blob: 3aa7db8362734de52891b4d14a5c2d5d69dc481a [file] [log] [blame]
//===-- Implementation of sqrtf128 function -------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "src/math/sqrtf128.h"
#include "src/__support/CPP/bit.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/rounding_mode.h"
#include "src/__support/common.h"
#include "src/__support/macros/optimization.h"
#include "src/__support/uint128.h"
// Compute sqrtf128 with correct rounding for all rounding modes using integer
// arithmetic by Alexei Sibidanov (sibid@uvic.ca):
// https://github.com/sibidanov/llvm-project/tree/as_sqrt_v2
// https://github.com/sibidanov/llvm-project/tree/as_sqrt_v3
// TODO: Update the reference once Alexei's implementation is in the CORE-MATH
// project. https://github.com/llvm/llvm-project/issues/126794
// Let the input be expressed as x = 2^e * m_x,
// - Step 1: Range reduction
// Let x_reduced = 2^(e % 2) * m_x,
// Then sqrt(x) = 2^(e / 2) * sqrt(x_reduced), with
// 1 <= x_reduced < 4.
// - Step 2: Polynomial approximation
// Approximate 1/sqrt(x_reduced) using polynomial approximation with the
// result errors bounded by:
// |r0 - 1/sqrt(x_reduced)| < 2^-32.
// The computations are done in uint64_t.
// - Step 3: First Newton iteration
// Let the scaled error defined by:
// h0 = r0^2 * x_reduced - 1.
// Then we compute the first Newton iteration:
// r1 = r0 - r0 * h0 / 2.
// The result is then bounded by:
// |r1 - 1 / sqrt(x_reduced)| < 2^-62.
// - Step 4: Second Newton iteration
// We calculate the scaled error from Step 3:
// h1 = r1^2 * x_reduced - 1.
// Then the second Newton iteration is computed by:
// r2 = x_reduced * (r1 - r1 * h0 / 2)
// ~ x_reduced * (1/sqrt(x_reduced)) = sqrt(x_reduced)
// - Step 5: Perform rounding test and correction if needed.
// Rounding correction is done by computing the exact rounding errors:
// x_reduced - r2^2.
namespace LIBC_NAMESPACE_DECL {
using FPBits = fputil::FPBits<float128>;
namespace {
template <typename T, typename U = T> static inline constexpr T prod_hi(T, U);
// Get high part of integer multiplications.
// Use template to prevent implicit conversion.
template <>
inline constexpr uint64_t prod_hi<uint64_t>(uint64_t x, uint64_t y) {
return static_cast<uint64_t>(
(static_cast<UInt128>(x) * static_cast<UInt128>(y)) >> 64);
}
// Get high part of unsigned 128x64 bit multiplication.
template <>
inline constexpr UInt128 prod_hi<UInt128, uint64_t>(UInt128 x, uint64_t y) {
uint64_t x_lo = static_cast<uint64_t>(x);
uint64_t x_hi = static_cast<uint64_t>(x >> 64);
UInt128 xyl = static_cast<UInt128>(x_lo) * static_cast<UInt128>(y);
UInt128 xyh = static_cast<UInt128>(x_hi) * static_cast<UInt128>(y);
return xyh + (xyl >> 64);
}
// Get high part of signed 64x64 bit multiplication.
template <> inline constexpr int64_t prod_hi<int64_t>(int64_t x, int64_t y) {
return static_cast<int64_t>(
(static_cast<Int128>(x) * static_cast<Int128>(y)) >> 64);
}
// Get high 128-bit part of unsigned 128x128 bit multiplication.
template <> inline constexpr UInt128 prod_hi<UInt128>(UInt128 x, UInt128 y) {
uint64_t x_lo = static_cast<uint64_t>(x);
uint64_t x_hi = static_cast<uint64_t>(x >> 64);
uint64_t y_lo = static_cast<uint64_t>(y);
uint64_t y_hi = static_cast<uint64_t>(y >> 64);
UInt128 xh_yh = static_cast<UInt128>(x_hi) * static_cast<UInt128>(y_hi);
UInt128 xh_yl = static_cast<UInt128>(x_hi) * static_cast<UInt128>(y_lo);
UInt128 xl_yh = static_cast<UInt128>(x_lo) * static_cast<UInt128>(y_hi);
xh_yh += xh_yl >> 64;
return xh_yh + (xl_yh >> 64);
}
// Get high 128-bit part of mixed sign 128x128 bit multiplication.
template <>
inline constexpr Int128 prod_hi<Int128, UInt128>(Int128 x, UInt128 y) {
UInt128 mask = static_cast<UInt128>(x >> 127);
UInt128 negative_part = y & mask;
UInt128 prod = prod_hi(static_cast<UInt128>(x), y);
return static_cast<Int128>(prod - negative_part);
}
// Newton-Raphson first order step to improve accuracy of the result.
// For the initial approximation r0 ~ 1/sqrt(x), let
// h = r0^2 * x - 1
// be its scaled error. Then the first-order Newton-Raphson iteration is:
// r1 = r0 - r0 * h / 2
// which has error bounded by:
// |r1 - 1/sqrt(x)| < h^2 / 2.
LIBC_INLINE uint64_t rsqrt_newton_raphson(uint64_t m, uint64_t r) {
uint64_t r2 = prod_hi(r, r);
// h = r0^2*x - 1.
int64_t h = static_cast<int64_t>(prod_hi(m, r2) + r2);
// hr = r * h / 2
int64_t hr = prod_hi(h, static_cast<int64_t>(r >> 1));
return r - hr;
}
#ifdef LIBC_MATH_HAS_SMALL_TABLES
// Degree-12 minimax polynomials for 1/sqrt(x) on [1, 2].
constexpr uint32_t RSQRT_COEFFS[12] = {
0xb5947a4a, 0x2d651e32, 0x9ad50532, 0x2d28d093, 0x0d8be653, 0x04239014,
0x01492449, 0x0066ff7d, 0x001e74a1, 0x000984cc, 0x00049abc, 0x00018340,
};
LIBC_INLINE uint64_t rsqrt_approx(uint64_t m) {
int64_t x = static_cast<uint64_t>(m) ^ (uint64_t(1) << 63);
int64_t x_26 = x >> 2;
int64_t z = x >> 31;
if (LIBC_UNLIKELY(z <= -4294967296))
return ~(m >> 1);
uint64_t x2 = static_cast<uint64_t>(z) * static_cast<uint64_t>(z);
uint64_t x2_26 = x2 >> 5;
x2 >>= 32;
// Calculate the odd part of the polynomial using Horner's method.
uint64_t c0 = RSQRT_COEFFS[8] + ((x2 * RSQRT_COEFFS[10]) >> 32);
uint64_t c1 = RSQRT_COEFFS[6] + ((x2 * c0) >> 32);
uint64_t c2 = RSQRT_COEFFS[4] + ((x2 * c1) >> 32);
uint64_t c3 = RSQRT_COEFFS[2] + ((x2 * c2) >> 32);
uint64_t c4 = RSQRT_COEFFS[0] + ((x2 * c3) >> 32);
uint64_t odd =
static_cast<uint64_t>((x >> 34) * static_cast<int64_t>(c4 >> 3)) + x_26;
// Calculate the even part of the polynomial using Horner's method.
uint64_t d0 = RSQRT_COEFFS[9] + ((x2 * RSQRT_COEFFS[11]) >> 32);
uint64_t d1 = RSQRT_COEFFS[7] + ((x2 * d0) >> 32);
uint64_t d2 = RSQRT_COEFFS[5] + ((x2 * d1) >> 32);
uint64_t d3 = RSQRT_COEFFS[3] + ((x2 * d2) >> 32);
uint64_t d4 = RSQRT_COEFFS[1] + ((x2 * d3) >> 32);
uint64_t even = 0xd105eb806655d608ul + ((x2 * d4) >> 6) + x2_26;
uint64_t r = even - odd; // error < 1.5e-10
// Newton-Raphson first order step to improve accuracy of the result to almost
// 64 bits.
return rsqrt_newton_raphson(m, r);
}
#else
// Cubic minimax polynomials for 1/sqrt(x) on [1 + k/64, 1 + (k + 1)/64]
// for k = 0..63.
constexpr uint32_t RSQRT_COEFFS[64][4] = {
{0xffffffff, 0xfffff780, 0xbff55815, 0x9bb5b6e7},
{0xfc0bd889, 0xfa1d6e7d, 0xb8a95a89, 0x938bf8f0},
{0xf82ec882, 0xf473bea9, 0xb1bf4705, 0x8bed0079},
{0xf467f280, 0xeefff2a1, 0xab309d4a, 0x84cdb431},
{0xf0b6848c, 0xe9bf46f4, 0xa4f76232, 0x7e24037b},
{0xed19b75e, 0xe4af2628, 0x9f0e1340, 0x77e6ca62},
{0xe990cdad, 0xdfcd2521, 0x996f9b96, 0x720db8df},
{0xe61b138e, 0xdb16ffde, 0x94174a00, 0x6c913cff},
{0xe2b7dddf, 0xd68a967b, 0x8f00c812, 0x676a6f92},
{0xdf6689b7, 0xd225ea80, 0x8a281226, 0x62930308},
{0xdc267bea, 0xcde71c63, 0x8589702c, 0x5e05343e},
{0xd8f7208e, 0xc9cc6948, 0x81216f2e, 0x59bbbcf8},
{0xd5d7ea91, 0xc5d428ee, 0x7cecdb76, 0x55b1c7d6},
{0xd2c8534e, 0xc1fccbc9, 0x78e8bb45, 0x51e2e592},
{0xcfc7da32, 0xbe44d94a, 0x75124a0a, 0x4e4b0369},
{0xccd6045f, 0xbaaaee41, 0x7166f40f, 0x4ae66284},
{0xc9f25c5c, 0xb72dbb69, 0x6de45288, 0x47b19045},
{0xc71c71c7, 0xb3cc040f, 0x6a882804, 0x44a95f5f},
{0xc453d90f, 0xb0849cd4, 0x67505d2a, 0x41cae1a0},
{0xc1982b2e, 0xad566a85, 0x643afdc8, 0x3f13625c},
{0xbee9056f, 0xaa406113, 0x6146361f, 0x3c806169},
{0xbc46092e, 0xa7418293, 0x5e70506d, 0x3a0f8e8e},
{0xb9aedba5, 0xa458de58, 0x5bb7b2b1, 0x37bec572},
{0xb72325b7, 0xa1859022, 0x591adc9a, 0x358c09e2},
{0xb4a293c2, 0x9ec6bf52, 0x569865a7, 0x33758476},
{0xb22cd56d, 0x9c1b9e36, 0x542efb6a, 0x31797f8a},
{0xafc19d86, 0x9983695c, 0x51dd5ffb, 0x2f96647a},
{0xad60a1d1, 0x96fd66f7, 0x4fa2687c, 0x2dcab91f},
{0xab099ae9, 0x9488e64b, 0x4d7cfbc9, 0x2c151d8a},
{0xa8bc441a, 0x92253f20, 0x4b6c1139, 0x2a7449ef},
{0xa6785b42, 0x8fd1d14a, 0x496eaf82, 0x28e70cc3},
{0xa43da0ae, 0x8d8e042a, 0x4783eba7, 0x276c4900},
{0xa20bd701, 0x8b594648, 0x45aae80a, 0x2602f493},
{0x9fe2c315, 0x89330ce4, 0x43e2d382, 0x24aa16ec},
{0x9dc22be4, 0x871ad399, 0x422ae88c, 0x2360c7af},
{0x9ba9da6c, 0x85101c05, 0x40826c88, 0x22262d7b},
{0x99999999, 0x83126d70, 0x3ee8af07, 0x20f97cd2},
{0x97913630, 0x81215480, 0x3d5d0922, 0x1fd9f714},
{0x95907eb8, 0x7f3c62ef, 0x3bdedce0, 0x1ec6e994},
{0x93974369, 0x7d632f45, 0x3a6d94a9, 0x1dbfacbb},
{0x91a55615, 0x7b955498, 0x3908a2be, 0x1cc3a33b},
{0x8fba8a1c, 0x79d2724e, 0x37af80bf, 0x1bd23960},
{0x8dd6b456, 0x781a2be4, 0x3661af39, 0x1aeae458},
{0x8bf9ab07, 0x766c28ba, 0x351eb539, 0x1a0d21a2},
{0x8a2345cc, 0x74c813dd, 0x33e61feb, 0x19387676},
{0x88535d90, 0x732d9bdc, 0x32b7823a, 0x186c6f3e},
{0x8689cc7e, 0x719c7297, 0x3192747d, 0x17a89f21},
{0x84c66df1, 0x70144d19, 0x30769424, 0x16ec9f89},
{0x83091e6a, 0x6e94e36c, 0x2f63836f, 0x16380fbf},
{0x8151bb87, 0x6d1df079, 0x2e58e925, 0x158a9484},
{0x7fa023f1, 0x6baf31de, 0x2d567053, 0x14e3d7ba},
{0x7df43758, 0x6a4867d3, 0x2c5bc811, 0x1443880e},
{0x7c4dd664, 0x68e95508, 0x2b68a346, 0x13a958ab},
{0x7aace2b0, 0x6791be86, 0x2a7cb871, 0x131500ee},
{0x79113ebc, 0x66416b95, 0x2997c17a, 0x12863c29},
{0x777acde8, 0x64f825a1, 0x28b97b82, 0x11fcc95c},
{0x75e9746a, 0x63b5b822, 0x27e1a6b4, 0x11786b03},
{0x745d1746, 0x6279f081, 0x2710061d, 0x10f8e6da},
{0x72d59c46, 0x61449e06, 0x26445f86, 0x107e05ac},
{0x7152e9f4, 0x601591be, 0x257e7b4d, 0x10079327},
{0x6fd4e793, 0x5eec9e6b, 0x24be2445, 0x0f955da9},
{0x6e5b7d16, 0x5dc9986e, 0x24032795, 0x0f273620},
{0x6ce6931d, 0x5cac55b7, 0x234d5496, 0x0ebcefdb},
{0x6b7612ec, 0x5b94adb2, 0x229c7cbc, 0x0e56606e},
};
// Approximate rsqrt with cubic polynomials.
// The range [1,2] is splitted into 64 equal sub-ranges and the reciprocal
// square root is approximated by a cubic polynomial by the minimax method in
// each subrange. The approximation accuracy fits into 32-33 bits and thus it is
// natural to round coefficients into 32 bit. The constant coefficient can be
// rounded to 33 bits since the most significant bit is always 1 and implicitly
// assumed in the table.
LIBC_INLINE uint64_t rsqrt_approx(uint64_t m) {
// ULP(m) = 2^-64.
// Use the top 6 bits as index for looking up polynomial coeffs.
uint64_t indx = m >> 58;
uint64_t c0 = static_cast<uint64_t>(RSQRT_COEFFS[indx][0]);
c0 <<= 31; // to 64 bit with the space for the implicit bit
c0 |= 1ull << 63; // add implicit bit
uint64_t c1 = static_cast<uint64_t>(RSQRT_COEFFS[indx][1]);
c1 <<= 25; // to 64 bit format
uint64_t c2 = static_cast<uint64_t>(RSQRT_COEFFS[indx][2]);
uint64_t c3 = static_cast<uint64_t>(RSQRT_COEFFS[indx][3]);
uint64_t d = (m << 6) >> 32; // local coordinate in the subrange [0, 2^32]
uint64_t d2 = (d * d) >> 32; // square of the local coordinate
uint64_t re = c0 + (d2 * c2 >> 13); // even part of the polynomial (positive)
uint64_t ro = d * ((c1 + ((d2 * c3) >> 19)) >> 26) >>
6; // odd part of the polynomial (negative)
uint64_t r = re - ro; // maximal error < 1.55e-10 and it is less than 2^-32
// Newton-Raphson first order step to improve accuracy of the result to almost
// 64 bits.
r = rsqrt_newton_raphson(m, r);
// Adjust in the unlucky case x~1;
if (LIBC_UNLIKELY(!r))
--r;
return r;
}
#endif // LIBC_MATH_HAS_SMALL_TABLES
} // anonymous namespace
LLVM_LIBC_FUNCTION(float128, sqrtf128, (float128 x)) {
using FPBits = fputil::FPBits<float128>;
// Get rounding mode.
uint32_t rm = fputil::get_round();
FPBits xbits(x);
UInt128 x_u = xbits.uintval();
// Bring leading bit of the mantissa to the highest bit.
// ulp(x_frac) = 2^-128.
UInt128 x_frac = xbits.get_mantissa() << (FPBits::EXP_LEN + 1);
int sign_exp = static_cast<int>(x_u >> FPBits::FRACTION_LEN);
if (LIBC_UNLIKELY(sign_exp == 0 || sign_exp >= 0x7fff)) {
// Special cases: NAN, inf, negative numbers
if (sign_exp >= 0x7fff) {
// x = -0 or x = inf
if (xbits.is_zero() || xbits == xbits.inf())
return x;
// x is nan
if (xbits.is_nan()) {
// pass through quiet nan
if (xbits.is_quiet_nan())
return x;
// transform signaling nan to quiet and return
return xbits.quiet_nan().get_val();
}
// x < 0 or x = -inf
fputil::set_errno_if_required(EDOM);
fputil::raise_except_if_required(FE_INVALID);
return xbits.quiet_nan().get_val();
}
// Now x is subnormal or x = +0.
// x is +0.
if (x_frac == 0)
return x;
// Normalize subnormal inputs.
sign_exp = -cpp::countl_zero(x_frac);
int normal_shifts = 1 - sign_exp;
x_frac <<= normal_shifts;
}
// For sign_exp = biased exponent of x = real_exponent + 16383,
// let f be the real exponent of the output:
// f = floor(real_exponent / 2)
// Then:
// floor((sign_exp + 1) / 2) = f + 8192
// Hence, the biased exponent of the final result is:
// f + 16383 = floor((sign_exp + 1) / 2) + 8191.
// Since the output mantissa will include the hidden bit, we can define the
// output exponent part:
// e2 = floor((sign_exp + 1) / 2) + 8190
unsigned i = static_cast<unsigned>(1 - (sign_exp & 1));
uint32_t q2 = (sign_exp + 1) >> 1;
// Exponent of the final result
uint32_t e2 = q2 + 8190;
constexpr uint64_t RSQRT_2[2] = {~0ull,
0xb504f333f9de6484 /* 2^64/sqrt(2) */};
// Approximate 1/sqrt(1 + x_frac)
// Error: |r_1 - 1/sqrt(x)| < 2^-62.
uint64_t r1 = rsqrt_approx(static_cast<uint64_t>(x_frac >> 64));
// Adjust for the even/odd exponent.
uint64_t r2 = prod_hi(r1, RSQRT_2[i]);
unsigned shift = 2 - i;
// Normalized input:
// 1 <= x_reduced < 4
UInt128 x_reduced = (x_frac >> shift) | (UInt128(1) << (126 + i));
// With r2 ~ 1/sqrt(x) up to 2^-63, we perform another round of Newton-Raphson
// iteration:
// r3 = r2 - r2 * h / 2,
// for h = r2^2 * x - 1.
// Then:
// sqrt(x) = x * (1 / sqrt(x))
// ~ x * r3
// = x * (r2 - r2 * h / 2)
// = (x * r2) - (x * r2) * h / 2
UInt128 sx = prod_hi(x_reduced, r2);
UInt128 h = prod_hi(sx, r2) << 2;
UInt128 ds = static_cast<UInt128>(prod_hi(static_cast<Int128>(h), sx));
UInt128 v = (sx << 1) - ds;
uint32_t nrst = rm == FE_TONEAREST;
// The result lies within (-2,5) of true square root so we now
// test that we can correctly round the result taking into account
// the rounding mode.
// Check the lowest 14 bits (by clearing and sign-extending the top
// 32 - 14 = 18 bits).
int dd = (static_cast<int>(v) << 18) >> 18;
if (LIBC_UNLIKELY(dd < 4 && dd >= -8)) { // can round correctly?
// m is almost the final result it can be only 1 ulp off so we
// just need to test both possibilities. We square it and
// compare with the initial argument.
UInt128 m = v >> 15;
UInt128 m2 = m * m;
// The difference of the squared result and the argument
Int128 t0 = static_cast<Int128>(m2 - (x_reduced << 98));
if (t0 == 0) {
// the square root is exact
v = m << 15;
} else {
// Add +-1 ulp to m depend on the sign of the difference. Here
// we do not need to square again since (m+1)^2 = m^2 + 2*m +
// 1 so just need to add shifted m and 1.
Int128 t1 = t0;
Int128 sgn = t0 >> 127; // sign of the difference
Int128 m_xor_sgn = static_cast<Int128>(m << 1) ^ sgn;
t1 -= m_xor_sgn;
t1 += Int128(1) + sgn;
Int128 sgn1 = t1 >> 127;
if (LIBC_UNLIKELY(sgn == sgn1)) {
t0 = t1;
v -= sgn << 15;
t1 -= m_xor_sgn;
t1 += Int128(1) + sgn;
}
if (t1 == 0) {
// 1 ulp offset brings again an exact root
v = (m - static_cast<UInt128>((sgn << 1) + 1)) << 15;
} else {
t1 += t0;
Int128 side = t1 >> 127; // select what is closer m or m+-1
v &= ~UInt128(0) << 15; // wipe the fractional bits
v -= ((sgn & side) | (~sgn & 1)) << (15 + static_cast<int>(side));
v |= 1; // add sticky bit since we cannot have an exact mid-point
// situation
}
}
}
unsigned frac = static_cast<unsigned>(v) & 0x7fff; // fractional part
unsigned rnd; // round bit
if (LIBC_LIKELY(nrst != 0)) {
rnd = frac >> 14; // round to nearest tie to even
} else if (rm == FE_UPWARD) {
rnd = !!frac; // round up
} else {
rnd = 0; // round down or round to zero
}
v >>= 15; // position mantissa
v += rnd; // round
// Set inexact flag only if square root is inexact
// TODO: We will have to raise FE_INEXACT most of the time, but this
// operation is very costly, especially in x86-64, since technically, it
// needs to synchronize both SSE and x87 flags. Need to investigate
// further to see how we can make this performant.
// https://github.com/llvm/llvm-project/issues/126753
// if(frac) fputil::raise_except_if_required(FE_INEXACT);
v += static_cast<UInt128>(e2) << FPBits::FRACTION_LEN; // place exponent
return cpp::bit_cast<float128>(v);
}
} // namespace LIBC_NAMESPACE_DECL