blob: 9fbf38ae6a1f4880e28a07575ad1379c9dfd4b54 [file] [log] [blame]
//===-- hwasan_report.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of HWAddressSanitizer.
//
// Error reporting.
//===----------------------------------------------------------------------===//
#include "hwasan_report.h"
#include <dlfcn.h>
#include "hwasan.h"
#include "hwasan_allocator.h"
#include "hwasan_globals.h"
#include "hwasan_mapping.h"
#include "hwasan_thread.h"
#include "hwasan_thread_list.h"
#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_array_ref.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_internal_defs.h"
#include "sanitizer_common/sanitizer_mutex.h"
#include "sanitizer_common/sanitizer_placement_new.h"
#include "sanitizer_common/sanitizer_report_decorator.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_stacktrace_printer.h"
#include "sanitizer_common/sanitizer_symbolizer.h"
using namespace __sanitizer;
namespace __hwasan {
class ScopedReport {
public:
explicit ScopedReport(bool fatal) : fatal(fatal) {
Lock lock(&error_message_lock_);
error_message_ptr_ = &error_message_;
++hwasan_report_count;
}
~ScopedReport() {
void (*report_cb)(const char *);
{
Lock lock(&error_message_lock_);
report_cb = error_report_callback_;
error_message_ptr_ = nullptr;
}
if (report_cb)
report_cb(error_message_.data());
if (fatal)
SetAbortMessage(error_message_.data());
if (common_flags()->print_module_map >= 2 ||
(fatal && common_flags()->print_module_map))
DumpProcessMap();
if (fatal)
Die();
}
static void MaybeAppendToErrorMessage(const char *msg) {
Lock lock(&error_message_lock_);
if (!error_message_ptr_)
return;
error_message_ptr_->Append(msg);
}
static void SetErrorReportCallback(void (*callback)(const char *)) {
Lock lock(&error_message_lock_);
error_report_callback_ = callback;
}
private:
InternalScopedString error_message_;
bool fatal;
static Mutex error_message_lock_;
static InternalScopedString *error_message_ptr_
SANITIZER_GUARDED_BY(error_message_lock_);
static void (*error_report_callback_)(const char *);
};
Mutex ScopedReport::error_message_lock_;
InternalScopedString *ScopedReport::error_message_ptr_;
void (*ScopedReport::error_report_callback_)(const char *);
// If there is an active ScopedReport, append to its error message.
void AppendToErrorMessageBuffer(const char *buffer) {
ScopedReport::MaybeAppendToErrorMessage(buffer);
}
static StackTrace GetStackTraceFromId(u32 id) {
CHECK(id);
StackTrace res = StackDepotGet(id);
CHECK(res.trace);
return res;
}
static void MaybePrintAndroidHelpUrl() {
#if SANITIZER_ANDROID
Printf(
"Learn more about HWASan reports: "
"https://source.android.com/docs/security/test/memory-safety/"
"hwasan-reports\n");
#endif
}
namespace {
// A RAII object that holds a copy of the current thread stack ring buffer.
// The actual stack buffer may change while we are iterating over it (for
// example, Printf may call syslog() which can itself be built with hwasan).
class SavedStackAllocations {
public:
SavedStackAllocations() = default;
explicit SavedStackAllocations(Thread *t) { CopyFrom(t); }
void CopyFrom(Thread *t) {
StackAllocationsRingBuffer *rb = t->stack_allocations();
uptr size = rb->size() * sizeof(uptr);
void *storage =
MmapAlignedOrDieOnFatalError(size, size * 2, "saved stack allocations");
new (&rb_) StackAllocationsRingBuffer(*rb, storage);
thread_id_ = t->unique_id();
}
~SavedStackAllocations() {
if (rb_) {
StackAllocationsRingBuffer *rb = get();
UnmapOrDie(rb->StartOfStorage(), rb->size() * sizeof(uptr));
}
}
const StackAllocationsRingBuffer *get() const {
return (const StackAllocationsRingBuffer *)&rb_;
}
StackAllocationsRingBuffer *get() {
return (StackAllocationsRingBuffer *)&rb_;
}
u32 thread_id() const { return thread_id_; }
private:
uptr rb_ = 0;
u32 thread_id_;
};
class Decorator: public __sanitizer::SanitizerCommonDecorator {
public:
Decorator() : SanitizerCommonDecorator() { }
const char *Access() { return Blue(); }
const char *Allocation() const { return Magenta(); }
const char *Origin() const { return Magenta(); }
const char *Name() const { return Green(); }
const char *Location() { return Green(); }
const char *Thread() { return Green(); }
};
} // namespace
static bool FindHeapAllocation(HeapAllocationsRingBuffer *rb, uptr tagged_addr,
HeapAllocationRecord *har, uptr *ring_index,
uptr *num_matching_addrs,
uptr *num_matching_addrs_4b) {
if (!rb) return false;
*num_matching_addrs = 0;
*num_matching_addrs_4b = 0;
for (uptr i = 0, size = rb->size(); i < size; i++) {
auto h = (*rb)[i];
if (h.tagged_addr <= tagged_addr &&
h.tagged_addr + h.requested_size > tagged_addr) {
*har = h;
*ring_index = i;
return true;
}
// Measure the number of heap ring buffer entries that would have matched
// if we had only one entry per address (e.g. if the ring buffer data was
// stored at the address itself). This will help us tune the allocator
// implementation for MTE.
if (UntagAddr(h.tagged_addr) <= UntagAddr(tagged_addr) &&
UntagAddr(h.tagged_addr) + h.requested_size > UntagAddr(tagged_addr)) {
++*num_matching_addrs;
}
// Measure the number of heap ring buffer entries that would have matched
// if we only had 4 tag bits, which is the case for MTE.
auto untag_4b = [](uptr p) {
return p & ((1ULL << 60) - 1);
};
if (untag_4b(h.tagged_addr) <= untag_4b(tagged_addr) &&
untag_4b(h.tagged_addr) + h.requested_size > untag_4b(tagged_addr)) {
++*num_matching_addrs_4b;
}
}
return false;
}
static void PrintStackAllocations(const StackAllocationsRingBuffer *sa,
tag_t addr_tag, uptr untagged_addr) {
uptr frames = Min((uptr)flags()->stack_history_size, sa->size());
bool found_local = false;
InternalScopedString location;
for (uptr i = 0; i < frames; i++) {
const uptr *record_addr = &(*sa)[i];
uptr record = *record_addr;
if (!record)
break;
tag_t base_tag =
reinterpret_cast<uptr>(record_addr) >> kRecordAddrBaseTagShift;
const uptr fp = (record >> kRecordFPShift) << kRecordFPLShift;
CHECK_LT(fp, kRecordFPModulus);
uptr pc_mask = (1ULL << kRecordFPShift) - 1;
uptr pc = record & pc_mask;
FrameInfo frame;
if (!Symbolizer::GetOrInit()->SymbolizeFrame(pc, &frame))
continue;
for (LocalInfo &local : frame.locals) {
if (!local.has_frame_offset || !local.has_size || !local.has_tag_offset)
continue;
if (!(local.name && internal_strlen(local.name)) &&
!(local.function_name && internal_strlen(local.function_name)) &&
!(local.decl_file && internal_strlen(local.decl_file)))
continue;
tag_t obj_tag = base_tag ^ local.tag_offset;
if (obj_tag != addr_tag)
continue;
// We only store bits 4-19 of FP (bits 0-3 are guaranteed to be zero).
// So we know only `FP % kRecordFPModulus`, and we can only calculate
// `local_beg % kRecordFPModulus`.
// Out of all possible `local_beg` we will only consider 2 candidates
// nearest to the `untagged_addr`.
uptr local_beg_mod = (fp + local.frame_offset) % kRecordFPModulus;
// Pick `local_beg` in the same 1 MiB block as `untagged_addr`.
uptr local_beg =
RoundDownTo(untagged_addr, kRecordFPModulus) + local_beg_mod;
// Pick the largest `local_beg <= untagged_addr`. It's either the current
// one or the one before.
if (local_beg > untagged_addr)
local_beg -= kRecordFPModulus;
uptr offset = -1ull;
const char *whence;
const char *cause = nullptr;
uptr best_beg;
// Try two 1 MiB blocks options and pick nearest one.
for (uptr i = 0; i < 2; ++i, local_beg += kRecordFPModulus) {
uptr local_end = local_beg + local.size;
if (local_beg > local_end)
continue; // This is a wraparound.
if (local_beg <= untagged_addr && untagged_addr < local_end) {
offset = untagged_addr - local_beg;
whence = "inside";
cause = "use-after-scope";
best_beg = local_beg;
break; // This is as close at it can be.
}
if (untagged_addr >= local_end) {
uptr new_offset = untagged_addr - local_end;
if (new_offset < offset) {
offset = new_offset;
whence = "after";
cause = "stack-buffer-overflow";
best_beg = local_beg;
}
} else {
uptr new_offset = local_beg - untagged_addr;
if (new_offset < offset) {
offset = new_offset;
whence = "before";
cause = "stack-buffer-overflow";
best_beg = local_beg;
}
}
}
// To fail the `untagged_addr` must be near nullptr, which is impossible
// with Linux user space memory layout.
if (!cause)
continue;
if (!found_local) {
Printf("\nPotentially referenced stack objects:\n");
found_local = true;
}
Decorator d;
Printf("%s", d.Error());
Printf("Cause: %s\n", cause);
Printf("%s", d.Default());
Printf("%s", d.Location());
StackTracePrinter::GetOrInit()->RenderSourceLocation(
&location, local.decl_file, local.decl_line, /* column= */ 0,
common_flags()->symbolize_vs_style,
common_flags()->strip_path_prefix);
Printf(
"%p is located %zd bytes %s a %zd-byte local variable %s "
"[%p,%p) "
"in %s %s\n",
untagged_addr, offset, whence, local.size, local.name, best_beg,
best_beg + local.size, local.function_name, location.data());
location.clear();
Printf("%s\n", d.Default());
}
frame.Clear();
}
if (found_local)
return;
// We didn't find any locals. Most likely we don't have symbols, so dump
// the information that we have for offline analysis.
InternalScopedString frame_desc;
Printf("Previously allocated frames:\n");
for (uptr i = 0; i < frames; i++) {
const uptr *record_addr = &(*sa)[i];
uptr record = *record_addr;
if (!record)
break;
uptr pc_mask = (1ULL << 48) - 1;
uptr pc = record & pc_mask;
frame_desc.AppendF(" record_addr:0x%zx record:0x%zx",
reinterpret_cast<uptr>(record_addr), record);
SymbolizedStackHolder symbolized_stack(
Symbolizer::GetOrInit()->SymbolizePC(pc));
const SymbolizedStack *frame = symbolized_stack.get();
if (frame) {
StackTracePrinter::GetOrInit()->RenderFrame(
&frame_desc, " %F %L", 0, frame->info.address, &frame->info,
common_flags()->symbolize_vs_style,
common_flags()->strip_path_prefix);
}
Printf("%s\n", frame_desc.data());
frame_desc.clear();
}
}
// Returns true if tag == *tag_ptr, reading tags from short granules if
// necessary. This may return a false positive if tags 1-15 are used as a
// regular tag rather than a short granule marker.
static bool TagsEqual(tag_t tag, tag_t *tag_ptr) {
if (tag == *tag_ptr)
return true;
if (*tag_ptr == 0 || *tag_ptr > kShadowAlignment - 1)
return false;
uptr mem = ShadowToMem(reinterpret_cast<uptr>(tag_ptr));
tag_t inline_tag = *reinterpret_cast<tag_t *>(mem + kShadowAlignment - 1);
return tag == inline_tag;
}
// HWASan globals store the size of the global in the descriptor. In cases where
// we don't have a binary with symbols, we can't grab the size of the global
// from the debug info - but we might be able to retrieve it from the
// descriptor. Returns zero if the lookup failed.
static uptr GetGlobalSizeFromDescriptor(uptr ptr) {
// Find the ELF object that this global resides in.
Dl_info info;
if (dladdr(reinterpret_cast<void *>(ptr), &info) == 0)
return 0;
auto *ehdr = reinterpret_cast<const ElfW(Ehdr) *>(info.dli_fbase);
auto *phdr_begin = reinterpret_cast<const ElfW(Phdr) *>(
reinterpret_cast<const u8 *>(ehdr) + ehdr->e_phoff);
// Get the load bias. This is normally the same as the dli_fbase address on
// position-independent code, but can be different on non-PIE executables,
// binaries using LLD's partitioning feature, or binaries compiled with a
// linker script.
ElfW(Addr) load_bias = 0;
for (const auto &phdr :
ArrayRef<const ElfW(Phdr)>(phdr_begin, phdr_begin + ehdr->e_phnum)) {
if (phdr.p_type != PT_LOAD || phdr.p_offset != 0)
continue;
load_bias = reinterpret_cast<ElfW(Addr)>(ehdr) - phdr.p_vaddr;
break;
}
// Walk all globals in this ELF object, looking for the one we're interested
// in. Once we find it, we can stop iterating and return the size of the
// global we're interested in.
for (const hwasan_global &global :
HwasanGlobalsFor(load_bias, phdr_begin, ehdr->e_phnum))
if (global.addr() <= ptr && ptr < global.addr() + global.size())
return global.size();
return 0;
}
void ReportStats() {}
constexpr uptr kDumpWidth = 16;
constexpr uptr kShadowLines = 17;
constexpr uptr kShadowDumpSize = kShadowLines * kDumpWidth;
constexpr uptr kShortLines = 3;
constexpr uptr kShortDumpSize = kShortLines * kDumpWidth;
constexpr uptr kShortDumpOffset = (kShadowLines - kShortLines) / 2 * kDumpWidth;
static uptr GetPrintTagStart(uptr addr) {
addr = MemToShadow(addr);
addr = RoundDownTo(addr, kDumpWidth);
addr -= kDumpWidth * (kShadowLines / 2);
return addr;
}
template <typename PrintTag>
static void PrintTagInfoAroundAddr(uptr addr, uptr num_rows,
InternalScopedString &s,
PrintTag print_tag) {
uptr center_row_beg = RoundDownTo(addr, kDumpWidth);
uptr beg_row = center_row_beg - kDumpWidth * (num_rows / 2);
uptr end_row = center_row_beg + kDumpWidth * ((num_rows + 1) / 2);
for (uptr row = beg_row; row < end_row; row += kDumpWidth) {
s.Append(row == center_row_beg ? "=>" : " ");
s.AppendF("%p:", (void *)ShadowToMem(row));
for (uptr i = 0; i < kDumpWidth; i++) {
s.Append(row + i == addr ? "[" : " ");
print_tag(s, row + i);
s.Append(row + i == addr ? "]" : " ");
}
s.Append("\n");
}
}
template <typename GetTag, typename GetShortTag>
static void PrintTagsAroundAddr(uptr addr, GetTag get_tag,
GetShortTag get_short_tag) {
InternalScopedString s;
addr = MemToShadow(addr);
s.AppendF(
"\nMemory tags around the buggy address (one tag corresponds to %zd "
"bytes):\n",
kShadowAlignment);
PrintTagInfoAroundAddr(addr, kShadowLines, s,
[&](InternalScopedString &s, uptr tag_addr) {
tag_t tag = get_tag(tag_addr);
s.AppendF("%02x", tag);
});
s.AppendF(
"Tags for short granules around the buggy address (one tag corresponds "
"to %zd bytes):\n",
kShadowAlignment);
PrintTagInfoAroundAddr(addr, kShortLines, s,
[&](InternalScopedString &s, uptr tag_addr) {
tag_t tag = get_tag(tag_addr);
if (tag >= 1 && tag <= kShadowAlignment) {
tag_t short_tag = get_short_tag(tag_addr);
s.AppendF("%02x", short_tag);
} else {
s.Append("..");
}
});
s.Append(
"See "
"https://clang.llvm.org/docs/"
"HardwareAssistedAddressSanitizerDesign.html#short-granules for a "
"description of short granule tags\n");
Printf("%s", s.data());
}
static uptr GetTopPc(const StackTrace *stack) {
return stack->size ? StackTrace::GetPreviousInstructionPc(stack->trace[0])
: 0;
}
namespace {
class BaseReport {
public:
BaseReport(StackTrace *stack, bool fatal, uptr tagged_addr, uptr access_size)
: scoped_report(fatal),
stack(stack),
tagged_addr(tagged_addr),
access_size(access_size),
untagged_addr(UntagAddr(tagged_addr)),
ptr_tag(GetTagFromPointer(tagged_addr)),
mismatch_offset(FindMismatchOffset()),
heap(CopyHeapChunk()),
allocations(CopyAllocations()),
candidate(FindBufferOverflowCandidate()),
shadow(CopyShadow()) {}
protected:
struct OverflowCandidate {
uptr untagged_addr = 0;
bool after = false;
bool is_close = false;
struct {
uptr begin = 0;
uptr end = 0;
u32 thread_id = 0;
u32 stack_id = 0;
bool is_allocated = false;
} heap;
};
struct HeapAllocation {
HeapAllocationRecord har = {};
uptr ring_index = 0;
uptr num_matching_addrs = 0;
uptr num_matching_addrs_4b = 0;
u32 free_thread_id = 0;
};
struct Allocations {
ArrayRef<SavedStackAllocations> stack;
ArrayRef<HeapAllocation> heap;
};
struct HeapChunk {
uptr begin = 0;
uptr size = 0;
u32 stack_id = 0;
bool from_small_heap = false;
bool is_allocated = false;
};
struct Shadow {
uptr addr = 0;
tag_t tags[kShadowDumpSize] = {};
tag_t short_tags[kShortDumpSize] = {};
};
sptr FindMismatchOffset() const;
Shadow CopyShadow() const;
tag_t GetTagCopy(uptr addr) const;
tag_t GetShortTagCopy(uptr addr) const;
HeapChunk CopyHeapChunk() const;
Allocations CopyAllocations();
OverflowCandidate FindBufferOverflowCandidate() const;
void PrintAddressDescription() const;
void PrintHeapOrGlobalCandidate() const;
void PrintTags(uptr addr) const;
SavedStackAllocations stack_allocations_storage[16];
HeapAllocation heap_allocations_storage[256];
const ScopedReport scoped_report;
const StackTrace *stack = nullptr;
const uptr tagged_addr = 0;
const uptr access_size = 0;
const uptr untagged_addr = 0;
const tag_t ptr_tag = 0;
const sptr mismatch_offset = 0;
const HeapChunk heap;
const Allocations allocations;
const OverflowCandidate candidate;
const Shadow shadow;
};
sptr BaseReport::FindMismatchOffset() const {
if (!access_size)
return 0;
sptr offset =
__hwasan_test_shadow(reinterpret_cast<void *>(tagged_addr), access_size);
CHECK_GE(offset, 0);
CHECK_LT(offset, static_cast<sptr>(access_size));
tag_t *tag_ptr =
reinterpret_cast<tag_t *>(MemToShadow(untagged_addr + offset));
tag_t mem_tag = *tag_ptr;
if (mem_tag && mem_tag < kShadowAlignment) {
tag_t *granule_ptr = reinterpret_cast<tag_t *>((untagged_addr + offset) &
~(kShadowAlignment - 1));
// If offset is 0, (untagged_addr + offset) is not aligned to granules.
// This is the offset of the leftmost accessed byte within the bad granule.
u8 in_granule_offset = (untagged_addr + offset) & (kShadowAlignment - 1);
tag_t short_tag = granule_ptr[kShadowAlignment - 1];
// The first mismatch was a short granule that matched the ptr_tag.
if (short_tag == ptr_tag) {
// If the access starts after the end of the short granule, then the first
// bad byte is the first byte of the access; otherwise it is the first
// byte past the end of the short granule
if (mem_tag > in_granule_offset) {
offset += mem_tag - in_granule_offset;
}
}
}
return offset;
}
BaseReport::Shadow BaseReport::CopyShadow() const {
Shadow result;
if (!MemIsApp(untagged_addr))
return result;
result.addr = GetPrintTagStart(untagged_addr + mismatch_offset);
uptr tag_addr = result.addr;
uptr short_end = kShortDumpOffset + ARRAY_SIZE(shadow.short_tags);
for (uptr i = 0; i < ARRAY_SIZE(result.tags); ++i, ++tag_addr) {
if (!MemIsShadow(tag_addr))
continue;
result.tags[i] = *reinterpret_cast<tag_t *>(tag_addr);
if (i < kShortDumpOffset || i >= short_end)
continue;
uptr granule_addr = ShadowToMem(tag_addr);
if (1 <= result.tags[i] && result.tags[i] <= kShadowAlignment &&
IsAccessibleMemoryRange(granule_addr, kShadowAlignment)) {
result.short_tags[i - kShortDumpOffset] =
*reinterpret_cast<tag_t *>(granule_addr + kShadowAlignment - 1);
}
}
return result;
}
tag_t BaseReport::GetTagCopy(uptr addr) const {
CHECK_GE(addr, shadow.addr);
uptr idx = addr - shadow.addr;
CHECK_LT(idx, ARRAY_SIZE(shadow.tags));
return shadow.tags[idx];
}
tag_t BaseReport::GetShortTagCopy(uptr addr) const {
CHECK_GE(addr, shadow.addr + kShortDumpOffset);
uptr idx = addr - shadow.addr - kShortDumpOffset;
CHECK_LT(idx, ARRAY_SIZE(shadow.short_tags));
return shadow.short_tags[idx];
}
BaseReport::HeapChunk BaseReport::CopyHeapChunk() const {
HeapChunk result = {};
if (MemIsShadow(untagged_addr))
return result;
HwasanChunkView chunk = FindHeapChunkByAddress(untagged_addr);
result.begin = chunk.Beg();
if (result.begin) {
result.size = chunk.ActualSize();
result.from_small_heap = chunk.FromSmallHeap();
result.is_allocated = chunk.IsAllocated();
result.stack_id = chunk.GetAllocStackId();
}
return result;
}
BaseReport::Allocations BaseReport::CopyAllocations() {
if (MemIsShadow(untagged_addr))
return {};
uptr stack_allocations_count = 0;
uptr heap_allocations_count = 0;
hwasanThreadList().VisitAllLiveThreads([&](Thread *t) {
if (stack_allocations_count < ARRAY_SIZE(stack_allocations_storage) &&
t->AddrIsInStack(untagged_addr)) {
stack_allocations_storage[stack_allocations_count++].CopyFrom(t);
}
if (heap_allocations_count < ARRAY_SIZE(heap_allocations_storage)) {
// Scan all threads' ring buffers to find if it's a heap-use-after-free.
HeapAllocationRecord har;
uptr ring_index, num_matching_addrs, num_matching_addrs_4b;
if (FindHeapAllocation(t->heap_allocations(), tagged_addr, &har,
&ring_index, &num_matching_addrs,
&num_matching_addrs_4b)) {
auto &ha = heap_allocations_storage[heap_allocations_count++];
ha.har = har;
ha.ring_index = ring_index;
ha.num_matching_addrs = num_matching_addrs;
ha.num_matching_addrs_4b = num_matching_addrs_4b;
ha.free_thread_id = t->unique_id();
}
}
});
return {{stack_allocations_storage, stack_allocations_count},
{heap_allocations_storage, heap_allocations_count}};
}
BaseReport::OverflowCandidate BaseReport::FindBufferOverflowCandidate() const {
OverflowCandidate result = {};
if (MemIsShadow(untagged_addr))
return result;
// Check if this looks like a heap buffer overflow by scanning
// the shadow left and right and looking for the first adjacent
// object with a different memory tag. If that tag matches ptr_tag,
// check the allocator if it has a live chunk there.
tag_t *tag_ptr = reinterpret_cast<tag_t *>(MemToShadow(untagged_addr));
tag_t *candidate_tag_ptr = nullptr, *left = tag_ptr, *right = tag_ptr;
uptr candidate_distance = 0;
for (; candidate_distance < 1000; candidate_distance++) {
if (MemIsShadow(reinterpret_cast<uptr>(left)) && TagsEqual(ptr_tag, left)) {
candidate_tag_ptr = left;
break;
}
--left;
if (MemIsShadow(reinterpret_cast<uptr>(right)) &&
TagsEqual(ptr_tag, right)) {
candidate_tag_ptr = right;
break;
}
++right;
}
constexpr auto kCloseCandidateDistance = 1;
result.is_close = candidate_distance <= kCloseCandidateDistance;
result.after = candidate_tag_ptr == left;
result.untagged_addr = ShadowToMem(reinterpret_cast<uptr>(candidate_tag_ptr));
HwasanChunkView chunk = FindHeapChunkByAddress(result.untagged_addr);
if (chunk.IsAllocated()) {
result.heap.is_allocated = true;
result.heap.begin = chunk.Beg();
result.heap.end = chunk.End();
result.heap.thread_id = chunk.GetAllocThreadId();
result.heap.stack_id = chunk.GetAllocStackId();
}
return result;
}
void BaseReport::PrintHeapOrGlobalCandidate() const {
Decorator d;
if (candidate.heap.is_allocated) {
uptr offset;
const char *whence;
if (candidate.heap.begin <= untagged_addr &&
untagged_addr < candidate.heap.end) {
offset = untagged_addr - candidate.heap.begin;
whence = "inside";
} else if (candidate.after) {
offset = untagged_addr - candidate.heap.end;
whence = "after";
} else {
offset = candidate.heap.begin - untagged_addr;
whence = "before";
}
Printf("%s", d.Error());
Printf("\nCause: heap-buffer-overflow\n");
Printf("%s", d.Default());
Printf("%s", d.Location());
Printf("%p is located %zd bytes %s a %zd-byte region [%p,%p)\n",
untagged_addr, offset, whence,
candidate.heap.end - candidate.heap.begin, candidate.heap.begin,
candidate.heap.end);
Printf("%s", d.Allocation());
Printf("allocated by thread T%u here:\n", candidate.heap.thread_id);
Printf("%s", d.Default());
GetStackTraceFromId(candidate.heap.stack_id).Print();
return;
}
// Check whether the address points into a loaded library. If so, this is
// most likely a global variable.
const char *module_name;
uptr module_address;
Symbolizer *sym = Symbolizer::GetOrInit();
if (sym->GetModuleNameAndOffsetForPC(candidate.untagged_addr, &module_name,
&module_address)) {
Printf("%s", d.Error());
Printf("\nCause: global-overflow\n");
Printf("%s", d.Default());
DataInfo info;
Printf("%s", d.Location());
if (sym->SymbolizeData(candidate.untagged_addr, &info) && info.start) {
Printf(
"%p is located %zd bytes %s a %zd-byte global variable "
"%s [%p,%p) in %s\n",
untagged_addr,
candidate.after ? untagged_addr - (info.start + info.size)
: info.start - untagged_addr,
candidate.after ? "after" : "before", info.size, info.name,
info.start, info.start + info.size, module_name);
} else {
uptr size = GetGlobalSizeFromDescriptor(candidate.untagged_addr);
if (size == 0)
// We couldn't find the size of the global from the descriptors.
Printf(
"%p is located %s a global variable in "
"\n #0 0x%x (%s+0x%x)\n",
untagged_addr, candidate.after ? "after" : "before",
candidate.untagged_addr, module_name, module_address);
else
Printf(
"%p is located %s a %zd-byte global variable in "
"\n #0 0x%x (%s+0x%x)\n",
untagged_addr, candidate.after ? "after" : "before", size,
candidate.untagged_addr, module_name, module_address);
}
Printf("%s", d.Default());
}
}
void BaseReport::PrintAddressDescription() const {
Decorator d;
int num_descriptions_printed = 0;
if (MemIsShadow(untagged_addr)) {
Printf("%s%p is HWAsan shadow memory.\n%s", d.Location(), untagged_addr,
d.Default());
return;
}
// Print some very basic information about the address, if it's a heap.
if (heap.begin) {
Printf(
"%s[%p,%p) is a %s %s heap chunk; "
"size: %zd offset: %zd\n%s",
d.Location(), heap.begin, heap.begin + heap.size,
heap.from_small_heap ? "small" : "large",
heap.is_allocated ? "allocated" : "unallocated", heap.size,
untagged_addr - heap.begin, d.Default());
}
auto announce_by_id = [](u32 thread_id) {
hwasanThreadList().VisitAllLiveThreads([&](Thread *t) {
if (thread_id == t->unique_id())
t->Announce();
});
};
// Check stack first. If the address is on the stack of a live thread, we
// know it cannot be a heap / global overflow.
for (const auto &sa : allocations.stack) {
Printf("%s", d.Error());
Printf("\nCause: stack tag-mismatch\n");
Printf("%s", d.Location());
Printf("Address %p is located in stack of thread T%zd\n", untagged_addr,
sa.thread_id());
Printf("%s", d.Default());
announce_by_id(sa.thread_id());
PrintStackAllocations(sa.get(), ptr_tag, untagged_addr);
num_descriptions_printed++;
}
if (allocations.stack.empty() && candidate.untagged_addr &&
candidate.is_close) {
PrintHeapOrGlobalCandidate();
num_descriptions_printed++;
}
for (const auto &ha : allocations.heap) {
const HeapAllocationRecord har = ha.har;
Printf("%s", d.Error());
Printf("\nCause: use-after-free\n");
Printf("%s", d.Location());
Printf("%p is located %zd bytes inside a %zd-byte region [%p,%p)\n",
untagged_addr, untagged_addr - UntagAddr(har.tagged_addr),
har.requested_size, UntagAddr(har.tagged_addr),
UntagAddr(har.tagged_addr) + har.requested_size);
Printf("%s", d.Allocation());
Printf("freed by thread T%u here:\n", ha.free_thread_id);
Printf("%s", d.Default());
GetStackTraceFromId(har.free_context_id).Print();
Printf("%s", d.Allocation());
Printf("previously allocated by thread T%u here:\n", har.alloc_thread_id);
Printf("%s", d.Default());
GetStackTraceFromId(har.alloc_context_id).Print();
// Print a developer note: the index of this heap object
// in the thread's deallocation ring buffer.
Printf("hwasan_dev_note_heap_rb_distance: %zd %zd\n", ha.ring_index + 1,
flags()->heap_history_size);
Printf("hwasan_dev_note_num_matching_addrs: %zd\n", ha.num_matching_addrs);
Printf("hwasan_dev_note_num_matching_addrs_4b: %zd\n",
ha.num_matching_addrs_4b);
announce_by_id(ha.free_thread_id);
// TODO: announce_by_id(har.alloc_thread_id);
num_descriptions_printed++;
}
if (candidate.untagged_addr && num_descriptions_printed == 0) {
PrintHeapOrGlobalCandidate();
num_descriptions_printed++;
}
// Print the remaining threads, as an extra information, 1 line per thread.
if (flags()->print_live_threads_info) {
Printf("\n");
hwasanThreadList().VisitAllLiveThreads([&](Thread *t) { t->Announce(); });
}
if (!num_descriptions_printed)
// We exhausted our possibilities. Bail out.
Printf("HWAddressSanitizer can not describe address in more detail.\n");
if (num_descriptions_printed > 1) {
Printf(
"There are %d potential causes, printed above in order "
"of likeliness.\n",
num_descriptions_printed);
}
}
void BaseReport::PrintTags(uptr addr) const {
if (shadow.addr) {
PrintTagsAroundAddr(
addr, [&](uptr addr) { return GetTagCopy(addr); },
[&](uptr addr) { return GetShortTagCopy(addr); });
}
}
class InvalidFreeReport : public BaseReport {
public:
InvalidFreeReport(StackTrace *stack, uptr tagged_addr)
: BaseReport(stack, flags()->halt_on_error, tagged_addr, 0) {}
~InvalidFreeReport();
private:
};
InvalidFreeReport::~InvalidFreeReport() {
Decorator d;
Printf("%s", d.Error());
uptr pc = GetTopPc(stack);
const char *bug_type = "invalid-free";
const Thread *thread = GetCurrentThread();
if (thread) {
Report("ERROR: %s: %s on address %p at pc %p on thread T%zd\n",
SanitizerToolName, bug_type, untagged_addr, pc, thread->unique_id());
} else {
Report("ERROR: %s: %s on address %p at pc %p on unknown thread\n",
SanitizerToolName, bug_type, untagged_addr, pc);
}
Printf("%s", d.Access());
if (shadow.addr) {
Printf("tags: %02x/%02x (ptr/mem)\n", ptr_tag,
GetTagCopy(MemToShadow(untagged_addr)));
}
Printf("%s", d.Default());
stack->Print();
PrintAddressDescription();
PrintTags(untagged_addr);
MaybePrintAndroidHelpUrl();
ReportErrorSummary(bug_type, stack);
}
class TailOverwrittenReport : public BaseReport {
public:
explicit TailOverwrittenReport(StackTrace *stack, uptr tagged_addr,
uptr orig_size, const u8 *expected)
: BaseReport(stack, flags()->halt_on_error, tagged_addr, 0),
orig_size(orig_size),
tail_size(kShadowAlignment - (orig_size % kShadowAlignment)) {
CHECK_GT(tail_size, 0U);
CHECK_LT(tail_size, kShadowAlignment);
internal_memcpy(tail_copy,
reinterpret_cast<u8 *>(untagged_addr + orig_size),
tail_size);
internal_memcpy(actual_expected, expected, tail_size);
// Short granule is stashed in the last byte of the magic string. To avoid
// confusion, make the expected magic string contain the short granule tag.
if (orig_size % kShadowAlignment != 0)
actual_expected[tail_size - 1] = ptr_tag;
}
~TailOverwrittenReport();
private:
const uptr orig_size = 0;
const uptr tail_size = 0;
u8 actual_expected[kShadowAlignment] = {};
u8 tail_copy[kShadowAlignment] = {};
};
TailOverwrittenReport::~TailOverwrittenReport() {
Decorator d;
Printf("%s", d.Error());
const char *bug_type = "allocation-tail-overwritten";
Report("ERROR: %s: %s; heap object [%p,%p) of size %zd\n", SanitizerToolName,
bug_type, untagged_addr, untagged_addr + orig_size, orig_size);
Printf("\n%s", d.Default());
Printf(
"Stack of invalid access unknown. Issue detected at deallocation "
"time.\n");
Printf("%s", d.Allocation());
Printf("deallocated here:\n");
Printf("%s", d.Default());
stack->Print();
if (heap.begin) {
Printf("%s", d.Allocation());
Printf("allocated here:\n");
Printf("%s", d.Default());
GetStackTraceFromId(heap.stack_id).Print();
}
InternalScopedString s;
u8 *tail = tail_copy;
s.Append("Tail contains: ");
for (uptr i = 0; i < kShadowAlignment - tail_size; i++) s.Append(".. ");
for (uptr i = 0; i < tail_size; i++) s.AppendF("%02x ", tail[i]);
s.Append("\n");
s.Append("Expected: ");
for (uptr i = 0; i < kShadowAlignment - tail_size; i++) s.Append(".. ");
for (uptr i = 0; i < tail_size; i++) s.AppendF("%02x ", actual_expected[i]);
s.Append("\n");
s.Append(" ");
for (uptr i = 0; i < kShadowAlignment - tail_size; i++) s.Append(" ");
for (uptr i = 0; i < tail_size; i++)
s.AppendF("%s ", actual_expected[i] != tail[i] ? "^^" : " ");
s.AppendF(
"\nThis error occurs when a buffer overflow overwrites memory\n"
"after a heap object, but within the %zd-byte granule, e.g.\n"
" char *x = new char[20];\n"
" x[25] = 42;\n"
"%s does not detect such bugs in uninstrumented code at the time of "
"write,"
"\nbut can detect them at the time of free/delete.\n"
"To disable this feature set HWASAN_OPTIONS=free_checks_tail_magic=0\n",
kShadowAlignment, SanitizerToolName);
Printf("%s", s.data());
GetCurrentThread()->Announce();
PrintTags(untagged_addr);
MaybePrintAndroidHelpUrl();
ReportErrorSummary(bug_type, stack);
}
class TagMismatchReport : public BaseReport {
public:
explicit TagMismatchReport(StackTrace *stack, uptr tagged_addr,
uptr access_size, bool is_store, bool fatal,
uptr *registers_frame)
: BaseReport(stack, fatal, tagged_addr, access_size),
is_store(is_store),
registers_frame(registers_frame) {}
~TagMismatchReport();
private:
const bool is_store;
const uptr *registers_frame;
};
TagMismatchReport::~TagMismatchReport() {
Decorator d;
// TODO: when possible, try to print heap-use-after-free, etc.
const char *bug_type = "tag-mismatch";
uptr pc = GetTopPc(stack);
Printf("%s", d.Error());
Report("ERROR: %s: %s on address %p at pc %p\n", SanitizerToolName, bug_type,
untagged_addr, pc);
Thread *t = GetCurrentThread();
tag_t mem_tag = GetTagCopy(MemToShadow(untagged_addr + mismatch_offset));
Printf("%s", d.Access());
if (mem_tag && mem_tag < kShadowAlignment) {
tag_t short_tag =
GetShortTagCopy(MemToShadow(untagged_addr + mismatch_offset));
Printf(
"%s of size %zu at %p tags: %02x/%02x(%02x) (ptr/mem) in thread T%zd\n",
is_store ? "WRITE" : "READ", access_size, untagged_addr, ptr_tag,
mem_tag, short_tag, t->unique_id());
} else {
Printf("%s of size %zu at %p tags: %02x/%02x (ptr/mem) in thread T%zd\n",
is_store ? "WRITE" : "READ", access_size, untagged_addr, ptr_tag,
mem_tag, t->unique_id());
}
if (mismatch_offset)
Printf("Invalid access starting at offset %zu\n", mismatch_offset);
Printf("%s", d.Default());
stack->Print();
PrintAddressDescription();
t->Announce();
PrintTags(untagged_addr + mismatch_offset);
if (registers_frame)
ReportRegisters(registers_frame, pc);
MaybePrintAndroidHelpUrl();
ReportErrorSummary(bug_type, stack);
}
} // namespace
void ReportInvalidFree(StackTrace *stack, uptr tagged_addr) {
InvalidFreeReport R(stack, tagged_addr);
}
void ReportTailOverwritten(StackTrace *stack, uptr tagged_addr, uptr orig_size,
const u8 *expected) {
TailOverwrittenReport R(stack, tagged_addr, orig_size, expected);
}
void ReportTagMismatch(StackTrace *stack, uptr tagged_addr, uptr access_size,
bool is_store, bool fatal, uptr *registers_frame) {
TagMismatchReport R(stack, tagged_addr, access_size, is_store, fatal,
registers_frame);
}
// See the frame breakdown defined in __hwasan_tag_mismatch (from
// hwasan_tag_mismatch_{aarch64,riscv64}.S).
void ReportRegisters(const uptr *frame, uptr pc) {
Printf("\nRegisters where the failure occurred (pc %p):\n", pc);
// We explicitly print a single line (4 registers/line) each iteration to
// reduce the amount of logcat error messages printed. Each Printf() will
// result in a new logcat line, irrespective of whether a newline is present,
// and so we wish to reduce the number of Printf() calls we have to make.
#if defined(__aarch64__)
Printf(" x0 %016llx x1 %016llx x2 %016llx x3 %016llx\n",
frame[0], frame[1], frame[2], frame[3]);
#elif SANITIZER_RISCV64
Printf(" sp %016llx x1 %016llx x2 %016llx x3 %016llx\n",
reinterpret_cast<const u8 *>(frame) + 256, frame[1], frame[2],
frame[3]);
#endif
Printf(" x4 %016llx x5 %016llx x6 %016llx x7 %016llx\n",
frame[4], frame[5], frame[6], frame[7]);
Printf(" x8 %016llx x9 %016llx x10 %016llx x11 %016llx\n",
frame[8], frame[9], frame[10], frame[11]);
Printf(" x12 %016llx x13 %016llx x14 %016llx x15 %016llx\n",
frame[12], frame[13], frame[14], frame[15]);
Printf(" x16 %016llx x17 %016llx x18 %016llx x19 %016llx\n",
frame[16], frame[17], frame[18], frame[19]);
Printf(" x20 %016llx x21 %016llx x22 %016llx x23 %016llx\n",
frame[20], frame[21], frame[22], frame[23]);
Printf(" x24 %016llx x25 %016llx x26 %016llx x27 %016llx\n",
frame[24], frame[25], frame[26], frame[27]);
// hwasan_check* reduces the stack pointer by 256, then __hwasan_tag_mismatch
// passes it to this function.
#if defined(__aarch64__)
Printf(" x28 %016llx x29 %016llx x30 %016llx sp %016llx\n", frame[28],
frame[29], frame[30], reinterpret_cast<const u8 *>(frame) + 256);
#elif SANITIZER_RISCV64
Printf(" x28 %016llx x29 %016llx x30 %016llx x31 %016llx\n", frame[28],
frame[29], frame[30], frame[31]);
#else
#endif
}
} // namespace __hwasan
void __hwasan_set_error_report_callback(void (*callback)(const char *)) {
__hwasan::ScopedReport::SetErrorReportCallback(callback);
}