blob: 79c1e423929209ada94fce9df894025af0674b8f [file] [log] [blame] [edit]
//===- Offloading.cpp - Utilities for handling offloading code -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Object/OffloadBinary.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/BinaryFormat/Magic.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Module.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/Error.h"
#include "llvm/Object/IRObjectFile.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/SourceMgr.h"
using namespace llvm;
using namespace llvm::object;
namespace {
/// A MemoryBuffer that shares ownership of the underlying memory.
/// This allows multiple OffloadBinary instances to share the same buffer.
class SharedMemoryBuffer : public MemoryBuffer {
public:
SharedMemoryBuffer(std::shared_ptr<MemoryBuffer> Buf)
: SharedBuf(std::move(Buf)) {
init(SharedBuf->getBufferStart(), SharedBuf->getBufferEnd(),
/*RequiresNullTerminator=*/false);
}
BufferKind getBufferKind() const override { return MemoryBuffer_Malloc; }
StringRef getBufferIdentifier() const override {
return SharedBuf->getBufferIdentifier();
}
private:
const std::shared_ptr<MemoryBuffer> SharedBuf;
};
/// Attempts to extract all the embedded device images contained inside the
/// buffer \p Contents. The buffer is expected to contain a valid offloading
/// binary format.
Error extractOffloadFiles(MemoryBufferRef Contents,
SmallVectorImpl<OffloadFile> &Binaries) {
uint64_t Offset = 0;
// There could be multiple offloading binaries stored at this section.
while (Offset < Contents.getBufferSize()) {
std::unique_ptr<MemoryBuffer> Buffer =
MemoryBuffer::getMemBuffer(Contents.getBuffer().drop_front(Offset), "",
/*RequiresNullTerminator*/ false);
if (!isAddrAligned(Align(OffloadBinary::getAlignment()),
Buffer->getBufferStart()))
Buffer = MemoryBuffer::getMemBufferCopy(Buffer->getBuffer(),
Buffer->getBufferIdentifier());
auto HeaderOrErr = OffloadBinary::extractHeader(*Buffer);
if (!HeaderOrErr)
return HeaderOrErr.takeError();
const OffloadBinary::Header *Header = *HeaderOrErr;
// Create a copy of original memory containing only the current binary.
std::unique_ptr<MemoryBuffer> BufferCopy = MemoryBuffer::getMemBufferCopy(
Buffer->getBuffer().take_front(Header->Size),
Contents.getBufferIdentifier());
auto BinariesOrErr = OffloadBinary::create(*BufferCopy);
if (!BinariesOrErr)
return BinariesOrErr.takeError();
// Share ownership among multiple OffloadFiles.
std::shared_ptr<MemoryBuffer> SharedBuffer =
std::shared_ptr<MemoryBuffer>(std::move(BufferCopy));
for (auto &Binary : *BinariesOrErr) {
std::unique_ptr<SharedMemoryBuffer> SharedBufferPtr =
std::make_unique<SharedMemoryBuffer>(SharedBuffer);
Binaries.emplace_back(std::move(Binary), std::move(SharedBufferPtr));
}
Offset += Header->Size;
}
return Error::success();
}
// Extract offloading binaries from an Object file \p Obj.
Error extractFromObject(const ObjectFile &Obj,
SmallVectorImpl<OffloadFile> &Binaries) {
assert((Obj.isELF() || Obj.isCOFF()) && "Invalid file type");
for (SectionRef Sec : Obj.sections()) {
// ELF files contain a section with the LLVM_OFFLOADING type.
if (Obj.isELF() &&
static_cast<ELFSectionRef>(Sec).getType() != ELF::SHT_LLVM_OFFLOADING)
continue;
// COFF has no section types so we rely on the name of the section.
if (Obj.isCOFF()) {
Expected<StringRef> NameOrErr = Sec.getName();
if (!NameOrErr)
return NameOrErr.takeError();
if (!NameOrErr->starts_with(".llvm.offloading"))
continue;
}
Expected<StringRef> Buffer = Sec.getContents();
if (!Buffer)
return Buffer.takeError();
MemoryBufferRef Contents(*Buffer, Obj.getFileName());
if (Error Err = extractOffloadFiles(Contents, Binaries))
return Err;
}
return Error::success();
}
Error extractFromBitcode(MemoryBufferRef Buffer,
SmallVectorImpl<OffloadFile> &Binaries) {
LLVMContext Context;
SMDiagnostic Err;
std::unique_ptr<Module> M = getLazyIRModule(
MemoryBuffer::getMemBuffer(Buffer, /*RequiresNullTerminator=*/false), Err,
Context);
if (!M)
return createStringError(inconvertibleErrorCode(),
"Failed to create module");
// Extract offloading data from globals referenced by the
// `llvm.embedded.object` metadata with the `.llvm.offloading` section.
auto *MD = M->getNamedMetadata("llvm.embedded.objects");
if (!MD)
return Error::success();
for (const MDNode *Op : MD->operands()) {
if (Op->getNumOperands() < 2)
continue;
MDString *SectionID = dyn_cast<MDString>(Op->getOperand(1));
if (!SectionID || SectionID->getString() != ".llvm.offloading")
continue;
GlobalVariable *GV =
mdconst::dyn_extract_or_null<GlobalVariable>(Op->getOperand(0));
if (!GV)
continue;
auto *CDS = dyn_cast<ConstantDataSequential>(GV->getInitializer());
if (!CDS)
continue;
MemoryBufferRef Contents(CDS->getAsString(), M->getName());
if (Error Err = extractOffloadFiles(Contents, Binaries))
return Err;
}
return Error::success();
}
Error extractFromArchive(const Archive &Library,
SmallVectorImpl<OffloadFile> &Binaries) {
// Try to extract device code from each file stored in the static archive.
Error Err = Error::success();
for (auto Child : Library.children(Err)) {
auto ChildBufferOrErr = Child.getMemoryBufferRef();
if (!ChildBufferOrErr)
return ChildBufferOrErr.takeError();
std::unique_ptr<MemoryBuffer> ChildBuffer =
MemoryBuffer::getMemBuffer(*ChildBufferOrErr, false);
// Check if the buffer has the required alignment.
if (!isAddrAligned(Align(OffloadBinary::getAlignment()),
ChildBuffer->getBufferStart()))
ChildBuffer = MemoryBuffer::getMemBufferCopy(
ChildBufferOrErr->getBuffer(),
ChildBufferOrErr->getBufferIdentifier());
if (Error Err = extractOffloadBinaries(*ChildBuffer, Binaries))
return Err;
}
if (Err)
return Err;
return Error::success();
}
} // namespace
Expected<const OffloadBinary::Header *>
OffloadBinary::extractHeader(MemoryBufferRef Buf) {
if (Buf.getBufferSize() < sizeof(Header) + sizeof(Entry))
return errorCodeToError(object_error::parse_failed);
// Check for 0x10FF1OAD magic bytes.
if (identify_magic(Buf.getBuffer()) != file_magic::offload_binary)
return errorCodeToError(object_error::parse_failed);
// Make sure that the data has sufficient alignment.
if (!isAddrAligned(Align(getAlignment()), Buf.getBufferStart()))
return errorCodeToError(object_error::parse_failed);
const char *Start = Buf.getBufferStart();
const Header *TheHeader = reinterpret_cast<const Header *>(Start);
if (TheHeader->Version == 0 || TheHeader->Version > OffloadBinary::Version)
return errorCodeToError(object_error::parse_failed);
if (TheHeader->Size > Buf.getBufferSize() ||
TheHeader->Size < sizeof(Entry) || TheHeader->Size < sizeof(Header))
return errorCodeToError(object_error::unexpected_eof);
uint64_t EntriesCount =
(TheHeader->Version == 1) ? 1 : TheHeader->EntriesCount;
uint64_t EntriesSize = sizeof(Entry) * EntriesCount;
if (TheHeader->EntriesOffset > TheHeader->Size - EntriesSize ||
EntriesSize > TheHeader->Size - sizeof(Header))
return errorCodeToError(object_error::unexpected_eof);
return TheHeader;
}
Expected<SmallVector<std::unique_ptr<OffloadBinary>>>
OffloadBinary::create(MemoryBufferRef Buf, std::optional<uint64_t> Index) {
auto HeaderOrErr = OffloadBinary::extractHeader(Buf);
if (!HeaderOrErr)
return HeaderOrErr.takeError();
const Header *TheHeader = *HeaderOrErr;
const char *Start = Buf.getBufferStart();
const Entry *Entries =
reinterpret_cast<const Entry *>(&Start[TheHeader->EntriesOffset]);
auto validateEntry = [&](const Entry *TheEntry) -> Error {
if (TheEntry->ImageOffset > Buf.getBufferSize() ||
TheEntry->StringOffset > Buf.getBufferSize() ||
TheEntry->StringOffset + TheEntry->NumStrings * sizeof(StringEntry) >
Buf.getBufferSize())
return errorCodeToError(object_error::unexpected_eof);
return Error::success();
};
SmallVector<std::unique_ptr<OffloadBinary>> Binaries;
if (TheHeader->Version > 1 && Index.has_value()) {
if (*Index >= TheHeader->EntriesCount)
return errorCodeToError(object_error::parse_failed);
const Entry *TheEntry = &Entries[*Index];
if (auto Err = validateEntry(TheEntry))
return std::move(Err);
Binaries.emplace_back(new OffloadBinary(Buf, TheHeader, TheEntry, *Index));
return std::move(Binaries);
}
uint64_t EntriesCount = TheHeader->Version == 1 ? 1 : TheHeader->EntriesCount;
for (uint64_t I = 0; I < EntriesCount; ++I) {
const Entry *TheEntry = &Entries[I];
if (auto Err = validateEntry(TheEntry))
return std::move(Err);
Binaries.emplace_back(new OffloadBinary(Buf, TheHeader, TheEntry, I));
}
return std::move(Binaries);
}
SmallString<0> OffloadBinary::write(ArrayRef<OffloadingImage> OffloadingData) {
uint64_t EntriesCount = OffloadingData.size();
assert(EntriesCount > 0 && "At least one offloading image is required");
// Create a null-terminated string table with all the used strings.
// Also calculate total size of images.
StringTableBuilder StrTab(StringTableBuilder::ELF);
uint64_t TotalStringEntries = 0;
uint64_t TotalImagesSize = 0;
for (const OffloadingImage &Img : OffloadingData) {
for (auto &KeyAndValue : Img.StringData) {
StrTab.add(KeyAndValue.first);
StrTab.add(KeyAndValue.second);
}
TotalStringEntries += Img.StringData.size();
TotalImagesSize += Img.Image->getBufferSize();
}
StrTab.finalize();
uint64_t StringEntrySize = sizeof(StringEntry) * TotalStringEntries;
uint64_t EntriesSize = sizeof(Entry) * EntriesCount;
uint64_t StrTabOffset = sizeof(Header) + EntriesSize + StringEntrySize;
// Make sure the image we're wrapping around is aligned as well.
uint64_t BinaryDataSize =
alignTo(StrTabOffset + StrTab.getSize(), getAlignment());
// Create the header and fill in the offsets. The entries will be directly
// placed after the header in memory. Align the size to the alignment of the
// header so this can be placed contiguously in a single section.
Header TheHeader;
TheHeader.Size = alignTo(BinaryDataSize + TotalImagesSize, getAlignment());
TheHeader.EntriesOffset = sizeof(Header);
TheHeader.EntriesCount = EntriesCount;
SmallString<0> Data;
Data.reserve(TheHeader.Size);
raw_svector_ostream OS(Data);
OS << StringRef(reinterpret_cast<char *>(&TheHeader), sizeof(Header));
// Create the entries using the string table offsets. The string table will be
// placed directly after the set of entries in memory, and all the images are
// after that.
uint64_t StringEntryOffset = sizeof(Header) + EntriesSize;
uint64_t ImageOffset = BinaryDataSize;
for (const OffloadingImage &Img : OffloadingData) {
Entry TheEntry;
TheEntry.TheImageKind = Img.TheImageKind;
TheEntry.TheOffloadKind = Img.TheOffloadKind;
TheEntry.Flags = Img.Flags;
TheEntry.StringOffset = StringEntryOffset;
StringEntryOffset += sizeof(StringEntry) * Img.StringData.size();
TheEntry.NumStrings = Img.StringData.size();
TheEntry.ImageOffset = ImageOffset;
ImageOffset += Img.Image->getBufferSize();
TheEntry.ImageSize = Img.Image->getBufferSize();
OS << StringRef(reinterpret_cast<char *>(&TheEntry), sizeof(Entry));
}
// Create the string map entries.
for (const OffloadingImage &Img : OffloadingData) {
for (auto &KeyAndValue : Img.StringData) {
StringEntry Map{StrTabOffset + StrTab.getOffset(KeyAndValue.first),
StrTabOffset + StrTab.getOffset(KeyAndValue.second),
KeyAndValue.second.size()};
OS << StringRef(reinterpret_cast<char *>(&Map), sizeof(StringEntry));
}
}
StrTab.write(OS);
// Add padding to required image alignment.
OS.write_zeros(BinaryDataSize - OS.tell());
for (const OffloadingImage &Img : OffloadingData)
OS << Img.Image->getBuffer();
// Add final padding to required alignment.
assert(TheHeader.Size >= OS.tell() && "Too much data written?");
OS.write_zeros(TheHeader.Size - OS.tell());
assert(TheHeader.Size == OS.tell() && "Size mismatch");
return Data;
}
Error object::extractOffloadBinaries(MemoryBufferRef Buffer,
SmallVectorImpl<OffloadFile> &Binaries) {
file_magic Type = identify_magic(Buffer.getBuffer());
switch (Type) {
case file_magic::bitcode:
return extractFromBitcode(Buffer, Binaries);
case file_magic::elf_relocatable:
case file_magic::elf_executable:
case file_magic::elf_shared_object:
case file_magic::coff_object: {
Expected<std::unique_ptr<ObjectFile>> ObjFile =
ObjectFile::createObjectFile(Buffer, Type);
if (!ObjFile)
return ObjFile.takeError();
return extractFromObject(*ObjFile->get(), Binaries);
}
case file_magic::archive: {
Expected<std::unique_ptr<llvm::object::Archive>> LibFile =
object::Archive::create(Buffer);
if (!LibFile)
return LibFile.takeError();
return extractFromArchive(*LibFile->get(), Binaries);
}
case file_magic::offload_binary:
return extractOffloadFiles(Buffer, Binaries);
default:
return Error::success();
}
}
OffloadKind object::getOffloadKind(StringRef Name) {
return llvm::StringSwitch<OffloadKind>(Name)
.Case("openmp", OFK_OpenMP)
.Case("cuda", OFK_Cuda)
.Case("hip", OFK_HIP)
.Case("sycl", OFK_SYCL)
.Default(OFK_None);
}
StringRef object::getOffloadKindName(OffloadKind Kind) {
switch (Kind) {
case OFK_OpenMP:
return "openmp";
case OFK_Cuda:
return "cuda";
case OFK_HIP:
return "hip";
case OFK_SYCL:
return "sycl";
default:
return "none";
}
}
ImageKind object::getImageKind(StringRef Name) {
return llvm::StringSwitch<ImageKind>(Name)
.Case("o", IMG_Object)
.Case("bc", IMG_Bitcode)
.Case("cubin", IMG_Cubin)
.Case("fatbin", IMG_Fatbinary)
.Case("s", IMG_PTX)
.Default(IMG_None);
}
StringRef object::getImageKindName(ImageKind Kind) {
switch (Kind) {
case IMG_Object:
return "o";
case IMG_Bitcode:
return "bc";
case IMG_Cubin:
return "cubin";
case IMG_Fatbinary:
return "fatbin";
case IMG_PTX:
return "s";
default:
return "";
}
}
bool object::areTargetsCompatible(const OffloadFile::TargetID &LHS,
const OffloadFile::TargetID &RHS) {
// Exact matches are not considered compatible because they are the same
// target. We are interested in different targets that are compatible.
if (LHS == RHS)
return false;
// The triples must match at all times.
if (LHS.first != RHS.first)
return false;
// If the architecture is "all" we assume it is always compatible.
if (LHS.second == "generic" || RHS.second == "generic")
return true;
// Only The AMDGPU target requires additional checks.
llvm::Triple T(LHS.first);
if (!T.isAMDGPU())
return false;
// The base processor must always match.
if (LHS.second.split(":").first != RHS.second.split(":").first)
return false;
// Check combintions of on / off features that must match.
if (LHS.second.contains("xnack+") && RHS.second.contains("xnack-"))
return false;
if (LHS.second.contains("xnack-") && RHS.second.contains("xnack+"))
return false;
if (LHS.second.contains("sramecc-") && RHS.second.contains("sramecc+"))
return false;
if (LHS.second.contains("sramecc+") && RHS.second.contains("sramecc-"))
return false;
return true;
}