1))
#define S_PRIV ((uint32_t)(1u << 1))
#define S_USER ((uint32_t)(2u << 1))
#define S_PRIV_USER ((S_PRIV) | (S_USER))
#define BCR_ENABLE ((uint32_t)(1u))
#define WCR_ENABLE ((uint32_t)(1u))
// Watchpoint load/store
#define WCR_LOAD ((uint32_t)(1u << 3))
#define WCR_STORE ((uint32_t)(1u << 4))
// Definitions for the Debug Status and Control Register fields:
// [5:2] => Method of debug entry
//#define WATCHPOINT_OCCURRED ((uint32_t)(2u))
// I'm seeing this, instead.
#define WATCHPOINT_OCCURRED ((uint32_t)(10u))
// 0xE120BE70
static const uint8_t g_arm_breakpoint_opcode[] = {0x70, 0xBE, 0x20, 0xE1};
static const uint8_t g_thumb_breakpoint_opcode[] = {0x70, 0xBE};
// A watchpoint may need to be implemented using two watchpoint registers.
// e.g. watching an 8-byte region when the device can only watch 4-bytes.
//
// This stores the lo->hi mappings. It's safe to initialize to all 0's
// since hi > lo and therefore LoHi[i] cannot be 0.
static uint32_t LoHi[16] = {0};
// ARM constants used during decoding
#define REG_RD 0
#define LDM_REGLIST 1
#define PC_REG 15
#define PC_REGLIST_BIT 0x8000
// ARM conditions
#define COND_EQ 0x0
#define COND_NE 0x1
#define COND_CS 0x2
#define COND_HS 0x2
#define COND_CC 0x3
#define COND_LO 0x3
#define COND_MI 0x4
#define COND_PL 0x5
#define COND_VS 0x6
#define COND_VC 0x7
#define COND_HI 0x8
#define COND_LS 0x9
#define COND_GE 0xA
#define COND_LT 0xB
#define COND_GT 0xC
#define COND_LE 0xD
#define COND_AL 0xE
#define COND_UNCOND 0xF
#define MASK_CPSR_T (1u << 5)
#define MASK_CPSR_J (1u << 24)
#define MNEMONIC_STRING_SIZE 32
#define OPERAND_STRING_SIZE 128
#if !defined(__arm64__) && !defined(__aarch64__)
// Returns true if the first 16 bit opcode of a thumb instruction indicates
// the instruction will be a 32 bit thumb opcode
static bool IsThumb32Opcode(uint16_t opcode) {
if (((opcode & 0xE000) == 0xE000) && (opcode & 0x1800))
return true;
return false;
}
#endif
void DNBArchMachARM::Initialize() {
DNBArchPluginInfo arch_plugin_info = {
CPU_TYPE_ARM, DNBArchMachARM::Create, DNBArchMachARM::GetRegisterSetInfo,
DNBArchMachARM::SoftwareBreakpointOpcode};
// Register this arch plug-in with the main protocol class
DNBArchProtocol::RegisterArchPlugin(arch_plugin_info);
}
DNBArchProtocol *DNBArchMachARM::Create(MachThread *thread) {
DNBArchMachARM *obj = new DNBArchMachARM(thread);
return obj;
}
const uint8_t *DNBArchMachARM::SoftwareBreakpointOpcode(nub_size_t byte_size) {
switch (byte_size) {
case 2:
return g_thumb_breakpoint_opcode;
case 4:
return g_arm_breakpoint_opcode;
}
return NULL;
}
uint32_t DNBArchMachARM::GetCPUType() { return CPU_TYPE_ARM; }
uint64_t DNBArchMachARM::GetPC(uint64_t failValue) {
// Get program counter
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.context.gpr.__pc;
return failValue;
}
kern_return_t DNBArchMachARM::SetPC(uint64_t value) {
// Get program counter
kern_return_t err = GetGPRState(false);
if (err == KERN_SUCCESS) {
m_state.context.gpr.__pc = (uint32_t)value;
err = SetGPRState();
}
return err == KERN_SUCCESS;
}
uint64_t DNBArchMachARM::GetSP(uint64_t failValue) {
// Get stack pointer
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.context.gpr.__sp;
return failValue;
}
kern_return_t DNBArchMachARM::GetGPRState(bool force) {
int set = e_regSetGPR;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
// Read the registers from our thread
mach_msg_type_number_t count = ARM_THREAD_STATE_COUNT;
kern_return_t kret =
::thread_get_state(m_thread->MachPortNumber(), ARM_THREAD_STATE,
(thread_state_t)&m_state.context.gpr, &count);
uint32_t *r = &m_state.context.gpr.__r[0];
DNBLogThreadedIf(
LOG_THREAD, "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count = "
"%u) regs r0=%8.8x r1=%8.8x r2=%8.8x r3=%8.8x r4=%8.8x "
"r5=%8.8x r6=%8.8x r7=%8.8x r8=%8.8x r9=%8.8x r10=%8.8x "
"r11=%8.8x s12=%8.8x sp=%8.8x lr=%8.8x pc=%8.8x cpsr=%8.8x",
m_thread->MachPortNumber(), ARM_THREAD_STATE, ARM_THREAD_STATE_COUNT,
kret, count, r[0], r[1], r[2], r[3], r[4], r[5], r[6], r[7], r[8], r[9],
r[10], r[11], r[12], r[13], r[14], r[15], r[16]);
m_state.SetError(set, Read, kret);
return kret;
}
kern_return_t DNBArchMachARM::GetVFPState(bool force) {
int set = e_regSetVFP;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
kern_return_t kret;
#if defined(__arm64__) || defined(__aarch64__)
// Read the registers from our thread
mach_msg_type_number_t count = ARM_NEON_STATE_COUNT;
kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_NEON_STATE,
(thread_state_t)&m_state.context.vfp, &count);
if (DNBLogEnabledForAny(LOG_THREAD)) {
DNBLogThreaded(
"thread_get_state(0x%4.4x, %u, &vfp, %u) => 0x%8.8x (count = %u) regs"
"\n q0 = 0x%16.16llx%16.16llx"
"\n q1 = 0x%16.16llx%16.16llx"
"\n q2 = 0x%16.16llx%16.16llx"
"\n q3 = 0x%16.16llx%16.16llx"
"\n q4 = 0x%16.16llx%16.16llx"
"\n q5 = 0x%16.16llx%16.16llx"
"\n q6 = 0x%16.16llx%16.16llx"
"\n q7 = 0x%16.16llx%16.16llx"
"\n q8 = 0x%16.16llx%16.16llx"
"\n q9 = 0x%16.16llx%16.16llx"
"\n q10 = 0x%16.16llx%16.16llx"
"\n q11 = 0x%16.16llx%16.16llx"
"\n q12 = 0x%16.16llx%16.16llx"
"\n q13 = 0x%16.16llx%16.16llx"
"\n q14 = 0x%16.16llx%16.16llx"
"\n q15 = 0x%16.16llx%16.16llx"
"\n fpsr = 0x%8.8x"
"\n fpcr = 0x%8.8x\n\n",
m_thread->MachPortNumber(), ARM_NEON_STATE, ARM_NEON_STATE_COUNT, kret,
count, ((uint64_t *)&m_state.context.vfp.__v[0])[0],
((uint64_t *)&m_state.context.vfp.__v[0])[1],
((uint64_t *)&m_state.context.vfp.__v[1])[0],
((uint64_t *)&m_state.context.vfp.__v[1])[1],
((uint64_t *)&m_state.context.vfp.__v[2])[0],
((uint64_t *)&m_state.context.vfp.__v[2])[1],
((uint64_t *)&m_state.context.vfp.__v[3])[0],
((uint64_t *)&m_state.context.vfp.__v[3])[1],
((uint64_t *)&m_state.context.vfp.__v[4])[0],
((uint64_t *)&m_state.context.vfp.__v[4])[1],
((uint64_t *)&m_state.context.vfp.__v[5])[0],
((uint64_t *)&m_state.context.vfp.__v[5])[1],
((uint64_t *)&m_state.context.vfp.__v[6])[0],
((uint64_t *)&m_state.context.vfp.__v[6])[1],
((uint64_t *)&m_state.context.vfp.__v[7])[0],
((uint64_t *)&m_state.context.vfp.__v[7])[1],
((uint64_t *)&m_state.context.vfp.__v[8])[0],
((uint64_t *)&m_state.context.vfp.__v[8])[1],
((uint64_t *)&m_state.context.vfp.__v[9])[0],
((uint64_t *)&m_state.context.vfp.__v[9])[1],
((uint64_t *)&m_state.context.vfp.__v[10])[0],
((uint64_t *)&m_state.context.vfp.__v[10])[1],
((uint64_t *)&m_state.context.vfp.__v[11])[0],
((uint64_t *)&m_state.context.vfp.__v[11])[1],
((uint64_t *)&m_state.context.vfp.__v[12])[0],
((uint64_t *)&m_state.context.vfp.__v[12])[1],
((uint64_t *)&m_state.context.vfp.__v[13])[0],
((uint64_t *)&m_state.context.vfp.__v[13])[1],
((uint64_t *)&m_state.context.vfp.__v[14])[0],
((uint64_t *)&m_state.context.vfp.__v[14])[1],
((uint64_t *)&m_state.context.vfp.__v[15])[0],
((uint64_t *)&m_state.context.vfp.__v[15])[1],
m_state.context.vfp.__fpsr, m_state.context.vfp.__fpcr);
}
#else
// Read the registers from our thread
mach_msg_type_number_t count = ARM_VFP_STATE_COUNT;
kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_VFP_STATE,
(thread_state_t)&m_state.context.vfp, &count);
if (DNBLogEnabledForAny(LOG_THREAD)) {
uint32_t *r = &m_state.context.vfp.__r[0];
DNBLogThreaded(
"thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count => %u)",
m_thread->MachPortNumber(), ARM_THREAD_STATE, ARM_THREAD_STATE_COUNT,
kret, count);
DNBLogThreaded(" s0=%8.8x s1=%8.8x s2=%8.8x s3=%8.8x s4=%8.8x "
"s5=%8.8x s6=%8.8x s7=%8.8x",
r[0], r[1], r[2], r[3], r[4], r[5], r[6], r[7]);
DNBLogThreaded(" s8=%8.8x s9=%8.8x s10=%8.8x s11=%8.8x s12=%8.8x "
"s13=%8.8x s14=%8.8x s15=%8.8x",
r[8], r[9], r[10], r[11], r[12], r[13], r[14], r[15]);
DNBLogThreaded(" s16=%8.8x s17=%8.8x s18=%8.8x s19=%8.8x s20=%8.8x "
"s21=%8.8x s22=%8.8x s23=%8.8x",
r[16], r[17], r[18], r[19], r[20], r[21], r[22], r[23]);
DNBLogThreaded(" s24=%8.8x s25=%8.8x s26=%8.8x s27=%8.8x s28=%8.8x "
"s29=%8.8x s30=%8.8x s31=%8.8x",
r[24], r[25], r[26], r[27], r[28], r[29], r[30], r[31]);
DNBLogThreaded(" s32=%8.8x s33=%8.8x s34=%8.8x s35=%8.8x s36=%8.8x "
"s37=%8.8x s38=%8.8x s39=%8.8x",
r[32], r[33], r[34], r[35], r[36], r[37], r[38], r[39]);
DNBLogThreaded(" s40=%8.8x s41=%8.8x s42=%8.8x s43=%8.8x s44=%8.8x "
"s45=%8.8x s46=%8.8x s47=%8.8x",
r[40], r[41], r[42], r[43], r[44], r[45], r[46], r[47]);
DNBLogThreaded(" s48=%8.8x s49=%8.8x s50=%8.8x s51=%8.8x s52=%8.8x "
"s53=%8.8x s54=%8.8x s55=%8.8x",
r[48], r[49], r[50], r[51], r[52], r[53], r[54], r[55]);
DNBLogThreaded(" s56=%8.8x s57=%8.8x s58=%8.8x s59=%8.8x s60=%8.8x "
"s61=%8.8x s62=%8.8x s63=%8.8x fpscr=%8.8x",
r[56], r[57], r[58], r[59], r[60], r[61], r[62], r[63],
r[64]);
}
#endif
m_state.SetError(set, Read, kret);
return kret;
}
kern_return_t DNBArchMachARM::GetEXCState(bool force) {
int set = e_regSetEXC;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
// Read the registers from our thread
mach_msg_type_number_t count = ARM_EXCEPTION_STATE_COUNT;
kern_return_t kret =
::thread_get_state(m_thread->MachPortNumber(), ARM_EXCEPTION_STATE,
(thread_state_t)&m_state.context.exc, &count);
m_state.SetError(set, Read, kret);
return kret;
}
#if 0
static void DumpDBGState(const DNBArchMachARM::DBG &dbg) {
uint32_t i = 0;
for (i = 0; i < 16; i++) {
DNBLogThreadedIf(LOG_STEP, "BVR%-2u/BCR%-2u = { 0x%8.8x, 0x%8.8x } "
"WVR%-2u/WCR%-2u = { 0x%8.8x, 0x%8.8x }",
i, i, dbg.__bvr[i], dbg.__bcr[i], i, i, dbg.__wvr[i],
dbg.__wcr[i]);
}
}
#endif
kern_return_t DNBArchMachARM::GetDBGState(bool force) {
int set = e_regSetDBG;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
// Read the registers from our thread
#if defined(ARM_DEBUG_STATE32) && (defined(__arm64__) || defined(__aarch64__))
mach_msg_type_number_t count = ARM_DEBUG_STATE32_COUNT;
kern_return_t kret =
::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE32,
(thread_state_t)&m_state.dbg, &count);
#else
mach_msg_type_number_t count = ARM_DEBUG_STATE_COUNT;
kern_return_t kret =
::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE,
(thread_state_t)&m_state.dbg, &count);
#endif
m_state.SetError(set, Read, kret);
return kret;
}
kern_return_t DNBArchMachARM::SetGPRState() {
int set = e_regSetGPR;
kern_return_t kret = ::thread_set_state(
m_thread->MachPortNumber(), ARM_THREAD_STATE,
(thread_state_t)&m_state.context.gpr, ARM_THREAD_STATE_COUNT);
m_state.SetError(set, Write,
kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register
// state in case registers are read
// back differently
return kret; // Return the error code
}
kern_return_t DNBArchMachARM::SetVFPState() {
int set = e_regSetVFP;
kern_return_t kret;
mach_msg_type_number_t count;
#if defined(__arm64__) || defined(__aarch64__)
count = ARM_NEON_STATE_COUNT;
kret = ::thread_set_state(m_thread->MachPortNumber(), ARM_NEON_STATE,
(thread_state_t)&m_state.context.vfp, count);
#else
count = ARM_VFP_STATE_COUNT;
kret = ::thread_set_state(m_thread->MachPortNumber(), ARM_VFP_STATE,
(thread_state_t)&m_state.context.vfp, count);
#endif
#if defined(__arm64__) || defined(__aarch64__)
if (DNBLogEnabledForAny(LOG_THREAD)) {
DNBLogThreaded(
"thread_set_state(0x%4.4x, %u, &vfp, %u) => 0x%8.8x (count = %u) regs"
"\n q0 = 0x%16.16llx%16.16llx"
"\n q1 = 0x%16.16llx%16.16llx"
"\n q2 = 0x%16.16llx%16.16llx"
"\n q3 = 0x%16.16llx%16.16llx"
"\n q4 = 0x%16.16llx%16.16llx"
"\n q5 = 0x%16.16llx%16.16llx"
"\n q6 = 0x%16.16llx%16.16llx"
"\n q7 = 0x%16.16llx%16.16llx"
"\n q8 = 0x%16.16llx%16.16llx"
"\n q9 = 0x%16.16llx%16.16llx"
"\n q10 = 0x%16.16llx%16.16llx"
"\n q11 = 0x%16.16llx%16.16llx"
"\n q12 = 0x%16.16llx%16.16llx"
"\n q13 = 0x%16.16llx%16.16llx"
"\n q14 = 0x%16.16llx%16.16llx"
"\n q15 = 0x%16.16llx%16.16llx"
"\n fpsr = 0x%8.8x"
"\n fpcr = 0x%8.8x\n\n",
m_thread->MachPortNumber(), ARM_NEON_STATE, ARM_NEON_STATE_COUNT, kret,
count, ((uint64_t *)&m_state.context.vfp.__v[0])[0],
((uint64_t *)&m_state.context.vfp.__v[0])[1],
((uint64_t *)&m_state.context.vfp.__v[1])[0],
((uint64_t *)&m_state.context.vfp.__v[1])[1],
((uint64_t *)&m_state.context.vfp.__v[2])[0],
((uint64_t *)&m_state.context.vfp.__v[2])[1],
((uint64_t *)&m_state.context.vfp.__v[3])[0],
((uint64_t *)&m_state.context.vfp.__v[3])[1],
((uint64_t *)&m_state.context.vfp.__v[4])[0],
((uint64_t *)&m_state.context.vfp.__v[4])[1],
((uint64_t *)&m_state.context.vfp.__v[5])[0],
((uint64_t *)&m_state.context.vfp.__v[5])[1],
((uint64_t *)&m_state.context.vfp.__v[6])[0],
((uint64_t *)&m_state.context.vfp.__v[6])[1],
((uint64_t *)&m_state.context.vfp.__v[7])[0],
((uint64_t *)&m_state.context.vfp.__v[7])[1],
((uint64_t *)&m_state.context.vfp.__v[8])[0],
((uint64_t *)&m_state.context.vfp.__v[8])[1],
((uint64_t *)&m_state.context.vfp.__v[9])[0],
((uint64_t *)&m_state.context.vfp.__v[9])[1],
((uint64_t *)&m_state.context.vfp.__v[10])[0],
((uint64_t *)&m_state.context.vfp.__v[10])[1],
((uint64_t *)&m_state.context.vfp.__v[11])[0],
((uint64_t *)&m_state.context.vfp.__v[11])[1],
((uint64_t *)&m_state.context.vfp.__v[12])[0],
((uint64_t *)&m_state.context.vfp.__v[12])[1],
((uint64_t *)&m_state.context.vfp.__v[13])[0],
((uint64_t *)&m_state.context.vfp.__v[13])[1],
((uint64_t *)&m_state.context.vfp.__v[14])[0],
((uint64_t *)&m_state.context.vfp.__v[14])[1],
((uint64_t *)&m_state.context.vfp.__v[15])[0],
((uint64_t *)&m_state.context.vfp.__v[15])[1],
m_state.context.vfp.__fpsr, m_state.context.vfp.__fpcr);
}
#else
if (DNBLogEnabledForAny(LOG_THREAD)) {
uint32_t *r = &m_state.context.vfp.__r[0];
DNBLogThreaded(
"thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count => %u)",
m_thread->MachPortNumber(), ARM_THREAD_STATE, ARM_THREAD_STATE_COUNT,
kret, count);
DNBLogThreaded(" s0=%8.8x s1=%8.8x s2=%8.8x s3=%8.8x s4=%8.8x "
"s5=%8.8x s6=%8.8x s7=%8.8x",
r[0], r[1], r[2], r[3], r[4], r[5], r[6], r[7]);
DNBLogThreaded(" s8=%8.8x s9=%8.8x s10=%8.8x s11=%8.8x s12=%8.8x "
"s13=%8.8x s14=%8.8x s15=%8.8x",
r[8], r[9], r[10], r[11], r[12], r[13], r[14], r[15]);
DNBLogThreaded(" s16=%8.8x s17=%8.8x s18=%8.8x s19=%8.8x s20=%8.8x "
"s21=%8.8x s22=%8.8x s23=%8.8x",
r[16], r[17], r[18], r[19], r[20], r[21], r[22], r[23]);
DNBLogThreaded(" s24=%8.8x s25=%8.8x s26=%8.8x s27=%8.8x s28=%8.8x "
"s29=%8.8x s30=%8.8x s31=%8.8x",
r[24], r[25], r[26], r[27], r[28], r[29], r[30], r[31]);
DNBLogThreaded(" s32=%8.8x s33=%8.8x s34=%8.8x s35=%8.8x s36=%8.8x "
"s37=%8.8x s38=%8.8x s39=%8.8x",
r[32], r[33], r[34], r[35], r[36], r[37], r[38], r[39]);
DNBLogThreaded(" s40=%8.8x s41=%8.8x s42=%8.8x s43=%8.8x s44=%8.8x "
"s45=%8.8x s46=%8.8x s47=%8.8x",
r[40], r[41], r[42], r[43], r[44], r[45], r[46], r[47]);
DNBLogThreaded(" s48=%8.8x s49=%8.8x s50=%8.8x s51=%8.8x s52=%8.8x "
"s53=%8.8x s54=%8.8x s55=%8.8x",
r[48], r[49], r[50], r[51], r[52], r[53], r[54], r[55]);
DNBLogThreaded(" s56=%8.8x s57=%8.8x s58=%8.8x s59=%8.8x s60=%8.8x "
"s61=%8.8x s62=%8.8x s63=%8.8x fpscr=%8.8x",
r[56], r[57], r[58], r[59], r[60], r[61], r[62], r[63],
r[64]);
}
#endif
m_state.SetError(set, Write,
kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register
// state in case registers are read
// back differently
return kret; // Return the error code
}
kern_return_t DNBArchMachARM::SetEXCState() {
int set = e_regSetEXC;
kern_return_t kret = ::thread_set_state(
m_thread->MachPortNumber(), ARM_EXCEPTION_STATE,
(thread_state_t)&m_state.context.exc, ARM_EXCEPTION_STATE_COUNT);
m_state.SetError(set, Write,
kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register
// state in case registers are read
// back differently
return kret; // Return the error code
}
kern_return_t DNBArchMachARM::SetDBGState(bool also_set_on_task) {
int set = e_regSetDBG;
#if defined(ARM_DEBUG_STATE32) && (defined(__arm64__) || defined(__aarch64__))
kern_return_t kret =
::thread_set_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE32,
(thread_state_t)&m_state.dbg, ARM_DEBUG_STATE32_COUNT);
if (also_set_on_task) {
kern_return_t task_kret = ::task_set_state(
m_thread->Process()->Task().TaskPort(), ARM_DEBUG_STATE32,
(thread_state_t)&m_state.dbg, ARM_DEBUG_STATE32_COUNT);
if (task_kret != KERN_SUCCESS)
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::SetDBGState failed to "
"set debug control register state: "
"0x%8.8x.",
kret);
}
#else
kern_return_t kret =
::thread_set_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE,
(thread_state_t)&m_state.dbg, ARM_DEBUG_STATE_COUNT);
if (also_set_on_task) {
kern_return_t task_kret = ::task_set_state(
m_thread->Process()->Task().TaskPort(), ARM_DEBUG_STATE,
(thread_state_t)&m_state.dbg, ARM_DEBUG_STATE_COUNT);
if (task_kret != KERN_SUCCESS)
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::SetDBGState failed to "
"set debug control register state: "
"0x%8.8x.",
kret);
}
#endif
m_state.SetError(set, Write,
kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register
// state in case registers are read
// back differently
return kret; // Return the error code
}
void DNBArchMachARM::ThreadWillResume() {
// Do we need to step this thread? If so, let the mach thread tell us so.
if (m_thread->IsStepping()) {
// This is the primary thread, let the arch do anything it needs
if (NumSupportedHardwareBreakpoints() > 0) {
if (EnableHardwareSingleStep(true) != KERN_SUCCESS) {
DNBLogThreaded("DNBArchMachARM::ThreadWillResume() failed to enable "
"hardware single step");
}
}
}
// Disable the triggered watchpoint temporarily before we resume.
// Plus, we try to enable hardware single step to execute past the instruction
// which triggered our watchpoint.
if (m_watchpoint_did_occur) {
if (m_watchpoint_hw_index >= 0) {
kern_return_t kret = GetDBGState(false);
if (kret == KERN_SUCCESS &&
!IsWatchpointEnabled(m_state.dbg, m_watchpoint_hw_index)) {
// The watchpoint might have been disabled by the user. We don't need
// to do anything at all
// to enable hardware single stepping.
m_watchpoint_did_occur = false;
m_watchpoint_hw_index = -1;
return;
}
DisableHardwareWatchpoint(m_watchpoint_hw_index, false);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() "
"DisableHardwareWatchpoint(%d) called",
m_watchpoint_hw_index);
// Enable hardware single step to move past the watchpoint-triggering
// instruction.
m_watchpoint_resume_single_step_enabled =
(EnableHardwareSingleStep(true) == KERN_SUCCESS);
// If we are not able to enable single step to move past the
// watchpoint-triggering instruction,
// at least we should reset the two watchpoint member variables so that
// the next time around
// this callback function is invoked, the enclosing logical branch is
// skipped.
if (!m_watchpoint_resume_single_step_enabled) {
// Reset the two watchpoint member variables.
m_watchpoint_did_occur = false;
m_watchpoint_hw_index = -1;
DNBLogThreadedIf(
LOG_WATCHPOINTS,
"DNBArchMachARM::ThreadWillResume() failed to enable single step");
} else
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() "
"succeeded to enable single step");
}
}
}
bool DNBArchMachARM::ThreadDidStop() {
bool success = true;
m_state.InvalidateRegisterSetState(e_regSetALL);
if (m_watchpoint_resume_single_step_enabled) {
// Great! We now disable the hardware single step as well as re-enable the
// hardware watchpoint.
// See also ThreadWillResume().
if (EnableHardwareSingleStep(false) == KERN_SUCCESS) {
if (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0) {
ReenableHardwareWatchpoint(m_watchpoint_hw_index);
m_watchpoint_resume_single_step_enabled = false;
m_watchpoint_did_occur = false;
m_watchpoint_hw_index = -1;
} else {
DNBLogError("internal error detected: m_watchpoint_resume_step_enabled "
"is true but (m_watchpoint_did_occur && "
"m_watchpoint_hw_index >= 0) does not hold!");
}
} else {
DNBLogError("internal error detected: m_watchpoint_resume_step_enabled "
"is true but unable to disable single step!");
}
}
// Are we stepping a single instruction?
if (GetGPRState(true) == KERN_SUCCESS) {
// We are single stepping, was this the primary thread?
if (m_thread->IsStepping()) {
success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
} else {
// The MachThread will automatically restore the suspend count
// in ThreadDidStop(), so we don't need to do anything here if
// we weren't the primary thread the last time
}
}
return success;
}
bool DNBArchMachARM::NotifyException(MachException::Data &exc) {
switch (exc.exc_type) {
default:
break;
case EXC_BREAKPOINT:
if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_DA_DEBUG) {
// The data break address is passed as exc_data[1].
nub_addr_t addr = exc.exc_data[1];
// Find the hardware index with the side effect of possibly massaging the
// addr to return the starting address as seen from the debugger side.
uint32_t hw_index = GetHardwareWatchpointHit(addr);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::NotifyException "
"watchpoint %d was hit on address "
"0x%llx",
hw_index, (uint64_t)addr);
const uint32_t num_watchpoints = NumSupportedHardwareWatchpoints();
for (uint32_t i = 0; i < num_watchpoints; i++) {
if (LoHi[i] != 0 && LoHi[i] == hw_index && LoHi[i] != i &&
GetWatchpointAddressByIndex(i) != INVALID_NUB_ADDRESS) {
addr = GetWatchpointAddressByIndex(i);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::NotifyException "
"It is a linked watchpoint; "
"rewritten to index %d addr 0x%llx",
LoHi[i], (uint64_t)addr);
}
}
if (hw_index != INVALID_NUB_HW_INDEX) {
m_watchpoint_did_occur = true;
m_watchpoint_hw_index = hw_index;
exc.exc_data[1] = addr;
// Piggyback the hw_index in the exc.data.
exc.exc_data.push_back(hw_index);
}
return true;
}
break;
}
return false;
}
bool DNBArchMachARM::StepNotComplete() {
if (m_hw_single_chained_step_addr != INVALID_NUB_ADDRESS) {
kern_return_t kret = KERN_INVALID_ARGUMENT;
kret = GetGPRState(false);
if (kret == KERN_SUCCESS) {
if (m_state.context.gpr.__pc == m_hw_single_chained_step_addr) {
DNBLogThreadedIf(LOG_STEP, "Need to step some more at 0x%8.8llx",
(uint64_t)m_hw_single_chained_step_addr);
return true;
}
}
}
m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
return false;
}
// Set the single step bit in the processor status register.
kern_return_t DNBArchMachARM::EnableHardwareSingleStep(bool enable) {
DNBError err;
DNBLogThreadedIf(LOG_STEP, "%s( enable = %d )", __FUNCTION__, enable);
err = GetGPRState(false);
if (err.Fail()) {
err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__);
return err.Status();
}
err = GetDBGState(false);
if (err.Fail()) {
err.LogThreaded("%s: failed to read the DBG registers", __FUNCTION__);
return err.Status();
}
// The use of __arm64__ here is not ideal. If debugserver is running on
// an armv8 device, regardless of whether it was built for arch arm or arch
// arm64,
// it needs to use the MDSCR_EL1 SS bit to single instruction step.
#if defined(__arm64__) || defined(__aarch64__)
if (enable) {
DNBLogThreadedIf(LOG_STEP,
"%s: Setting MDSCR_EL1 Single Step bit at pc 0x%llx",
__FUNCTION__, (uint64_t)m_state.context.gpr.__pc);
m_state.dbg.__mdscr_el1 |=
1; // Set bit 0 (single step, SS) in the MDSCR_EL1.
} else {
DNBLogThreadedIf(LOG_STEP,
"%s: Clearing MDSCR_EL1 Single Step bit at pc 0x%llx",
__FUNCTION__, (uint64_t)m_state.context.gpr.__pc);
m_state.dbg.__mdscr_el1 &=
~(1ULL); // Clear bit 0 (single step, SS) in the MDSCR_EL1.
}
#else
const uint32_t i = 0;
if (enable) {
m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
// Save our previous state
m_dbg_save = m_state.dbg;
// Set a breakpoint that will stop when the PC doesn't match the current
// one!
m_state.dbg.__bvr[i] =
m_state.context.gpr.__pc &
0xFFFFFFFCu; // Set the current PC as the breakpoint address
m_state.dbg.__bcr[i] = BCR_M_IMVA_MISMATCH | // Stop on address mismatch
S_USER | // Stop only in user mode
BCR_ENABLE; // Enable this breakpoint
if (m_state.context.gpr.__cpsr & 0x20) {
// Thumb breakpoint
if (m_state.context.gpr.__pc & 2)
m_state.dbg.__bcr[i] |= BAS_IMVA_2_3;
else
m_state.dbg.__bcr[i] |= BAS_IMVA_0_1;
uint16_t opcode;
if (sizeof(opcode) ==
m_thread->Process()->Task().ReadMemory(m_state.context.gpr.__pc,
sizeof(opcode), &opcode)) {
if (IsThumb32Opcode(opcode)) {
// 32 bit thumb opcode...
if (m_state.context.gpr.__pc & 2) {
// We can't take care of a 32 bit thumb instruction single step
// with just IVA mismatching. We will need to chain an extra
// hardware single step in order to complete this single step...
m_hw_single_chained_step_addr = m_state.context.gpr.__pc + 2;
} else {
// Extend the number of bits to ignore for the mismatch
m_state.dbg.__bcr[i] |= BAS_IMVA_ALL;
}
}
}
} else {
// ARM breakpoint
m_state.dbg.__bcr[i] |= BAS_IMVA_ALL; // Stop when any address bits change
}
DNBLogThreadedIf(LOG_STEP, "%s: BVR%u=0x%8.8x BCR%u=0x%8.8x", __FUNCTION__,
i, m_state.dbg.__bvr[i], i, m_state.dbg.__bcr[i]);
for (uint32_t j = i + 1; j < 16; ++j) {
// Disable all others
m_state.dbg.__bvr[j] = 0;
m_state.dbg.__bcr[j] = 0;
}
} else {
// Just restore the state we had before we did single stepping
m_state.dbg = m_dbg_save;
}
#endif
return SetDBGState(false);
}
// return 1 if bit "BIT" is set in "value"
static inline uint32_t bit(uint32_t value, uint32_t bit) {
return (value >> bit) & 1u;
}
// return the bitfield "value[msbit:lsbit]".
static inline uint32_t bits(uint32_t value, uint32_t msbit, uint32_t lsbit) {
assert(msbit >= lsbit);
uint32_t shift_left = sizeof(value) * 8 - 1 - msbit;
value <<=
shift_left; // shift anything above the msbit off of the unsigned edge
value >>= (shift_left + lsbit); // shift it back again down to the lsbit
// (including undoing any shift from above)
return value; // return our result
}
bool DNBArchMachARM::ConditionPassed(uint8_t condition, uint32_t cpsr) {
uint32_t cpsr_n = bit(cpsr, 31); // Negative condition code flag
uint32_t cpsr_z = bit(cpsr, 30); // Zero condition code flag
uint32_t cpsr_c = bit(cpsr, 29); // Carry condition code flag
uint32_t cpsr_v = bit(cpsr, 28); // Overflow condition code flag
switch (condition) {
case COND_EQ: // (0x0)
if (cpsr_z == 1)
return true;
break;
case COND_NE: // (0x1)
if (cpsr_z == 0)
return true;
break;
case COND_CS: // (0x2)
if (cpsr_c == 1)
return true;
break;
case COND_CC: // (0x3)
if (cpsr_c == 0)
return true;
break;
case COND_MI: // (0x4)
if (cpsr_n == 1)
return true;
break;
case COND_PL: // (0x5)
if (cpsr_n == 0)
return true;
break;
case COND_VS: // (0x6)
if (cpsr_v == 1)
return true;
break;
case COND_VC: // (0x7)
if (cpsr_v == 0)
return true;
break;
case COND_HI: // (0x8)
if ((cpsr_c == 1) && (cpsr_z == 0))
return true;
break;
case COND_LS: // (0x9)
if ((cpsr_c == 0) || (cpsr_z == 1))
return true;
break;
case COND_GE: // (0xA)
if (cpsr_n == cpsr_v)
return true;
break;
case COND_LT: // (0xB)
if (cpsr_n != cpsr_v)
return true;
break;
case COND_GT: // (0xC)
if ((cpsr_z == 0) && (cpsr_n == cpsr_v))
return true;
break;
case COND_LE: // (0xD)
if ((cpsr_z == 1) || (cpsr_n != cpsr_v))
return true;
break;
default:
return true;
break;
}
return false;
}
uint32_t DNBArchMachARM::NumSupportedHardwareBreakpoints() {
// Set the init value to something that will let us know that we need to
// autodetect how many breakpoints are supported dynamically...
static uint32_t g_num_supported_hw_breakpoints = UINT_MAX;
if (g_num_supported_hw_breakpoints == UINT_MAX) {
// Set this to zero in case we can't tell if there are any HW breakpoints
g_num_supported_hw_breakpoints = 0;
size_t len;
uint32_t n = 0;
len = sizeof(n);
if (::sysctlbyname("hw.optional.breakpoint", &n, &len, NULL, 0) == 0) {
g_num_supported_hw_breakpoints = n;
DNBLogThreadedIf(LOG_THREAD, "hw.optional.breakpoint=%u", n);
} else {
#if !defined(__arm64__) && !defined(__aarch64__)
// Read the DBGDIDR to get the number of available hardware breakpoints
// However, in some of our current armv7 processors, hardware
// breakpoints/watchpoints were not properly connected. So detect those
// cases using a field in a sysctl. For now we are using "hw.cpusubtype"
// field to distinguish CPU architectures. This is a hack until we can
// get <rdar://problem/6372672> fixed, at which point we will switch to
// using a different sysctl string that will tell us how many BRPs
// are available to us directly without having to read DBGDIDR.
uint32_t register_DBGDIDR;
asm("mrc p14, 0, %0, c0, c0, 0" : "=r"(register_DBGDIDR));
uint32_t numBRPs = bits(register_DBGDIDR, 27, 24);
// Zero is reserved for the BRP count, so don't increment it if it is zero
if (numBRPs > 0)
numBRPs++;
DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number BRP pairs = %u)",
register_DBGDIDR, numBRPs);
if (numBRPs > 0) {
uint32_t cpusubtype;
len = sizeof(cpusubtype);
// TODO: remove this hack and change to using hw.optional.xx when
// implmented
if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0) {
DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=%d", cpusubtype);
if (cpusubtype == CPU_SUBTYPE_ARM_V7)
DNBLogThreadedIf(LOG_THREAD, "Hardware breakpoints disabled for "
"armv7 (rdar://problem/6372672)");
else
g_num_supported_hw_breakpoints = numBRPs;
}
}
#endif
}
}
return g_num_supported_hw_breakpoints;
}
uint32_t DNBArchMachARM::NumSupportedHardwareWatchpoints() {
// Set the init value to something that will let us know that we need to
// autodetect how many watchpoints are supported dynamically...
static uint32_t g_num_supported_hw_watchpoints = UINT_MAX;
if (g_num_supported_hw_watchpoints == UINT_MAX) {
// Set this to zero in case we can't tell if there are any HW breakpoints
g_num_supported_hw_watchpoints = 0;
size_t len;
uint32_t n = 0;
len = sizeof(n);
if (::sysctlbyname("hw.optional.watchpoint", &n, &len, NULL, 0) == 0) {
g_num_supported_hw_watchpoints = n;
DNBLogThreadedIf(LOG_THREAD, "hw.optional.watchpoint=%u", n);
} else {
#if !defined(__arm64__) && !defined(__aarch64__)
// Read the DBGDIDR to get the number of available hardware breakpoints
// However, in some of our current armv7 processors, hardware
// breakpoints/watchpoints were not properly connected. So detect those
// cases using a field in a sysctl. For now we are using "hw.cpusubtype"
// field to distinguish CPU architectures. This is a hack until we can
// get <rdar://problem/6372672> fixed, at which point we will switch to
// using a different sysctl string that will tell us how many WRPs
// are available to us directly without having to read DBGDIDR.
uint32_t register_DBGDIDR;
asm("mrc p14, 0, %0, c0, c0, 0" : "=r"(register_DBGDIDR));
uint32_t numWRPs = bits(register_DBGDIDR, 31, 28) + 1;
DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number WRP pairs = %u)",
register_DBGDIDR, numWRPs);
if (numWRPs > 0) {
uint32_t cpusubtype;
size_t len;
len = sizeof(cpusubtype);
// TODO: remove this hack and change to using hw.optional.xx when
// implmented
if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0) {
DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=0x%d", cpusubtype);
if (cpusubtype == CPU_SUBTYPE_ARM_V7)
DNBLogThreadedIf(LOG_THREAD, "Hardware watchpoints disabled for "
"armv7 (rdar://problem/6372672)");
else
g_num_supported_hw_watchpoints = numWRPs;
}
}
#endif
}
}
return g_num_supported_hw_watchpoints;
}
uint32_t DNBArchMachARM::EnableHardwareBreakpoint(nub_addr_t addr,
nub_size_t size,
bool also_set_on_task) {
// Make sure our address isn't bogus
if (addr & 1)
return INVALID_NUB_HW_INDEX;
kern_return_t kret = GetDBGState(false);
if (kret == KERN_SUCCESS) {
const uint32_t num_hw_breakpoints = NumSupportedHardwareBreakpoints();
uint32_t i;
for (i = 0; i < num_hw_breakpoints; ++i) {
if ((m_state.dbg.__bcr[i] & BCR_ENABLE) == 0)
break; // We found an available hw breakpoint slot (in i)
}
// See if we found an available hw breakpoint slot above
if (i < num_hw_breakpoints) {
// Make sure bits 1:0 are clear in our address
m_state.dbg.__bvr[i] = addr & ~((nub_addr_t)3);
if (size == 2 || addr & 2) {
uint32_t byte_addr_select = (addr & 2) ? BAS_IMVA_2_3 : BAS_IMVA_0_1;
// We have a thumb breakpoint
// We have an ARM breakpoint
m_state.dbg.__bcr[i] =
BCR_M_IMVA_MATCH | // Stop on address mismatch
byte_addr_select | // Set the correct byte address select so we only
// trigger on the correct opcode
S_USER | // Which modes should this breakpoint stop in?
BCR_ENABLE; // Enable this hardware breakpoint
DNBLogThreadedIf(LOG_BREAKPOINTS,
"DNBArchMachARM::EnableHardwareBreakpoint( addr = "
"0x%8.8llx, size = %llu ) - BVR%u/BCR%u = 0x%8.8x / "
"0x%8.8x (Thumb)",
(uint64_t)addr, (uint64_t)size, i, i,
m_state.dbg.__bvr[i], m_state.dbg.__bcr[i]);
} else if (size == 4) {
// We have an ARM breakpoint
m_state.dbg.__bcr[i] =
BCR_M_IMVA_MATCH | // Stop on address mismatch
BAS_IMVA_ALL | // Stop on any of the four bytes following the IMVA
S_USER | // Which modes should this breakpoint stop in?
BCR_ENABLE; // Enable this hardware breakpoint
DNBLogThreadedIf(LOG_BREAKPOINTS,
"DNBArchMachARM::EnableHardwareBreakpoint( addr = "
"0x%8.8llx, size = %llu ) - BVR%u/BCR%u = 0x%8.8x / "
"0x%8.8x (ARM)",
(uint64_t)addr, (uint64_t)size, i, i,
m_state.dbg.__bvr[i], m_state.dbg.__bcr[i]);
}
kret = SetDBGState(false);
DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::"
"EnableHardwareBreakpoint() "
"SetDBGState() => 0x%8.8x.",
kret);
if (kret == KERN_SUCCESS)
return i;
} else {
DNBLogThreadedIf(LOG_BREAKPOINTS,
"DNBArchMachARM::EnableHardwareBreakpoint(addr = "
"0x%8.8llx, size = %llu) => all hardware breakpoint "
"resources are being used.",
(uint64_t)addr, (uint64_t)size);
}
}
return INVALID_NUB_HW_INDEX;
}
bool DNBArchMachARM::DisableHardwareBreakpoint(uint32_t hw_index,
bool also_set_on_task) {
kern_return_t kret = GetDBGState(false);
const uint32_t num_hw_points = NumSupportedHardwareBreakpoints();
if (kret == KERN_SUCCESS) {
if (hw_index < num_hw_points) {
m_state.dbg.__bcr[hw_index] = 0;
DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::SetHardwareBreakpoint("
" %u ) - BVR%u = 0x%8.8x BCR%u = "
"0x%8.8x",
hw_index, hw_index, m_state.dbg.__bvr[hw_index],
hw_index, m_state.dbg.__bcr[hw_index]);
kret = SetDBGState(false);
if (kret == KERN_SUCCESS)
return true;
}
}
return false;
}
// ARM v7 watchpoints may be either word-size or double-word-size.
// It's implementation defined which they can handle. It looks like on an
// armv8 device, armv7 processes can watch dwords. But on a genuine armv7
// device I tried, only word watchpoints are supported.
#if defined(__arm64__) || defined(__aarch64__)
#define WATCHPOINTS_ARE_DWORD 1
#else
#undef WATCHPOINTS_ARE_DWORD
#endif
uint32_t DNBArchMachARM::EnableHardwareWatchpoint(nub_addr_t addr,
nub_size_t size, bool read,
bool write,
bool also_set_on_task) {
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint("
"addr = 0x%8.8llx, size = %zu, read = %u, "
"write = %u)",
(uint64_t)addr, size, read, write);
const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
// Can't watch zero bytes
if (size == 0)
return INVALID_NUB_HW_INDEX;
// We must watch for either read or write
if (read == false && write == false)
return INVALID_NUB_HW_INDEX;
// Otherwise, can't watch more than 8 bytes per WVR/WCR pair
if (size > 8)
return INVALID_NUB_HW_INDEX;
// Treat arm watchpoints as having an 8-byte alignment requirement. You can put
// a watchpoint on a 4-byte
// offset address but you can only watch 4 bytes with that watchpoint.
// arm watchpoints on an 8-byte (double word) aligned addr can watch any bytes
// in that
// 8-byte long region of memory. They can watch the 1st byte, the 2nd byte, 3rd
// byte, etc, or any
// combination therein by setting the bits in the BAS [12:5] (Byte Address
// Select) field of
// the DBGWCRn_EL1 reg for the watchpoint.
// If the MASK [28:24] bits in the DBGWCRn_EL1 allow a single watchpoint to
// monitor a larger region
// of memory (16 bytes, 32 bytes, or 2GB) but the Byte Address Select bitfield
// then selects a larger
// range of bytes, instead of individual bytes. See the ARMv8 Debug
// Architecture manual for details.
// This implementation does not currently use the MASK bits; the largest single
// region watched by a single
// watchpoint right now is 8-bytes.
#if defined(WATCHPOINTS_ARE_DWORD)
nub_addr_t aligned_wp_address = addr & ~0x7;
uint32_t addr_dword_offset = addr & 0x7;
const int max_watchpoint_size = 8;
#else
nub_addr_t aligned_wp_address = addr & ~0x3;
uint32_t addr_dword_offset = addr & 0x3;
const int max_watchpoint_size = 4;
#endif
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint "
"aligned_wp_address is 0x%llx and "
"addr_dword_offset is 0x%x",
(uint64_t)aligned_wp_address, addr_dword_offset);
// Do we need to split up this logical watchpoint into two hardware watchpoint
// registers?
// e.g. a watchpoint of length 4 on address 6. We need do this with
// one watchpoint on address 0 with bytes 6 & 7 being monitored
// one watchpoint on address 8 with bytes 0, 1, 2, 3 being monitored
if (addr_dword_offset + size > max_watchpoint_size) {
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::"
"EnableHardwareWatchpoint(addr = "
"0x%8.8llx, size = %zu) needs two "
"hardware watchpoints slots to monitor",
(uint64_t)addr, size);
int low_watchpoint_size = max_watchpoint_size - addr_dword_offset;
int high_watchpoint_size = addr_dword_offset + size - max_watchpoint_size;
uint32_t lo = EnableHardwareWatchpoint(addr, low_watchpoint_size, read,
write, also_set_on_task);
if (lo == INVALID_NUB_HW_INDEX)
return INVALID_NUB_HW_INDEX;
uint32_t hi = EnableHardwareWatchpoint(
aligned_wp_address + max_watchpoint_size, high_watchpoint_size, read,
write, also_set_on_task);
if (hi == INVALID_NUB_HW_INDEX) {
DisableHardwareWatchpoint(lo, also_set_on_task);
return INVALID_NUB_HW_INDEX;
}
// Tag this lo->hi mapping in our database.
LoHi[lo] = hi;
return lo;
}
// At this point
// 1 aligned_wp_address is the requested address rounded down to 8-byte
// alignment
// 2 addr_dword_offset is the offset into that double word (8-byte) region
// that we are watching
// 3 size is the number of bytes within that 8-byte region that we are
// watching
// Set the Byte Address Selects bits DBGWCRn_EL1 bits [12:5] based on the
// above.
// The bit shift and negation operation will give us 0b11 for 2, 0b1111 for 4,
// etc, up to 0b11111111 for 8.
// then we shift those bits left by the offset into this dword that we are
// interested in.
// e.g. if we are watching bytes 4,5,6,7 in a dword we want a BAS of
// 0b11110000.
uint32_t byte_address_select = ((1 << size) - 1) << addr_dword_offset;
// Read the debug state
kern_return_t kret = GetDBGState(true);
if (kret == KERN_SUCCESS) {
// Check to make sure we have the needed hardware support
uint32_t i = 0;
for (i = 0; i < num_hw_watchpoints; ++i) {
if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0)
break; // We found an available hw watchpoint slot (in i)
}
// See if we found an available hw watchpoint slot above
if (i < num_hw_watchpoints) {
// DumpDBGState(m_state.dbg);
// Clear any previous LoHi joined-watchpoint that may have been in use
LoHi[i] = 0;
// shift our Byte Address Select bits up to the correct bit range for the
// DBGWCRn_EL1
byte_address_select = byte_address_select << 5;
// Make sure bits 1:0 are clear in our address
m_state.dbg.__wvr[i] = aligned_wp_address; // DVA (Data Virtual Address)
m_state.dbg.__wcr[i] = byte_address_select | // Which bytes that follow
// the DVA that we will watch
S_USER | // Stop only in user mode
(read ? WCR_LOAD : 0) | // Stop on read access?
(write ? WCR_STORE : 0) | // Stop on write access?
WCR_ENABLE; // Enable this watchpoint;
DNBLogThreadedIf(
LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() adding "
"watchpoint on address 0x%llx with control register "
"value 0x%x",
(uint64_t)m_state.dbg.__wvr[i], (uint32_t)m_state.dbg.__wcr[i]);
// The kernel will set the MDE_ENABLE bit in the MDSCR_EL1 for us
// automatically, don't need to do it here.
kret = SetDBGState(also_set_on_task);
// DumpDBGState(m_state.dbg);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::"
"EnableHardwareWatchpoint() "
"SetDBGState() => 0x%8.8x.",
kret);
if (kret == KERN_SUCCESS)
return i;
} else {
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::"
"EnableHardwareWatchpoint(): All "
"hardware resources (%u) are in use.",
num_hw_watchpoints);
}
}
return INVALID_NUB_HW_INDEX;
}
bool DNBArchMachARM::ReenableHardwareWatchpoint(uint32_t hw_index) {
// If this logical watchpoint # is actually implemented using
// two hardware watchpoint registers, re-enable both of them.
if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index]) {
return ReenableHardwareWatchpoint_helper(hw_index) &&
ReenableHardwareWatchpoint_helper(LoHi[hw_index]);
} else {
return ReenableHardwareWatchpoint_helper(hw_index);
}
}
bool DNBArchMachARM::ReenableHardwareWatchpoint_helper(uint32_t hw_index) {
kern_return_t kret = GetDBGState(false);
if (kret != KERN_SUCCESS)
return false;
const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
if (hw_index >= num_hw_points)
return false;
m_state.dbg.__wvr[hw_index] = m_disabled_watchpoints[hw_index].addr;
m_state.dbg.__wcr[hw_index] = m_disabled_watchpoints[hw_index].control;
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint( "
"%u ) - WVR%u = 0x%8.8llx WCR%u = "
"0x%8.8llx",
hw_index, hw_index, (uint64_t)m_state.dbg.__wvr[hw_index],
hw_index, (uint64_t)m_state.dbg.__wcr[hw_index]);
// The kernel will set the MDE_ENABLE bit in the MDSCR_EL1 for us
// automatically, don't need to do it here.
kret = SetDBGState(false);
return (kret == KERN_SUCCESS);
}
bool DNBArchMachARM::DisableHardwareWatchpoint(uint32_t hw_index,
bool also_set_on_task) {
if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index]) {
return DisableHardwareWatchpoint_helper(hw_index, also_set_on_task) &&
DisableHardwareWatchpoint_helper(LoHi[hw_index], also_set_on_task);
} else {
return DisableHardwareWatchpoint_helper(hw_index, also_set_on_task);
}
}
bool DNBArchMachARM::DisableHardwareWatchpoint_helper(uint32_t hw_index,
bool also_set_on_task) {
kern_return_t kret = GetDBGState(false);
if (kret != KERN_SUCCESS)
return false;
const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
if (hw_index >= num_hw_points)
return false;
m_disabled_watchpoints[hw_index].addr = m_state.dbg.__wvr[hw_index];
m_disabled_watchpoints[hw_index].control = m_state.dbg.__wcr[hw_index];
m_state.dbg.__wvr[hw_index] = 0;
m_state.dbg.__wcr[hw_index] = 0;
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::DisableHardwareWatchpoint("
" %u ) - WVR%u = 0x%8.8llx WCR%u = "
"0x%8.8llx",
hw_index, hw_index, (uint64_t)m_state.dbg.__wvr[hw_index],
hw_index, (uint64_t)m_state.dbg.__wcr[hw_index]);
kret = SetDBGState(also_set_on_task);
return (kret == KERN_SUCCESS);
}
// Returns -1 if the trailing bit patterns are not one of:
// { 0b???1, 0b??10, 0b?100, 0b1000 }.
static inline int32_t LowestBitSet(uint32_t val) {
for (unsigned i = 0; i < 4; ++i) {
if (bit(val, i))
return i;
}
return -1;
}
// Iterate through the debug registers; return the index of the first watchpoint
// whose address matches.
// As a side effect, the starting address as understood by the debugger is
// returned which could be
// different from 'addr' passed as an in/out argument.
uint32_t DNBArchMachARM::GetHardwareWatchpointHit(nub_addr_t &addr) {
// Read the debug state
kern_return_t kret = GetDBGState(true);
// DumpDBGState(m_state.dbg);
DNBLogThreadedIf(
LOG_WATCHPOINTS,
"DNBArchMachARM::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x.",
kret);
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM::GetHardwareWatchpointHit() addr = 0x%llx",
(uint64_t)addr);
// This is the watchpoint value to match against, i.e., word address.
#if defined(WATCHPOINTS_ARE_DWORD)
nub_addr_t wp_val = addr & ~((nub_addr_t)7);
#else
nub_addr_t wp_val = addr & ~((nub_addr_t)3);
#endif
if (kret == KERN_SUCCESS) {
DBG &debug_state = m_state.dbg;
uint32_t i, num = NumSupportedHardwareWatchpoints();
for (i = 0; i < num; ++i) {
nub_addr_t wp_addr = GetWatchAddress(debug_state, i);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::"
"GetHardwareWatchpointHit() slot: %u "
"(addr = 0x%llx).",
i, (uint64_t)wp_addr);
if (wp_val == wp_addr) {
#if defined(WATCHPOINTS_ARE_DWORD)
uint32_t byte_mask = bits(debug_state.__wcr[i], 12, 5);
#else
uint32_t byte_mask = bits(debug_state.__wcr[i], 8, 5);
#endif
// Sanity check the byte_mask, first.
if (LowestBitSet(byte_mask) < 0)
continue;
// Compute the starting address (from the point of view of the
// debugger).
addr = wp_addr + LowestBitSet(byte_mask);
return i;
}
}
}
return INVALID_NUB_HW_INDEX;
}
nub_addr_t DNBArchMachARM::GetWatchpointAddressByIndex(uint32_t hw_index) {
kern_return_t kret = GetDBGState(true);
if (kret != KERN_SUCCESS)
return INVALID_NUB_ADDRESS;
const uint32_t num = NumSupportedHardwareWatchpoints();
if (hw_index >= num)
return INVALID_NUB_ADDRESS;
if (IsWatchpointEnabled(m_state.dbg, hw_index))
return GetWatchAddress(m_state.dbg, hw_index);
return INVALID_NUB_ADDRESS;
}
bool DNBArchMachARM::IsWatchpointEnabled(const DBG &debug_state,
uint32_t hw_index) {
// Watchpoint Control Registers, bitfield definitions
// ...
// Bits Value Description
// [0] 0 Watchpoint disabled
// 1 Watchpoint enabled.
return (debug_state.__wcr[hw_index] & 1u);
}
nub_addr_t DNBArchMachARM::GetWatchAddress(const DBG &debug_state,
uint32_t hw_index) {
// Watchpoint Value Registers, bitfield definitions
// Bits Description
// [31:2] Watchpoint value (word address, i.e., 4-byte aligned)
// [1:0] RAZ/SBZP
return bits(debug_state.__wvr[hw_index], 31, 0);
}
// Register information definitions for 32 bit ARMV7.
enum gpr_regnums {
gpr_r0 = 0,
gpr_r1,
gpr_r2,
gpr_r3,
gpr_r4,
gpr_r5,
gpr_r6,
gpr_r7,
gpr_r8,
gpr_r9,
gpr_r10,
gpr_r11,
gpr_r12,
gpr_sp,
gpr_lr,
gpr_pc,
gpr_cpsr
};
enum {
vfp_s0 = 0,
vfp_s1,
vfp_s2,
vfp_s3,
vfp_s4,
vfp_s5,
vfp_s6,
vfp_s7,
vfp_s8,
vfp_s9,
vfp_s10,
vfp_s11,
vfp_s12,
vfp_s13,
vfp_s14,
vfp_s15,
vfp_s16,
vfp_s17,
vfp_s18,
vfp_s19,
vfp_s20,
vfp_s21,
vfp_s22,
vfp_s23,
vfp_s24,
vfp_s25,
vfp_s26,
vfp_s27,
vfp_s28,
vfp_s29,
vfp_s30,
vfp_s31,
vfp_d0,
vfp_d1,
vfp_d2,
vfp_d3,
vfp_d4,
vfp_d5,
vfp_d6,
vfp_d7,
vfp_d8,
vfp_d9,
vfp_d10,
vfp_d11,
vfp_d12,
vfp_d13,
vfp_d14,
vfp_d15,
vfp_d16,
vfp_d17,
vfp_d18,
vfp_d19,
vfp_d20,
vfp_d21,
vfp_d22,
vfp_d23,
vfp_d24,
vfp_d25,
vfp_d26,
vfp_d27,
vfp_d28,
vfp_d29,
vfp_d30,
vfp_d31,
vfp_q0,
vfp_q1,
vfp_q2,
vfp_q3,
vfp_q4,
vfp_q5,
vfp_q6,
vfp_q7,
vfp_q8,
vfp_q9,
vfp_q10,
vfp_q11,
vfp_q12,
vfp_q13,
vfp_q14,
vfp_q15,
#if defined(__arm64__) || defined(__aarch64__)
vfp_fpsr,
vfp_fpcr,
#else
vfp_fpscr
#endif
};
enum {
exc_exception,
exc_fsr,
exc_far,
};
#define GPR_OFFSET_IDX(idx) (offsetof(DNBArchMachARM::GPR, __r[idx]))
#define GPR_OFFSET_NAME(reg) (offsetof(DNBArchMachARM::GPR, __##reg))
#define EXC_OFFSET(reg) \
(offsetof(DNBArchMachARM::EXC, __##reg) + \
offsetof(DNBArchMachARM::Context, exc))
// These macros will auto define the register name, alt name, register size,
// register offset, encoding, format and native register. This ensures that
// the register state structures are defined correctly and have the correct
// sizes and offsets.
#define DEFINE_GPR_IDX(idx, reg, alt, gen) \
{ \
e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_IDX(idx), \
ehframe_##reg, dwarf_##reg, gen, INVALID_NUB_REGNUM, NULL, NULL \
}
#define DEFINE_GPR_NAME(reg, alt, gen, inval) \
{ \
e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_NAME(reg), \
ehframe_##reg, dwarf_##reg, gen, INVALID_NUB_REGNUM, NULL, inval \
}
// In case we are debugging to a debug target that the ability to
// change into the protected modes with folded registers (ABT, IRQ,
// FIQ, SYS, USR, etc..), we should invalidate r8-r14 if the CPSR
// gets modified.
const char *g_invalidate_cpsr[] = {"r8", "r9", "r10", "r11",
"r12", "sp", "lr", NULL};
// General purpose registers
const DNBRegisterInfo DNBArchMachARM::g_gpr_registers[] = {
DEFINE_GPR_IDX(0, r0, "arg1", GENERIC_REGNUM_ARG1),
DEFINE_GPR_IDX(1, r1, "arg2", GENERIC_REGNUM_ARG2),
DEFINE_GPR_IDX(2, r2, "arg3", GENERIC_REGNUM_ARG3),
DEFINE_GPR_IDX(3, r3, "arg4", GENERIC_REGNUM_ARG4),
DEFINE_GPR_IDX(4, r4, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(5, r5, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(6, r6, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(7, r7, "fp", GENERIC_REGNUM_FP),
DEFINE_GPR_IDX(8, r8, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(9, r9, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(10, r10, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(11, r11, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(12, r12, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_NAME(sp, "r13", GENERIC_REGNUM_SP, NULL),
DEFINE_GPR_NAME(lr, "r14", GENERIC_REGNUM_RA, NULL),
DEFINE_GPR_NAME(pc, "r15", GENERIC_REGNUM_PC, NULL),
DEFINE_GPR_NAME(cpsr, "flags", GENERIC_REGNUM_FLAGS, g_invalidate_cpsr)};
const char *g_contained_q0[]{"q0", NULL};
const char *g_contained_q1[]{"q1", NULL};
const char *g_contained_q2[]{"q2", NULL};
const char *g_contained_q3[]{"q3", NULL};
const char *g_contained_q4[]{"q4", NULL};
const char *g_contained_q5[]{"q5", NULL};
const char *g_contained_q6[]{"q6", NULL};
const char *g_contained_q7[]{"q7", NULL};
const char *g_contained_q8[]{"q8", NULL};
const char *g_contained_q9[]{"q9", NULL};
const char *g_contained_q10[]{"q10", NULL};
const char *g_contained_q11[]{"q11", NULL};
const char *g_contained_q12[]{"q12", NULL};
const char *g_contained_q13[]{"q13", NULL};
const char *g_contained_q14[]{"q14", NULL};
const char *g_contained_q15[]{"q15", NULL};
const char *g_invalidate_q0[]{"q0", "d0", "d1", "s0", "s1", "s2", "s3", NULL};
const char *g_invalidate_q1[]{"q1", "d2", "d3", "s4", "s5", "s6", "s7", NULL};
const char *g_invalidate_q2[]{"q2", "d4", "d5", "s8", "s9", "s10", "s11", NULL};
const char *g_invalidate_q3[]{"q3", "d6", "d7", "s12",
"s13", "s14", "s15", NULL};
const char *g_invalidate_q4[]{"q4", "d8", "d9", "s16",
"s17", "s18", "s19", NULL};
const char *g_invalidate_q5[]{"q5", "d10", "d11", "s20",
"s21", "s22", "s23", NULL};
const char *g_invalidate_q6[]{"q6", "d12", "d13", "s24",
"s25", "s26", "s27", NULL};
const char *g_invalidate_q7[]{"q7", "d14", "d15", "s28",
"s29", "s30", "s31", NULL};
const char *g_invalidate_q8[]{"q8", "d16", "d17", NULL};
const char *g_invalidate_q9[]{"q9", "d18", "d19", NULL};
const char *g_invalidate_q10[]{"q10", "d20", "d21", NULL};
const char *g_invalidate_q11[]{"q11", "d22", "d23", NULL};
const char *g_invalidate_q12[]{"q12", "d24", "d25", NULL};
const char *g_invalidate_q13[]{"q13", "d26", "d27", NULL};
const char *g_invalidate_q14[]{"q14", "d28", "d29", NULL};
const char *g_invalidate_q15[]{"q15", "d30", "d31", NULL};
#define VFP_S_OFFSET_IDX(idx) \
(((idx) % 4) * 4) // offset into q reg: 0, 4, 8, 12
#define VFP_D_OFFSET_IDX(idx) (((idx) % 2) * 8) // offset into q reg: 0, 8
#define VFP_Q_OFFSET_IDX(idx) (VFP_S_OFFSET_IDX((idx)*4))
#define VFP_OFFSET_NAME(reg) \
(offsetof(DNBArchMachARM::FPU, __##reg) + \
offsetof(DNBArchMachARM::Context, vfp))
#define FLOAT_FORMAT Float
#define DEFINE_VFP_S_IDX(idx) \
e_regSetVFP, vfp_s##idx, "s" #idx, NULL, IEEE754, FLOAT_FORMAT, 4, \
VFP_S_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_s##idx, \
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
#define DEFINE_VFP_D_IDX(idx) \
e_regSetVFP, vfp_d##idx, "d" #idx, NULL, IEEE754, FLOAT_FORMAT, 8, \
VFP_D_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_d##idx, \
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
#define DEFINE_VFP_Q_IDX(idx) \
e_regSetVFP, vfp_q##idx, "q" #idx, NULL, Vector, VectorOfUInt8, 16, \
VFP_Q_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_q##idx, \
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
// Floating point registers
const DNBRegisterInfo DNBArchMachARM::g_vfp_registers[] = {
{DEFINE_VFP_S_IDX(0), g_contained_q0, g_invalidate_q0},
{DEFINE_VFP_S_IDX(1), g_contained_q0, g_invalidate_q0},
{DEFINE_VFP_S_IDX(2), g_contained_q0, g_invalidate_q0},
{DEFINE_VFP_S_IDX(3), g_contained_q0, g_invalidate_q0},
{DEFINE_VFP_S_IDX(4), g_contained_q1, g_invalidate_q1},
{DEFINE_VFP_S_IDX(5), g_contained_q1, g_invalidate_q1},
{DEFINE_VFP_S_IDX(6), g_contained_q1, g_invalidate_q1},
{DEFINE_VFP_S_IDX(7), g_contained_q1, g_invalidate_q1},
{DEFINE_VFP_S_IDX(8), g_contained_q2, g_invalidate_q2},
{DEFINE_VFP_S_IDX(9), g_contained_q2, g_invalidate_q2},
{DEFINE_VFP_S_IDX(10), g_contained_q2, g_invalidate_q2},
{DEFINE_VFP_S_IDX(11), g_contained_q2, g_invalidate_q2},
{DEFINE_VFP_S_IDX(12), g_contained_q3, g_invalidate_q3},
{DEFINE_VFP_S_IDX(13), g_contained_q3, g_invalidate_q3},
{DEFINE_VFP_S_IDX(14), g_contained_q3, g_invalidate_q3},
{DEFINE_VFP_S_IDX(15), g_contained_q3, g_invalidate_q3},
{DEFINE_VFP_S_IDX(16), g_contained_q4, g_invalidate_q4},
{DEFINE_VFP_S_IDX(17), g_contained_q4, g_invalidate_q4},
{DEFINE_VFP_S_IDX(18), g_contained_q4, g_invalidate_q4},
{DEFINE_VFP_S_IDX(19), g_contained_q4, g_invalidate_q4},
{DEFINE_VFP_S_IDX(20), g_contained_q5, g_invalidate_q5},
{DEFINE_VFP_S_IDX(21), g_contained_q5, g_invalidate_q5},
{DEFINE_VFP_S_IDX(22), g_contained_q5, g_invalidate_q5},
{DEFINE_VFP_S_IDX(23), g_contained_q5, g_invalidate_q5},
{DEFINE_VFP_S_IDX(24), g_contained_q6, g_invalidate_q6},
{DEFINE_VFP_S_IDX(25), g_contained_q6, g_invalidate_q6},
{DEFINE_VFP_S_IDX(26), g_contained_q6, g_invalidate_q6},
{DEFINE_VFP_S_IDX(27), g_contained_q6, g_invalidate_q6},
{DEFINE_VFP_S_IDX(28), g_contained_q7, g_invalidate_q7},
{DEFINE_VFP_S_IDX(29), g_contained_q7, g_invalidate_q7},
{DEFINE_VFP_S_IDX(30), g_contained_q7, g_invalidate_q7},
{DEFINE_VFP_S_IDX(31), g_contained_q7, g_invalidate_q7},
{DEFINE_VFP_D_IDX(0), g_contained_q0, g_invalidate_q0},
{DEFINE_VFP_D_IDX(1), g_contained_q0, g_invalidate_q0},
{DEFINE_VFP_D_IDX(2), g_contained_q1, g_invalidate_q1},
{DEFINE_VFP_D_IDX(3), g_contained_q1, g_invalidate_q1},
{DEFINE_VFP_D_IDX(4), g_contained_q2, g_invalidate_q2},
{DEFINE_VFP_D_IDX(5), g_contained_q2, g_invalidate_q2},
{DEFINE_VFP_D_IDX(6), g_contained_q3, g_invalidate_q3},
{DEFINE_VFP_D_IDX(7), g_contained_q3, g_invalidate_q3},
{DEFINE_VFP_D_IDX(8), g_contained_q4, g_invalidate_q4},
{DEFINE_VFP_D_IDX(9), g_contained_q4, g_invalidate_q4},
{DEFINE_VFP_D_IDX(10), g_contained_q5, g_invalidate_q5},
{DEFINE_VFP_D_IDX(11), g_contained_q5, g_invalidate_q5},
{DEFINE_VFP_D_IDX(12), g_contained_q6, g_invalidate_q6},
{DEFINE_VFP_D_IDX(13), g_contained_q6, g_invalidate_q6},
{DEFINE_VFP_D_IDX(14), g_contained_q7, g_invalidate_q7},
{DEFINE_VFP_D_IDX(15), g_contained_q7, g_invalidate_q7},
{DEFINE_VFP_D_IDX(16), g_contained_q8, g_invalidate_q8},
{DEFINE_VFP_D_IDX(17), g_contained_q8, g_invalidate_q8},
{DEFINE_VFP_D_IDX(18), g_contained_q9, g_invalidate_q9},
{DEFINE_VFP_D_IDX(19), g_contained_q9, g_invalidate_q9},
{DEFINE_VFP_D_IDX(20), g_contained_q10, g_invalidate_q10},
{DEFINE_VFP_D_IDX(21), g_contained_q10, g_invalidate_q10},
{DEFINE_VFP_D_IDX(22), g_contained_q11, g_invalidate_q11},
{DEFINE_VFP_D_IDX(23), g_contained_q11, g_invalidate_q11},
{DEFINE_VFP_D_IDX(24), g_contained_q12, g_invalidate_q12},
{DEFINE_VFP_D_IDX(25), g_contained_q12, g_invalidate_q12},
{DEFINE_VFP_D_IDX(26), g_contained_q13, g_invalidate_q13},
{DEFINE_VFP_D_IDX(27), g_contained_q13, g_invalidate_q13},
{DEFINE_VFP_D_IDX(28), g_contained_q14, g_invalidate_q14},
{DEFINE_VFP_D_IDX(29), g_contained_q14, g_invalidate_q14},
{DEFINE_VFP_D_IDX(30), g_contained_q15, g_invalidate_q15},
{DEFINE_VFP_D_IDX(31), g_contained_q15, g_invalidate_q15},
{DEFINE_VFP_Q_IDX(0), NULL, g_invalidate_q0},
{DEFINE_VFP_Q_IDX(1), NULL, g_invalidate_q1},
{DEFINE_VFP_Q_IDX(2), NULL, g_invalidate_q2},
{DEFINE_VFP_Q_IDX(3), NULL, g_invalidate_q3},
{DEFINE_VFP_Q_IDX(4), NULL, g_invalidate_q4},
{DEFINE_VFP_Q_IDX(5), NULL, g_invalidate_q5},
{DEFINE_VFP_Q_IDX(6), NULL, g_invalidate_q6},
{DEFINE_VFP_Q_IDX(7), NULL, g_invalidate_q7},
{DEFINE_VFP_Q_IDX(8), NULL, g_invalidate_q8},
{DEFINE_VFP_Q_IDX(9), NULL, g_invalidate_q9},
{DEFINE_VFP_Q_IDX(10), NULL, g_invalidate_q10},
{DEFINE_VFP_Q_IDX(11), NULL, g_invalidate_q11},
{DEFINE_VFP_Q_IDX(12), NULL, g_invalidate_q12},
{DEFINE_VFP_Q_IDX(13), NULL, g_invalidate_q13},
{DEFINE_VFP_Q_IDX(14), NULL, g_invalidate_q14},
{DEFINE_VFP_Q_IDX(15), NULL, g_invalidate_q15},
#if defined(__arm64__) || defined(__aarch64__)
{e_regSetVFP, vfp_fpsr, "fpsr", NULL, Uint, Hex, 4, VFP_OFFSET_NAME(fpsr),
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetVFP, vfp_fpcr, "fpcr", NULL, Uint, Hex, 4, VFP_OFFSET_NAME(fpcr),
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, NULL, NULL}
#else
{e_regSetVFP, vfp_fpscr, "fpscr", NULL, Uint, Hex, 4,
VFP_OFFSET_NAME(fpscr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}
#endif
};
// Exception registers
const DNBRegisterInfo DNBArchMachARM::g_exc_registers[] = {
{e_regSetVFP, exc_exception, "exception", NULL, Uint, Hex, 4,
EXC_OFFSET(exception), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM},
{e_regSetVFP, exc_fsr, "fsr", NULL, Uint, Hex, 4, EXC_OFFSET(fsr),
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM},
{e_regSetVFP, exc_far, "far", NULL, Uint, Hex, 4, EXC_OFFSET(far),
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM}};
// Number of registers in each register set
const size_t DNBArchMachARM::k_num_gpr_registers =
sizeof(g_gpr_registers) / sizeof(DNBRegisterInfo);
const size_t DNBArchMachARM::k_num_vfp_registers =
sizeof(g_vfp_registers) / sizeof(DNBRegisterInfo);
const size_t DNBArchMachARM::k_num_exc_registers =
sizeof(g_exc_registers) / sizeof(DNBRegisterInfo);
const size_t DNBArchMachARM::k_num_all_registers =
k_num_gpr_registers + k_num_vfp_registers + k_num_exc_registers;
// Register set definitions. The first definitions at register set index
// of zero is for all registers, followed by other registers sets. The
// register information for the all register set need not be filled in.
const DNBRegisterSetInfo DNBArchMachARM::g_reg_sets[] = {
{"ARM Registers", NULL, k_num_all_registers},
{"General Purpose Registers", g_gpr_registers, k_num_gpr_registers},
{"Floating Point Registers", g_vfp_registers, k_num_vfp_registers},
{"Exception State Registers", g_exc_registers, k_num_exc_registers}};
// Total number of register sets for this architecture
const size_t DNBArchMachARM::k_num_register_sets =
sizeof(g_reg_sets) / sizeof(DNBRegisterSetInfo);
const DNBRegisterSetInfo *
DNBArchMachARM::GetRegisterSetInfo(nub_size_t *num_reg_sets) {
*num_reg_sets = k_num_register_sets;
return g_reg_sets;
}
bool DNBArchMachARM::GetRegisterValue(uint32_t set, uint32_t reg,
DNBRegisterValue *value) {
if (set == REGISTER_SET_GENERIC) {
switch (reg) {
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = gpr_pc;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = gpr_sp;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
set = e_regSetGPR;
reg = gpr_r7; // is this the right reg?
break;
case GENERIC_REGNUM_RA: // Return Address
set = e_regSetGPR;
reg = gpr_lr;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = gpr_cpsr;
break;
default:
return false;
}
}
if (GetRegisterState(set, false) != KERN_SUCCESS)
return false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo) {
value->info = *regInfo;
switch (set) {
case e_regSetGPR:
if (reg < k_num_gpr_registers) {
value->value.uint32 = m_state.context.gpr.__r[reg];
return true;
}
break;
case e_regSetVFP:
// "reg" is an index into the floating point register set at this point.
// We need to translate it up so entry 0 in the fp reg set is the same as
// vfp_s0
// in the enumerated values for case statement below.
if (reg >= vfp_s0 && reg <= vfp_s31) {
#if defined(__arm64__) || defined(__aarch64__)
uint32_t *s_reg =
((uint32_t *)&m_state.context.vfp.__v[0]) + (reg - vfp_s0);
memcpy(&value->value.v_uint8, s_reg, 4);
#else
value->value.uint32 = m_state.context.vfp.__r[reg];
#endif
return true;
} else if (reg >= vfp_d0 && reg <= vfp_d31) {
#if defined(__arm64__) || defined(__aarch64__)
uint64_t *d_reg =
((uint64_t *)&m_state.context.vfp.__v[0]) + (reg - vfp_d0);
memcpy(&value->value.v_uint8, d_reg, 8);
#else
uint32_t d_reg_idx = reg - vfp_d0;
uint32_t s_reg_idx = d_reg_idx * 2;
value->value.v_sint32[0] = m_state.context.vfp.__r[s_reg_idx + 0];
value->value.v_sint32[1] = m_state.context.vfp.__r[s_reg_idx + 1];
#endif
return true;
} else if (reg >= vfp_q0 && reg <= vfp_q15) {
#if defined(__arm64__) || defined(__aarch64__)
memcpy(&value->value.v_uint8,
(uint8_t *)&m_state.context.vfp.__v[reg - vfp_q0], 16);
#else
uint32_t s_reg_idx = (reg - vfp_q0) * 4;
memcpy(&value->value.v_uint8,
(uint8_t *)&m_state.context.vfp.__r[s_reg_idx], 16);
#endif
return true;
}
#if defined(__arm64__) || defined(__aarch64__)
else if (reg == vfp_fpsr) {
value->value.uint32 = m_state.context.vfp.__fpsr;
return true;
} else if (reg == vfp_fpcr) {
value->value.uint32 = m_state.context.vfp.__fpcr;
return true;
}
#else
else if (reg == vfp_fpscr) {
value->value.uint32 = m_state.context.vfp.__fpscr;
return true;
}
#endif
break;
case e_regSetEXC:
if (reg < k_num_exc_registers) {
value->value.uint32 = (&m_state.context.exc.__exception)[reg];
return true;
}
break;
}
}
return false;
}
bool DNBArchMachARM::SetRegisterValue(uint32_t set, uint32_t reg,
const DNBRegisterValue *value) {
if (set == REGISTER_SET_GENERIC) {
switch (reg) {
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = gpr_pc;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = gpr_sp;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
set = e_regSetGPR;
reg = gpr_r7;
break;
case GENERIC_REGNUM_RA: // Return Address
set = e_regSetGPR;
reg = gpr_lr;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = gpr_cpsr;
break;
default:
return false;
}
}
if (GetRegisterState(set, false) != KERN_SUCCESS)
return false;
bool success = false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo) {
switch (set) {
case e_regSetGPR:
if (reg < k_num_gpr_registers) {
m_state.context.gpr.__r[reg] = value->value.uint32;
success = true;
}
break;
case e_regSetVFP:
// "reg" is an index into the floating point register set at this point.
// We need to translate it up so entry 0 in the fp reg set is the same as
// vfp_s0
// in the enumerated values for case statement below.
if (reg >= vfp_s0 && reg <= vfp_s31) {
#if defined(__arm64__) || defined(__aarch64__)
uint32_t *s_reg =
((uint32_t *)&m_state.context.vfp.__v[0]) + (reg - vfp_s0);
memcpy(s_reg, &value->value.v_uint8, 4);
#else
m_state.context.vfp.__r[reg] = value->value.uint32;
#endif
success = true;
} else if (reg >= vfp_d0 && reg <= vfp_d31) {
#if defined(__arm64__) || defined(__aarch64__)
uint64_t *d_reg =
((uint64_t *)&m_state.context.vfp.__v[0]) + (reg - vfp_d0);
memcpy(d_reg, &value->value.v_uint8, 8);
#else
uint32_t d_reg_idx = reg - vfp_d0;
uint32_t s_reg_idx = d_reg_idx * 2;
m_state.context.vfp.__r[s_reg_idx + 0] = value->value.v_sint32[0];
m_state.context.vfp.__r[s_reg_idx + 1] = value->value.v_sint32[1];
#endif
success = true;
} else if (reg >= vfp_q0 && reg <= vfp_q15) {
#if defined(__arm64__) || defined(__aarch64__)
memcpy((uint8_t *)&m_state.context.vfp.__v[reg - vfp_q0],
&value->value.v_uint8, 16);
#else
uint32_t s_reg_idx = (reg - vfp_q0) * 4;
memcpy((uint8_t *)&m_state.context.vfp.__r[s_reg_idx],
&value->value.v_uint8, 16);
#endif
success = true;
}
#if defined(__arm64__) || defined(__aarch64__)
else if (reg == vfp_fpsr) {
m_state.context.vfp.__fpsr = value->value.uint32;
success = true;
} else if (reg == vfp_fpcr) {
m_state.context.vfp.__fpcr = value->value.uint32;
success = true;
}
#else
else if (reg == vfp_fpscr) {
m_state.context.vfp.__fpscr = value->value.uint32;
success = true;
}
#endif
break;
case e_regSetEXC:
if (reg < k_num_exc_registers) {
(&m_state.context.exc.__exception)[reg] = value->value.uint32;
success = true;
}
break;
}
}
if (success)
return SetRegisterState(set) == KERN_SUCCESS;
return false;
}
kern_return_t DNBArchMachARM::GetRegisterState(int set, bool force) {
switch (set) {
case e_regSetALL:
return GetGPRState(force) | GetVFPState(force) | GetEXCState(force) |
GetDBGState(force);
case e_regSetGPR:
return GetGPRState(force);
case e_regSetVFP:
return GetVFPState(force);
case e_regSetEXC:
return GetEXCState(force);
case e_regSetDBG:
return GetDBGState(force);
default:
break;
}
return KERN_INVALID_ARGUMENT;
}
kern_return_t DNBArchMachARM::SetRegisterState(int set) {
// Make sure we have a valid context to set.
kern_return_t err = GetRegisterState(set, false);
if (err != KERN_SUCCESS)
return err;
switch (set) {
case e_regSetALL:
return SetGPRState() | SetVFPState() | SetEXCState() | SetDBGState(false);
case e_regSetGPR:
return SetGPRState();
case e_regSetVFP:
return SetVFPState();
case e_regSetEXC:
return SetEXCState();
case e_regSetDBG:
return SetDBGState(false);
default:
break;
}
return KERN_INVALID_ARGUMENT;
}
bool DNBArchMachARM::RegisterSetStateIsValid(int set) const {
return m_state.RegsAreValid(set);
}
nub_size_t DNBArchMachARM::GetRegisterContext(void *buf, nub_size_t buf_len) {
nub_size_t size = sizeof(m_state.context.gpr) + sizeof(m_state.context.vfp) +
sizeof(m_state.context.exc);
if (buf && buf_len) {
if (size > buf_len)
size = buf_len;
bool force = false;
if (GetGPRState(force) | GetVFPState(force) | GetEXCState(force))
return 0;
// Copy each struct individually to avoid any padding that might be between
// the structs in m_state.context
uint8_t *p = (uint8_t *)buf;
::memcpy(p, &m_state.context.gpr, sizeof(m_state.context.gpr));
p += sizeof(m_state.context.gpr);
::memcpy(p, &m_state.context.vfp, sizeof(m_state.context.vfp));
p += sizeof(m_state.context.vfp);
::memcpy(p, &m_state.context.exc, sizeof(m_state.context.exc));
p += sizeof(m_state.context.exc);
size_t bytes_written = p - (uint8_t *)buf;
UNUSED_IF_ASSERT_DISABLED(bytes_written);
assert(bytes_written == size);
}
DNBLogThreadedIf(
LOG_THREAD,
"DNBArchMachARM::GetRegisterContext (buf = %p, len = %llu) => %llu", buf,
(uint64_t)buf_len, (uint64_t)size);
// Return the size of the register context even if NULL was passed in
return size;
}
nub_size_t DNBArchMachARM::SetRegisterContext(const void *buf,
nub_size_t buf_len) {
nub_size_t size = sizeof(m_state.context.gpr) + sizeof(m_state.context.vfp) +
sizeof(m_state.context.exc);
if (buf == NULL || buf_len == 0)
size = 0;
if (size) {
if (size > buf_len)
size = buf_len;
// Copy each struct individually to avoid any padding that might be between
// the structs in m_state.context
uint8_t *p = (uint8_t *)buf;
::memcpy(&m_state.context.gpr, p, sizeof(m_state.context.gpr));
p += sizeof(m_state.context.gpr);
::memcpy(&m_state.context.vfp, p, sizeof(m_state.context.vfp));
p += sizeof(m_state.context.vfp);
::memcpy(&m_state.context.exc, p, sizeof(m_state.context.exc));
p += sizeof(m_state.context.exc);
size_t bytes_written = p - (uint8_t *)buf;
UNUSED_IF_ASSERT_DISABLED(bytes_written);
assert(bytes_written == size);
if (SetGPRState() | SetVFPState() | SetEXCState())
return 0;
}
DNBLogThreadedIf(
LOG_THREAD,
"DNBArchMachARM::SetRegisterContext (buf = %p, len = %llu) => %llu", buf,
(uint64_t)buf_len, (uint64_t)size);
return size;
}
uint32_t DNBArchMachARM::SaveRegisterState() {
kern_return_t kret = ::thread_abort_safely(m_thread->MachPortNumber());
DNBLogThreadedIf(
LOG_THREAD, "thread = 0x%4.4x calling thread_abort_safely (tid) => %u "
"(SetGPRState() for stop_count = %u)",
m_thread->MachPortNumber(), kret, m_thread->Process()->StopCount());
// Always re-read the registers because above we call thread_abort_safely();
bool force = true;
if ((kret = GetGPRState(force)) != KERN_SUCCESS) {
DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM::SaveRegisterState () error: "
"GPR regs failed to read: %u ",
kret);
} else if ((kret = GetVFPState(force)) != KERN_SUCCESS) {
DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM::SaveRegisterState () error: "
"%s regs failed to read: %u",
"VFP", kret);
} else {
const uint32_t save_id = GetNextRegisterStateSaveID();
m_saved_register_states[save_id] = m_state.context;
return save_id;
}
return UINT32_MAX;
}
bool DNBArchMachARM::RestoreRegisterState(uint32_t save_id) {
SaveRegisterStates::iterator pos = m_saved_register_states.find(save_id);
if (pos != m_saved_register_states.end()) {
m_state.context.gpr = pos->second.gpr;
m_state.context.vfp = pos->second.vfp;
kern_return_t kret;
bool success = true;
if ((kret = SetGPRState()) != KERN_SUCCESS) {
DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM::RestoreRegisterState "
"(save_id = %u) error: GPR regs failed to "
"write: %u",
save_id, kret);
success = false;
} else if ((kret = SetVFPState()) != KERN_SUCCESS) {
DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM::RestoreRegisterState "
"(save_id = %u) error: %s regs failed to "
"write: %u",
save_id, "VFP", kret);
success = false;
}
m_saved_register_states.erase(pos);
return success;
}
return false;
}
#endif // #if defined (__arm__)