| //===-- msan_allocator.cpp -------------------------- ---------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is a part of MemorySanitizer. |
| // |
| // MemorySanitizer allocator. |
| //===----------------------------------------------------------------------===// |
| |
| #include "msan_allocator.h" |
| |
| #include "msan.h" |
| #include "msan_interface_internal.h" |
| #include "msan_origin.h" |
| #include "msan_poisoning.h" |
| #include "msan_thread.h" |
| #include "sanitizer_common/sanitizer_allocator.h" |
| #include "sanitizer_common/sanitizer_allocator_checks.h" |
| #include "sanitizer_common/sanitizer_allocator_interface.h" |
| #include "sanitizer_common/sanitizer_allocator_report.h" |
| #include "sanitizer_common/sanitizer_errno.h" |
| |
| using namespace __msan; |
| |
| namespace { |
| struct Metadata { |
| uptr requested_size; |
| }; |
| |
| struct MsanMapUnmapCallback { |
| void OnMap(uptr p, uptr size) const {} |
| void OnMapSecondary(uptr p, uptr size, uptr user_begin, |
| uptr user_size) const {} |
| void OnUnmap(uptr p, uptr size) const { |
| __msan_unpoison((void *)p, size); |
| |
| // We are about to unmap a chunk of user memory. |
| // Mark the corresponding shadow memory as not needed. |
| uptr shadow_p = MEM_TO_SHADOW(p); |
| ReleaseMemoryPagesToOS(shadow_p, shadow_p + size); |
| if (__msan_get_track_origins()) { |
| uptr origin_p = MEM_TO_ORIGIN(p); |
| ReleaseMemoryPagesToOS(origin_p, origin_p + size); |
| } |
| } |
| }; |
| |
| // Note: to ensure that the allocator is compatible with the application memory |
| // layout (especially with high-entropy ASLR), kSpaceBeg and kSpaceSize must be |
| // duplicated as MappingDesc::ALLOCATOR in msan.h. |
| #if defined(__mips64) |
| const uptr kMaxAllowedMallocSize = 2UL << 30; |
| |
| struct AP32 { |
| static const uptr kSpaceBeg = 0; |
| static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE; |
| static const uptr kMetadataSize = sizeof(Metadata); |
| using SizeClassMap = __sanitizer::CompactSizeClassMap; |
| static const uptr kRegionSizeLog = 20; |
| using AddressSpaceView = LocalAddressSpaceView; |
| using MapUnmapCallback = MsanMapUnmapCallback; |
| static const uptr kFlags = 0; |
| }; |
| using PrimaryAllocator = SizeClassAllocator32<AP32>; |
| #elif defined(__x86_64__) |
| #if SANITIZER_NETBSD || SANITIZER_LINUX |
| const uptr kAllocatorSpace = 0x700000000000ULL; |
| #else |
| const uptr kAllocatorSpace = 0x600000000000ULL; |
| #endif |
| const uptr kMaxAllowedMallocSize = 1ULL << 40; |
| |
| struct AP64 { // Allocator64 parameters. Deliberately using a short name. |
| static const uptr kSpaceBeg = kAllocatorSpace; |
| static const uptr kSpaceSize = 0x40000000000; // 4T. |
| static const uptr kMetadataSize = sizeof(Metadata); |
| using SizeClassMap = DefaultSizeClassMap; |
| using MapUnmapCallback = MsanMapUnmapCallback; |
| static const uptr kFlags = 0; |
| using AddressSpaceView = LocalAddressSpaceView; |
| }; |
| |
| using PrimaryAllocator = SizeClassAllocator64<AP64>; |
| |
| #elif defined(__loongarch_lp64) |
| const uptr kAllocatorSpace = 0x700000000000ULL; |
| const uptr kMaxAllowedMallocSize = 8UL << 30; |
| |
| struct AP64 { // Allocator64 parameters. Deliberately using a short name. |
| static const uptr kSpaceBeg = kAllocatorSpace; |
| static const uptr kSpaceSize = 0x40000000000; // 4T. |
| static const uptr kMetadataSize = sizeof(Metadata); |
| using SizeClassMap = DefaultSizeClassMap; |
| using MapUnmapCallback = MsanMapUnmapCallback; |
| static const uptr kFlags = 0; |
| using AddressSpaceView = LocalAddressSpaceView; |
| }; |
| |
| using PrimaryAllocator = SizeClassAllocator64<AP64>; |
| |
| #elif defined(__powerpc64__) |
| const uptr kMaxAllowedMallocSize = 2UL << 30; // 2G |
| |
| struct AP64 { // Allocator64 parameters. Deliberately using a short name. |
| static const uptr kSpaceBeg = 0x300000000000; |
| static const uptr kSpaceSize = 0x020000000000; // 2T. |
| static const uptr kMetadataSize = sizeof(Metadata); |
| using SizeClassMap = DefaultSizeClassMap; |
| using MapUnmapCallback = MsanMapUnmapCallback; |
| static const uptr kFlags = 0; |
| using AddressSpaceView = LocalAddressSpaceView; |
| }; |
| |
| using PrimaryAllocator = SizeClassAllocator64<AP64>; |
| #elif defined(__s390x__) |
| const uptr kMaxAllowedMallocSize = 2UL << 30; // 2G |
| |
| struct AP64 { // Allocator64 parameters. Deliberately using a short name. |
| static const uptr kSpaceBeg = 0x440000000000; |
| static const uptr kSpaceSize = 0x020000000000; // 2T. |
| static const uptr kMetadataSize = sizeof(Metadata); |
| using SizeClassMap = DefaultSizeClassMap; |
| using MapUnmapCallback = MsanMapUnmapCallback; |
| static const uptr kFlags = 0; |
| using AddressSpaceView = LocalAddressSpaceView; |
| }; |
| |
| using PrimaryAllocator = SizeClassAllocator64<AP64>; |
| #elif defined(__aarch64__) |
| const uptr kMaxAllowedMallocSize = 8UL << 30; |
| |
| struct AP64 { |
| static const uptr kSpaceBeg = 0xE00000000000ULL; |
| static const uptr kSpaceSize = 0x40000000000; // 4T. |
| static const uptr kMetadataSize = sizeof(Metadata); |
| using SizeClassMap = DefaultSizeClassMap; |
| using MapUnmapCallback = MsanMapUnmapCallback; |
| static const uptr kFlags = 0; |
| using AddressSpaceView = LocalAddressSpaceView; |
| }; |
| using PrimaryAllocator = SizeClassAllocator64<AP64>; |
| #endif |
| using Allocator = CombinedAllocator<PrimaryAllocator>; |
| using AllocatorCache = Allocator::AllocatorCache; |
| } // namespace __msan |
| |
| static Allocator allocator; |
| static AllocatorCache fallback_allocator_cache; |
| static StaticSpinMutex fallback_mutex; |
| |
| static uptr max_malloc_size; |
| |
| void __msan::MsanAllocatorInit() { |
| SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null); |
| allocator.Init(common_flags()->allocator_release_to_os_interval_ms); |
| if (common_flags()->max_allocation_size_mb) |
| max_malloc_size = Min(common_flags()->max_allocation_size_mb << 20, |
| kMaxAllowedMallocSize); |
| else |
| max_malloc_size = kMaxAllowedMallocSize; |
| } |
| |
| void __msan::LockAllocator() { allocator.ForceLock(); } |
| |
| void __msan::UnlockAllocator() { allocator.ForceUnlock(); } |
| |
| AllocatorCache *GetAllocatorCache(MsanThreadLocalMallocStorage *ms) { |
| CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator_cache)); |
| return reinterpret_cast<AllocatorCache *>(ms->allocator_cache); |
| } |
| |
| void MsanThreadLocalMallocStorage::Init() { |
| allocator.InitCache(GetAllocatorCache(this)); |
| } |
| |
| void MsanThreadLocalMallocStorage::CommitBack() { |
| allocator.SwallowCache(GetAllocatorCache(this)); |
| allocator.DestroyCache(GetAllocatorCache(this)); |
| } |
| |
| static void *MsanAllocate(BufferedStackTrace *stack, uptr size, uptr alignment, |
| bool zero) { |
| if (UNLIKELY(size > max_malloc_size)) { |
| if (AllocatorMayReturnNull()) { |
| Report("WARNING: MemorySanitizer failed to allocate 0x%zx bytes\n", size); |
| return nullptr; |
| } |
| GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
| ReportAllocationSizeTooBig(size, max_malloc_size, stack); |
| } |
| if (UNLIKELY(IsRssLimitExceeded())) { |
| if (AllocatorMayReturnNull()) |
| return nullptr; |
| GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
| ReportRssLimitExceeded(stack); |
| } |
| MsanThread *t = GetCurrentThread(); |
| void *allocated; |
| if (t) { |
| AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); |
| allocated = allocator.Allocate(cache, size, alignment); |
| } else { |
| SpinMutexLock l(&fallback_mutex); |
| AllocatorCache *cache = &fallback_allocator_cache; |
| allocated = allocator.Allocate(cache, size, alignment); |
| } |
| if (UNLIKELY(!allocated)) { |
| SetAllocatorOutOfMemory(); |
| if (AllocatorMayReturnNull()) |
| return nullptr; |
| GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
| ReportOutOfMemory(size, stack); |
| } |
| auto *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated)); |
| meta->requested_size = size; |
| if (zero) { |
| if (allocator.FromPrimary(allocated)) |
| __msan_clear_and_unpoison(allocated, size); |
| else |
| __msan_unpoison(allocated, size); // Mem is already zeroed. |
| } else if (flags()->poison_in_malloc) { |
| __msan_poison(allocated, size); |
| if (__msan_get_track_origins()) { |
| stack->tag = StackTrace::TAG_ALLOC; |
| Origin o = Origin::CreateHeapOrigin(stack); |
| __msan_set_origin(allocated, size, o.raw_id()); |
| } |
| } |
| UnpoisonParam(2); |
| RunMallocHooks(allocated, size); |
| return allocated; |
| } |
| |
| void __msan::MsanDeallocate(BufferedStackTrace *stack, void *p) { |
| DCHECK(p); |
| UnpoisonParam(1); |
| RunFreeHooks(p); |
| |
| Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p)); |
| uptr size = meta->requested_size; |
| meta->requested_size = 0; |
| // This memory will not be reused by anyone else, so we are free to keep it |
| // poisoned. The secondary allocator will unmap and unpoison by |
| // MsanMapUnmapCallback, no need to poison it here. |
| if (flags()->poison_in_free && allocator.FromPrimary(p)) { |
| __msan_poison(p, size); |
| if (__msan_get_track_origins()) { |
| stack->tag = StackTrace::TAG_DEALLOC; |
| Origin o = Origin::CreateHeapOrigin(stack); |
| __msan_set_origin(p, size, o.raw_id()); |
| } |
| } |
| if (MsanThread *t = GetCurrentThread()) { |
| AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); |
| allocator.Deallocate(cache, p); |
| } else { |
| SpinMutexLock l(&fallback_mutex); |
| AllocatorCache *cache = &fallback_allocator_cache; |
| allocator.Deallocate(cache, p); |
| } |
| } |
| |
| static void *MsanReallocate(BufferedStackTrace *stack, void *old_p, |
| uptr new_size, uptr alignment) { |
| Metadata *meta = reinterpret_cast<Metadata*>(allocator.GetMetaData(old_p)); |
| uptr old_size = meta->requested_size; |
| uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(old_p); |
| if (new_size <= actually_allocated_size) { |
| // We are not reallocating here. |
| meta->requested_size = new_size; |
| if (new_size > old_size) { |
| if (flags()->poison_in_malloc) { |
| stack->tag = StackTrace::TAG_ALLOC; |
| PoisonMemory((char *)old_p + old_size, new_size - old_size, stack); |
| } |
| } |
| return old_p; |
| } |
| uptr memcpy_size = Min(new_size, old_size); |
| void *new_p = MsanAllocate(stack, new_size, alignment, false); |
| if (new_p) { |
| CopyMemory(new_p, old_p, memcpy_size, stack); |
| MsanDeallocate(stack, old_p); |
| } |
| return new_p; |
| } |
| |
| static void *MsanCalloc(BufferedStackTrace *stack, uptr nmemb, uptr size) { |
| if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { |
| if (AllocatorMayReturnNull()) |
| return nullptr; |
| GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
| ReportCallocOverflow(nmemb, size, stack); |
| } |
| return MsanAllocate(stack, nmemb * size, sizeof(u64), true); |
| } |
| |
| static const void *AllocationBegin(const void *p) { |
| if (!p) |
| return nullptr; |
| void *beg = allocator.GetBlockBegin(p); |
| if (!beg) |
| return nullptr; |
| auto *b = reinterpret_cast<Metadata *>(allocator.GetMetaData(beg)); |
| if (!b) |
| return nullptr; |
| if (b->requested_size == 0) |
| return nullptr; |
| |
| return beg; |
| } |
| |
| static uptr AllocationSizeFast(const void *p) { |
| return reinterpret_cast<Metadata *>(allocator.GetMetaData(p))->requested_size; |
| } |
| |
| static uptr AllocationSize(const void *p) { |
| if (!p) |
| return 0; |
| if (allocator.GetBlockBegin(p) != p) |
| return 0; |
| return AllocationSizeFast(p); |
| } |
| |
| void *__msan::msan_malloc(uptr size, BufferedStackTrace *stack) { |
| return SetErrnoOnNull(MsanAllocate(stack, size, sizeof(u64), false)); |
| } |
| |
| void *__msan::msan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { |
| return SetErrnoOnNull(MsanCalloc(stack, nmemb, size)); |
| } |
| |
| void *__msan::msan_realloc(void *ptr, uptr size, BufferedStackTrace *stack) { |
| if (!ptr) |
| return SetErrnoOnNull(MsanAllocate(stack, size, sizeof(u64), false)); |
| if (size == 0) { |
| MsanDeallocate(stack, ptr); |
| return nullptr; |
| } |
| return SetErrnoOnNull(MsanReallocate(stack, ptr, size, sizeof(u64))); |
| } |
| |
| void *__msan::msan_reallocarray(void *ptr, uptr nmemb, uptr size, |
| BufferedStackTrace *stack) { |
| if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { |
| errno = errno_ENOMEM; |
| if (AllocatorMayReturnNull()) |
| return nullptr; |
| GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
| ReportReallocArrayOverflow(nmemb, size, stack); |
| } |
| return msan_realloc(ptr, nmemb * size, stack); |
| } |
| |
| void *__msan::msan_valloc(uptr size, BufferedStackTrace *stack) { |
| return SetErrnoOnNull(MsanAllocate(stack, size, GetPageSizeCached(), false)); |
| } |
| |
| void *__msan::msan_pvalloc(uptr size, BufferedStackTrace *stack) { |
| uptr PageSize = GetPageSizeCached(); |
| if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { |
| errno = errno_ENOMEM; |
| if (AllocatorMayReturnNull()) |
| return nullptr; |
| GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
| ReportPvallocOverflow(size, stack); |
| } |
| // pvalloc(0) should allocate one page. |
| size = size ? RoundUpTo(size, PageSize) : PageSize; |
| return SetErrnoOnNull(MsanAllocate(stack, size, PageSize, false)); |
| } |
| |
| void *__msan::msan_aligned_alloc(uptr alignment, uptr size, |
| BufferedStackTrace *stack) { |
| if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { |
| errno = errno_EINVAL; |
| if (AllocatorMayReturnNull()) |
| return nullptr; |
| GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
| ReportInvalidAlignedAllocAlignment(size, alignment, stack); |
| } |
| return SetErrnoOnNull(MsanAllocate(stack, size, alignment, false)); |
| } |
| |
| void *__msan::msan_memalign(uptr alignment, uptr size, |
| BufferedStackTrace *stack) { |
| if (UNLIKELY(!IsPowerOfTwo(alignment))) { |
| errno = errno_EINVAL; |
| if (AllocatorMayReturnNull()) |
| return nullptr; |
| GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
| ReportInvalidAllocationAlignment(alignment, stack); |
| } |
| return SetErrnoOnNull(MsanAllocate(stack, size, alignment, false)); |
| } |
| |
| int __msan::msan_posix_memalign(void **memptr, uptr alignment, uptr size, |
| BufferedStackTrace *stack) { |
| if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { |
| if (AllocatorMayReturnNull()) |
| return errno_EINVAL; |
| GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
| ReportInvalidPosixMemalignAlignment(alignment, stack); |
| } |
| void *ptr = MsanAllocate(stack, size, alignment, false); |
| if (UNLIKELY(!ptr)) |
| // OOM error is already taken care of by MsanAllocate. |
| return errno_ENOMEM; |
| CHECK(IsAligned((uptr)ptr, alignment)); |
| *memptr = ptr; |
| return 0; |
| } |
| |
| extern "C" { |
| uptr __sanitizer_get_current_allocated_bytes() { |
| uptr stats[AllocatorStatCount]; |
| allocator.GetStats(stats); |
| return stats[AllocatorStatAllocated]; |
| } |
| |
| uptr __sanitizer_get_heap_size() { |
| uptr stats[AllocatorStatCount]; |
| allocator.GetStats(stats); |
| return stats[AllocatorStatMapped]; |
| } |
| |
| uptr __sanitizer_get_free_bytes() { return 1; } |
| |
| uptr __sanitizer_get_unmapped_bytes() { return 1; } |
| |
| uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; } |
| |
| int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; } |
| |
| const void *__sanitizer_get_allocated_begin(const void *p) { |
| return AllocationBegin(p); |
| } |
| |
| uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); } |
| |
| uptr __sanitizer_get_allocated_size_fast(const void *p) { |
| DCHECK_EQ(p, __sanitizer_get_allocated_begin(p)); |
| uptr ret = AllocationSizeFast(p); |
| DCHECK_EQ(ret, __sanitizer_get_allocated_size(p)); |
| return ret; |
| } |
| |
| void __sanitizer_purge_allocator() { allocator.ForceReleaseToOS(); } |
| } |