blob: 8e0c724accb36eaa7ed6010b5ec59d501df30510 [file] [log] [blame]
//===- llvm/Support/Parallel.cpp - Parallel algorithms --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/Parallel.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/ExponentialBackoff.h"
#include "llvm/Support/Jobserver.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Threading.h"
#include <atomic>
#include <future>
#include <memory>
#include <mutex>
#include <thread>
#include <vector>
llvm::ThreadPoolStrategy llvm::parallel::strategy;
namespace llvm {
namespace parallel {
#if LLVM_ENABLE_THREADS
#ifdef _WIN32
static thread_local unsigned threadIndex = UINT_MAX;
unsigned getThreadIndex() { GET_THREAD_INDEX_IMPL; }
#else
thread_local unsigned threadIndex = UINT_MAX;
#endif
namespace detail {
namespace {
/// An abstract class that takes closures and runs them asynchronously.
class Executor {
public:
virtual ~Executor() = default;
virtual void add(std::function<void()> func) = 0;
virtual size_t getThreadCount() const = 0;
static Executor *getDefaultExecutor();
};
/// An implementation of an Executor that runs closures on a thread pool
/// in filo order.
class ThreadPoolExecutor : public Executor {
public:
explicit ThreadPoolExecutor(ThreadPoolStrategy S) {
if (S.UseJobserver)
TheJobserver = JobserverClient::getInstance();
ThreadCount = S.compute_thread_count();
// Spawn all but one of the threads in another thread as spawning threads
// can take a while.
Threads.reserve(ThreadCount);
Threads.resize(1);
std::lock_guard<std::mutex> Lock(Mutex);
// Use operator[] before creating the thread to avoid data race in .size()
// in 'safe libc++' mode.
auto &Thread0 = Threads[0];
Thread0 = std::thread([this, S] {
for (unsigned I = 1; I < ThreadCount; ++I) {
Threads.emplace_back([this, S, I] { work(S, I); });
if (Stop)
break;
}
ThreadsCreated.set_value();
work(S, 0);
});
}
// To make sure the thread pool executor can only be created with a parallel
// strategy.
ThreadPoolExecutor() = delete;
void stop() {
{
std::lock_guard<std::mutex> Lock(Mutex);
if (Stop)
return;
Stop = true;
}
Cond.notify_all();
ThreadsCreated.get_future().wait();
}
~ThreadPoolExecutor() override {
stop();
std::thread::id CurrentThreadId = std::this_thread::get_id();
for (std::thread &T : Threads)
if (T.get_id() == CurrentThreadId)
T.detach();
else
T.join();
}
struct Creator {
static void *call() { return new ThreadPoolExecutor(strategy); }
};
struct Deleter {
static void call(void *Ptr) { ((ThreadPoolExecutor *)Ptr)->stop(); }
};
void add(std::function<void()> F) override {
{
std::lock_guard<std::mutex> Lock(Mutex);
WorkStack.push_back(std::move(F));
}
Cond.notify_one();
}
size_t getThreadCount() const override { return ThreadCount; }
private:
void work(ThreadPoolStrategy S, unsigned ThreadID) {
threadIndex = ThreadID;
S.apply_thread_strategy(ThreadID);
// Note on jobserver deadlock avoidance:
// GNU Make grants each invoked process one implicit job slot. Our
// JobserverClient models this by returning an implicit JobSlot on the
// first successful tryAcquire() in a process. This guarantees forward
// progress without requiring a dedicated "always-on" thread here.
static thread_local std::unique_ptr<ExponentialBackoff> Backoff;
while (true) {
if (TheJobserver) {
// Jobserver-mode scheduling:
// - Acquire one job slot (with exponential backoff to avoid busy-wait).
// - While holding the slot, drain and run tasks from the local queue.
// - Release the slot when the queue is empty or when shutting down.
// Rationale: Holding a slot amortizes acquire/release overhead over
// multiple tasks and avoids requeue/yield churn, while still enforcing
// the jobserver’s global concurrency limit. With K available slots,
// up to K workers run tasks in parallel; within each worker tasks run
// sequentially until the local queue is empty.
ExponentialBackoff Backoff(std::chrono::hours(24));
JobSlot Slot;
do {
if (Stop)
return;
Slot = TheJobserver->tryAcquire();
if (Slot.isValid())
break;
} while (Backoff.waitForNextAttempt());
auto SlotReleaser = llvm::make_scope_exit(
[&] { TheJobserver->release(std::move(Slot)); });
while (true) {
std::function<void()> Task;
{
std::unique_lock<std::mutex> Lock(Mutex);
Cond.wait(Lock, [&] { return Stop || !WorkStack.empty(); });
if (Stop && WorkStack.empty())
return;
if (WorkStack.empty())
break;
Task = std::move(WorkStack.back());
WorkStack.pop_back();
}
Task();
}
} else {
std::unique_lock<std::mutex> Lock(Mutex);
Cond.wait(Lock, [&] { return Stop || !WorkStack.empty(); });
if (Stop)
break;
auto Task = std::move(WorkStack.back());
WorkStack.pop_back();
Lock.unlock();
Task();
}
}
}
std::atomic<bool> Stop{false};
std::vector<std::function<void()>> WorkStack;
std::mutex Mutex;
std::condition_variable Cond;
std::promise<void> ThreadsCreated;
std::vector<std::thread> Threads;
unsigned ThreadCount;
JobserverClient *TheJobserver = nullptr;
};
// A global raw pointer to the executor. Lifetime is managed by the
// objects created within createExecutor().
static Executor *TheExec = nullptr;
static std::once_flag Flag;
// This function will be called exactly once to create the executor.
// It contains the necessary platform-specific logic. Since functions
// called by std::call_once cannot return value, we have to set the
// executor as a global variable.
void createExecutor() {
#ifdef _WIN32
// The ManagedStatic enables the ThreadPoolExecutor to be stopped via
// llvm_shutdown() which allows a "clean" fast exit, e.g. via _exit(). This
// stops the thread pool and waits for any worker thread creation to complete
// but does not wait for the threads to finish. The wait for worker thread
// creation to complete is important as it prevents intermittent crashes on
// Windows due to a race condition between thread creation and process exit.
//
// The ThreadPoolExecutor will only be destroyed when the static unique_ptr to
// it is destroyed, i.e. in a normal full exit. The ThreadPoolExecutor
// destructor ensures it has been stopped and waits for worker threads to
// finish. The wait is important as it prevents intermittent crashes on
// Windows when the process is doing a full exit.
//
// The Windows crashes appear to only occur with the MSVC static runtimes and
// are more frequent with the debug static runtime.
//
// This also prevents intermittent deadlocks on exit with the MinGW runtime.
static ManagedStatic<ThreadPoolExecutor, ThreadPoolExecutor::Creator,
ThreadPoolExecutor::Deleter>
ManagedExec;
static std::unique_ptr<ThreadPoolExecutor> Exec(&(*ManagedExec));
TheExec = Exec.get();
#else
// ManagedStatic is not desired on other platforms. When `Exec` is destroyed
// by llvm_shutdown(), worker threads will clean up and invoke TLS
// destructors. This can lead to race conditions if other threads attempt to
// access TLS objects that have already been destroyed.
static ThreadPoolExecutor Exec(strategy);
TheExec = &Exec;
#endif
}
Executor *Executor::getDefaultExecutor() {
// Use std::call_once to lazily and safely initialize the executor.
std::call_once(Flag, createExecutor);
return TheExec;
}
} // namespace
} // namespace detail
size_t getThreadCount() {
return detail::Executor::getDefaultExecutor()->getThreadCount();
}
#endif
// Latch::sync() called by the dtor may cause one thread to block. If is a dead
// lock if all threads in the default executor are blocked. To prevent the dead
// lock, only allow the root TaskGroup to run tasks parallelly. In the scenario
// of nested parallel_for_each(), only the outermost one runs parallelly.
TaskGroup::TaskGroup()
#if LLVM_ENABLE_THREADS
: Parallel((parallel::strategy.ThreadsRequested != 1) &&
(threadIndex == UINT_MAX)) {}
#else
: Parallel(false) {}
#endif
TaskGroup::~TaskGroup() {
// We must ensure that all the workloads have finished before decrementing the
// instances count.
L.sync();
}
void TaskGroup::spawn(std::function<void()> F) {
#if LLVM_ENABLE_THREADS
if (Parallel) {
L.inc();
detail::Executor::getDefaultExecutor()->add([&, F = std::move(F)] {
F();
L.dec();
});
return;
}
#endif
F();
}
} // namespace parallel
} // namespace llvm
void llvm::parallelFor(size_t Begin, size_t End,
llvm::function_ref<void(size_t)> Fn) {
#if LLVM_ENABLE_THREADS
if (parallel::strategy.ThreadsRequested != 1) {
auto NumItems = End - Begin;
// Limit the number of tasks to MaxTasksPerGroup to limit job scheduling
// overhead on large inputs.
auto TaskSize = NumItems / parallel::detail::MaxTasksPerGroup;
if (TaskSize == 0)
TaskSize = 1;
parallel::TaskGroup TG;
for (; Begin + TaskSize < End; Begin += TaskSize) {
TG.spawn([=, &Fn] {
for (size_t I = Begin, E = Begin + TaskSize; I != E; ++I)
Fn(I);
});
}
if (Begin != End) {
TG.spawn([=, &Fn] {
for (size_t I = Begin; I != End; ++I)
Fn(I);
});
}
return;
}
#endif
for (; Begin != End; ++Begin)
Fn(Begin);
}