| //===-- Unittests for sorting routines ------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "src/__support/macros/config.h" |
| #include "test/UnitTest/Test.h" |
| |
| class SortingTest : public LIBC_NAMESPACE::testing::Test { |
| |
| using SortingRoutine = void (*)(void *array, size_t array_len, |
| size_t elem_size, |
| int (*compare)(const void *, const void *)); |
| |
| static int int_compare(const void *l, const void *r) { |
| int li = *reinterpret_cast<const int *>(l); |
| int ri = *reinterpret_cast<const int *>(r); |
| |
| if (li == ri) |
| return 0; |
| else if (li > ri) |
| return 1; |
| else |
| return -1; |
| } |
| |
| static void int_sort(SortingRoutine sort_func, int *array, size_t array_len) { |
| sort_func(reinterpret_cast<void *>(array), array_len, sizeof(int), |
| int_compare); |
| } |
| |
| public: |
| void test_sorted_array(SortingRoutine sort_func) { |
| int array[25] = {10, 23, 33, 35, 55, 70, 71, 100, 110, |
| 123, 133, 135, 155, 170, 171, 1100, 1110, 1123, |
| 1133, 1135, 1155, 1170, 1171, 11100, 12310}; |
| constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); |
| |
| int_sort(sort_func, array, ARRAY_LEN); |
| |
| ASSERT_LE(array[0], 10); |
| ASSERT_LE(array[1], 23); |
| ASSERT_LE(array[2], 33); |
| ASSERT_LE(array[3], 35); |
| ASSERT_LE(array[4], 55); |
| ASSERT_LE(array[5], 70); |
| ASSERT_LE(array[6], 71); |
| ASSERT_LE(array[7], 100); |
| ASSERT_LE(array[8], 110); |
| ASSERT_LE(array[9], 123); |
| ASSERT_LE(array[10], 133); |
| ASSERT_LE(array[11], 135); |
| ASSERT_LE(array[12], 155); |
| ASSERT_LE(array[13], 170); |
| ASSERT_LE(array[14], 171); |
| ASSERT_LE(array[15], 1100); |
| ASSERT_LE(array[16], 1110); |
| ASSERT_LE(array[17], 1123); |
| ASSERT_LE(array[18], 1133); |
| ASSERT_LE(array[19], 1135); |
| ASSERT_LE(array[20], 1155); |
| ASSERT_LE(array[21], 1170); |
| ASSERT_LE(array[22], 1171); |
| ASSERT_LE(array[23], 11100); |
| ASSERT_LE(array[24], 12310); |
| } |
| |
| void test_reversed_sorted_array(SortingRoutine sort_func) { |
| int array[] = {25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, |
| 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}; |
| constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); |
| |
| int_sort(sort_func, array, ARRAY_LEN); |
| |
| for (int i = 0; i < int(ARRAY_LEN - 1); ++i) |
| ASSERT_EQ(array[i], i + 1); |
| } |
| |
| void test_all_equal_elements(SortingRoutine sort_func) { |
| int array[] = {100, 100, 100, 100, 100, 100, 100, 100, 100, |
| 100, 100, 100, 100, 100, 100, 100, 100, 100, |
| 100, 100, 100, 100, 100, 100, 100}; |
| constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); |
| |
| int_sort(sort_func, array, ARRAY_LEN); |
| |
| for (size_t i = 0; i < ARRAY_LEN; ++i) |
| ASSERT_EQ(array[i], 100); |
| } |
| |
| void test_unsorted_array_1(SortingRoutine sort_func) { |
| int array[25] = {10, 23, 8, 35, 55, 45, 40, 100, 110, |
| 123, 90, 80, 70, 60, 171, 11, 1, -1, |
| -5, -10, 1155, 1170, 1171, 12, -100}; |
| constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); |
| |
| int_sort(sort_func, array, ARRAY_LEN); |
| |
| ASSERT_EQ(array[0], -100); |
| ASSERT_EQ(array[1], -10); |
| ASSERT_EQ(array[2], -5); |
| ASSERT_EQ(array[3], -1); |
| ASSERT_EQ(array[4], 1); |
| ASSERT_EQ(array[5], 8); |
| ASSERT_EQ(array[6], 10); |
| ASSERT_EQ(array[7], 11); |
| ASSERT_EQ(array[8], 12); |
| ASSERT_EQ(array[9], 23); |
| ASSERT_EQ(array[10], 35); |
| ASSERT_EQ(array[11], 40); |
| ASSERT_EQ(array[12], 45); |
| ASSERT_EQ(array[13], 55); |
| ASSERT_EQ(array[14], 60); |
| ASSERT_EQ(array[15], 70); |
| ASSERT_EQ(array[16], 80); |
| ASSERT_EQ(array[17], 90); |
| ASSERT_EQ(array[18], 100); |
| ASSERT_EQ(array[19], 110); |
| ASSERT_EQ(array[20], 123); |
| ASSERT_EQ(array[21], 171); |
| ASSERT_EQ(array[22], 1155); |
| ASSERT_EQ(array[23], 1170); |
| ASSERT_EQ(array[24], 1171); |
| } |
| |
| void test_unsorted_array_2(SortingRoutine sort_func) { |
| int array[7] = {10, 40, 45, 55, 35, 23, 60}; |
| constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); |
| |
| int_sort(sort_func, array, ARRAY_LEN); |
| |
| ASSERT_EQ(array[0], 10); |
| ASSERT_EQ(array[1], 23); |
| ASSERT_EQ(array[2], 35); |
| ASSERT_EQ(array[3], 40); |
| ASSERT_EQ(array[4], 45); |
| ASSERT_EQ(array[5], 55); |
| ASSERT_EQ(array[6], 60); |
| } |
| |
| void test_unsorted_array_duplicated_1(SortingRoutine sort_func) { |
| int array[6] = {10, 10, 20, 20, 5, 5}; |
| constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); |
| |
| int_sort(sort_func, array, ARRAY_LEN); |
| |
| ASSERT_EQ(array[0], 5); |
| ASSERT_EQ(array[1], 5); |
| ASSERT_EQ(array[2], 10); |
| ASSERT_EQ(array[3], 10); |
| ASSERT_EQ(array[4], 20); |
| ASSERT_EQ(array[5], 20); |
| } |
| |
| void test_unsorted_array_duplicated_2(SortingRoutine sort_func) { |
| int array[10] = {20, 10, 10, 10, 10, 20, 21, 21, 21, 21}; |
| constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); |
| |
| int_sort(sort_func, array, ARRAY_LEN); |
| |
| ASSERT_EQ(array[0], 10); |
| ASSERT_EQ(array[1], 10); |
| ASSERT_EQ(array[2], 10); |
| ASSERT_EQ(array[3], 10); |
| ASSERT_EQ(array[4], 20); |
| ASSERT_EQ(array[5], 20); |
| ASSERT_EQ(array[6], 21); |
| ASSERT_EQ(array[7], 21); |
| ASSERT_EQ(array[8], 21); |
| ASSERT_EQ(array[9], 21); |
| } |
| |
| void test_unsorted_array_duplicated_3(SortingRoutine sort_func) { |
| int array[10] = {20, 30, 30, 30, 30, 20, 21, 21, 21, 21}; |
| constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); |
| |
| int_sort(sort_func, array, ARRAY_LEN); |
| |
| ASSERT_EQ(array[0], 20); |
| ASSERT_EQ(array[1], 20); |
| ASSERT_EQ(array[2], 21); |
| ASSERT_EQ(array[3], 21); |
| ASSERT_EQ(array[4], 21); |
| ASSERT_EQ(array[5], 21); |
| ASSERT_EQ(array[6], 30); |
| ASSERT_EQ(array[7], 30); |
| ASSERT_EQ(array[8], 30); |
| ASSERT_EQ(array[9], 30); |
| } |
| |
| void test_unsorted_three_element_1(SortingRoutine sort_func) { |
| int array[3] = {14999024, 0, 3}; |
| |
| constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); |
| |
| int_sort(sort_func, array, ARRAY_LEN); |
| |
| ASSERT_EQ(array[0], 0); |
| ASSERT_EQ(array[1], 3); |
| ASSERT_EQ(array[2], 14999024); |
| } |
| |
| void test_unsorted_three_element_2(SortingRoutine sort_func) { |
| int array[3] = {3, 14999024, 0}; |
| |
| constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); |
| |
| int_sort(sort_func, array, ARRAY_LEN); |
| |
| ASSERT_EQ(array[0], 0); |
| ASSERT_EQ(array[1], 3); |
| ASSERT_EQ(array[2], 14999024); |
| } |
| |
| void test_unsorted_three_element_3(SortingRoutine sort_func) { |
| int array[3] = {3, 0, 14999024}; |
| |
| constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); |
| |
| int_sort(sort_func, array, ARRAY_LEN); |
| |
| ASSERT_EQ(array[0], 0); |
| ASSERT_EQ(array[1], 3); |
| ASSERT_EQ(array[2], 14999024); |
| } |
| |
| void test_same_three_element(SortingRoutine sort_func) { |
| int array[3] = {12345, 12345, 12345}; |
| |
| constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); |
| |
| int_sort(sort_func, array, ARRAY_LEN); |
| |
| ASSERT_EQ(array[0], 12345); |
| ASSERT_EQ(array[1], 12345); |
| ASSERT_EQ(array[2], 12345); |
| } |
| |
| void test_unsorted_two_element_1(SortingRoutine sort_func) { |
| int array[] = {14999024, 0}; |
| |
| constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); |
| |
| int_sort(sort_func, array, ARRAY_LEN); |
| |
| ASSERT_EQ(array[0], 0); |
| ASSERT_EQ(array[1], 14999024); |
| } |
| |
| void test_unsorted_two_element_2(SortingRoutine sort_func) { |
| int array[] = {0, 14999024}; |
| |
| constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); |
| |
| int_sort(sort_func, array, ARRAY_LEN); |
| |
| ASSERT_EQ(array[0], 0); |
| ASSERT_EQ(array[1], 14999024); |
| } |
| |
| void test_same_two_element(SortingRoutine sort_func) { |
| int array[] = {12345, 12345}; |
| |
| constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); |
| |
| int_sort(sort_func, array, ARRAY_LEN); |
| |
| ASSERT_EQ(array[0], 12345); |
| ASSERT_EQ(array[1], 12345); |
| } |
| |
| void test_single_element(SortingRoutine sort_func) { |
| int array[] = {12345}; |
| |
| constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); |
| |
| int_sort(sort_func, array, ARRAY_LEN); |
| |
| ASSERT_EQ(array[0], 12345); |
| } |
| |
| void test_different_elem_size(SortingRoutine sort_func) { |
| // Random order of values [0,50) to avoid only testing pre-sorted handling. |
| // Long enough to reach interesting code. |
| constexpr uint8_t ARRAY_INITIAL_VALS[] = { |
| 42, 13, 8, 4, 17, 28, 20, 32, 22, 29, 7, 2, 46, 37, 26, 49, 24, |
| 38, 10, 18, 40, 36, 47, 15, 11, 48, 44, 33, 1, 5, 16, 35, 39, 41, |
| 14, 23, 3, 9, 6, 27, 21, 25, 31, 45, 12, 43, 34, 30, 19, 0}; |
| |
| constexpr size_t ARRAY_LEN = sizeof(ARRAY_INITIAL_VALS); |
| constexpr size_t MAX_ELEM_SIZE = 150; |
| constexpr size_t BUF_SIZE = ARRAY_LEN * MAX_ELEM_SIZE; |
| |
| static_assert(ARRAY_LEN < 256); // so we can encode the values. |
| |
| // Minimum alignment to test implementation for bugs related to assuming |
| // incorrect association between alignment and element size. The buffer is |
| // 'static' as otherwise it will exhaust the stack on the GPU targets. |
| alignas(1) static uint8_t buf[BUF_SIZE]; |
| |
| // GCC still requires capturing the constant ARRAY_INITIAL_VALS in the |
| // lambda hence, let's use & to implicitly capture all needed variables |
| // automatically. |
| const auto fill_buf = [&](size_t elem_size) { |
| for (size_t i = 0; i < BUF_SIZE; ++i) { |
| buf[i] = 0; |
| } |
| |
| for (size_t elem_i = 0, buf_i = 0; elem_i < ARRAY_LEN; ++elem_i) { |
| const uint8_t elem_val = ARRAY_INITIAL_VALS[elem_i]; |
| for (size_t elem_byte_i = 0; elem_byte_i < elem_size; ++elem_byte_i) { |
| buf[buf_i] = elem_val; |
| buf_i += 1; |
| } |
| } |
| }; |
| |
| for (size_t elem_size = 0; elem_size <= MAX_ELEM_SIZE; ++elem_size) { |
| // Fill all bytes with data to ensure mistakes in elem swap are noticed. |
| fill_buf(elem_size); |
| |
| sort_func(reinterpret_cast<void *>(buf), ARRAY_LEN, elem_size, |
| [](const void *a, const void *b) -> int { |
| const uint8_t a_val = *reinterpret_cast<const uint8_t *>(a); |
| const uint8_t b_val = *reinterpret_cast<const uint8_t *>(b); |
| |
| if (a_val < b_val) { |
| return -1; |
| } else if (a_val > b_val) { |
| return 1; |
| } else { |
| return 0; |
| } |
| }); |
| |
| for (size_t elem_i = 0, buf_i = 0; elem_i < ARRAY_LEN; ++elem_i) { |
| const uint8_t expected_elem_val = static_cast<uint8_t>(elem_i); |
| |
| for (size_t elem_byte_i = 0; elem_byte_i < elem_size; ++elem_byte_i) { |
| const uint8_t buf_val = buf[buf_i]; |
| // Check that every byte in the element has the expected value. |
| ASSERT_EQ(buf_val, expected_elem_val) |
| << "elem_size: " << elem_size << " buf_i: " << buf_i << '\n'; |
| buf_i += 1; |
| } |
| } |
| } |
| } |
| }; |
| |
| #define LIST_SORTING_TESTS(Name, Func) \ |
| using LlvmLibc##Name##Test = SortingTest; \ |
| TEST_F(LlvmLibc##Name##Test, SortedArray) { test_sorted_array(Func); } \ |
| TEST_F(LlvmLibc##Name##Test, ReverseSortedArray) { \ |
| test_reversed_sorted_array(Func); \ |
| } \ |
| TEST_F(LlvmLibc##Name##Test, AllEqualElements) { \ |
| test_all_equal_elements(Func); \ |
| } \ |
| TEST_F(LlvmLibc##Name##Test, UnsortedArray1) { \ |
| test_unsorted_array_1(Func); \ |
| } \ |
| TEST_F(LlvmLibc##Name##Test, UnsortedArray2) { \ |
| test_unsorted_array_2(Func); \ |
| } \ |
| TEST_F(LlvmLibc##Name##Test, UnsortedArrayDuplicateElements1) { \ |
| test_unsorted_array_duplicated_1(Func); \ |
| } \ |
| TEST_F(LlvmLibc##Name##Test, UnsortedArrayDuplicateElements2) { \ |
| test_unsorted_array_duplicated_2(Func); \ |
| } \ |
| TEST_F(LlvmLibc##Name##Test, UnsortedArrayDuplicateElements3) { \ |
| test_unsorted_array_duplicated_3(Func); \ |
| } \ |
| TEST_F(LlvmLibc##Name##Test, UnsortedThreeElementArray1) { \ |
| test_unsorted_three_element_1(Func); \ |
| } \ |
| TEST_F(LlvmLibc##Name##Test, UnsortedThreeElementArray2) { \ |
| test_unsorted_three_element_2(Func); \ |
| } \ |
| TEST_F(LlvmLibc##Name##Test, UnsortedThreeElementArray3) { \ |
| test_unsorted_three_element_3(Func); \ |
| } \ |
| TEST_F(LlvmLibc##Name##Test, SameElementThreeElementArray) { \ |
| test_same_three_element(Func); \ |
| } \ |
| TEST_F(LlvmLibc##Name##Test, UnsortedTwoElementArray1) { \ |
| test_unsorted_two_element_1(Func); \ |
| } \ |
| TEST_F(LlvmLibc##Name##Test, UnsortedTwoElementArray2) { \ |
| test_unsorted_two_element_2(Func); \ |
| } \ |
| TEST_F(LlvmLibc##Name##Test, SameElementTwoElementArray) { \ |
| test_same_two_element(Func); \ |
| } \ |
| TEST_F(LlvmLibc##Name##Test, SingleElementArray) { \ |
| test_single_element(Func); \ |
| } \ |
| TEST_F(LlvmLibc##Name##Test, DifferentElemSizeArray) { \ |
| test_different_elem_size(Func); \ |
| } \ |
| static_assert(true) |