blob: 76b1f0797621365aef963519ea5007ff97e451e0 [file] [log] [blame]
//===-- Implementation of hypotf function ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_HYPOT_H
#define LLVM_LIBC_SRC___SUPPORT_FPUTIL_HYPOT_H
#include "BasicOperations.h"
#include "FEnvImpl.h"
#include "FPBits.h"
#include "rounding_mode.h"
#include "src/__support/CPP/bit.h"
#include "src/__support/CPP/type_traits.h"
#include "src/__support/common.h"
#include "src/__support/uint128.h"
namespace LIBC_NAMESPACE {
namespace fputil {
namespace internal {
template <typename T>
LIBC_INLINE T find_leading_one(T mant, int &shift_length) {
shift_length = 0;
if (mant > 0) {
shift_length = (sizeof(mant) * 8) - 1 - cpp::countl_zero(mant);
}
return T(1) << shift_length;
}
} // namespace internal
template <typename T> struct DoubleLength;
template <> struct DoubleLength<uint16_t> {
using Type = uint32_t;
};
template <> struct DoubleLength<uint32_t> {
using Type = uint64_t;
};
template <> struct DoubleLength<uint64_t> {
using Type = UInt128;
};
// Correctly rounded IEEE 754 HYPOT(x, y) with round to nearest, ties to even.
//
// Algorithm:
// - Let a = max(|x|, |y|), b = min(|x|, |y|), then we have that:
// a <= sqrt(a^2 + b^2) <= min(a + b, a*sqrt(2))
// 1. So if b < eps(a)/2, then HYPOT(x, y) = a.
//
// - Moreover, the exponent part of HYPOT(x, y) is either the same or 1 more
// than the exponent part of a.
//
// 2. For the remaining cases, we will use the digit-by-digit (shift-and-add)
// algorithm to compute SQRT(Z):
//
// - For Y = y0.y1...yn... = SQRT(Z),
// let Y(n) = y0.y1...yn be the first n fractional digits of Y.
//
// - The nth scaled residual R(n) is defined to be:
// R(n) = 2^n * (Z - Y(n)^2)
//
// - Since Y(n) = Y(n - 1) + yn * 2^(-n), the scaled residual
// satisfies the following recurrence formula:
// R(n) = 2*R(n - 1) - yn*(2*Y(n - 1) + 2^(-n)),
// with the initial conditions:
// Y(0) = y0, and R(0) = Z - y0.
//
// - So the nth fractional digit of Y = SQRT(Z) can be decided by:
// yn = 1 if 2*R(n - 1) >= 2*Y(n - 1) + 2^(-n),
// 0 otherwise.
//
// 3. Precision analysis:
//
// - Notice that in the decision function:
// 2*R(n - 1) >= 2*Y(n - 1) + 2^(-n),
// the right hand side only uses up to the 2^(-n)-bit, and both sides are
// non-negative, so R(n - 1) can be truncated at the 2^(-(n + 1))-bit, so
// that 2*R(n - 1) is corrected up to the 2^(-n)-bit.
//
// - Thus, in order to round SQRT(a^2 + b^2) correctly up to n-fractional
// bits, we need to perform the summation (a^2 + b^2) correctly up to (2n +
// 2)-fractional bits, and the remaining bits are sticky bits (i.e. we only
// care if they are 0 or > 0), and the comparisons, additions/subtractions
// can be done in n-fractional bits precision.
//
// - For single precision (float), we can use uint64_t to store the sum a^2 +
// b^2 exact up to (2n + 2)-fractional bits.
//
// - Then we can feed this sum into the digit-by-digit algorithm for SQRT(Z)
// described above.
//
//
// Special cases:
// - HYPOT(x, y) is +Inf if x or y is +Inf or -Inf; else
// - HYPOT(x, y) is NaN if x or y is NaN.
//
template <typename T, cpp::enable_if_t<cpp::is_floating_point_v<T>, int> = 0>
LIBC_INLINE T hypot(T x, T y) {
using FPBits_t = FPBits<T>;
using StorageType = typename FPBits<T>::StorageType;
using DStorageType = typename DoubleLength<StorageType>::Type;
FPBits_t x_bits(x), y_bits(y);
if (x_bits.is_inf() || y_bits.is_inf()) {
return FPBits_t::inf().get_val();
}
if (x_bits.is_nan()) {
return x;
}
if (y_bits.is_nan()) {
return y;
}
uint16_t x_exp = x_bits.get_biased_exponent();
uint16_t y_exp = y_bits.get_biased_exponent();
uint16_t exp_diff = (x_exp > y_exp) ? (x_exp - y_exp) : (y_exp - x_exp);
if ((exp_diff >= FPBits_t::FRACTION_LEN + 2) || (x == 0) || (y == 0)) {
return abs(x) + abs(y);
}
uint16_t a_exp, b_exp, out_exp;
StorageType a_mant, b_mant;
DStorageType a_mant_sq, b_mant_sq;
bool sticky_bits;
if (abs(x) >= abs(y)) {
a_exp = x_exp;
a_mant = x_bits.get_mantissa();
b_exp = y_exp;
b_mant = y_bits.get_mantissa();
} else {
a_exp = y_exp;
a_mant = y_bits.get_mantissa();
b_exp = x_exp;
b_mant = x_bits.get_mantissa();
}
out_exp = a_exp;
// Add an extra bit to simplify the final rounding bit computation.
constexpr StorageType ONE = StorageType(1) << (FPBits_t::FRACTION_LEN + 1);
a_mant <<= 1;
b_mant <<= 1;
StorageType leading_one;
int y_mant_width;
if (a_exp != 0) {
leading_one = ONE;
a_mant |= ONE;
y_mant_width = FPBits_t::FRACTION_LEN + 1;
} else {
leading_one = internal::find_leading_one(a_mant, y_mant_width);
a_exp = 1;
}
if (b_exp != 0) {
b_mant |= ONE;
} else {
b_exp = 1;
}
a_mant_sq = static_cast<DStorageType>(a_mant) * a_mant;
b_mant_sq = static_cast<DStorageType>(b_mant) * b_mant;
// At this point, a_exp >= b_exp > a_exp - 25, so in order to line up aSqMant
// and bSqMant, we need to shift bSqMant to the right by (a_exp - b_exp) bits.
// But before that, remember to store the losing bits to sticky.
// The shift length is for a^2 and b^2, so it's double of the exponent
// difference between a and b.
uint16_t shift_length = static_cast<uint16_t>(2 * (a_exp - b_exp));
sticky_bits =
((b_mant_sq & ((DStorageType(1) << shift_length) - DStorageType(1))) !=
DStorageType(0));
b_mant_sq >>= shift_length;
DStorageType sum = a_mant_sq + b_mant_sq;
if (sum >= (DStorageType(1) << (2 * y_mant_width + 2))) {
// a^2 + b^2 >= 4* leading_one^2, so we will need an extra bit to the left.
if (leading_one == ONE) {
// For normal result, we discard the last 2 bits of the sum and increase
// the exponent.
sticky_bits = sticky_bits || ((sum & 0x3U) != 0);
sum >>= 2;
++out_exp;
if (out_exp >= FPBits_t::MAX_BIASED_EXPONENT) {
if (int round_mode = quick_get_round();
round_mode == FE_TONEAREST || round_mode == FE_UPWARD)
return FPBits_t::inf().get_val();
return FPBits_t::max_normal().get_val();
}
} else {
// For denormal result, we simply move the leading bit of the result to
// the left by 1.
leading_one <<= 1;
++y_mant_width;
}
}
StorageType y_new = leading_one;
StorageType r = static_cast<StorageType>(sum >> y_mant_width) - leading_one;
StorageType tail_bits = static_cast<StorageType>(sum) & (leading_one - 1);
for (StorageType current_bit = leading_one >> 1; current_bit;
current_bit >>= 1) {
r = (r << 1) + ((tail_bits & current_bit) ? 1 : 0);
StorageType tmp = (y_new << 1) + current_bit; // 2*y_new(n - 1) + 2^(-n)
if (r >= tmp) {
r -= tmp;
y_new += current_bit;
}
}
bool round_bit = y_new & StorageType(1);
bool lsb = y_new & StorageType(2);
if (y_new >= ONE) {
y_new -= ONE;
if (out_exp == 0) {
out_exp = 1;
}
}
y_new >>= 1;
// Round to the nearest, tie to even.
int round_mode = quick_get_round();
switch (round_mode) {
case FE_TONEAREST:
// Round to nearest, ties to even
if (round_bit && (lsb || sticky_bits || (r != 0)))
++y_new;
break;
case FE_UPWARD:
if (round_bit || sticky_bits || (r != 0))
++y_new;
break;
}
if (y_new >= (ONE >> 1)) {
y_new -= ONE >> 1;
++out_exp;
if (out_exp >= FPBits_t::MAX_BIASED_EXPONENT) {
if (round_mode == FE_TONEAREST || round_mode == FE_UPWARD)
return FPBits_t::inf().get_val();
return FPBits_t::max_normal().get_val();
}
}
y_new |= static_cast<StorageType>(out_exp) << FPBits_t::FRACTION_LEN;
return cpp::bit_cast<T>(y_new);
}
} // namespace fputil
} // namespace LIBC_NAMESPACE
#endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_HYPOT_H