blob: 6d1af9c78f6cd7d24e679b36bde1c07e042dcd94 [file] [log] [blame]
//===-- buffer_queue_test.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a function call tracing system.
//
//===----------------------------------------------------------------------===//
#include "xray_buffer_queue.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include <atomic>
#include <future>
#include <thread>
#include <unistd.h>
namespace __xray {
namespace {
static constexpr size_t kSize = 4096;
using ::testing::Eq;
TEST(BufferQueueTest, API) {
bool Success = false;
BufferQueue Buffers(kSize, 1, Success);
ASSERT_TRUE(Success);
}
TEST(BufferQueueTest, GetAndRelease) {
bool Success = false;
BufferQueue Buffers(kSize, 1, Success);
ASSERT_TRUE(Success);
BufferQueue::Buffer Buf;
ASSERT_EQ(Buffers.getBuffer(Buf), BufferQueue::ErrorCode::Ok);
ASSERT_NE(nullptr, Buf.Data);
ASSERT_EQ(Buffers.releaseBuffer(Buf), BufferQueue::ErrorCode::Ok);
ASSERT_EQ(nullptr, Buf.Data);
}
TEST(BufferQueueTest, GetUntilFailed) {
bool Success = false;
BufferQueue Buffers(kSize, 1, Success);
ASSERT_TRUE(Success);
BufferQueue::Buffer Buf0;
EXPECT_EQ(Buffers.getBuffer(Buf0), BufferQueue::ErrorCode::Ok);
BufferQueue::Buffer Buf1;
EXPECT_EQ(BufferQueue::ErrorCode::NotEnoughMemory, Buffers.getBuffer(Buf1));
EXPECT_EQ(Buffers.releaseBuffer(Buf0), BufferQueue::ErrorCode::Ok);
}
TEST(BufferQueueTest, ReleaseUnknown) {
bool Success = false;
BufferQueue Buffers(kSize, 1, Success);
ASSERT_TRUE(Success);
BufferQueue::Buffer Buf;
Buf.Data = reinterpret_cast<void *>(0xdeadbeef);
Buf.Size = kSize;
Buf.Generation = Buffers.generation();
BufferQueue::Buffer Known;
EXPECT_THAT(Buffers.getBuffer(Known), Eq(BufferQueue::ErrorCode::Ok));
EXPECT_THAT(Buffers.releaseBuffer(Buf),
Eq(BufferQueue::ErrorCode::UnrecognizedBuffer));
EXPECT_THAT(Buffers.releaseBuffer(Known), Eq(BufferQueue::ErrorCode::Ok));
}
TEST(BufferQueueTest, ErrorsWhenFinalising) {
bool Success = false;
BufferQueue Buffers(kSize, 2, Success);
ASSERT_TRUE(Success);
BufferQueue::Buffer Buf;
ASSERT_EQ(Buffers.getBuffer(Buf), BufferQueue::ErrorCode::Ok);
ASSERT_NE(nullptr, Buf.Data);
ASSERT_EQ(Buffers.finalize(), BufferQueue::ErrorCode::Ok);
BufferQueue::Buffer OtherBuf;
ASSERT_EQ(BufferQueue::ErrorCode::QueueFinalizing,
Buffers.getBuffer(OtherBuf));
ASSERT_EQ(BufferQueue::ErrorCode::QueueFinalizing, Buffers.finalize());
ASSERT_EQ(Buffers.releaseBuffer(Buf), BufferQueue::ErrorCode::Ok);
}
TEST(BufferQueueTest, MultiThreaded) {
bool Success = false;
BufferQueue Buffers(kSize, 100, Success);
ASSERT_TRUE(Success);
auto F = [&] {
BufferQueue::Buffer B;
while (true) {
auto EC = Buffers.getBuffer(B);
if (EC != BufferQueue::ErrorCode::Ok)
return;
Buffers.releaseBuffer(B);
}
};
auto T0 = std::async(std::launch::async, F);
auto T1 = std::async(std::launch::async, F);
auto T2 = std::async(std::launch::async, [&] {
while (Buffers.finalize() != BufferQueue::ErrorCode::Ok)
;
});
F();
}
TEST(BufferQueueTest, Apply) {
bool Success = false;
BufferQueue Buffers(kSize, 10, Success);
ASSERT_TRUE(Success);
auto Count = 0;
BufferQueue::Buffer B;
for (int I = 0; I < 10; ++I) {
ASSERT_EQ(Buffers.getBuffer(B), BufferQueue::ErrorCode::Ok);
ASSERT_EQ(Buffers.releaseBuffer(B), BufferQueue::ErrorCode::Ok);
}
Buffers.apply([&](const BufferQueue::Buffer &B) { ++Count; });
ASSERT_EQ(Count, 10);
}
TEST(BufferQueueTest, GenerationalSupport) {
bool Success = false;
BufferQueue Buffers(kSize, 10, Success);
ASSERT_TRUE(Success);
BufferQueue::Buffer B0;
ASSERT_EQ(Buffers.getBuffer(B0), BufferQueue::ErrorCode::Ok);
ASSERT_EQ(Buffers.finalize(),
BufferQueue::ErrorCode::Ok); // No more new buffers.
// Re-initialise the queue.
ASSERT_EQ(Buffers.init(kSize, 10), BufferQueue::ErrorCode::Ok);
BufferQueue::Buffer B1;
ASSERT_EQ(Buffers.getBuffer(B1), BufferQueue::ErrorCode::Ok);
// Validate that the buffers come from different generations.
ASSERT_NE(B0.Generation, B1.Generation);
// We stash the current generation, for use later.
auto PrevGen = B1.Generation;
// At this point, we want to ensure that we can return the buffer from the
// first "generation" would still be accepted in the new generation...
EXPECT_EQ(Buffers.releaseBuffer(B0), BufferQueue::ErrorCode::Ok);
// ... and that the new buffer is also accepted.
EXPECT_EQ(Buffers.releaseBuffer(B1), BufferQueue::ErrorCode::Ok);
// A next round will do the same, ensure that we are able to do multiple
// rounds in this case.
ASSERT_EQ(Buffers.finalize(), BufferQueue::ErrorCode::Ok);
ASSERT_EQ(Buffers.init(kSize, 10), BufferQueue::ErrorCode::Ok);
EXPECT_EQ(Buffers.getBuffer(B0), BufferQueue::ErrorCode::Ok);
EXPECT_EQ(Buffers.getBuffer(B1), BufferQueue::ErrorCode::Ok);
// Here we ensure that the generation is different from the previous
// generation.
EXPECT_NE(B0.Generation, PrevGen);
EXPECT_EQ(B1.Generation, B1.Generation);
ASSERT_EQ(Buffers.finalize(), BufferQueue::ErrorCode::Ok);
EXPECT_EQ(Buffers.releaseBuffer(B0), BufferQueue::ErrorCode::Ok);
EXPECT_EQ(Buffers.releaseBuffer(B1), BufferQueue::ErrorCode::Ok);
}
TEST(BufferQueueTest, GenerationalSupportAcrossThreads) {
bool Success = false;
BufferQueue Buffers(kSize, 10, Success);
ASSERT_TRUE(Success);
std::atomic<int> Counter{0};
// This function allows us to use thread-local storage to isolate the
// instances of the buffers to be used. It also allows us signal the threads
// of a new generation, and allow those to get new buffers. This is
// representative of how we expect the buffer queue to be used by the XRay
// runtime.
auto Process = [&] {
thread_local BufferQueue::Buffer B;
ASSERT_EQ(Buffers.getBuffer(B), BufferQueue::ErrorCode::Ok);
auto FirstGen = B.Generation;
// Signal that we've gotten a buffer in the thread.
Counter.fetch_add(1, std::memory_order_acq_rel);
while (!Buffers.finalizing()) {
Buffers.releaseBuffer(B);
Buffers.getBuffer(B);
}
// Signal that we've exited the get/release buffer loop.
Counter.fetch_sub(1, std::memory_order_acq_rel);
if (B.Data != nullptr)
Buffers.releaseBuffer(B);
// Spin until we find that the Buffer Queue is no longer finalizing.
while (Buffers.getBuffer(B) != BufferQueue::ErrorCode::Ok)
;
// Signal that we've successfully gotten a buffer in the thread.
Counter.fetch_add(1, std::memory_order_acq_rel);
EXPECT_NE(FirstGen, B.Generation);
EXPECT_EQ(Buffers.releaseBuffer(B), BufferQueue::ErrorCode::Ok);
// Signal that we've successfully exited.
Counter.fetch_sub(1, std::memory_order_acq_rel);
};
// Spawn two threads running Process.
std::thread T0(Process), T1(Process);
// Spin until we find the counter is up to 2.
while (Counter.load(std::memory_order_acquire) != 2)
;
// Then we finalize, then re-initialize immediately.
Buffers.finalize();
// Spin until we find the counter is down to 0.
while (Counter.load(std::memory_order_acquire) != 0)
;
// Then we re-initialize.
EXPECT_EQ(Buffers.init(kSize, 10), BufferQueue::ErrorCode::Ok);
T0.join();
T1.join();
ASSERT_EQ(Counter.load(std::memory_order_acquire), 0);
}
} // namespace
} // namespace __xray