blob: 61c910c52c5364ca97aea17adf8482e2c7a8b22e [file] [log] [blame]
// -*- C++ -*-
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef _LIBCPP___TREE
#define _LIBCPP___TREE
#include <__algorithm/min.h>
#include <__assert>
#include <__config>
#include <__fwd/pair.h>
#include <__iterator/distance.h>
#include <__iterator/iterator_traits.h>
#include <__iterator/next.h>
#include <__memory/addressof.h>
#include <__memory/allocator_traits.h>
#include <__memory/compressed_pair.h>
#include <__memory/construct_at.h>
#include <__memory/pointer_traits.h>
#include <__memory/swap_allocator.h>
#include <__memory/unique_ptr.h>
#include <__new/launder.h>
#include <__type_traits/copy_cvref.h>
#include <__type_traits/enable_if.h>
#include <__type_traits/invoke.h>
#include <__type_traits/is_constructible.h>
#include <__type_traits/is_nothrow_assignable.h>
#include <__type_traits/is_nothrow_constructible.h>
#include <__type_traits/is_same.h>
#include <__type_traits/is_specialization.h>
#include <__type_traits/is_swappable.h>
#include <__type_traits/remove_const.h>
#include <__utility/forward.h>
#include <__utility/lazy_synth_three_way_comparator.h>
#include <__utility/move.h>
#include <__utility/pair.h>
#include <__utility/swap.h>
#include <__utility/try_key_extraction.h>
#include <limits>
#if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
# pragma GCC system_header
#endif
_LIBCPP_PUSH_MACROS
#include <__undef_macros>
_LIBCPP_DIAGNOSTIC_PUSH
// GCC complains about the backslashes at the end, see https://gcc.gnu.org/bugzilla/show_bug.cgi?id=121528
_LIBCPP_GCC_DIAGNOSTIC_IGNORED("-Wcomment")
// __tree is a red-black-tree implementation used for the associative containers (i.e. (multi)map/set). It stores
// - (1) a pointer to the node with the smallest (i.e. leftmost) element, namely __begin_node_
// - (2) the number of nodes in the tree, namely __size_
// - (3) a pointer to the root of the tree, namely __end_node_
//
// Storing (1) and (2) is required to allow for constant time lookups. A tree looks like this in memory:
//
// __end_node_
// |
// root
// / \
// l1 r1
// / \ / \
// ... ... ... ...
//
// All nodes except __end_node_ have a __left_ and __right_ pointer as well as a __parent_ pointer.
// __end_node_ only contains a __left_ pointer, which points to the root of the tree.
// This layout allows for iteration through the tree without a need for special handling of the end node. See
// __tree_next_iter and __tree_prev_iter for more details.
_LIBCPP_DIAGNOSTIC_POP
_LIBCPP_BEGIN_NAMESPACE_STD
template <class _Pointer>
class __tree_end_node;
template <class _VoidPtr>
class __tree_node_base;
template <class _Tp, class _VoidPtr>
class __tree_node;
template <class _Key, class _Value>
struct __value_type;
/*
_NodePtr algorithms
The algorithms taking _NodePtr are red black tree algorithms. Those
algorithms taking a parameter named __root should assume that __root
points to a proper red black tree (unless otherwise specified).
Each algorithm herein assumes that __root->__parent_ points to a non-null
structure which has a member __left_ which points back to __root. No other
member is read or written to at __root->__parent_.
__root->__parent_ will be referred to below (in comments only) as end_node.
end_node->__left_ is an externably accessible lvalue for __root, and can be
changed by node insertion and removal (without explicit reference to end_node).
All nodes (with the exception of end_node), even the node referred to as
__root, have a non-null __parent_ field.
*/
// Returns: true if __x is a left child of its parent, else false
// Precondition: __x != nullptr.
template <class _NodePtr>
inline _LIBCPP_HIDE_FROM_ABI bool __tree_is_left_child(_NodePtr __x) _NOEXCEPT {
return __x == __x->__parent_->__left_;
}
// Determines if the subtree rooted at __x is a proper red black subtree. If
// __x is a proper subtree, returns the black height (null counts as 1). If
// __x is an improper subtree, returns 0.
template <class _NodePtr>
unsigned __tree_sub_invariant(_NodePtr __x) {
if (__x == nullptr)
return 1;
// parent consistency checked by caller
// check __x->__left_ consistency
if (__x->__left_ != nullptr && __x->__left_->__parent_ != __x)
return 0;
// check __x->__right_ consistency
if (__x->__right_ != nullptr && __x->__right_->__parent_ != __x)
return 0;
// check __x->__left_ != __x->__right_ unless both are nullptr
if (__x->__left_ == __x->__right_ && __x->__left_ != nullptr)
return 0;
// If this is red, neither child can be red
if (!__x->__is_black_) {
if (__x->__left_ && !__x->__left_->__is_black_)
return 0;
if (__x->__right_ && !__x->__right_->__is_black_)
return 0;
}
unsigned __h = std::__tree_sub_invariant(__x->__left_);
if (__h == 0)
return 0; // invalid left subtree
if (__h != std::__tree_sub_invariant(__x->__right_))
return 0; // invalid or different height right subtree
return __h + __x->__is_black_; // return black height of this node
}
// Determines if the red black tree rooted at __root is a proper red black tree.
// __root == nullptr is a proper tree. Returns true if __root is a proper
// red black tree, else returns false.
template <class _NodePtr>
_LIBCPP_HIDE_FROM_ABI bool __tree_invariant(_NodePtr __root) {
if (__root == nullptr)
return true;
// check __x->__parent_ consistency
if (__root->__parent_ == nullptr)
return false;
if (!std::__tree_is_left_child(__root))
return false;
// root must be black
if (!__root->__is_black_)
return false;
// do normal node checks
return std::__tree_sub_invariant(__root) != 0;
}
// Returns: pointer to the left-most node under __x.
template <class _NodePtr>
inline _LIBCPP_HIDE_FROM_ABI _NodePtr __tree_min(_NodePtr __x) _NOEXCEPT {
_LIBCPP_ASSERT_INTERNAL(__x != nullptr, "Root node shouldn't be null");
while (__x->__left_ != nullptr)
__x = __x->__left_;
return __x;
}
// Returns: pointer to the right-most node under __x.
template <class _NodePtr>
inline _LIBCPP_HIDE_FROM_ABI _NodePtr __tree_max(_NodePtr __x) _NOEXCEPT {
_LIBCPP_ASSERT_INTERNAL(__x != nullptr, "Root node shouldn't be null");
while (__x->__right_ != nullptr)
__x = __x->__right_;
return __x;
}
// Returns: pointer to the next in-order node after __x.
template <class _NodePtr>
_LIBCPP_HIDE_FROM_ABI _NodePtr __tree_next(_NodePtr __x) _NOEXCEPT {
_LIBCPP_ASSERT_INTERNAL(__x != nullptr, "node shouldn't be null");
if (__x->__right_ != nullptr)
return std::__tree_min(__x->__right_);
while (!std::__tree_is_left_child(__x))
__x = __x->__parent_unsafe();
return __x->__parent_unsafe();
}
// __tree_next_iter and __tree_prev_iter implement iteration through the tree. The order is as follows:
// left sub-tree -> node -> right sub-tree. When the right-most node of a sub-tree is reached, we walk up the tree until
// we find a node where we were in the left sub-tree. We are _always_ in a left sub-tree, since the __end_node_ points
// to the actual root of the tree through a __left_ pointer. Incrementing the end() pointer is UB, so we can assume that
// never happens.
template <class _EndNodePtr, class _NodePtr>
inline _LIBCPP_HIDE_FROM_ABI _EndNodePtr __tree_next_iter(_NodePtr __x) _NOEXCEPT {
_LIBCPP_ASSERT_INTERNAL(__x != nullptr, "node shouldn't be null");
if (__x->__right_ != nullptr)
return static_cast<_EndNodePtr>(std::__tree_min(__x->__right_));
while (!std::__tree_is_left_child(__x))
__x = __x->__parent_unsafe();
return static_cast<_EndNodePtr>(__x->__parent_);
}
// Returns: pointer to the previous in-order node before __x.
// Note: __x may be the end node.
template <class _NodePtr, class _EndNodePtr>
inline _LIBCPP_HIDE_FROM_ABI _NodePtr __tree_prev_iter(_EndNodePtr __x) _NOEXCEPT {
_LIBCPP_ASSERT_INTERNAL(__x != nullptr, "node shouldn't be null");
if (__x->__left_ != nullptr)
return std::__tree_max(__x->__left_);
_NodePtr __xx = static_cast<_NodePtr>(__x);
while (std::__tree_is_left_child(__xx))
__xx = __xx->__parent_unsafe();
return __xx->__parent_unsafe();
}
// Returns: pointer to a node which has no children
template <class _NodePtr>
_LIBCPP_HIDE_FROM_ABI _NodePtr __tree_leaf(_NodePtr __x) _NOEXCEPT {
_LIBCPP_ASSERT_INTERNAL(__x != nullptr, "node shouldn't be null");
while (true) {
if (__x->__left_ != nullptr) {
__x = __x->__left_;
continue;
}
if (__x->__right_ != nullptr) {
__x = __x->__right_;
continue;
}
break;
}
return __x;
}
// Effects: Makes __x->__right_ the subtree root with __x as its left child
// while preserving in-order order.
template <class _NodePtr>
_LIBCPP_HIDE_FROM_ABI void __tree_left_rotate(_NodePtr __x) _NOEXCEPT {
_LIBCPP_ASSERT_INTERNAL(__x != nullptr, "node shouldn't be null");
_LIBCPP_ASSERT_INTERNAL(__x->__right_ != nullptr, "node should have a right child");
_NodePtr __y = __x->__right_;
__x->__right_ = __y->__left_;
if (__x->__right_ != nullptr)
__x->__right_->__set_parent(__x);
__y->__parent_ = __x->__parent_;
if (std::__tree_is_left_child(__x))
__x->__parent_->__left_ = __y;
else
__x->__parent_unsafe()->__right_ = __y;
__y->__left_ = __x;
__x->__set_parent(__y);
}
// Effects: Makes __x->__left_ the subtree root with __x as its right child
// while preserving in-order order.
template <class _NodePtr>
_LIBCPP_HIDE_FROM_ABI void __tree_right_rotate(_NodePtr __x) _NOEXCEPT {
_LIBCPP_ASSERT_INTERNAL(__x != nullptr, "node shouldn't be null");
_LIBCPP_ASSERT_INTERNAL(__x->__left_ != nullptr, "node should have a left child");
_NodePtr __y = __x->__left_;
__x->__left_ = __y->__right_;
if (__x->__left_ != nullptr)
__x->__left_->__set_parent(__x);
__y->__parent_ = __x->__parent_;
if (std::__tree_is_left_child(__x))
__x->__parent_->__left_ = __y;
else
__x->__parent_unsafe()->__right_ = __y;
__y->__right_ = __x;
__x->__set_parent(__y);
}
// Effects: Rebalances __root after attaching __x to a leaf.
// Precondition: __x has no children.
// __x == __root or == a direct or indirect child of __root.
// If __x were to be unlinked from __root (setting __root to
// nullptr if __root == __x), __tree_invariant(__root) == true.
// Postcondition: __tree_invariant(end_node->__left_) == true. end_node->__left_
// may be different than the value passed in as __root.
template <class _NodePtr>
_LIBCPP_HIDE_FROM_ABI void __tree_balance_after_insert(_NodePtr __root, _NodePtr __x) _NOEXCEPT {
_LIBCPP_ASSERT_INTERNAL(__root != nullptr, "Root of the tree shouldn't be null");
_LIBCPP_ASSERT_INTERNAL(__x != nullptr, "Can't attach null node to a leaf");
__x->__is_black_ = __x == __root;
while (__x != __root && !__x->__parent_unsafe()->__is_black_) {
// __x->__parent_ != __root because __x->__parent_->__is_black == false
if (std::__tree_is_left_child(__x->__parent_unsafe())) {
_NodePtr __y = __x->__parent_unsafe()->__parent_unsafe()->__right_;
if (__y != nullptr && !__y->__is_black_) {
__x = __x->__parent_unsafe();
__x->__is_black_ = true;
__x = __x->__parent_unsafe();
__x->__is_black_ = __x == __root;
__y->__is_black_ = true;
} else {
if (!std::__tree_is_left_child(__x)) {
__x = __x->__parent_unsafe();
std::__tree_left_rotate(__x);
}
__x = __x->__parent_unsafe();
__x->__is_black_ = true;
__x = __x->__parent_unsafe();
__x->__is_black_ = false;
std::__tree_right_rotate(__x);
break;
}
} else {
_NodePtr __y = __x->__parent_unsafe()->__parent_->__left_;
if (__y != nullptr && !__y->__is_black_) {
__x = __x->__parent_unsafe();
__x->__is_black_ = true;
__x = __x->__parent_unsafe();
__x->__is_black_ = __x == __root;
__y->__is_black_ = true;
} else {
if (std::__tree_is_left_child(__x)) {
__x = __x->__parent_unsafe();
std::__tree_right_rotate(__x);
}
__x = __x->__parent_unsafe();
__x->__is_black_ = true;
__x = __x->__parent_unsafe();
__x->__is_black_ = false;
std::__tree_left_rotate(__x);
break;
}
}
}
}
// Precondition: __z == __root or == a direct or indirect child of __root.
// Effects: unlinks __z from the tree rooted at __root, rebalancing as needed.
// Postcondition: __tree_invariant(end_node->__left_) == true && end_node->__left_
// nor any of its children refer to __z. end_node->__left_
// may be different than the value passed in as __root.
template <class _NodePtr>
_LIBCPP_HIDE_FROM_ABI void __tree_remove(_NodePtr __root, _NodePtr __z) _NOEXCEPT {
_LIBCPP_ASSERT_INTERNAL(__root != nullptr, "Root node should not be null");
_LIBCPP_ASSERT_INTERNAL(__z != nullptr, "The node to remove should not be null");
_LIBCPP_ASSERT_INTERNAL(std::__tree_invariant(__root), "The tree invariants should hold");
// __z will be removed from the tree. Client still needs to destruct/deallocate it
// __y is either __z, or if __z has two children, __tree_next(__z).
// __y will have at most one child.
// __y will be the initial hole in the tree (make the hole at a leaf)
_NodePtr __y = (__z->__left_ == nullptr || __z->__right_ == nullptr) ? __z : std::__tree_next(__z);
// __x is __y's possibly null single child
_NodePtr __x = __y->__left_ != nullptr ? __y->__left_ : __y->__right_;
// __w is __x's possibly null uncle (will become __x's sibling)
_NodePtr __w = nullptr;
// link __x to __y's parent, and find __w
if (__x != nullptr)
__x->__parent_ = __y->__parent_;
if (std::__tree_is_left_child(__y)) {
__y->__parent_->__left_ = __x;
if (__y != __root)
__w = __y->__parent_unsafe()->__right_;
else
__root = __x; // __w == nullptr
} else {
__y->__parent_unsafe()->__right_ = __x;
// __y can't be root if it is a right child
__w = __y->__parent_->__left_;
}
bool __removed_black = __y->__is_black_;
// If we didn't remove __z, do so now by splicing in __y for __z,
// but copy __z's color. This does not impact __x or __w.
if (__y != __z) {
// __z->__left_ != nulptr but __z->__right_ might == __x == nullptr
__y->__parent_ = __z->__parent_;
if (std::__tree_is_left_child(__z))
__y->__parent_->__left_ = __y;
else
__y->__parent_unsafe()->__right_ = __y;
__y->__left_ = __z->__left_;
__y->__left_->__set_parent(__y);
__y->__right_ = __z->__right_;
if (__y->__right_ != nullptr)
__y->__right_->__set_parent(__y);
__y->__is_black_ = __z->__is_black_;
if (__root == __z)
__root = __y;
}
// There is no need to rebalance if we removed a red, or if we removed
// the last node.
if (__removed_black && __root != nullptr) {
// Rebalance:
// __x has an implicit black color (transferred from the removed __y)
// associated with it, no matter what its color is.
// If __x is __root (in which case it can't be null), it is supposed
// to be black anyway, and if it is doubly black, then the double
// can just be ignored.
// If __x is red (in which case it can't be null), then it can absorb
// the implicit black just by setting its color to black.
// Since __y was black and only had one child (which __x points to), __x
// is either red with no children, else null, otherwise __y would have
// different black heights under left and right pointers.
// if (__x == __root || __x != nullptr && !__x->__is_black_)
if (__x != nullptr)
__x->__is_black_ = true;
else {
// Else __x isn't root, and is "doubly black", even though it may
// be null. __w can not be null here, else the parent would
// see a black height >= 2 on the __x side and a black height
// of 1 on the __w side (__w must be a non-null black or a red
// with a non-null black child).
while (true) {
if (!std::__tree_is_left_child(__w)) // if x is left child
{
if (!__w->__is_black_) {
__w->__is_black_ = true;
__w->__parent_unsafe()->__is_black_ = false;
std::__tree_left_rotate(__w->__parent_unsafe());
// __x is still valid
// reset __root only if necessary
if (__root == __w->__left_)
__root = __w;
// reset sibling, and it still can't be null
__w = __w->__left_->__right_;
}
// __w->__is_black_ is now true, __w may have null children
if ((__w->__left_ == nullptr || __w->__left_->__is_black_) &&
(__w->__right_ == nullptr || __w->__right_->__is_black_)) {
__w->__is_black_ = false;
__x = __w->__parent_unsafe();
// __x can no longer be null
if (__x == __root || !__x->__is_black_) {
__x->__is_black_ = true;
break;
}
// reset sibling, and it still can't be null
__w = std::__tree_is_left_child(__x) ? __x->__parent_unsafe()->__right_ : __x->__parent_->__left_;
// continue;
} else // __w has a red child
{
if (__w->__right_ == nullptr || __w->__right_->__is_black_) {
// __w left child is non-null and red
__w->__left_->__is_black_ = true;
__w->__is_black_ = false;
std::__tree_right_rotate(__w);
// __w is known not to be root, so root hasn't changed
// reset sibling, and it still can't be null
__w = __w->__parent_unsafe();
}
// __w has a right red child, left child may be null
__w->__is_black_ = __w->__parent_unsafe()->__is_black_;
__w->__parent_unsafe()->__is_black_ = true;
__w->__right_->__is_black_ = true;
std::__tree_left_rotate(__w->__parent_unsafe());
break;
}
} else {
if (!__w->__is_black_) {
__w->__is_black_ = true;
__w->__parent_unsafe()->__is_black_ = false;
std::__tree_right_rotate(__w->__parent_unsafe());
// __x is still valid
// reset __root only if necessary
if (__root == __w->__right_)
__root = __w;
// reset sibling, and it still can't be null
__w = __w->__right_->__left_;
}
// __w->__is_black_ is now true, __w may have null children
if ((__w->__left_ == nullptr || __w->__left_->__is_black_) &&
(__w->__right_ == nullptr || __w->__right_->__is_black_)) {
__w->__is_black_ = false;
__x = __w->__parent_unsafe();
// __x can no longer be null
if (!__x->__is_black_ || __x == __root) {
__x->__is_black_ = true;
break;
}
// reset sibling, and it still can't be null
__w = std::__tree_is_left_child(__x) ? __x->__parent_unsafe()->__right_ : __x->__parent_->__left_;
// continue;
} else // __w has a red child
{
if (__w->__left_ == nullptr || __w->__left_->__is_black_) {
// __w right child is non-null and red
__w->__right_->__is_black_ = true;
__w->__is_black_ = false;
std::__tree_left_rotate(__w);
// __w is known not to be root, so root hasn't changed
// reset sibling, and it still can't be null
__w = __w->__parent_unsafe();
}
// __w has a left red child, right child may be null
__w->__is_black_ = __w->__parent_unsafe()->__is_black_;
__w->__parent_unsafe()->__is_black_ = true;
__w->__left_->__is_black_ = true;
std::__tree_right_rotate(__w->__parent_unsafe());
break;
}
}
}
}
}
}
// node traits
template <class _Tp>
inline const bool __is_tree_value_type_v = __is_specialization_v<_Tp, __value_type>;
template <class _Tp>
struct __get_tree_key_type {
using type _LIBCPP_NODEBUG = _Tp;
};
template <class _Key, class _ValueT>
struct __get_tree_key_type<__value_type<_Key, _ValueT> > {
using type _LIBCPP_NODEBUG = _Key;
};
template <class _Tp>
using __get_tree_key_type_t _LIBCPP_NODEBUG = typename __get_tree_key_type<_Tp>::type;
template <class _Tp>
struct __get_node_value_type {
using type _LIBCPP_NODEBUG = _Tp;
};
template <class _Key, class _ValueT>
struct __get_node_value_type<__value_type<_Key, _ValueT> > {
using type _LIBCPP_NODEBUG = pair<const _Key, _ValueT>;
};
template <class _Tp>
using __get_node_value_type_t _LIBCPP_NODEBUG = typename __get_node_value_type<_Tp>::type;
template <class _NodePtr, class _NodeT = typename pointer_traits<_NodePtr>::element_type>
struct __tree_node_types;
template <class _NodePtr, class _Tp, class _VoidPtr>
struct __tree_node_types<_NodePtr, __tree_node<_Tp, _VoidPtr> > {
using __node_base_pointer _LIBCPP_NODEBUG = __rebind_pointer_t<_VoidPtr, __tree_node_base<_VoidPtr> >;
using __end_node_pointer _LIBCPP_NODEBUG = __rebind_pointer_t<_VoidPtr, __tree_end_node<__node_base_pointer> >;
private:
static_assert(is_same<typename pointer_traits<_VoidPtr>::element_type, void>::value,
"_VoidPtr does not point to unqualified void type");
};
// node
template <class _Pointer>
class __tree_end_node {
public:
using pointer = _Pointer;
pointer __left_;
_LIBCPP_HIDE_FROM_ABI __tree_end_node() _NOEXCEPT : __left_() {}
};
template <class _VoidPtr>
class __tree_node_base : public __tree_end_node<__rebind_pointer_t<_VoidPtr, __tree_node_base<_VoidPtr> > > {
public:
using pointer = __rebind_pointer_t<_VoidPtr, __tree_node_base>;
using __end_node_pointer _LIBCPP_NODEBUG = __rebind_pointer_t<_VoidPtr, __tree_end_node<pointer> >;
pointer __right_;
__end_node_pointer __parent_;
bool __is_black_;
_LIBCPP_HIDE_FROM_ABI pointer __parent_unsafe() const { return static_cast<pointer>(__parent_); }
_LIBCPP_HIDE_FROM_ABI void __set_parent(pointer __p) { __parent_ = static_cast<__end_node_pointer>(__p); }
_LIBCPP_HIDE_FROM_ABI __tree_node_base() = default;
__tree_node_base(__tree_node_base const&) = delete;
__tree_node_base& operator=(__tree_node_base const&) = delete;
};
template <class _Tp, class _VoidPtr>
class __tree_node : public __tree_node_base<_VoidPtr> {
public:
using __node_value_type _LIBCPP_NODEBUG = __get_node_value_type_t<_Tp>;
// We use a union to avoid initialization during member initialization, which allows us
// to use the allocator from the container to construct the `__node_value_type` in the
// memory provided by the union member
#ifndef _LIBCPP_CXX03_LANG
private:
union {
__node_value_type __value_;
};
public:
_LIBCPP_HIDE_FROM_ABI __node_value_type& __get_value() { return __value_; }
#else
private:
_ALIGNAS_TYPE(__node_value_type) unsigned char __buffer_[sizeof(__node_value_type)];
public:
_LIBCPP_HIDE_FROM_ABI __node_value_type& __get_value() { return *reinterpret_cast<__node_value_type*>(__buffer_); }
#endif
template <class _Alloc, class... _Args>
_LIBCPP_HIDE_FROM_ABI explicit __tree_node(_Alloc& __na, _Args&&... __args) {
allocator_traits<_Alloc>::construct(__na, std::addressof(__get_value()), std::forward<_Args>(__args)...);
}
~__tree_node() = delete;
__tree_node(__tree_node const&) = delete;
__tree_node& operator=(__tree_node const&) = delete;
};
template <class _Allocator>
class __tree_node_destructor {
using allocator_type = _Allocator;
using __alloc_traits _LIBCPP_NODEBUG = allocator_traits<allocator_type>;
public:
using pointer = typename __alloc_traits::pointer;
private:
allocator_type& __na_;
public:
bool __value_constructed;
_LIBCPP_HIDE_FROM_ABI __tree_node_destructor(const __tree_node_destructor&) = default;
__tree_node_destructor& operator=(const __tree_node_destructor&) = delete;
_LIBCPP_HIDE_FROM_ABI explicit __tree_node_destructor(allocator_type& __na, bool __val = false) _NOEXCEPT
: __na_(__na),
__value_constructed(__val) {}
_LIBCPP_HIDE_FROM_ABI void operator()(pointer __p) _NOEXCEPT {
if (__value_constructed)
__alloc_traits::destroy(__na_, std::addressof(__p->__get_value()));
if (__p)
__alloc_traits::deallocate(__na_, __p, 1);
}
template <class>
friend class __map_node_destructor;
};
#if _LIBCPP_STD_VER >= 17
template <class _NodeType, class _Alloc>
struct __generic_container_node_destructor;
template <class _Tp, class _VoidPtr, class _Alloc>
struct __generic_container_node_destructor<__tree_node<_Tp, _VoidPtr>, _Alloc> : __tree_node_destructor<_Alloc> {
using __tree_node_destructor<_Alloc>::__tree_node_destructor;
};
#endif
template <class _Tp, class _NodePtr, class _DiffType>
class __tree_iterator {
using _NodeTypes _LIBCPP_NODEBUG = __tree_node_types<_NodePtr>;
// NOLINTNEXTLINE(libcpp-nodebug-on-aliases) lldb relies on this alias for pretty printing
using __node_pointer = _NodePtr;
using __node_base_pointer _LIBCPP_NODEBUG = typename _NodeTypes::__node_base_pointer;
using __end_node_pointer _LIBCPP_NODEBUG = typename _NodeTypes::__end_node_pointer;
__end_node_pointer __ptr_;
public:
using iterator_category = bidirectional_iterator_tag;
using value_type = __get_node_value_type_t<_Tp>;
using difference_type = _DiffType;
using reference = value_type&;
using pointer = __rebind_pointer_t<_NodePtr, value_type>;
_LIBCPP_HIDE_FROM_ABI __tree_iterator() _NOEXCEPT : __ptr_(nullptr) {}
_LIBCPP_HIDE_FROM_ABI reference operator*() const { return __get_np()->__get_value(); }
_LIBCPP_HIDE_FROM_ABI pointer operator->() const {
return pointer_traits<pointer>::pointer_to(__get_np()->__get_value());
}
_LIBCPP_HIDE_FROM_ABI __tree_iterator& operator++() {
__ptr_ = std::__tree_next_iter<__end_node_pointer>(static_cast<__node_base_pointer>(__ptr_));
return *this;
}
_LIBCPP_HIDE_FROM_ABI __tree_iterator operator++(int) {
__tree_iterator __t(*this);
++(*this);
return __t;
}
_LIBCPP_HIDE_FROM_ABI __tree_iterator& operator--() {
__ptr_ = static_cast<__end_node_pointer>(std::__tree_prev_iter<__node_base_pointer>(__ptr_));
return *this;
}
_LIBCPP_HIDE_FROM_ABI __tree_iterator operator--(int) {
__tree_iterator __t(*this);
--(*this);
return __t;
}
friend _LIBCPP_HIDE_FROM_ABI bool operator==(const __tree_iterator& __x, const __tree_iterator& __y) {
return __x.__ptr_ == __y.__ptr_;
}
friend _LIBCPP_HIDE_FROM_ABI bool operator!=(const __tree_iterator& __x, const __tree_iterator& __y) {
return !(__x == __y);
}
private:
_LIBCPP_HIDE_FROM_ABI explicit __tree_iterator(__node_pointer __p) _NOEXCEPT : __ptr_(__p) {}
_LIBCPP_HIDE_FROM_ABI explicit __tree_iterator(__end_node_pointer __p) _NOEXCEPT : __ptr_(__p) {}
_LIBCPP_HIDE_FROM_ABI __node_pointer __get_np() const { return static_cast<__node_pointer>(__ptr_); }
template <class, class, class>
friend class __tree;
template <class, class, class>
friend class __tree_const_iterator;
};
template <class _Tp, class _NodePtr, class _DiffType>
class __tree_const_iterator {
using _NodeTypes _LIBCPP_NODEBUG = __tree_node_types<_NodePtr>;
// NOLINTNEXTLINE(libcpp-nodebug-on-aliases) lldb relies on this alias for pretty printing
using __node_pointer = _NodePtr;
using __node_base_pointer _LIBCPP_NODEBUG = typename _NodeTypes::__node_base_pointer;
using __end_node_pointer _LIBCPP_NODEBUG = typename _NodeTypes::__end_node_pointer;
__end_node_pointer __ptr_;
public:
using iterator_category = bidirectional_iterator_tag;
using value_type = __get_node_value_type_t<_Tp>;
using difference_type = _DiffType;
using reference = const value_type&;
using pointer = __rebind_pointer_t<_NodePtr, const value_type>;
using __non_const_iterator _LIBCPP_NODEBUG = __tree_iterator<_Tp, __node_pointer, difference_type>;
_LIBCPP_HIDE_FROM_ABI __tree_const_iterator() _NOEXCEPT : __ptr_(nullptr) {}
_LIBCPP_HIDE_FROM_ABI __tree_const_iterator(__non_const_iterator __p) _NOEXCEPT : __ptr_(__p.__ptr_) {}
_LIBCPP_HIDE_FROM_ABI reference operator*() const { return __get_np()->__get_value(); }
_LIBCPP_HIDE_FROM_ABI pointer operator->() const {
return pointer_traits<pointer>::pointer_to(__get_np()->__get_value());
}
_LIBCPP_HIDE_FROM_ABI __tree_const_iterator& operator++() {
__ptr_ = std::__tree_next_iter<__end_node_pointer>(static_cast<__node_base_pointer>(__ptr_));
return *this;
}
_LIBCPP_HIDE_FROM_ABI __tree_const_iterator operator++(int) {
__tree_const_iterator __t(*this);
++(*this);
return __t;
}
_LIBCPP_HIDE_FROM_ABI __tree_const_iterator& operator--() {
__ptr_ = static_cast<__end_node_pointer>(std::__tree_prev_iter<__node_base_pointer>(__ptr_));
return *this;
}
_LIBCPP_HIDE_FROM_ABI __tree_const_iterator operator--(int) {
__tree_const_iterator __t(*this);
--(*this);
return __t;
}
friend _LIBCPP_HIDE_FROM_ABI bool operator==(const __tree_const_iterator& __x, const __tree_const_iterator& __y) {
return __x.__ptr_ == __y.__ptr_;
}
friend _LIBCPP_HIDE_FROM_ABI bool operator!=(const __tree_const_iterator& __x, const __tree_const_iterator& __y) {
return !(__x == __y);
}
private:
_LIBCPP_HIDE_FROM_ABI explicit __tree_const_iterator(__node_pointer __p) _NOEXCEPT : __ptr_(__p) {}
_LIBCPP_HIDE_FROM_ABI explicit __tree_const_iterator(__end_node_pointer __p) _NOEXCEPT : __ptr_(__p) {}
_LIBCPP_HIDE_FROM_ABI __node_pointer __get_np() const { return static_cast<__node_pointer>(__ptr_); }
template <class, class, class>
friend class __tree;
};
template <class _Tp, class _Compare>
#ifndef _LIBCPP_CXX03_LANG
_LIBCPP_DIAGNOSE_WARNING(!__is_invocable_v<_Compare const&, _Tp const&, _Tp const&>,
"the specified comparator type does not provide a viable const call operator")
#endif
int __diagnose_non_const_comparator();
template <class _Tp, class _Compare, class _Allocator>
class __tree {
public:
using value_type = __get_node_value_type_t<_Tp>;
using value_compare = _Compare;
using allocator_type = _Allocator;
private:
using __alloc_traits _LIBCPP_NODEBUG = allocator_traits<allocator_type>;
using key_type = __get_tree_key_type_t<_Tp>;
public:
using pointer = typename __alloc_traits::pointer;
using const_pointer = typename __alloc_traits::const_pointer;
using size_type = typename __alloc_traits::size_type;
using difference_type = typename __alloc_traits::difference_type;
using __void_pointer _LIBCPP_NODEBUG = typename __alloc_traits::void_pointer;
using __node _LIBCPP_NODEBUG = __tree_node<_Tp, __void_pointer>;
// NOLINTNEXTLINE(libcpp-nodebug-on-aliases) lldb relies on this alias for pretty printing
using __node_pointer = __rebind_pointer_t<__void_pointer, __node>;
using __node_base _LIBCPP_NODEBUG = __tree_node_base<__void_pointer>;
using __node_base_pointer _LIBCPP_NODEBUG = __rebind_pointer_t<__void_pointer, __node_base>;
using __end_node_t _LIBCPP_NODEBUG = __tree_end_node<__node_base_pointer>;
using __end_node_pointer _LIBCPP_NODEBUG = __rebind_pointer_t<__void_pointer, __end_node_t>;
using __parent_pointer _LIBCPP_NODEBUG = __end_node_pointer; // TODO: Remove this once the uses in <map> are removed
using __node_allocator _LIBCPP_NODEBUG = __rebind_alloc<__alloc_traits, __node>;
using __node_traits _LIBCPP_NODEBUG = allocator_traits<__node_allocator>;
// TODO(LLVM 22): Remove this check
#ifndef _LIBCPP_ABI_TREE_REMOVE_NODE_POINTER_UB
static_assert(sizeof(__node_base_pointer) == sizeof(__end_node_pointer) && _LIBCPP_ALIGNOF(__node_base_pointer) ==
_LIBCPP_ALIGNOF(__end_node_pointer),
"It looks like you are using std::__tree (an implementation detail for (multi)map/set) with a fancy "
"pointer type that thas a different representation depending on whether it points to a __tree base "
"pointer or a __tree node pointer (both of which are implementation details of the standard library). "
"This means that your ABI is being broken between LLVM 19 and LLVM 20. If you don't care about your "
"ABI being broken, define the _LIBCPP_ABI_TREE_REMOVE_NODE_POINTER_UB macro to silence this "
"diagnostic.");
#endif
private:
// check for sane allocator pointer rebinding semantics. Rebinding the
// allocator for a new pointer type should be exactly the same as rebinding
// the pointer using 'pointer_traits'.
static_assert(is_same<__node_pointer, typename __node_traits::pointer>::value,
"Allocator does not rebind pointers in a sane manner.");
using __node_base_allocator _LIBCPP_NODEBUG = __rebind_alloc<__node_traits, __node_base>;
using __node_base_traits _LIBCPP_NODEBUG = allocator_traits<__node_base_allocator>;
static_assert(is_same<__node_base_pointer, typename __node_base_traits::pointer>::value,
"Allocator does not rebind pointers in a sane manner.");
private:
__end_node_pointer __begin_node_;
_LIBCPP_COMPRESSED_PAIR(__end_node_t, __end_node_, __node_allocator, __node_alloc_);
_LIBCPP_COMPRESSED_PAIR(size_type, __size_, value_compare, __value_comp_);
public:
_LIBCPP_HIDE_FROM_ABI __end_node_pointer __end_node() _NOEXCEPT {
return pointer_traits<__end_node_pointer>::pointer_to(__end_node_);
}
_LIBCPP_HIDE_FROM_ABI __end_node_pointer __end_node() const _NOEXCEPT {
return pointer_traits<__end_node_pointer>::pointer_to(const_cast<__end_node_t&>(__end_node_));
}
_LIBCPP_HIDE_FROM_ABI __node_allocator& __node_alloc() _NOEXCEPT { return __node_alloc_; }
private:
_LIBCPP_HIDE_FROM_ABI const __node_allocator& __node_alloc() const _NOEXCEPT { return __node_alloc_; }
public:
_LIBCPP_HIDE_FROM_ABI allocator_type __alloc() const _NOEXCEPT { return allocator_type(__node_alloc()); }
_LIBCPP_HIDE_FROM_ABI size_type size() const _NOEXCEPT { return __size_; }
_LIBCPP_HIDE_FROM_ABI value_compare& value_comp() _NOEXCEPT { return __value_comp_; }
_LIBCPP_HIDE_FROM_ABI const value_compare& value_comp() const _NOEXCEPT { return __value_comp_; }
public:
_LIBCPP_HIDE_FROM_ABI __node_pointer __root() const _NOEXCEPT {
return static_cast<__node_pointer>(__end_node()->__left_);
}
_LIBCPP_HIDE_FROM_ABI __node_base_pointer* __root_ptr() const _NOEXCEPT {
return std::addressof(__end_node()->__left_);
}
using iterator = __tree_iterator<_Tp, __node_pointer, difference_type>;
using const_iterator = __tree_const_iterator<_Tp, __node_pointer, difference_type>;
_LIBCPP_HIDE_FROM_ABI explicit __tree(const value_compare& __comp) _NOEXCEPT_(
is_nothrow_default_constructible<__node_allocator>::value&& is_nothrow_copy_constructible<value_compare>::value)
: __size_(0), __value_comp_(__comp) {
__begin_node_ = __end_node();
}
_LIBCPP_HIDE_FROM_ABI explicit __tree(const allocator_type& __a)
: __begin_node_(), __node_alloc_(__node_allocator(__a)), __size_(0) {
__begin_node_ = __end_node();
}
_LIBCPP_HIDE_FROM_ABI __tree(const value_compare& __comp, const allocator_type& __a)
: __begin_node_(), __node_alloc_(__node_allocator(__a)), __size_(0), __value_comp_(__comp) {
__begin_node_ = __end_node();
}
_LIBCPP_HIDE_FROM_ABI __tree(const __tree& __t);
_LIBCPP_HIDE_FROM_ABI __tree& operator=(const __tree& __t);
template <class _ForwardIterator>
_LIBCPP_HIDE_FROM_ABI void __assign_unique(_ForwardIterator __first, _ForwardIterator __last);
template <class _InputIterator>
_LIBCPP_HIDE_FROM_ABI void __assign_multi(_InputIterator __first, _InputIterator __last);
_LIBCPP_HIDE_FROM_ABI __tree(__tree&& __t) _NOEXCEPT_(
is_nothrow_move_constructible<__node_allocator>::value&& is_nothrow_move_constructible<value_compare>::value);
_LIBCPP_HIDE_FROM_ABI __tree(__tree&& __t, const allocator_type& __a);
_LIBCPP_HIDE_FROM_ABI __tree& operator=(__tree&& __t)
_NOEXCEPT_(is_nothrow_move_assignable<value_compare>::value &&
((__node_traits::propagate_on_container_move_assignment::value &&
is_nothrow_move_assignable<__node_allocator>::value) ||
allocator_traits<__node_allocator>::is_always_equal::value)) {
__move_assign(__t, integral_constant<bool, __node_traits::propagate_on_container_move_assignment::value>());
return *this;
}
_LIBCPP_HIDE_FROM_ABI ~__tree() {
static_assert(is_copy_constructible<value_compare>::value, "Comparator must be copy-constructible.");
destroy(__root());
}
_LIBCPP_HIDE_FROM_ABI iterator begin() _NOEXCEPT { return iterator(__begin_node_); }
_LIBCPP_HIDE_FROM_ABI const_iterator begin() const _NOEXCEPT { return const_iterator(__begin_node_); }
_LIBCPP_HIDE_FROM_ABI iterator end() _NOEXCEPT { return iterator(__end_node()); }
_LIBCPP_HIDE_FROM_ABI const_iterator end() const _NOEXCEPT { return const_iterator(__end_node()); }
_LIBCPP_HIDE_FROM_ABI size_type max_size() const _NOEXCEPT {
return std::min<size_type>(__node_traits::max_size(__node_alloc()), numeric_limits<difference_type >::max());
}
_LIBCPP_HIDE_FROM_ABI void clear() _NOEXCEPT;
_LIBCPP_HIDE_FROM_ABI void swap(__tree& __t)
#if _LIBCPP_STD_VER <= 11
_NOEXCEPT_(__is_nothrow_swappable_v<value_compare> &&
(!__node_traits::propagate_on_container_swap::value || __is_nothrow_swappable_v<__node_allocator>));
#else
_NOEXCEPT_(__is_nothrow_swappable_v<value_compare>);
#endif
template <class... _Args>
_LIBCPP_HIDE_FROM_ABI iterator __emplace_multi(_Args&&... __args);
template <class... _Args>
_LIBCPP_HIDE_FROM_ABI iterator __emplace_hint_multi(const_iterator __p, _Args&&... __args);
template <class... _Args>
_LIBCPP_HIDE_FROM_ABI pair<iterator, bool> __emplace_unique(_Args&&... __args) {
return std::__try_key_extraction<key_type>(
[this](const key_type& __key, _Args&&... __args2) {
auto [__parent, __child] = __find_equal(__key);
__node_pointer __r = static_cast<__node_pointer>(__child);
bool __inserted = false;
if (__child == nullptr) {
__node_holder __h = __construct_node(std::forward<_Args>(__args2)...);
__insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__h.get()));
__r = __h.release();
__inserted = true;
}
return pair<iterator, bool>(iterator(__r), __inserted);
},
[this](_Args&&... __args2) {
__node_holder __h = __construct_node(std::forward<_Args>(__args2)...);
auto [__parent, __child] = __find_equal(__h->__get_value());
__node_pointer __r = static_cast<__node_pointer>(__child);
bool __inserted = false;
if (__child == nullptr) {
__insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__h.get()));
__r = __h.release();
__inserted = true;
}
return pair<iterator, bool>(iterator(__r), __inserted);
},
std::forward<_Args>(__args)...);
}
template <class... _Args>
_LIBCPP_HIDE_FROM_ABI pair<iterator, bool> __emplace_hint_unique(const_iterator __p, _Args&&... __args) {
return std::__try_key_extraction<key_type>(
[this, __p](const key_type& __key, _Args&&... __args2) {
__node_base_pointer __dummy;
auto [__parent, __child] = __find_equal(__p, __dummy, __key);
__node_pointer __r = static_cast<__node_pointer>(__child);
bool __inserted = false;
if (__child == nullptr) {
__node_holder __h = __construct_node(std::forward<_Args>(__args2)...);
__insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__h.get()));
__r = __h.release();
__inserted = true;
}
return pair<iterator, bool>(iterator(__r), __inserted);
},
[this, __p](_Args&&... __args2) {
__node_holder __h = __construct_node(std::forward<_Args>(__args2)...);
__node_base_pointer __dummy;
auto [__parent, __child] = __find_equal(__p, __dummy, __h->__get_value());
__node_pointer __r = static_cast<__node_pointer>(__child);
if (__child == nullptr) {
__insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__h.get()));
__r = __h.release();
}
return pair<iterator, bool>(iterator(__r), __child == nullptr);
},
std::forward<_Args>(__args)...);
}
template <class _ValueT = _Tp, __enable_if_t<__is_tree_value_type_v<_ValueT>, int> = 0>
_LIBCPP_HIDE_FROM_ABI void
__insert_unique_from_orphaned_node(const_iterator __p, __get_node_value_type_t<_Tp>&& __value) {
__emplace_hint_unique(__p, const_cast<key_type&&>(__value.first), std::move(__value.second));
}
template <class _ValueT = _Tp, __enable_if_t<!__is_tree_value_type_v<_ValueT>, int> = 0>
_LIBCPP_HIDE_FROM_ABI void __insert_unique_from_orphaned_node(const_iterator __p, _Tp&& __value) {
__emplace_hint_unique(__p, std::move(__value));
}
template <class _ValueT = _Tp, __enable_if_t<__is_tree_value_type_v<_ValueT>, int> = 0>
_LIBCPP_HIDE_FROM_ABI void __insert_multi_from_orphaned_node(const_iterator __p, value_type&& __value) {
__emplace_hint_multi(__p, const_cast<key_type&&>(__value.first), std::move(__value.second));
}
template <class _ValueT = _Tp, __enable_if_t<!__is_tree_value_type_v<_ValueT>, int> = 0>
_LIBCPP_HIDE_FROM_ABI void __insert_multi_from_orphaned_node(const_iterator __p, _Tp&& __value) {
__emplace_hint_multi(__p, std::move(__value));
}
template <class _InIter, class _Sent>
_LIBCPP_HIDE_FROM_ABI void __insert_range_multi(_InIter __first, _Sent __last) {
if (__first == __last)
return;
if (__root() == nullptr) { // Make sure we always have a root node
__insert_node_at(
__end_node(), __end_node()->__left_, static_cast<__node_base_pointer>(__construct_node(*__first).release()));
++__first;
}
auto __max_node = static_cast<__node_pointer>(std::__tree_max(static_cast<__node_base_pointer>(__root())));
for (; __first != __last; ++__first) {
__node_holder __nd = __construct_node(*__first);
// Always check the max node first. This optimizes for sorted ranges inserted at the end.
if (!value_comp()(__nd->__get_value(), __max_node->__get_value())) { // __node >= __max_val
__insert_node_at(static_cast<__end_node_pointer>(__max_node),
__max_node->__right_,
static_cast<__node_base_pointer>(__nd.get()));
__max_node = __nd.release();
} else {
__end_node_pointer __parent;
__node_base_pointer& __child = __find_leaf_high(__parent, __nd->__get_value());
__insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__nd.release()));
}
}
}
_LIBCPP_HIDE_FROM_ABI pair<iterator, bool> __node_assign_unique(const value_type& __v, __node_pointer __dest);
_LIBCPP_HIDE_FROM_ABI iterator __node_insert_multi(__node_pointer __nd);
_LIBCPP_HIDE_FROM_ABI iterator __node_insert_multi(const_iterator __p, __node_pointer __nd);
template <class _InIter, class _Sent>
_LIBCPP_HIDE_FROM_ABI void __insert_range_unique(_InIter __first, _Sent __last) {
if (__first == __last)
return;
if (__root() == nullptr) {
__insert_node_at(
__end_node(), __end_node()->__left_, static_cast<__node_base_pointer>(__construct_node(*__first).release()));
++__first;
}
auto __max_node = static_cast<__node_pointer>(std::__tree_max(static_cast<__node_base_pointer>(__root())));
using __reference = decltype(*__first);
for (; __first != __last; ++__first) {
std::__try_key_extraction<key_type>(
[this, &__max_node](const key_type& __key, __reference&& __val) {
if (value_comp()(__max_node->__get_value(), __key)) { // __key > __max_node
__node_holder __nd = __construct_node(std::forward<__reference>(__val));
__insert_node_at(static_cast<__end_node_pointer>(__max_node),
__max_node->__right_,
static_cast<__node_base_pointer>(__nd.get()));
__max_node = __nd.release();
} else {
auto [__parent, __child] = __find_equal(__key);
if (__child == nullptr) {
__node_holder __nd = __construct_node(std::forward<__reference>(__val));
__insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__nd.release()));
}
}
},
[this, &__max_node](__reference&& __val) {
__node_holder __nd = __construct_node(std::forward<__reference>(__val));
if (value_comp()(__max_node->__get_value(), __nd->__get_value())) { // __node > __max_node
__insert_node_at(static_cast<__end_node_pointer>(__max_node),
__max_node->__right_,
static_cast<__node_base_pointer>(__nd.get()));
__max_node = __nd.release();
} else {
auto [__parent, __child] = __find_equal(__nd->__get_value());
if (__child == nullptr) {
__insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__nd.release()));
}
}
},
*__first);
}
}
_LIBCPP_HIDE_FROM_ABI iterator __remove_node_pointer(__node_pointer) _NOEXCEPT;
#if _LIBCPP_STD_VER >= 17
template <class _NodeHandle, class _InsertReturnType>
_LIBCPP_HIDE_FROM_ABI _InsertReturnType __node_handle_insert_unique(_NodeHandle&&);
template <class _NodeHandle>
_LIBCPP_HIDE_FROM_ABI iterator __node_handle_insert_unique(const_iterator, _NodeHandle&&);
template <class _Tree>
_LIBCPP_HIDE_FROM_ABI void __node_handle_merge_unique(_Tree& __source);
template <class _NodeHandle>
_LIBCPP_HIDE_FROM_ABI iterator __node_handle_insert_multi(_NodeHandle&&);
template <class _NodeHandle>
_LIBCPP_HIDE_FROM_ABI iterator __node_handle_insert_multi(const_iterator, _NodeHandle&&);
template <class _Tree>
_LIBCPP_HIDE_FROM_ABI void __node_handle_merge_multi(_Tree& __source);
template <class _NodeHandle>
_LIBCPP_HIDE_FROM_ABI _NodeHandle __node_handle_extract(key_type const&);
template <class _NodeHandle>
_LIBCPP_HIDE_FROM_ABI _NodeHandle __node_handle_extract(const_iterator);
#endif
_LIBCPP_HIDE_FROM_ABI iterator erase(const_iterator __p);
_LIBCPP_HIDE_FROM_ABI iterator erase(const_iterator __f, const_iterator __l);
template <class _Key>
_LIBCPP_HIDE_FROM_ABI size_type __erase_unique(const _Key& __k);
template <class _Key>
_LIBCPP_HIDE_FROM_ABI size_type __erase_multi(const _Key& __k);
_LIBCPP_HIDE_FROM_ABI void
__insert_node_at(__end_node_pointer __parent, __node_base_pointer& __child, __node_base_pointer __new_node) _NOEXCEPT;
template <class _Key>
_LIBCPP_HIDE_FROM_ABI iterator find(const _Key& __key) {
auto [__, __match] = __find_equal(__key);
if (__match == nullptr)
return end();
return iterator(static_cast<__node_pointer>(__match));
}
template <class _Key>
_LIBCPP_HIDE_FROM_ABI const_iterator find(const _Key& __key) const {
auto [__, __match] = __find_equal(__key);
if (__match == nullptr)
return end();
return const_iterator(static_cast<__node_pointer>(__match));
}
template <class _Key>
_LIBCPP_HIDE_FROM_ABI size_type __count_unique(const _Key& __k) const;
template <class _Key>
_LIBCPP_HIDE_FROM_ABI size_type __count_multi(const _Key& __k) const;
template <class _Key>
_LIBCPP_HIDE_FROM_ABI iterator lower_bound(const _Key& __v) {
return __lower_bound(__v, __root(), __end_node());
}
template <class _Key>
_LIBCPP_HIDE_FROM_ABI iterator __lower_bound(const _Key& __v, __node_pointer __root, __end_node_pointer __result);
template <class _Key>
_LIBCPP_HIDE_FROM_ABI const_iterator lower_bound(const _Key& __v) const {
return __lower_bound(__v, __root(), __end_node());
}
template <class _Key>
_LIBCPP_HIDE_FROM_ABI const_iterator
__lower_bound(const _Key& __v, __node_pointer __root, __end_node_pointer __result) const;
template <class _Key>
_LIBCPP_HIDE_FROM_ABI iterator upper_bound(const _Key& __v) {
return __upper_bound(__v, __root(), __end_node());
}
template <class _Key>
_LIBCPP_HIDE_FROM_ABI iterator __upper_bound(const _Key& __v, __node_pointer __root, __end_node_pointer __result);
template <class _Key>
_LIBCPP_HIDE_FROM_ABI const_iterator upper_bound(const _Key& __v) const {
return __upper_bound(__v, __root(), __end_node());
}
template <class _Key>
_LIBCPP_HIDE_FROM_ABI const_iterator
__upper_bound(const _Key& __v, __node_pointer __root, __end_node_pointer __result) const;
template <class _Key>
_LIBCPP_HIDE_FROM_ABI pair<iterator, iterator> __equal_range_unique(const _Key& __k);
template <class _Key>
_LIBCPP_HIDE_FROM_ABI pair<const_iterator, const_iterator> __equal_range_unique(const _Key& __k) const;
template <class _Key>
_LIBCPP_HIDE_FROM_ABI pair<iterator, iterator> __equal_range_multi(const _Key& __k);
template <class _Key>
_LIBCPP_HIDE_FROM_ABI pair<const_iterator, const_iterator> __equal_range_multi(const _Key& __k) const;
using _Dp _LIBCPP_NODEBUG = __tree_node_destructor<__node_allocator>;
using __node_holder _LIBCPP_NODEBUG = unique_ptr<__node, _Dp>;
_LIBCPP_HIDE_FROM_ABI __node_holder remove(const_iterator __p) _NOEXCEPT;
// FIXME: Make this function const qualified. Unfortunately doing so
// breaks existing code which uses non-const callable comparators.
template <class _Key>
_LIBCPP_HIDE_FROM_ABI pair<__end_node_pointer, __node_base_pointer&> __find_equal(const _Key& __v);
template <class _Key>
_LIBCPP_HIDE_FROM_ABI pair<__end_node_pointer, __node_base_pointer&> __find_equal(const _Key& __v) const {
return const_cast<__tree*>(this)->__find_equal(__v);
}
template <class _Key>
_LIBCPP_HIDE_FROM_ABI pair<__end_node_pointer, __node_base_pointer&>
__find_equal(const_iterator __hint, __node_base_pointer& __dummy, const _Key& __v);
_LIBCPP_HIDE_FROM_ABI void __copy_assign_alloc(const __tree& __t) {
__copy_assign_alloc(__t, integral_constant<bool, __node_traits::propagate_on_container_copy_assignment::value>());
}
_LIBCPP_HIDE_FROM_ABI void __copy_assign_alloc(const __tree& __t, true_type) {
if (__node_alloc() != __t.__node_alloc())
clear();
__node_alloc() = __t.__node_alloc();
}
_LIBCPP_HIDE_FROM_ABI void __copy_assign_alloc(const __tree&, false_type) {}
private:
_LIBCPP_HIDE_FROM_ABI __node_base_pointer& __find_leaf_low(__end_node_pointer& __parent, const value_type& __v);
_LIBCPP_HIDE_FROM_ABI __node_base_pointer& __find_leaf_high(__end_node_pointer& __parent, const value_type& __v);
_LIBCPP_HIDE_FROM_ABI __node_base_pointer&
__find_leaf(const_iterator __hint, __end_node_pointer& __parent, const value_type& __v);
template <class... _Args>
_LIBCPP_HIDE_FROM_ABI __node_holder __construct_node(_Args&&... __args);
// TODO: Make this _LIBCPP_HIDE_FROM_ABI
_LIBCPP_HIDDEN void destroy(__node_pointer __nd) _NOEXCEPT { (__tree_deleter(__node_alloc_))(__nd); }
_LIBCPP_HIDE_FROM_ABI void __move_assign(__tree& __t, false_type);
_LIBCPP_HIDE_FROM_ABI void __move_assign(__tree& __t, true_type) _NOEXCEPT_(
is_nothrow_move_assignable<value_compare>::value&& is_nothrow_move_assignable<__node_allocator>::value);
_LIBCPP_HIDE_FROM_ABI void __move_assign_alloc(__tree& __t)
_NOEXCEPT_(!__node_traits::propagate_on_container_move_assignment::value ||
is_nothrow_move_assignable<__node_allocator>::value) {
__move_assign_alloc(__t, integral_constant<bool, __node_traits::propagate_on_container_move_assignment::value>());
}
_LIBCPP_HIDE_FROM_ABI void __move_assign_alloc(__tree& __t, true_type)
_NOEXCEPT_(is_nothrow_move_assignable<__node_allocator>::value) {
__node_alloc() = std::move(__t.__node_alloc());
}
_LIBCPP_HIDE_FROM_ABI void __move_assign_alloc(__tree&, false_type) _NOEXCEPT {}
template <class _From, class _ValueT = _Tp, __enable_if_t<__is_tree_value_type_v<_ValueT>, int> = 0>
_LIBCPP_HIDE_FROM_ABI static void __assign_value(__get_node_value_type_t<value_type>& __lhs, _From&& __rhs) {
using __key_type = __remove_const_t<typename value_type::first_type>;
// This is technically UB, since the object was constructed as `const`.
// Clang doesn't optimize on this currently though.
const_cast<__key_type&>(__lhs.first) = const_cast<__copy_cvref_t<_From, __key_type>&&>(__rhs.first);
__lhs.second = std::forward<_From>(__rhs).second;
}
template <class _To, class _From, class _ValueT = _Tp, __enable_if_t<!__is_tree_value_type_v<_ValueT>, int> = 0>
_LIBCPP_HIDE_FROM_ABI static void __assign_value(_To& __lhs, _From&& __rhs) {
__lhs = std::forward<_From>(__rhs);
}
struct _DetachedTreeCache {
_LIBCPP_HIDE_FROM_ABI explicit _DetachedTreeCache(__tree* __t) _NOEXCEPT
: __t_(__t),
__cache_root_(__detach_from_tree(__t)) {
__advance();
}
_LIBCPP_HIDE_FROM_ABI __node_pointer __get() const _NOEXCEPT { return __cache_elem_; }
_LIBCPP_HIDE_FROM_ABI void __advance() _NOEXCEPT {
__cache_elem_ = __cache_root_;
if (__cache_root_) {
__cache_root_ = __detach_next(__cache_root_);
}
}
_LIBCPP_HIDE_FROM_ABI ~_DetachedTreeCache() {
__t_->destroy(__cache_elem_);
if (__cache_root_) {
while (__cache_root_->__parent_ != nullptr)
__cache_root_ = static_cast<__node_pointer>(__cache_root_->__parent_);
__t_->destroy(__cache_root_);
}
}
_DetachedTreeCache(_DetachedTreeCache const&) = delete;
_DetachedTreeCache& operator=(_DetachedTreeCache const&) = delete;
private:
_LIBCPP_HIDE_FROM_ABI static __node_pointer __detach_from_tree(__tree* __t) _NOEXCEPT;
_LIBCPP_HIDE_FROM_ABI static __node_pointer __detach_next(__node_pointer) _NOEXCEPT;
__tree* __t_;
__node_pointer __cache_root_;
__node_pointer __cache_elem_;
};
class __tree_deleter {
__node_allocator& __alloc_;
public:
using pointer = __node_pointer;
_LIBCPP_HIDE_FROM_ABI __tree_deleter(__node_allocator& __alloc) : __alloc_(__alloc) {}
#ifdef _LIBCPP_COMPILER_CLANG_BASED // FIXME: GCC complains about not being able to always_inline a recursive function
_LIBCPP_HIDE_FROM_ABI
#endif
void
operator()(__node_pointer __ptr) {
if (!__ptr)
return;
(*this)(static_cast<__node_pointer>(__ptr->__left_));
auto __right = __ptr->__right_;
__node_traits::destroy(__alloc_, std::addressof(__ptr->__get_value()));
__node_traits::deallocate(__alloc_, __ptr, 1);
(*this)(static_cast<__node_pointer>(__right));
}
};
// This copy construction will always produce a correct red-black-tree assuming the incoming tree is correct, since we
// copy the exact structure 1:1. Since this is for copy construction _only_ we know that we get a correct tree. If we
// didn't get a correct tree, the invariants of __tree are broken and we have a much bigger problem than an improperly
// balanced tree.
#ifdef _LIBCPP_COMPILER_CLANG_BASED // FIXME: GCC complains about not being able to always_inline a recursive function
_LIBCPP_HIDE_FROM_ABI
#endif
__node_pointer
__copy_construct_tree(__node_pointer __src) {
if (!__src)
return nullptr;
__node_holder __new_node = __construct_node(__src->__get_value());
unique_ptr<__node, __tree_deleter> __left(
__copy_construct_tree(static_cast<__node_pointer>(__src->__left_)), __node_alloc_);
__node_pointer __right = __copy_construct_tree(static_cast<__node_pointer>(__src->__right_));
__node_pointer __new_node_ptr = __new_node.release();
__new_node_ptr->__is_black_ = __src->__is_black_;
__new_node_ptr->__left_ = static_cast<__node_base_pointer>(__left.release());
__new_node_ptr->__right_ = static_cast<__node_base_pointer>(__right);
if (__new_node_ptr->__left_)
__new_node_ptr->__left_->__parent_ = static_cast<__end_node_pointer>(__new_node_ptr);
if (__new_node_ptr->__right_)
__new_node_ptr->__right_->__parent_ = static_cast<__end_node_pointer>(__new_node_ptr);
return __new_node_ptr;
}
// This copy assignment will always produce a correct red-black-tree assuming the incoming tree is correct, since our
// own tree is a red-black-tree and the incoming tree is a red-black-tree. The invariants of a red-black-tree are
// temporarily not met until all of the incoming red-black tree is copied.
#ifdef _LIBCPP_COMPILER_CLANG_BASED // FIXME: GCC complains about not being able to always_inline a recursive function
_LIBCPP_HIDE_FROM_ABI
#endif
__node_pointer
__copy_assign_tree(__node_pointer __dest, __node_pointer __src) {
if (!__src) {
destroy(__dest);
return nullptr;
}
__assign_value(__dest->__get_value(), __src->__get_value());
__dest->__is_black_ = __src->__is_black_;
// If we already have a left node in the destination tree, reuse it and copy-assign recursively
if (__dest->__left_) {
__dest->__left_ = static_cast<__node_base_pointer>(__copy_assign_tree(
static_cast<__node_pointer>(__dest->__left_), static_cast<__node_pointer>(__src->__left_)));
// Otherwise, we must create new nodes; copy-construct from here on
} else if (__src->__left_) {
auto __new_left = __copy_construct_tree(static_cast<__node_pointer>(__src->__left_));
__dest->__left_ = static_cast<__node_base_pointer>(__new_left);
__new_left->__parent_ = static_cast<__end_node_pointer>(__dest);
}
// Identical to the left case above, just for the right nodes
if (__dest->__right_) {
__dest->__right_ = static_cast<__node_base_pointer>(__copy_assign_tree(
static_cast<__node_pointer>(__dest->__right_), static_cast<__node_pointer>(__src->__right_)));
} else if (__src->__right_) {
auto __new_right = __copy_construct_tree(static_cast<__node_pointer>(__src->__right_));
__dest->__right_ = static_cast<__node_base_pointer>(__new_right);
__new_right->__parent_ = static_cast<__end_node_pointer>(__dest);
}
return __dest;
}
};
// Precondition: __size_ != 0
template <class _Tp, class _Compare, class _Allocator>
typename __tree<_Tp, _Compare, _Allocator>::__node_pointer
__tree<_Tp, _Compare, _Allocator>::_DetachedTreeCache::__detach_from_tree(__tree* __t) _NOEXCEPT {
__node_pointer __cache = static_cast<__node_pointer>(__t->__begin_node_);
__t->__begin_node_ = __t->__end_node();
__t->__end_node()->__left_->__parent_ = nullptr;
__t->__end_node()->__left_ = nullptr;
__t->__size_ = 0;
// __cache->__left_ == nullptr
if (__cache->__right_ != nullptr)
__cache = static_cast<__node_pointer>(__cache->__right_);
// __cache->__left_ == nullptr
// __cache->__right_ == nullptr
return __cache;
}
// Precondition: __cache != nullptr
// __cache->left_ == nullptr
// __cache->right_ == nullptr
// This is no longer a red-black tree
template <class _Tp, class _Compare, class _Allocator>
typename __tree<_Tp, _Compare, _Allocator>::__node_pointer
__tree<_Tp, _Compare, _Allocator>::_DetachedTreeCache::__detach_next(__node_pointer __cache) _NOEXCEPT {
if (__cache->__parent_ == nullptr)
return nullptr;
if (std::__tree_is_left_child(static_cast<__node_base_pointer>(__cache))) {
__cache->__parent_->__left_ = nullptr;
__cache = static_cast<__node_pointer>(__cache->__parent_);
if (__cache->__right_ == nullptr)
return __cache;
return static_cast<__node_pointer>(std::__tree_leaf(__cache->__right_));
}
// __cache is right child
__cache->__parent_unsafe()->__right_ = nullptr;
__cache = static_cast<__node_pointer>(__cache->__parent_);
if (__cache->__left_ == nullptr)
return __cache;
return static_cast<__node_pointer>(std::__tree_leaf(__cache->__left_));
}
template <class _Tp, class _Compare, class _Allocator>
__tree<_Tp, _Compare, _Allocator>& __tree<_Tp, _Compare, _Allocator>::operator=(const __tree& __t) {
if (this == std::addressof(__t))
return *this;
value_comp() = __t.value_comp();
__copy_assign_alloc(__t);
if (__size_ != 0) {
*__root_ptr() = static_cast<__node_base_pointer>(__copy_assign_tree(__root(), __t.__root()));
} else {
*__root_ptr() = static_cast<__node_base_pointer>(__copy_construct_tree(__t.__root()));
if (__root())
__root()->__parent_ = __end_node();
}
__begin_node_ =
__end_node()->__left_ ? static_cast<__end_node_pointer>(std::__tree_min(__end_node()->__left_)) : __end_node();
__size_ = __t.size();
return *this;
}
template <class _Tp, class _Compare, class _Allocator>
template <class _ForwardIterator>
void __tree<_Tp, _Compare, _Allocator>::__assign_unique(_ForwardIterator __first, _ForwardIterator __last) {
using _ITraits = iterator_traits<_ForwardIterator>;
using _ItValueType = typename _ITraits::value_type;
static_assert(
is_same<_ItValueType, value_type>::value, "__assign_unique may only be called with the containers value type");
static_assert(
__has_forward_iterator_category<_ForwardIterator>::value, "__assign_unique requires a forward iterator");
if (__size_ != 0) {
_DetachedTreeCache __cache(this);
for (; __cache.__get() != nullptr && __first != __last; ++__first) {
if (__node_assign_unique(*__first, __cache.__get()).second)
__cache.__advance();
}
}
for (; __first != __last; ++__first)
__emplace_unique(*__first);
}
template <class _Tp, class _Compare, class _Allocator>
template <class _InputIterator>
void __tree<_Tp, _Compare, _Allocator>::__assign_multi(_InputIterator __first, _InputIterator __last) {
using _ITraits = iterator_traits<_InputIterator>;
using _ItValueType = typename _ITraits::value_type;
static_assert(
is_same<_ItValueType, value_type>::value, "__assign_multi may only be called with the containers value_type");
if (__size_ != 0) {
_DetachedTreeCache __cache(this);
for (; __cache.__get() && __first != __last; ++__first) {
__assign_value(__cache.__get()->__get_value(), *__first);
__node_insert_multi(__cache.__get());
__cache.__advance();
}
}
const_iterator __e = end();
for (; __first != __last; ++__first)
__emplace_hint_multi(__e, *__first);
}
template <class _Tp, class _Compare, class _Allocator>
__tree<_Tp, _Compare, _Allocator>::__tree(const __tree& __t)
: __begin_node_(__end_node()),
__node_alloc_(__node_traits::select_on_container_copy_construction(__t.__node_alloc())),
__size_(0),
__value_comp_(__t.value_comp()) {
if (__t.size() == 0)
return;
*__root_ptr() = static_cast<__node_base_pointer>(__copy_construct_tree(__t.__root()));
__root()->__parent_ = __end_node();
__begin_node_ = static_cast<__end_node_pointer>(std::__tree_min(__end_node()->__left_));
__size_ = __t.size();
}
template <class _Tp, class _Compare, class _Allocator>
__tree<_Tp, _Compare, _Allocator>::__tree(__tree&& __t) _NOEXCEPT_(
is_nothrow_move_constructible<__node_allocator>::value&& is_nothrow_move_constructible<value_compare>::value)
: __begin_node_(std::move(__t.__begin_node_)),
__end_node_(std::move(__t.__end_node_)),
__node_alloc_(std::move(__t.__node_alloc_)),
__size_(__t.__size_),
__value_comp_(std::move(__t.__value_comp_)) {
if (__size_ == 0)
__begin_node_ = __end_node();
else {
__end_node()->__left_->__parent_ = static_cast<__end_node_pointer>(__end_node());
__t.__begin_node_ = __t.__end_node();
__t.__end_node()->__left_ = nullptr;
__t.__size_ = 0;
}
}
template <class _Tp, class _Compare, class _Allocator>
__tree<_Tp, _Compare, _Allocator>::__tree(__tree&& __t, const allocator_type& __a)
: __node_alloc_(__node_allocator(__a)), __size_(0), __value_comp_(std::move(__t.value_comp())) {
if (__a == __t.__alloc()) {
if (__t.__size_ == 0)
__begin_node_ = __end_node();
else {
__begin_node_ = __t.__begin_node_;
__end_node()->__left_ = __t.__end_node()->__left_;
__end_node()->__left_->__parent_ = static_cast<__end_node_pointer>(__end_node());
__size_ = __t.__size_;
__t.__begin_node_ = __t.__end_node();
__t.__end_node()->__left_ = nullptr;
__t.__size_ = 0;
}
} else {
__begin_node_ = __end_node();
}
}
template <class _Tp, class _Compare, class _Allocator>
void __tree<_Tp, _Compare, _Allocator>::__move_assign(__tree& __t, true_type)
_NOEXCEPT_(is_nothrow_move_assignable<value_compare>::value&& is_nothrow_move_assignable<__node_allocator>::value) {
destroy(static_cast<__node_pointer>(__end_node()->__left_));
__begin_node_ = __t.__begin_node_;
__end_node_ = __t.__end_node_;
__move_assign_alloc(__t);
__size_ = __t.__size_;
__value_comp_ = std::move(__t.__value_comp_);
if (__size_ == 0)
__begin_node_ = __end_node();
else {
__end_node()->__left_->__parent_ = static_cast<__end_node_pointer>(__end_node());
__t.__begin_node_ = __t.__end_node();
__t.__end_node()->__left_ = nullptr;
__t.__size_ = 0;
}
}
template <class _Tp, class _Compare, class _Allocator>
void __tree<_Tp, _Compare, _Allocator>::__move_assign(__tree& __t, false_type) {
if (__node_alloc() == __t.__node_alloc())
__move_assign(__t, true_type());
else {
value_comp() = std::move(__t.value_comp());
const_iterator __e = end();
if (__size_ != 0) {
_DetachedTreeCache __cache(this);
while (__cache.__get() != nullptr && __t.__size_ != 0) {
__assign_value(__cache.__get()->__get_value(), std::move(__t.remove(__t.begin())->__get_value()));
__node_insert_multi(__cache.__get());
__cache.__advance();
}
}
while (__t.__size_ != 0) {
__insert_multi_from_orphaned_node(__e, std::move(__t.remove(__t.begin())->__get_value()));
}
}
}
template <class _Tp, class _Compare, class _Allocator>
void __tree<_Tp, _Compare, _Allocator>::swap(__tree& __t)
#if _LIBCPP_STD_VER <= 11
_NOEXCEPT_(__is_nothrow_swappable_v<value_compare> &&
(!__node_traits::propagate_on_container_swap::value || __is_nothrow_swappable_v<__node_allocator>))
#else
_NOEXCEPT_(__is_nothrow_swappable_v<value_compare>)
#endif
{
using std::swap;
swap(__begin_node_, __t.__begin_node_);
swap(__end_node_, __t.__end_node_);
std::__swap_allocator(__node_alloc(), __t.__node_alloc());
swap(__size_, __t.__size_);
swap(__value_comp_, __t.__value_comp_);
if (__size_ == 0)
__begin_node_ = __end_node();
else
__end_node()->__left_->__parent_ = __end_node();
if (__t.__size_ == 0)
__t.__begin_node_ = __t.__end_node();
else
__t.__end_node()->__left_->__parent_ = __t.__end_node();
}
template <class _Tp, class _Compare, class _Allocator>
void __tree<_Tp, _Compare, _Allocator>::clear() _NOEXCEPT {
destroy(__root());
__size_ = 0;
__begin_node_ = __end_node();
__end_node()->__left_ = nullptr;
}
// Find lower_bound place to insert
// Set __parent to parent of null leaf
// Return reference to null leaf
template <class _Tp, class _Compare, class _Allocator>
typename __tree<_Tp, _Compare, _Allocator>::__node_base_pointer&
__tree<_Tp, _Compare, _Allocator>::__find_leaf_low(__end_node_pointer& __parent, const value_type& __v) {
__node_pointer __nd = __root();
if (__nd != nullptr) {
while (true) {
if (value_comp()(__nd->__get_value(), __v)) {
if (__nd->__right_ != nullptr)
__nd = static_cast<__node_pointer>(__nd->__right_);
else {
__parent = static_cast<__end_node_pointer>(__nd);
return __nd->__right_;
}
} else {
if (__nd->__left_ != nullptr)
__nd = static_cast<__node_pointer>(__nd->__left_);
else {
__parent = static_cast<__end_node_pointer>(__nd);
return __parent->__left_;
}
}
}
}
__parent = __end_node();
return __parent->__left_;
}
// Find upper_bound place to insert
// Set __parent to parent of null leaf
// Return reference to null leaf
template <class _Tp, class _Compare, class _Allocator>
typename __tree<_Tp, _Compare, _Allocator>::__node_base_pointer&
__tree<_Tp, _Compare, _Allocator>::__find_leaf_high(__end_node_pointer& __parent, const value_type& __v) {
__node_pointer __nd = __root();
if (__nd != nullptr) {
while (true) {
if (value_comp()(__v, __nd->__get_value())) {
if (__nd->__left_ != nullptr)
__nd = static_cast<__node_pointer>(__nd->__left_);
else {
__parent = static_cast<__end_node_pointer>(__nd);
return __parent->__left_;
}
} else {
if (__nd->__right_ != nullptr)
__nd = static_cast<__node_pointer>(__nd->__right_);
else {
__parent = static_cast<__end_node_pointer>(__nd);
return __nd->__right_;
}
}
}
}
__parent = __end_node();
return __parent->__left_;
}
// Find leaf place to insert closest to __hint
// First check prior to __hint.
// Next check after __hint.
// Next do O(log N) search.
// Set __parent to parent of null leaf
// Return reference to null leaf
template <class _Tp, class _Compare, class _Allocator>
typename __tree<_Tp, _Compare, _Allocator>::__node_base_pointer& __tree<_Tp, _Compare, _Allocator>::__find_leaf(
const_iterator __hint, __end_node_pointer& __parent, const value_type& __v) {
if (__hint == end() || !value_comp()(*__hint, __v)) // check before
{
// __v <= *__hint
const_iterator __prior = __hint;
if (__prior == begin() || !value_comp()(__v, *--__prior)) {
// *prev(__hint) <= __v <= *__hint
if (__hint.__ptr_->__left_ == nullptr) {
__parent = static_cast<__end_node_pointer>(__hint.__ptr_);
return __parent->__left_;
} else {
__parent = static_cast<__end_node_pointer>(__prior.__ptr_);
return static_cast<__node_base_pointer>(__prior.__ptr_)->__right_;
}
}
// __v < *prev(__hint)
return __find_leaf_high(__parent, __v);
}
// else __v > *__hint
return __find_leaf_low(__parent, __v);
}
// Find __v
// If __v exists, return the parent of the node of __v and a reference to the pointer to the node of __v.
// If __v doesn't exist, return the parent of the null leaf and a reference to the pointer to the null leaf.
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
_LIBCPP_HIDE_FROM_ABI pair<typename __tree<_Tp, _Compare, _Allocator>::__end_node_pointer,
typename __tree<_Tp, _Compare, _Allocator>::__node_base_pointer&>
__tree<_Tp, _Compare, _Allocator>::__find_equal(const _Key& __v) {
using _Pair = pair<__end_node_pointer, __node_base_pointer&>;
__node_pointer __nd = __root();
if (__nd == nullptr) {
auto __end = __end_node();
return _Pair(__end, __end->__left_);
}
__node_base_pointer* __node_ptr = __root_ptr();
auto __comp = __lazy_synth_three_way_comparator<_Compare, _Key, value_type>(value_comp());
while (true) {
auto __comp_res = __comp(__v, __nd->__get_value());
if (__comp_res.__less()) {
if (__nd->__left_ == nullptr)
return _Pair(static_cast<__end_node_pointer>(__nd), __nd->__left_);
__node_ptr = std::addressof(__nd->__left_);
__nd = static_cast<__node_pointer>(__nd->__left_);
} else if (__comp_res.__greater()) {
if (__nd->__right_ == nullptr)
return _Pair(static_cast<__end_node_pointer>(__nd), __nd->__right_);
__node_ptr = std::addressof(__nd->__right_);
__nd = static_cast<__node_pointer>(__nd->__right_);
} else {
return _Pair(static_cast<__end_node_pointer>(__nd), *__node_ptr);
}
}
}
// Find __v
// First check prior to __hint.
// Next check after __hint.
// Next do O(log N) search.
// If __v exists, return the parent of the node of __v and a reference to the pointer to the node of __v.
// If __v doesn't exist, return the parent of the null leaf and a reference to the pointer to the null leaf.
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
_LIBCPP_HIDE_FROM_ABI pair<typename __tree<_Tp, _Compare, _Allocator>::__end_node_pointer,
typename __tree<_Tp, _Compare, _Allocator>::__node_base_pointer&>
__tree<_Tp, _Compare, _Allocator>::__find_equal(const_iterator __hint, __node_base_pointer& __dummy, const _Key& __v) {
using _Pair = pair<__end_node_pointer, __node_base_pointer&>;
if (__hint == end() || value_comp()(__v, *__hint)) { // check before
// __v < *__hint
const_iterator __prior = __hint;
if (__prior == begin() || value_comp()(*--__prior, __v)) {
// *prev(__hint) < __v < *__hint
if (__hint.__ptr_->__left_ == nullptr)
return _Pair(__hint.__ptr_, __hint.__ptr_->__left_);
return _Pair(__prior.__ptr_, static_cast<__node_pointer>(__prior.__ptr_)->__right_);
}
// __v <= *prev(__hint)
return __find_equal(__v);
}
if (value_comp()(*__hint, __v)) { // check after
// *__hint < __v
const_iterator __next = std::next(__hint);
if (__next == end() || value_comp()(__v, *__next)) {
// *__hint < __v < *std::next(__hint)
if (__hint.__get_np()->__right_ == nullptr)
return _Pair(__hint.__ptr_, static_cast<__node_pointer>(__hint.__ptr_)->__right_);
return _Pair(__next.__ptr_, __next.__ptr_->__left_);
}
// *next(__hint) <= __v
return __find_equal(__v);
}
// else __v == *__hint
__dummy = static_cast<__node_base_pointer>(__hint.__ptr_);
return _Pair(__hint.__ptr_, __dummy);
}
template <class _Tp, class _Compare, class _Allocator>
void __tree<_Tp, _Compare, _Allocator>::__insert_node_at(
__end_node_pointer __parent, __node_base_pointer& __child, __node_base_pointer __new_node) _NOEXCEPT {
__new_node->__left_ = nullptr;
__new_node->__right_ = nullptr;
__new_node->__parent_ = __parent;
// __new_node->__is_black_ is initialized in __tree_balance_after_insert
__child = __new_node;
if (__begin_node_->__left_ != nullptr)
__begin_node_ = static_cast<__end_node_pointer>(__begin_node_->__left_);
std::__tree_balance_after_insert(__end_node()->__left_, __child);
++__size_;
}
template <class _Tp, class _Compare, class _Allocator>
template <class... _Args>
typename __tree<_Tp, _Compare, _Allocator>::__node_holder
__tree<_Tp, _Compare, _Allocator>::__construct_node(_Args&&... __args) {
__node_allocator& __na = __node_alloc();
__node_holder __h(__node_traits::allocate(__na, 1), _Dp(__na));
std::__construct_at(std::addressof(*__h), __na, std::forward<_Args>(__args)...);
__h.get_deleter().__value_constructed = true;
return __h;
}
template <class _Tp, class _Compare, class _Allocator>
template <class... _Args>
typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::__emplace_multi(_Args&&... __args) {
__node_holder __h = __construct_node(std::forward<_Args>(__args)...);
__end_node_pointer __parent;
__node_base_pointer& __child = __find_leaf_high(__parent, __h->__get_value());
__insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__h.get()));
return iterator(static_cast<__node_pointer>(__h.release()));
}
template <class _Tp, class _Compare, class _Allocator>
template <class... _Args>
typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::__emplace_hint_multi(const_iterator __p, _Args&&... __args) {
__node_holder __h = __construct_node(std::forward<_Args>(__args)...);
__end_node_pointer __parent;
__node_base_pointer& __child = __find_leaf(__p, __parent, __h->__get_value());
__insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__h.get()));
return iterator(static_cast<__node_pointer>(__h.release()));
}
template <class _Tp, class _Compare, class _Allocator>
pair<typename __tree<_Tp, _Compare, _Allocator>::iterator, bool>
__tree<_Tp, _Compare, _Allocator>::__node_assign_unique(const value_type& __v, __node_pointer __nd) {
auto [__parent, __child] = __find_equal(__v);
__node_pointer __r = static_cast<__node_pointer>(__child);
bool __inserted = false;
if (__child == nullptr) {
__assign_value(__nd->__get_value(), __v);
__insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__nd));
__r = __nd;
__inserted = true;
}
return pair<iterator, bool>(iterator(__r), __inserted);
}
template <class _Tp, class _Compare, class _Allocator>
typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::__node_insert_multi(__node_pointer __nd) {
__end_node_pointer __parent;
__node_base_pointer& __child = __find_leaf_high(__parent, __nd->__get_value());
__insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__nd));
return iterator(__nd);
}
template <class _Tp, class _Compare, class _Allocator>
typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::__node_insert_multi(const_iterator __p, __node_pointer __nd) {
__end_node_pointer __parent;
__node_base_pointer& __child = __find_leaf(__p, __parent, __nd->__get_value());
__insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__nd));
return iterator(__nd);
}
template <class _Tp, class _Compare, class _Allocator>
typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::__remove_node_pointer(__node_pointer __ptr) _NOEXCEPT {
iterator __r(__ptr);
++__r;
if (__begin_node_ == __ptr)
__begin_node_ = __r.__ptr_;
--__size_;
std::__tree_remove(__end_node()->__left_, static_cast<__node_base_pointer>(__ptr));
return __r;
}
#if _LIBCPP_STD_VER >= 17
template <class _Tp, class _Compare, class _Allocator>
template <class _NodeHandle, class _InsertReturnType>
_LIBCPP_HIDE_FROM_ABI _InsertReturnType
__tree<_Tp, _Compare, _Allocator>::__node_handle_insert_unique(_NodeHandle&& __nh) {
if (__nh.empty())
return _InsertReturnType{end(), false, _NodeHandle()};
__node_pointer __ptr = __nh.__ptr_;
auto [__parent, __child] = __find_equal(__ptr->__get_value());
if (__child != nullptr)
return _InsertReturnType{iterator(static_cast<__node_pointer>(__child)), false, std::move(__nh)};
__insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__ptr));
__nh.__release_ptr();
return _InsertReturnType{iterator(__ptr), true, _NodeHandle()};
}
template <class _Tp, class _Compare, class _Allocator>
template <class _NodeHandle>
_LIBCPP_HIDE_FROM_ABI typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::__node_handle_insert_unique(const_iterator __hint, _NodeHandle&& __nh) {
if (__nh.empty())
return end();
__node_pointer __ptr = __nh.__ptr_;
__node_base_pointer __dummy;
auto [__parent, __child] = __find_equal(__hint, __dummy, __ptr->__get_value());
__node_pointer __r = static_cast<__node_pointer>(__child);
if (__child == nullptr) {
__insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__ptr));
__r = __ptr;
__nh.__release_ptr();
}
return iterator(__r);
}
template <class _Tp, class _Compare, class _Allocator>
template <class _NodeHandle>
_LIBCPP_HIDE_FROM_ABI _NodeHandle __tree<_Tp, _Compare, _Allocator>::__node_handle_extract(key_type const& __key) {
iterator __it = find(__key);
if (__it == end())
return _NodeHandle();
return __node_handle_extract<_NodeHandle>(__it);
}
template <class _Tp, class _Compare, class _Allocator>
template <class _NodeHandle>
_LIBCPP_HIDE_FROM_ABI _NodeHandle __tree<_Tp, _Compare, _Allocator>::__node_handle_extract(const_iterator __p) {
__node_pointer __np = __p.__get_np();
__remove_node_pointer(__np);
return _NodeHandle(__np, __alloc());
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Tree>
_LIBCPP_HIDE_FROM_ABI void __tree<_Tp, _Compare, _Allocator>::__node_handle_merge_unique(_Tree& __source) {
static_assert(is_same<typename _Tree::__node_pointer, __node_pointer>::value, "");
for (typename _Tree::iterator __i = __source.begin(); __i != __source.end();) {
__node_pointer __src_ptr = __i.__get_np();
auto [__parent, __child] = __find_equal(__src_ptr->__get_value());
++__i;
if (__child != nullptr)
continue;
__source.__remove_node_pointer(__src_ptr);
__insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__src_ptr));
}
}
template <class _Tp, class _Compare, class _Allocator>
template <class _NodeHandle>
_LIBCPP_HIDE_FROM_ABI typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::__node_handle_insert_multi(_NodeHandle&& __nh) {
if (__nh.empty())
return end();
__node_pointer __ptr = __nh.__ptr_;
__end_node_pointer __parent;
__node_base_pointer& __child = __find_leaf_high(__parent, __ptr->__get_value());
__insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__ptr));
__nh.__release_ptr();
return iterator(__ptr);
}
template <class _Tp, class _Compare, class _Allocator>
template <class _NodeHandle>
_LIBCPP_HIDE_FROM_ABI typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::__node_handle_insert_multi(const_iterator __hint, _NodeHandle&& __nh) {
if (__nh.empty())
return end();
__node_pointer __ptr = __nh.__ptr_;
__end_node_pointer __parent;
__node_base_pointer& __child = __find_leaf(__hint, __parent, __ptr->__get_value());
__insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__ptr));
__nh.__release_ptr();
return iterator(__ptr);
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Tree>
_LIBCPP_HIDE_FROM_ABI void __tree<_Tp, _Compare, _Allocator>::__node_handle_merge_multi(_Tree& __source) {
static_assert(is_same<typename _Tree::__node_pointer, __node_pointer>::value, "");
for (typename _Tree::iterator __i = __source.begin(); __i != __source.end();) {
__node_pointer __src_ptr = __i.__get_np();
__end_node_pointer __parent;
__node_base_pointer& __child = __find_leaf_high(__parent, __src_ptr->__get_value());
++__i;
__source.__remove_node_pointer(__src_ptr);
__insert_node_at(__parent, __child, static_cast<__node_base_pointer>(__src_ptr));
}
}
#endif // _LIBCPP_STD_VER >= 17
template <class _Tp, class _Compare, class _Allocator>
typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::erase(const_iterator __p) {
__node_pointer __np = __p.__get_np();
iterator __r = __remove_node_pointer(__np);
__node_allocator& __na = __node_alloc();
__node_traits::destroy(__na, std::addressof(const_cast<value_type&>(*__p)));
__node_traits::deallocate(__na, __np, 1);
return __r;
}
template <class _Tp, class _Compare, class _Allocator>
typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::erase(const_iterator __f, const_iterator __l) {
while (__f != __l)
__f = erase(__f);
return iterator(__l.__ptr_);
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
typename __tree<_Tp, _Compare, _Allocator>::size_type
__tree<_Tp, _Compare, _Allocator>::__erase_unique(const _Key& __k) {
iterator __i = find(__k);
if (__i == end())
return 0;
erase(__i);
return 1;
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
typename __tree<_Tp, _Compare, _Allocator>::size_type
__tree<_Tp, _Compare, _Allocator>::__erase_multi(const _Key& __k) {
pair<iterator, iterator> __p = __equal_range_multi(__k);
size_type __r = 0;
for (; __p.first != __p.second; ++__r)
__p.first = erase(__p.first);
return __r;
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
typename __tree<_Tp, _Compare, _Allocator>::size_type
__tree<_Tp, _Compare, _Allocator>::__count_unique(const _Key& __k) const {
__node_pointer __rt = __root();
auto __comp = __lazy_synth_three_way_comparator<value_compare, _Key, value_type>(value_comp());
while (__rt != nullptr) {
auto __comp_res = __comp(__k, __rt->__get_value());
if (__comp_res.__less()) {
__rt = static_cast<__node_pointer>(__rt->__left_);
} else if (__comp_res.__greater())
__rt = static_cast<__node_pointer>(__rt->__right_);
else
return 1;
}
return 0;
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
typename __tree<_Tp, _Compare, _Allocator>::size_type
__tree<_Tp, _Compare, _Allocator>::__count_multi(const _Key& __k) const {
__end_node_pointer __result = __end_node();
__node_pointer __rt = __root();
auto __comp = __lazy_synth_three_way_comparator<value_compare, _Key, value_type>(value_comp());
while (__rt != nullptr) {
auto __comp_res = __comp(__k, __rt->__get_value());
if (__comp_res.__less()) {
__result = static_cast<__end_node_pointer>(__rt);
__rt = static_cast<__node_pointer>(__rt->__left_);
} else if (__comp_res.__greater())
__rt = static_cast<__node_pointer>(__rt->__right_);
else
return std::distance(
__lower_bound(__k, static_cast<__node_pointer>(__rt->__left_), static_cast<__end_node_pointer>(__rt)),
__upper_bound(__k, static_cast<__node_pointer>(__rt->__right_), __result));
}
return 0;
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::__lower_bound(const _Key& __v, __node_pointer __root, __end_node_pointer __result) {
while (__root != nullptr) {
if (!value_comp()(__root->__get_value(), __v)) {
__result = static_cast<__end_node_pointer>(__root);
__root = static_cast<__node_pointer>(__root->__left_);
} else
__root = static_cast<__node_pointer>(__root->__right_);
}
return iterator(__result);
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
typename __tree<_Tp, _Compare, _Allocator>::const_iterator __tree<_Tp, _Compare, _Allocator>::__lower_bound(
const _Key& __v, __node_pointer __root, __end_node_pointer __result) const {
while (__root != nullptr) {
if (!value_comp()(__root->__get_value(), __v)) {
__result = static_cast<__end_node_pointer>(__root);
__root = static_cast<__node_pointer>(__root->__left_);
} else
__root = static_cast<__node_pointer>(__root->__right_);
}
return const_iterator(__result);
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::__upper_bound(const _Key& __v, __node_pointer __root, __end_node_pointer __result) {
while (__root != nullptr) {
if (value_comp()(__v, __root->__get_value())) {
__result = static_cast<__end_node_pointer>(__root);
__root = static_cast<__node_pointer>(__root->__left_);
} else
__root = static_cast<__node_pointer>(__root->__right_);
}
return iterator(__result);
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
typename __tree<_Tp, _Compare, _Allocator>::const_iterator __tree<_Tp, _Compare, _Allocator>::__upper_bound(
const _Key& __v, __node_pointer __root, __end_node_pointer __result) const {
while (__root != nullptr) {
if (value_comp()(__v, __root->__get_value())) {
__result = static_cast<__end_node_pointer>(__root);
__root = static_cast<__node_pointer>(__root->__left_);
} else
__root = static_cast<__node_pointer>(__root->__right_);
}
return const_iterator(__result);
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
pair<typename __tree<_Tp, _Compare, _Allocator>::iterator, typename __tree<_Tp, _Compare, _Allocator>::iterator>
__tree<_Tp, _Compare, _Allocator>::__equal_range_unique(const _Key& __k) {
using _Pp = pair<iterator, iterator>;
__end_node_pointer __result = __end_node();
__node_pointer __rt = __root();
auto __comp = __lazy_synth_three_way_comparator<value_compare, _Key, value_type>(value_comp());
while (__rt != nullptr) {
auto __comp_res = __comp(__k, __rt->__get_value());
if (__comp_res.__less()) {
__result = static_cast<__end_node_pointer>(__rt);
__rt = static_cast<__node_pointer>(__rt->__left_);
} else if (__comp_res.__greater())
__rt = static_cast<__node_pointer>(__rt->__right_);
else
return _Pp(iterator(__rt),
iterator(__rt->__right_ != nullptr ? static_cast<__end_node_pointer>(std::__tree_min(__rt->__right_))
: __result));
}
return _Pp(iterator(__result), iterator(__result));
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
pair<typename __tree<_Tp, _Compare, _Allocator>::const_iterator,
typename __tree<_Tp, _Compare, _Allocator>::const_iterator>
__tree<_Tp, _Compare, _Allocator>::__equal_range_unique(const _Key& __k) const {
using _Pp = pair<const_iterator, const_iterator>;
__end_node_pointer __result = __end_node();
__node_pointer __rt = __root();
auto __comp = __lazy_synth_three_way_comparator<value_compare, _Key, value_type>(value_comp());
while (__rt != nullptr) {
auto __comp_res = __comp(__k, __rt->__get_value());
if (__comp_res.__less()) {
__result = static_cast<__end_node_pointer>(__rt);
__rt = static_cast<__node_pointer>(__rt->__left_);
} else if (__comp_res.__greater())
__rt = static_cast<__node_pointer>(__rt->__right_);
else
return _Pp(
const_iterator(__rt),
const_iterator(
__rt->__right_ != nullptr ? static_cast<__end_node_pointer>(std::__tree_min(__rt->__right_)) : __result));
}
return _Pp(const_iterator(__result), const_iterator(__result));
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
pair<typename __tree<_Tp, _Compare, _Allocator>::iterator, typename __tree<_Tp, _Compare, _Allocator>::iterator>
__tree<_Tp, _Compare, _Allocator>::__equal_range_multi(const _Key& __k) {
using _Pp = pair<iterator, iterator>;
__end_node_pointer __result = __end_node();
__node_pointer __rt = __root();
auto __comp = __lazy_synth_three_way_comparator<value_compare, _Key, value_type>(value_comp());
while (__rt != nullptr) {
auto __comp_res = __comp(__k, __rt->__get_value());
if (__comp_res.__less()) {
__result = static_cast<__end_node_pointer>(__rt);
__rt = static_cast<__node_pointer>(__rt->__left_);
} else if (__comp_res.__greater())
__rt = static_cast<__node_pointer>(__rt->__right_);
else
return _Pp(__lower_bound(__k, static_cast<__node_pointer>(__rt->__left_), static_cast<__end_node_pointer>(__rt)),
__upper_bound(__k, static_cast<__node_pointer>(__rt->__right_), __result));
}
return _Pp(iterator(__result), iterator(__result));
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
pair<typename __tree<_Tp, _Compare, _Allocator>::const_iterator,
typename __tree<_Tp, _Compare, _Allocator>::const_iterator>
__tree<_Tp, _Compare, _Allocator>::__equal_range_multi(const _Key& __k) const {
using _Pp = pair<const_iterator, const_iterator>;
__end_node_pointer __result = __end_node();
__node_pointer __rt = __root();
auto __comp = __lazy_synth_three_way_comparator<value_compare, _Key, value_type>(value_comp());
while (__rt != nullptr) {
auto __comp_res = __comp(__k, __rt->__get_value());
if (__comp_res.__less()) {
__result = static_cast<__end_node_pointer>(__rt);
__rt = static_cast<__node_pointer>(__rt->__left_);
} else if (__comp_res.__greater())
__rt = static_cast<__node_pointer>(__rt->__right_);
else
return _Pp(__lower_bound(__k, static_cast<__node_pointer>(__rt->__left_), static_cast<__end_node_pointer>(__rt)),
__upper_bound(__k, static_cast<__node_pointer>(__rt->__right_), __result));
}
return _Pp(const_iterator(__result), const_iterator(__result));
}
template <class _Tp, class _Compare, class _Allocator>
typename __tree<_Tp, _Compare, _Allocator>::__node_holder
__tree<_Tp, _Compare, _Allocator>::remove(const_iterator __p) _NOEXCEPT {
__node_pointer __np = __p.__get_np();
if (__begin_node_ == __p.__ptr_) {
if (__np->__right_ != nullptr)
__begin_node_ = static_cast<__end_node_pointer>(__np->__right_);
else
__begin_node_ = static_cast<__end_node_pointer>(__np->__parent_);
}
--__size_;
std::__tree_remove(__end_node()->__left_, static_cast<__node_base_pointer>(__np));
return __node_holder(__np, _Dp(__node_alloc(), true));
}
template <class _Tp, class _Compare, class _Allocator>
inline _LIBCPP_HIDE_FROM_ABI void swap(__tree<_Tp, _Compare, _Allocator>& __x, __tree<_Tp, _Compare, _Allocator>& __y)
_NOEXCEPT_(_NOEXCEPT_(__x.swap(__y))) {
__x.swap(__y);
}
_LIBCPP_END_NAMESPACE_STD
_LIBCPP_POP_MACROS
#endif // _LIBCPP___TREE