blob: d845280aaa27e64026ec26aff1046ffecbb2c57d [file] [log] [blame] [edit]
//===-- Unittests for sorting routines ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "src/__support/macros/config.h"
#include "test/UnitTest/Test.h"
class SortingTest : public LIBC_NAMESPACE::testing::Test {
using SortingRoutine = void (*)(void *array, size_t array_len,
size_t elem_size,
int (*compare)(const void *, const void *));
static int int_compare(const void *l, const void *r) {
int li = *reinterpret_cast<const int *>(l);
int ri = *reinterpret_cast<const int *>(r);
if (li == ri)
return 0;
else if (li > ri)
return 1;
else
return -1;
}
static void int_sort(SortingRoutine sort_func, int *array, size_t array_len) {
sort_func(reinterpret_cast<void *>(array), array_len, sizeof(int),
int_compare);
}
public:
void test_sorted_array(SortingRoutine sort_func) {
int array[25] = {10, 23, 33, 35, 55, 70, 71, 100, 110,
123, 133, 135, 155, 170, 171, 1100, 1110, 1123,
1133, 1135, 1155, 1170, 1171, 11100, 12310};
constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int);
int_sort(sort_func, array, ARRAY_LEN);
ASSERT_LE(array[0], 10);
ASSERT_LE(array[1], 23);
ASSERT_LE(array[2], 33);
ASSERT_LE(array[3], 35);
ASSERT_LE(array[4], 55);
ASSERT_LE(array[5], 70);
ASSERT_LE(array[6], 71);
ASSERT_LE(array[7], 100);
ASSERT_LE(array[8], 110);
ASSERT_LE(array[9], 123);
ASSERT_LE(array[10], 133);
ASSERT_LE(array[11], 135);
ASSERT_LE(array[12], 155);
ASSERT_LE(array[13], 170);
ASSERT_LE(array[14], 171);
ASSERT_LE(array[15], 1100);
ASSERT_LE(array[16], 1110);
ASSERT_LE(array[17], 1123);
ASSERT_LE(array[18], 1133);
ASSERT_LE(array[19], 1135);
ASSERT_LE(array[20], 1155);
ASSERT_LE(array[21], 1170);
ASSERT_LE(array[22], 1171);
ASSERT_LE(array[23], 11100);
ASSERT_LE(array[24], 12310);
}
void test_reversed_sorted_array(SortingRoutine sort_func) {
int array[] = {25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13,
12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int);
int_sort(sort_func, array, ARRAY_LEN);
for (int i = 0; i < int(ARRAY_LEN - 1); ++i)
ASSERT_EQ(array[i], i + 1);
}
void test_all_equal_elements(SortingRoutine sort_func) {
int array[] = {100, 100, 100, 100, 100, 100, 100, 100, 100,
100, 100, 100, 100, 100, 100, 100, 100, 100,
100, 100, 100, 100, 100, 100, 100};
constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int);
int_sort(sort_func, array, ARRAY_LEN);
for (size_t i = 0; i < ARRAY_LEN; ++i)
ASSERT_EQ(array[i], 100);
}
void test_unsorted_array_1(SortingRoutine sort_func) {
int array[25] = {10, 23, 8, 35, 55, 45, 40, 100, 110,
123, 90, 80, 70, 60, 171, 11, 1, -1,
-5, -10, 1155, 1170, 1171, 12, -100};
constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int);
int_sort(sort_func, array, ARRAY_LEN);
ASSERT_EQ(array[0], -100);
ASSERT_EQ(array[1], -10);
ASSERT_EQ(array[2], -5);
ASSERT_EQ(array[3], -1);
ASSERT_EQ(array[4], 1);
ASSERT_EQ(array[5], 8);
ASSERT_EQ(array[6], 10);
ASSERT_EQ(array[7], 11);
ASSERT_EQ(array[8], 12);
ASSERT_EQ(array[9], 23);
ASSERT_EQ(array[10], 35);
ASSERT_EQ(array[11], 40);
ASSERT_EQ(array[12], 45);
ASSERT_EQ(array[13], 55);
ASSERT_EQ(array[14], 60);
ASSERT_EQ(array[15], 70);
ASSERT_EQ(array[16], 80);
ASSERT_EQ(array[17], 90);
ASSERT_EQ(array[18], 100);
ASSERT_EQ(array[19], 110);
ASSERT_EQ(array[20], 123);
ASSERT_EQ(array[21], 171);
ASSERT_EQ(array[22], 1155);
ASSERT_EQ(array[23], 1170);
ASSERT_EQ(array[24], 1171);
}
void test_unsorted_array_2(SortingRoutine sort_func) {
int array[7] = {10, 40, 45, 55, 35, 23, 60};
constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int);
int_sort(sort_func, array, ARRAY_LEN);
ASSERT_EQ(array[0], 10);
ASSERT_EQ(array[1], 23);
ASSERT_EQ(array[2], 35);
ASSERT_EQ(array[3], 40);
ASSERT_EQ(array[4], 45);
ASSERT_EQ(array[5], 55);
ASSERT_EQ(array[6], 60);
}
void test_unsorted_array_duplicated_1(SortingRoutine sort_func) {
int array[6] = {10, 10, 20, 20, 5, 5};
constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int);
int_sort(sort_func, array, ARRAY_LEN);
ASSERT_EQ(array[0], 5);
ASSERT_EQ(array[1], 5);
ASSERT_EQ(array[2], 10);
ASSERT_EQ(array[3], 10);
ASSERT_EQ(array[4], 20);
ASSERT_EQ(array[5], 20);
}
void test_unsorted_array_duplicated_2(SortingRoutine sort_func) {
int array[10] = {20, 10, 10, 10, 10, 20, 21, 21, 21, 21};
constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int);
int_sort(sort_func, array, ARRAY_LEN);
ASSERT_EQ(array[0], 10);
ASSERT_EQ(array[1], 10);
ASSERT_EQ(array[2], 10);
ASSERT_EQ(array[3], 10);
ASSERT_EQ(array[4], 20);
ASSERT_EQ(array[5], 20);
ASSERT_EQ(array[6], 21);
ASSERT_EQ(array[7], 21);
ASSERT_EQ(array[8], 21);
ASSERT_EQ(array[9], 21);
}
void test_unsorted_array_duplicated_3(SortingRoutine sort_func) {
int array[10] = {20, 30, 30, 30, 30, 20, 21, 21, 21, 21};
constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int);
int_sort(sort_func, array, ARRAY_LEN);
ASSERT_EQ(array[0], 20);
ASSERT_EQ(array[1], 20);
ASSERT_EQ(array[2], 21);
ASSERT_EQ(array[3], 21);
ASSERT_EQ(array[4], 21);
ASSERT_EQ(array[5], 21);
ASSERT_EQ(array[6], 30);
ASSERT_EQ(array[7], 30);
ASSERT_EQ(array[8], 30);
ASSERT_EQ(array[9], 30);
}
void test_unsorted_three_element_1(SortingRoutine sort_func) {
int array[3] = {14999024, 0, 3};
constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int);
int_sort(sort_func, array, ARRAY_LEN);
ASSERT_EQ(array[0], 0);
ASSERT_EQ(array[1], 3);
ASSERT_EQ(array[2], 14999024);
}
void test_unsorted_three_element_2(SortingRoutine sort_func) {
int array[3] = {3, 14999024, 0};
constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int);
int_sort(sort_func, array, ARRAY_LEN);
ASSERT_EQ(array[0], 0);
ASSERT_EQ(array[1], 3);
ASSERT_EQ(array[2], 14999024);
}
void test_unsorted_three_element_3(SortingRoutine sort_func) {
int array[3] = {3, 0, 14999024};
constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int);
int_sort(sort_func, array, ARRAY_LEN);
ASSERT_EQ(array[0], 0);
ASSERT_EQ(array[1], 3);
ASSERT_EQ(array[2], 14999024);
}
void test_same_three_element(SortingRoutine sort_func) {
int array[3] = {12345, 12345, 12345};
constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int);
int_sort(sort_func, array, ARRAY_LEN);
ASSERT_EQ(array[0], 12345);
ASSERT_EQ(array[1], 12345);
ASSERT_EQ(array[2], 12345);
}
void test_unsorted_two_element_1(SortingRoutine sort_func) {
int array[] = {14999024, 0};
constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int);
int_sort(sort_func, array, ARRAY_LEN);
ASSERT_EQ(array[0], 0);
ASSERT_EQ(array[1], 14999024);
}
void test_unsorted_two_element_2(SortingRoutine sort_func) {
int array[] = {0, 14999024};
constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int);
int_sort(sort_func, array, ARRAY_LEN);
ASSERT_EQ(array[0], 0);
ASSERT_EQ(array[1], 14999024);
}
void test_same_two_element(SortingRoutine sort_func) {
int array[] = {12345, 12345};
constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int);
int_sort(sort_func, array, ARRAY_LEN);
ASSERT_EQ(array[0], 12345);
ASSERT_EQ(array[1], 12345);
}
void test_single_element(SortingRoutine sort_func) {
int array[] = {12345};
constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int);
int_sort(sort_func, array, ARRAY_LEN);
ASSERT_EQ(array[0], 12345);
}
void test_different_elem_size(SortingRoutine sort_func) {
// Random order of values [0,50) to avoid only testing pre-sorted handling.
// Long enough to reach interesting code.
constexpr uint8_t ARRAY_INITIAL_VALS[] = {
42, 13, 8, 4, 17, 28, 20, 32, 22, 29, 7, 2, 46, 37, 26, 49, 24,
38, 10, 18, 40, 36, 47, 15, 11, 48, 44, 33, 1, 5, 16, 35, 39, 41,
14, 23, 3, 9, 6, 27, 21, 25, 31, 45, 12, 43, 34, 30, 19, 0};
constexpr size_t ARRAY_LEN = sizeof(ARRAY_INITIAL_VALS);
constexpr size_t MAX_ELEM_SIZE = 150;
constexpr size_t BUF_SIZE = ARRAY_LEN * MAX_ELEM_SIZE;
static_assert(ARRAY_LEN < 256); // so we can encode the values.
// Minimum alignment to test implementation for bugs related to assuming
// incorrect association between alignment and element size. The buffer is
// 'static' as otherwise it will exhaust the stack on the GPU targets.
alignas(1) static uint8_t buf[BUF_SIZE];
// GCC still requires capturing the constant ARRAY_INITIAL_VALS in the
// lambda hence, let's use & to implicitly capture all needed variables
// automatically.
const auto fill_buf = [&](size_t elem_size) {
for (size_t i = 0; i < BUF_SIZE; ++i) {
buf[i] = 0;
}
for (size_t elem_i = 0, buf_i = 0; elem_i < ARRAY_LEN; ++elem_i) {
const uint8_t elem_val = ARRAY_INITIAL_VALS[elem_i];
for (size_t elem_byte_i = 0; elem_byte_i < elem_size; ++elem_byte_i) {
buf[buf_i] = elem_val;
buf_i += 1;
}
}
};
for (size_t elem_size = 0; elem_size <= MAX_ELEM_SIZE; ++elem_size) {
// Fill all bytes with data to ensure mistakes in elem swap are noticed.
fill_buf(elem_size);
sort_func(reinterpret_cast<void *>(buf), ARRAY_LEN, elem_size,
[](const void *a, const void *b) -> int {
const uint8_t a_val = *reinterpret_cast<const uint8_t *>(a);
const uint8_t b_val = *reinterpret_cast<const uint8_t *>(b);
if (a_val < b_val) {
return -1;
} else if (a_val > b_val) {
return 1;
} else {
return 0;
}
});
for (size_t elem_i = 0, buf_i = 0; elem_i < ARRAY_LEN; ++elem_i) {
const uint8_t expected_elem_val = static_cast<uint8_t>(elem_i);
for (size_t elem_byte_i = 0; elem_byte_i < elem_size; ++elem_byte_i) {
const uint8_t buf_val = buf[buf_i];
// Check that every byte in the element has the expected value.
ASSERT_EQ(buf_val, expected_elem_val)
<< "elem_size: " << elem_size << " buf_i: " << buf_i << '\n';
buf_i += 1;
}
}
}
}
};
#define LIST_SORTING_TESTS(Name, Func) \
using LlvmLibc##Name##Test = SortingTest; \
TEST_F(LlvmLibc##Name##Test, SortedArray) { test_sorted_array(Func); } \
TEST_F(LlvmLibc##Name##Test, ReverseSortedArray) { \
test_reversed_sorted_array(Func); \
} \
TEST_F(LlvmLibc##Name##Test, AllEqualElements) { \
test_all_equal_elements(Func); \
} \
TEST_F(LlvmLibc##Name##Test, UnsortedArray1) { \
test_unsorted_array_1(Func); \
} \
TEST_F(LlvmLibc##Name##Test, UnsortedArray2) { \
test_unsorted_array_2(Func); \
} \
TEST_F(LlvmLibc##Name##Test, UnsortedArrayDuplicateElements1) { \
test_unsorted_array_duplicated_1(Func); \
} \
TEST_F(LlvmLibc##Name##Test, UnsortedArrayDuplicateElements2) { \
test_unsorted_array_duplicated_2(Func); \
} \
TEST_F(LlvmLibc##Name##Test, UnsortedArrayDuplicateElements3) { \
test_unsorted_array_duplicated_3(Func); \
} \
TEST_F(LlvmLibc##Name##Test, UnsortedThreeElementArray1) { \
test_unsorted_three_element_1(Func); \
} \
TEST_F(LlvmLibc##Name##Test, UnsortedThreeElementArray2) { \
test_unsorted_three_element_2(Func); \
} \
TEST_F(LlvmLibc##Name##Test, UnsortedThreeElementArray3) { \
test_unsorted_three_element_3(Func); \
} \
TEST_F(LlvmLibc##Name##Test, SameElementThreeElementArray) { \
test_same_three_element(Func); \
} \
TEST_F(LlvmLibc##Name##Test, UnsortedTwoElementArray1) { \
test_unsorted_two_element_1(Func); \
} \
TEST_F(LlvmLibc##Name##Test, UnsortedTwoElementArray2) { \
test_unsorted_two_element_2(Func); \
} \
TEST_F(LlvmLibc##Name##Test, SameElementTwoElementArray) { \
test_same_two_element(Func); \
} \
TEST_F(LlvmLibc##Name##Test, SingleElementArray) { \
test_single_element(Func); \
} \
TEST_F(LlvmLibc##Name##Test, DifferentElemSizeArray) { \
test_different_elem_size(Func); \
} \
static_assert(true)