blob: 3b074d849e8a9cf697e6d3f841fd6e6cb3ef19e1 [file] [log] [blame]
//===-- Serialize.cpp - ClangDoc Serializer ---------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Serialize.h"
#include "BitcodeWriter.h"
#include "clang/AST/Comment.h"
#include "clang/Index/USRGeneration.h"
#include "clang/Lex/Lexer.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/SHA1.h"
using clang::comments::FullComment;
namespace clang {
namespace doc {
namespace serialize {
SymbolID hashUSR(llvm::StringRef USR) {
return llvm::SHA1::hash(arrayRefFromStringRef(USR));
}
template <typename T>
static void
populateParentNamespaces(llvm::SmallVector<Reference, 4> &Namespaces,
const T *D, bool &IsAnonymousNamespace);
static void populateMemberTypeInfo(MemberTypeInfo &I, const FieldDecl *D);
// A function to extract the appropriate relative path for a given info's
// documentation. The path returned is a composite of the parent namespaces.
//
// Example: Given the below, the directory path for class C info will be
// <root>/A/B
//
// namespace A {
// namespace B {
//
// class C {};
//
// }
// }
llvm::SmallString<128>
getInfoRelativePath(const llvm::SmallVectorImpl<doc::Reference> &Namespaces) {
llvm::SmallString<128> Path;
for (auto R = Namespaces.rbegin(), E = Namespaces.rend(); R != E; ++R)
llvm::sys::path::append(Path, R->Name);
return Path;
}
llvm::SmallString<128> getInfoRelativePath(const Decl *D) {
llvm::SmallVector<Reference, 4> Namespaces;
// The third arg in populateParentNamespaces is a boolean passed by reference,
// its value is not relevant in here so it's not used anywhere besides the
// function call
bool B = true;
populateParentNamespaces(Namespaces, D, B);
return getInfoRelativePath(Namespaces);
}
class ClangDocCommentVisitor
: public ConstCommentVisitor<ClangDocCommentVisitor> {
public:
ClangDocCommentVisitor(CommentInfo &CI) : CurrentCI(CI) {}
void parseComment(const comments::Comment *C);
void visitTextComment(const TextComment *C);
void visitInlineCommandComment(const InlineCommandComment *C);
void visitHTMLStartTagComment(const HTMLStartTagComment *C);
void visitHTMLEndTagComment(const HTMLEndTagComment *C);
void visitBlockCommandComment(const BlockCommandComment *C);
void visitParamCommandComment(const ParamCommandComment *C);
void visitTParamCommandComment(const TParamCommandComment *C);
void visitVerbatimBlockComment(const VerbatimBlockComment *C);
void visitVerbatimBlockLineComment(const VerbatimBlockLineComment *C);
void visitVerbatimLineComment(const VerbatimLineComment *C);
private:
std::string getCommandName(unsigned CommandID) const;
bool isWhitespaceOnly(StringRef S) const;
CommentInfo &CurrentCI;
};
void ClangDocCommentVisitor::parseComment(const comments::Comment *C) {
CurrentCI.Kind = C->getCommentKindName();
ConstCommentVisitor<ClangDocCommentVisitor>::visit(C);
for (comments::Comment *Child :
llvm::make_range(C->child_begin(), C->child_end())) {
CurrentCI.Children.emplace_back(std::make_unique<CommentInfo>());
ClangDocCommentVisitor Visitor(*CurrentCI.Children.back());
Visitor.parseComment(Child);
}
}
void ClangDocCommentVisitor::visitTextComment(const TextComment *C) {
if (!isWhitespaceOnly(C->getText()))
CurrentCI.Text = C->getText();
}
void ClangDocCommentVisitor::visitInlineCommandComment(
const InlineCommandComment *C) {
CurrentCI.Name = getCommandName(C->getCommandID());
for (unsigned I = 0, E = C->getNumArgs(); I != E; ++I)
CurrentCI.Args.push_back(C->getArgText(I));
}
void ClangDocCommentVisitor::visitHTMLStartTagComment(
const HTMLStartTagComment *C) {
CurrentCI.Name = C->getTagName();
CurrentCI.SelfClosing = C->isSelfClosing();
for (unsigned I = 0, E = C->getNumAttrs(); I < E; ++I) {
const HTMLStartTagComment::Attribute &Attr = C->getAttr(I);
CurrentCI.AttrKeys.push_back(Attr.Name);
CurrentCI.AttrValues.push_back(Attr.Value);
}
}
void ClangDocCommentVisitor::visitHTMLEndTagComment(
const HTMLEndTagComment *C) {
CurrentCI.Name = C->getTagName();
CurrentCI.SelfClosing = true;
}
void ClangDocCommentVisitor::visitBlockCommandComment(
const BlockCommandComment *C) {
CurrentCI.Name = getCommandName(C->getCommandID());
for (unsigned I = 0, E = C->getNumArgs(); I < E; ++I)
CurrentCI.Args.push_back(C->getArgText(I));
}
void ClangDocCommentVisitor::visitParamCommandComment(
const ParamCommandComment *C) {
CurrentCI.Direction =
ParamCommandComment::getDirectionAsString(C->getDirection());
CurrentCI.Explicit = C->isDirectionExplicit();
if (C->hasParamName())
CurrentCI.ParamName = C->getParamNameAsWritten();
}
void ClangDocCommentVisitor::visitTParamCommandComment(
const TParamCommandComment *C) {
if (C->hasParamName())
CurrentCI.ParamName = C->getParamNameAsWritten();
}
void ClangDocCommentVisitor::visitVerbatimBlockComment(
const VerbatimBlockComment *C) {
CurrentCI.Name = getCommandName(C->getCommandID());
CurrentCI.CloseName = C->getCloseName();
}
void ClangDocCommentVisitor::visitVerbatimBlockLineComment(
const VerbatimBlockLineComment *C) {
if (!isWhitespaceOnly(C->getText()))
CurrentCI.Text = C->getText();
}
void ClangDocCommentVisitor::visitVerbatimLineComment(
const VerbatimLineComment *C) {
if (!isWhitespaceOnly(C->getText()))
CurrentCI.Text = C->getText();
}
bool ClangDocCommentVisitor::isWhitespaceOnly(llvm::StringRef S) const {
return llvm::all_of(S, isspace);
}
std::string ClangDocCommentVisitor::getCommandName(unsigned CommandID) const {
const CommandInfo *Info = CommandTraits::getBuiltinCommandInfo(CommandID);
if (Info)
return Info->Name;
// TODO: Add parsing for \file command.
return "<not a builtin command>";
}
// Serializing functions.
std::string getSourceCode(const Decl *D, const SourceRange &R) {
return Lexer::getSourceText(CharSourceRange::getTokenRange(R),
D->getASTContext().getSourceManager(),
D->getASTContext().getLangOpts())
.str();
}
template <typename T> static std::string serialize(T &I) {
SmallString<2048> Buffer;
llvm::BitstreamWriter Stream(Buffer);
ClangDocBitcodeWriter Writer(Stream);
Writer.emitBlock(I);
return Buffer.str().str();
}
std::string serialize(std::unique_ptr<Info> &I) {
switch (I->IT) {
case InfoType::IT_namespace:
return serialize(*static_cast<NamespaceInfo *>(I.get()));
case InfoType::IT_record:
return serialize(*static_cast<RecordInfo *>(I.get()));
case InfoType::IT_enum:
return serialize(*static_cast<EnumInfo *>(I.get()));
case InfoType::IT_function:
return serialize(*static_cast<FunctionInfo *>(I.get()));
default:
return "";
}
}
static void parseFullComment(const FullComment *C, CommentInfo &CI) {
ClangDocCommentVisitor Visitor(CI);
Visitor.parseComment(C);
}
static SymbolID getUSRForDecl(const Decl *D) {
llvm::SmallString<128> USR;
if (index::generateUSRForDecl(D, USR))
return SymbolID();
return hashUSR(USR);
}
static TagDecl *getTagDeclForType(const QualType &T) {
if (const TagDecl *D = T->getAsTagDecl())
return D->getDefinition();
return nullptr;
}
static RecordDecl *getRecordDeclForType(const QualType &T) {
if (const RecordDecl *D = T->getAsRecordDecl())
return D->getDefinition();
return nullptr;
}
TypeInfo getTypeInfoForType(const QualType &T) {
const TagDecl *TD = getTagDeclForType(T);
if (!TD)
return TypeInfo(Reference(SymbolID(), T.getAsString()));
InfoType IT;
if (dyn_cast<EnumDecl>(TD)) {
IT = InfoType::IT_enum;
} else if (dyn_cast<RecordDecl>(TD)) {
IT = InfoType::IT_record;
} else {
IT = InfoType::IT_default;
}
return TypeInfo(Reference(getUSRForDecl(TD), TD->getNameAsString(), IT,
T.getAsString(), getInfoRelativePath(TD)));
}
static bool isPublic(const clang::AccessSpecifier AS,
const clang::Linkage Link) {
if (AS == clang::AccessSpecifier::AS_private)
return false;
else if ((Link == clang::Linkage::Module) ||
(Link == clang::Linkage::External))
return true;
return false; // otherwise, linkage is some form of internal linkage
}
static bool shouldSerializeInfo(bool PublicOnly, bool IsInAnonymousNamespace,
const NamedDecl *D) {
bool IsAnonymousNamespace = false;
if (const auto *N = dyn_cast<NamespaceDecl>(D))
IsAnonymousNamespace = N->isAnonymousNamespace();
return !PublicOnly ||
(!IsInAnonymousNamespace && !IsAnonymousNamespace &&
isPublic(D->getAccessUnsafe(), D->getLinkageInternal()));
}
// The InsertChild functions insert the given info into the given scope using
// the method appropriate for that type. Some types are moved into the
// appropriate vector, while other types have Reference objects generated to
// refer to them.
//
// See MakeAndInsertIntoParent().
static void InsertChild(ScopeChildren &Scope, const NamespaceInfo &Info) {
Scope.Namespaces.emplace_back(Info.USR, Info.Name, InfoType::IT_namespace,
Info.Name, getInfoRelativePath(Info.Namespace));
}
static void InsertChild(ScopeChildren &Scope, const RecordInfo &Info) {
Scope.Records.emplace_back(Info.USR, Info.Name, InfoType::IT_record,
Info.Name, getInfoRelativePath(Info.Namespace));
}
static void InsertChild(ScopeChildren &Scope, EnumInfo Info) {
Scope.Enums.push_back(std::move(Info));
}
static void InsertChild(ScopeChildren &Scope, FunctionInfo Info) {
Scope.Functions.push_back(std::move(Info));
}
static void InsertChild(ScopeChildren &Scope, TypedefInfo Info) {
Scope.Typedefs.push_back(std::move(Info));
}
// Creates a parent of the correct type for the given child and inserts it into
// that parent.
//
// This is complicated by the fact that namespaces and records are inserted by
// reference (constructing a "Reference" object with that namespace/record's
// info), while everything else is inserted by moving it directly into the child
// vectors.
//
// For namespaces and records, explicitly specify a const& template parameter
// when invoking this function:
// MakeAndInsertIntoParent<const Record&>(...);
// Otherwise, specify an rvalue reference <EnumInfo&&> and move into the
// parameter. Since each variant is used once, it's not worth having a more
// elaborate system to automatically deduce this information.
template <typename ChildType>
std::unique_ptr<Info> MakeAndInsertIntoParent(ChildType Child) {
if (Child.Namespace.empty()) {
// Insert into unnamed parent namespace.
auto ParentNS = std::make_unique<NamespaceInfo>();
InsertChild(ParentNS->Children, std::forward<ChildType>(Child));
return ParentNS;
}
switch (Child.Namespace[0].RefType) {
case InfoType::IT_namespace: {
auto ParentNS = std::make_unique<NamespaceInfo>();
ParentNS->USR = Child.Namespace[0].USR;
InsertChild(ParentNS->Children, std::forward<ChildType>(Child));
return ParentNS;
}
case InfoType::IT_record: {
auto ParentRec = std::make_unique<RecordInfo>();
ParentRec->USR = Child.Namespace[0].USR;
InsertChild(ParentRec->Children, std::forward<ChildType>(Child));
return ParentRec;
}
default:
llvm_unreachable("Invalid reference type for parent namespace");
}
}
// There are two uses for this function.
// 1) Getting the resulting mode of inheritance of a record.
// Example: class A {}; class B : private A {}; class C : public B {};
// It's explicit that C is publicly inherited from C and B is privately
// inherited from A. It's not explicit but C is also privately inherited from
// A. This is the AS that this function calculates. FirstAS is the
// inheritance mode of `class C : B` and SecondAS is the inheritance mode of
// `class B : A`.
// 2) Getting the inheritance mode of an inherited attribute / method.
// Example : class A { public: int M; }; class B : private A {};
// Class B is inherited from class A, which has a public attribute. This
// attribute is now part of the derived class B but it's not public. This
// will be private because the inheritance is private. This is the AS that
// this function calculates. FirstAS is the inheritance mode and SecondAS is
// the AS of the attribute / method.
static AccessSpecifier getFinalAccessSpecifier(AccessSpecifier FirstAS,
AccessSpecifier SecondAS) {
if (FirstAS == AccessSpecifier::AS_none ||
SecondAS == AccessSpecifier::AS_none)
return AccessSpecifier::AS_none;
if (FirstAS == AccessSpecifier::AS_private ||
SecondAS == AccessSpecifier::AS_private)
return AccessSpecifier::AS_private;
if (FirstAS == AccessSpecifier::AS_protected ||
SecondAS == AccessSpecifier::AS_protected)
return AccessSpecifier::AS_protected;
return AccessSpecifier::AS_public;
}
// The Access parameter is only provided when parsing the field of an inherited
// record, the access specification of the field depends on the inheritance mode
static void parseFields(RecordInfo &I, const RecordDecl *D, bool PublicOnly,
AccessSpecifier Access = AccessSpecifier::AS_public) {
for (const FieldDecl *F : D->fields()) {
if (!shouldSerializeInfo(PublicOnly, /*IsInAnonymousNamespace=*/false, F))
continue;
// Use getAccessUnsafe so that we just get the default AS_none if it's not
// valid, as opposed to an assert.
MemberTypeInfo &NewMember = I.Members.emplace_back(
getTypeInfoForType(F->getTypeSourceInfo()->getType()),
F->getNameAsString(),
getFinalAccessSpecifier(Access, F->getAccessUnsafe()));
populateMemberTypeInfo(NewMember, F);
}
}
static void parseEnumerators(EnumInfo &I, const EnumDecl *D) {
for (const EnumConstantDecl *E : D->enumerators()) {
std::string ValueExpr;
if (const Expr *InitExpr = E->getInitExpr())
ValueExpr = getSourceCode(D, InitExpr->getSourceRange());
SmallString<16> ValueStr;
E->getInitVal().toString(ValueStr);
I.Members.emplace_back(E->getNameAsString(), ValueStr, ValueExpr);
}
}
static void parseParameters(FunctionInfo &I, const FunctionDecl *D) {
for (const ParmVarDecl *P : D->parameters()) {
FieldTypeInfo &FieldInfo = I.Params.emplace_back(
getTypeInfoForType(P->getOriginalType()), P->getNameAsString());
FieldInfo.DefaultValue = getSourceCode(D, P->getDefaultArgRange());
}
}
// TODO: Remove the serialization of Parents and VirtualParents, this
// information is also extracted in the other definition of parseBases.
static void parseBases(RecordInfo &I, const CXXRecordDecl *D) {
// Don't parse bases if this isn't a definition.
if (!D->isThisDeclarationADefinition())
return;
for (const CXXBaseSpecifier &B : D->bases()) {
if (B.isVirtual())
continue;
if (const auto *Ty = B.getType()->getAs<TemplateSpecializationType>()) {
const TemplateDecl *D = Ty->getTemplateName().getAsTemplateDecl();
I.Parents.emplace_back(getUSRForDecl(D), B.getType().getAsString(),
InfoType::IT_record, B.getType().getAsString());
} else if (const RecordDecl *P = getRecordDeclForType(B.getType()))
I.Parents.emplace_back(getUSRForDecl(P), P->getNameAsString(),
InfoType::IT_record, P->getQualifiedNameAsString(),
getInfoRelativePath(P));
else
I.Parents.emplace_back(SymbolID(), B.getType().getAsString());
}
for (const CXXBaseSpecifier &B : D->vbases()) {
if (const RecordDecl *P = getRecordDeclForType(B.getType()))
I.VirtualParents.emplace_back(
getUSRForDecl(P), P->getNameAsString(), InfoType::IT_record,
P->getQualifiedNameAsString(), getInfoRelativePath(P));
else
I.VirtualParents.emplace_back(SymbolID(), B.getType().getAsString());
}
}
template <typename T>
static void
populateParentNamespaces(llvm::SmallVector<Reference, 4> &Namespaces,
const T *D, bool &IsInAnonymousNamespace) {
const DeclContext *DC = D->getDeclContext();
do {
if (const auto *N = dyn_cast<NamespaceDecl>(DC)) {
std::string Namespace;
if (N->isAnonymousNamespace()) {
Namespace = "@nonymous_namespace";
IsInAnonymousNamespace = true;
} else
Namespace = N->getNameAsString();
Namespaces.emplace_back(getUSRForDecl(N), Namespace,
InfoType::IT_namespace,
N->getQualifiedNameAsString());
} else if (const auto *N = dyn_cast<RecordDecl>(DC))
Namespaces.emplace_back(getUSRForDecl(N), N->getNameAsString(),
InfoType::IT_record,
N->getQualifiedNameAsString());
else if (const auto *N = dyn_cast<FunctionDecl>(DC))
Namespaces.emplace_back(getUSRForDecl(N), N->getNameAsString(),
InfoType::IT_function,
N->getQualifiedNameAsString());
else if (const auto *N = dyn_cast<EnumDecl>(DC))
Namespaces.emplace_back(getUSRForDecl(N), N->getNameAsString(),
InfoType::IT_enum, N->getQualifiedNameAsString());
} while ((DC = DC->getParent()));
// The global namespace should be added to the list of namespaces if the decl
// corresponds to a Record and if it doesn't have any namespace (because this
// means it's in the global namespace). Also if its outermost namespace is a
// record because that record matches the previous condition mentioned.
if ((Namespaces.empty() && isa<RecordDecl>(D)) ||
(!Namespaces.empty() && Namespaces.back().RefType == InfoType::IT_record))
Namespaces.emplace_back(SymbolID(), "GlobalNamespace",
InfoType::IT_namespace);
}
void PopulateTemplateParameters(std::optional<TemplateInfo> &TemplateInfo,
const clang::Decl *D) {
if (const TemplateParameterList *ParamList =
D->getDescribedTemplateParams()) {
if (!TemplateInfo) {
TemplateInfo.emplace();
}
for (const NamedDecl *ND : *ParamList) {
TemplateInfo->Params.emplace_back(
getSourceCode(ND, ND->getSourceRange()));
}
}
}
TemplateParamInfo TemplateArgumentToInfo(const clang::Decl *D,
const TemplateArgument &Arg) {
// The TemplateArgument's pretty printing handles all the normal cases
// well enough for our requirements.
std::string Str;
llvm::raw_string_ostream Stream(Str);
Arg.print(PrintingPolicy(D->getLangOpts()), Stream, false);
return TemplateParamInfo(Str);
}
template <typename T>
static void populateInfo(Info &I, const T *D, const FullComment *C,
bool &IsInAnonymousNamespace) {
I.USR = getUSRForDecl(D);
I.Name = D->getNameAsString();
populateParentNamespaces(I.Namespace, D, IsInAnonymousNamespace);
if (C) {
I.Description.emplace_back();
parseFullComment(C, I.Description.back());
}
}
template <typename T>
static void populateSymbolInfo(SymbolInfo &I, const T *D, const FullComment *C,
int LineNumber, StringRef Filename,
bool IsFileInRootDir,
bool &IsInAnonymousNamespace) {
populateInfo(I, D, C, IsInAnonymousNamespace);
if (D->isThisDeclarationADefinition())
I.DefLoc.emplace(LineNumber, Filename, IsFileInRootDir);
else
I.Loc.emplace_back(LineNumber, Filename, IsFileInRootDir);
}
static void populateFunctionInfo(FunctionInfo &I, const FunctionDecl *D,
const FullComment *FC, int LineNumber,
StringRef Filename, bool IsFileInRootDir,
bool &IsInAnonymousNamespace) {
populateSymbolInfo(I, D, FC, LineNumber, Filename, IsFileInRootDir,
IsInAnonymousNamespace);
I.ReturnType = getTypeInfoForType(D->getReturnType());
parseParameters(I, D);
PopulateTemplateParameters(I.Template, D);
// Handle function template specializations.
if (const FunctionTemplateSpecializationInfo *FTSI =
D->getTemplateSpecializationInfo()) {
if (!I.Template)
I.Template.emplace();
I.Template->Specialization.emplace();
auto &Specialization = *I.Template->Specialization;
Specialization.SpecializationOf = getUSRForDecl(FTSI->getTemplate());
// Template parameters to the specialization.
if (FTSI->TemplateArguments) {
for (const TemplateArgument &Arg : FTSI->TemplateArguments->asArray()) {
Specialization.Params.push_back(TemplateArgumentToInfo(D, Arg));
}
}
}
}
static void populateMemberTypeInfo(MemberTypeInfo &I, const FieldDecl *D) {
assert(D && "Expect non-null FieldDecl in populateMemberTypeInfo");
ASTContext& Context = D->getASTContext();
// TODO investigate whether we can use ASTContext::getCommentForDecl instead
// of this logic. See also similar code in Mapper.cpp.
RawComment *Comment = Context.getRawCommentForDeclNoCache(D);
if (!Comment)
return;
Comment->setAttached();
if (comments::FullComment* fc = Comment->parse(Context, nullptr, D)) {
I.Description.emplace_back();
parseFullComment(fc, I.Description.back());
}
}
static void
parseBases(RecordInfo &I, const CXXRecordDecl *D, bool IsFileInRootDir,
bool PublicOnly, bool IsParent,
AccessSpecifier ParentAccess = AccessSpecifier::AS_public) {
// Don't parse bases if this isn't a definition.
if (!D->isThisDeclarationADefinition())
return;
for (const CXXBaseSpecifier &B : D->bases()) {
if (const RecordType *Ty = B.getType()->getAs<RecordType>()) {
if (const CXXRecordDecl *Base =
cast_or_null<CXXRecordDecl>(Ty->getDecl()->getDefinition())) {
// Initialized without USR and name, this will be set in the following
// if-else stmt.
BaseRecordInfo BI(
{}, "", getInfoRelativePath(Base), B.isVirtual(),
getFinalAccessSpecifier(ParentAccess, B.getAccessSpecifier()),
IsParent);
if (const auto *Ty = B.getType()->getAs<TemplateSpecializationType>()) {
const TemplateDecl *D = Ty->getTemplateName().getAsTemplateDecl();
BI.USR = getUSRForDecl(D);
BI.Name = B.getType().getAsString();
} else {
BI.USR = getUSRForDecl(Base);
BI.Name = Base->getNameAsString();
}
parseFields(BI, Base, PublicOnly, BI.Access);
for (const auto &Decl : Base->decls())
if (const auto *MD = dyn_cast<CXXMethodDecl>(Decl)) {
// Don't serialize private methods
if (MD->getAccessUnsafe() == AccessSpecifier::AS_private ||
!MD->isUserProvided())
continue;
FunctionInfo FI;
FI.IsMethod = true;
// The seventh arg in populateFunctionInfo is a boolean passed by
// reference, its value is not relevant in here so it's not used
// anywhere besides the function call.
bool IsInAnonymousNamespace;
populateFunctionInfo(FI, MD, /*FullComment=*/{}, /*LineNumber=*/{},
/*FileName=*/{}, IsFileInRootDir,
IsInAnonymousNamespace);
FI.Access =
getFinalAccessSpecifier(BI.Access, MD->getAccessUnsafe());
BI.Children.Functions.emplace_back(std::move(FI));
}
I.Bases.emplace_back(std::move(BI));
// Call this function recursively to get the inherited classes of
// this base; these new bases will also get stored in the original
// RecordInfo: I.
parseBases(I, Base, IsFileInRootDir, PublicOnly, false,
I.Bases.back().Access);
}
}
}
}
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const NamespaceDecl *D, const FullComment *FC, int LineNumber,
llvm::StringRef File, bool IsFileInRootDir, bool PublicOnly) {
auto I = std::make_unique<NamespaceInfo>();
bool IsInAnonymousNamespace = false;
populateInfo(*I, D, FC, IsInAnonymousNamespace);
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
I->Name = D->isAnonymousNamespace()
? llvm::SmallString<16>("@nonymous_namespace")
: I->Name;
I->Path = getInfoRelativePath(I->Namespace);
if (I->Namespace.empty() && I->USR == SymbolID())
return {std::unique_ptr<Info>{std::move(I)}, nullptr};
// Namespaces are inserted into the parent by reference, so we need to return
// both the parent and the record itself.
return {std::move(I), MakeAndInsertIntoParent<const NamespaceInfo &>(*I)};
}
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const RecordDecl *D, const FullComment *FC, int LineNumber,
llvm::StringRef File, bool IsFileInRootDir, bool PublicOnly) {
auto I = std::make_unique<RecordInfo>();
bool IsInAnonymousNamespace = false;
populateSymbolInfo(*I, D, FC, LineNumber, File, IsFileInRootDir,
IsInAnonymousNamespace);
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
I->TagType = D->getTagKind();
parseFields(*I, D, PublicOnly);
if (const auto *C = dyn_cast<CXXRecordDecl>(D)) {
if (const TypedefNameDecl *TD = C->getTypedefNameForAnonDecl()) {
I->Name = TD->getNameAsString();
I->IsTypeDef = true;
}
// TODO: remove first call to parseBases, that function should be deleted
parseBases(*I, C);
parseBases(*I, C, IsFileInRootDir, PublicOnly, true);
}
I->Path = getInfoRelativePath(I->Namespace);
PopulateTemplateParameters(I->Template, D);
// Full and partial specializations.
if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
if (!I->Template)
I->Template.emplace();
I->Template->Specialization.emplace();
auto &Specialization = *I->Template->Specialization;
// What this is a specialization of.
auto SpecOf = CTSD->getSpecializedTemplateOrPartial();
if (SpecOf.is<ClassTemplateDecl *>()) {
Specialization.SpecializationOf =
getUSRForDecl(SpecOf.get<ClassTemplateDecl *>());
} else if (SpecOf.is<ClassTemplatePartialSpecializationDecl *>()) {
Specialization.SpecializationOf =
getUSRForDecl(SpecOf.get<ClassTemplatePartialSpecializationDecl *>());
}
// Parameters to the specilization. For partial specializations, get the
// parameters "as written" from the ClassTemplatePartialSpecializationDecl
// because the non-explicit template parameters will have generated internal
// placeholder names rather than the names the user typed that match the
// template parameters.
if (const ClassTemplatePartialSpecializationDecl *CTPSD =
dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) {
if (const ASTTemplateArgumentListInfo *AsWritten =
CTPSD->getTemplateArgsAsWritten()) {
for (unsigned i = 0; i < AsWritten->getNumTemplateArgs(); i++) {
Specialization.Params.emplace_back(
getSourceCode(D, (*AsWritten)[i].getSourceRange()));
}
}
} else {
for (const TemplateArgument &Arg : CTSD->getTemplateArgs().asArray()) {
Specialization.Params.push_back(TemplateArgumentToInfo(D, Arg));
}
}
}
// Records are inserted into the parent by reference, so we need to return
// both the parent and the record itself.
auto Parent = MakeAndInsertIntoParent<const RecordInfo &>(*I);
return {std::move(I), std::move(Parent)};
}
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const FunctionDecl *D, const FullComment *FC, int LineNumber,
llvm::StringRef File, bool IsFileInRootDir, bool PublicOnly) {
FunctionInfo Func;
bool IsInAnonymousNamespace = false;
populateFunctionInfo(Func, D, FC, LineNumber, File, IsFileInRootDir,
IsInAnonymousNamespace);
Func.Access = clang::AccessSpecifier::AS_none;
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
// Info is wrapped in its parent scope so is returned in the second position.
return {nullptr, MakeAndInsertIntoParent<FunctionInfo &&>(std::move(Func))};
}
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const CXXMethodDecl *D, const FullComment *FC, int LineNumber,
llvm::StringRef File, bool IsFileInRootDir, bool PublicOnly) {
FunctionInfo Func;
bool IsInAnonymousNamespace = false;
populateFunctionInfo(Func, D, FC, LineNumber, File, IsFileInRootDir,
IsInAnonymousNamespace);
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
Func.IsMethod = true;
const NamedDecl *Parent = nullptr;
if (const auto *SD =
dyn_cast<ClassTemplateSpecializationDecl>(D->getParent()))
Parent = SD->getSpecializedTemplate();
else
Parent = D->getParent();
SymbolID ParentUSR = getUSRForDecl(Parent);
Func.Parent =
Reference{ParentUSR, Parent->getNameAsString(), InfoType::IT_record,
Parent->getQualifiedNameAsString()};
Func.Access = D->getAccess();
// Info is wrapped in its parent scope so is returned in the second position.
return {nullptr, MakeAndInsertIntoParent<FunctionInfo &&>(std::move(Func))};
}
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const TypedefDecl *D, const FullComment *FC, int LineNumber,
StringRef File, bool IsFileInRootDir, bool PublicOnly) {
TypedefInfo Info;
bool IsInAnonymousNamespace = false;
populateInfo(Info, D, FC, IsInAnonymousNamespace);
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
Info.DefLoc.emplace(LineNumber, File, IsFileInRootDir);
Info.Underlying = getTypeInfoForType(D->getUnderlyingType());
if (Info.Underlying.Type.Name.empty()) {
// Typedef for an unnamed type. This is like "typedef struct { } Foo;"
// The record serializer explicitly checks for this syntax and constructs
// a record with that name, so we don't want to emit a duplicate here.
return {};
}
Info.IsUsing = false;
// Info is wrapped in its parent scope so is returned in the second position.
return {nullptr, MakeAndInsertIntoParent<TypedefInfo &&>(std::move(Info))};
}
// A type alias is a C++ "using" declaration for a type. It gets mapped to a
// TypedefInfo with the IsUsing flag set.
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const TypeAliasDecl *D, const FullComment *FC, int LineNumber,
StringRef File, bool IsFileInRootDir, bool PublicOnly) {
TypedefInfo Info;
bool IsInAnonymousNamespace = false;
populateInfo(Info, D, FC, IsInAnonymousNamespace);
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
Info.DefLoc.emplace(LineNumber, File, IsFileInRootDir);
Info.Underlying = getTypeInfoForType(D->getUnderlyingType());
Info.IsUsing = true;
// Info is wrapped in its parent scope so is returned in the second position.
return {nullptr, MakeAndInsertIntoParent<TypedefInfo &&>(std::move(Info))};
}
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const EnumDecl *D, const FullComment *FC, int LineNumber,
llvm::StringRef File, bool IsFileInRootDir, bool PublicOnly) {
EnumInfo Enum;
bool IsInAnonymousNamespace = false;
populateSymbolInfo(Enum, D, FC, LineNumber, File, IsFileInRootDir,
IsInAnonymousNamespace);
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
Enum.Scoped = D->isScoped();
if (D->isFixed()) {
auto Name = D->getIntegerType().getAsString();
Enum.BaseType = TypeInfo(Name, Name);
}
parseEnumerators(Enum, D);
// Info is wrapped in its parent scope so is returned in the second position.
return {nullptr, MakeAndInsertIntoParent<EnumInfo &&>(std::move(Enum))};
}
} // namespace serialize
} // namespace doc
} // namespace clang