blob: 5f19b812469807d3a149a6e5f06c4a18913fb8f2 [file] [log] [blame] [edit]
//===-- Single-precision general sinhf/coshf functions --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SRC___SUPPORT_MATH_SINHFCOSHF_UTILS_H
#define LLVM_LIBC_SRC___SUPPORT_MATH_SINHFCOSHF_UTILS_H
#include "exp10f_utils.h"
#include "src/__support/FPUtil/multiply_add.h"
namespace LIBC_NAMESPACE_DECL {
namespace math {
namespace sinhfcoshf_internal {
// The function correctly calculates sinh(x) and cosh(x) by calculating exp(x)
// and exp(-x) simultaneously.
// To compute e^x, we perform the following range
// reduction: find hi, mid, lo such that:
// x = (hi + mid) * log(2) + lo, in which
// hi is an integer,
// 0 <= mid * 2^5 < 32 is an integer
// -2^(-6) <= lo * log2(e) <= 2^-6.
// In particular,
// hi + mid = round(x * log2(e) * 2^5) * 2^(-5).
// Then,
// e^x = 2^(hi + mid) * e^lo = 2^hi * 2^mid * e^lo.
// 2^mid is stored in the lookup table of 32 elements.
// e^lo is computed using a degree-5 minimax polynomial
// generated by Sollya:
// e^lo ~ P(lo) = 1 + lo + c2 * lo^2 + ... + c5 * lo^5
// = (1 + c2*lo^2 + c4*lo^4) + lo * (1 + c3*lo^2 + c5*lo^4)
// = P_even + lo * P_odd
// We perform 2^hi * 2^mid by simply add hi to the exponent field
// of 2^mid.
// To compute e^(-x), notice that:
// e^(-x) = 2^(-(hi + mid)) * e^(-lo)
// ~ 2^(-(hi + mid)) * P(-lo)
// = 2^(-(hi + mid)) * (P_even - lo * P_odd)
// So:
// sinh(x) = (e^x - e^(-x)) / 2
// ~ 0.5 * (2^(hi + mid) * (P_even + lo * P_odd) -
// 2^(-(hi + mid)) * (P_even - lo * P_odd))
// = 0.5 * (P_even * (2^(hi + mid) - 2^(-(hi + mid))) +
// lo * P_odd * (2^(hi + mid) + 2^(-(hi + mid))))
// And similarly:
// cosh(x) = (e^x + e^(-x)) / 2
// ~ 0.5 * (P_even * (2^(hi + mid) + 2^(-(hi + mid))) +
// lo * P_odd * (2^(hi + mid) - 2^(-(hi + mid))))
// The main point of these formulas is that the expensive part of calculating
// the polynomials approximating lower parts of e^(x) and e^(-x) are shared
// and only done once.
template <bool is_sinh> LIBC_INLINE double exp_pm_eval(float x) {
double xd = static_cast<double>(x);
// kd = round(x * log2(e) * 2^5)
// k_p = round(x * log2(e) * 2^5)
// k_m = round(-x * log2(e) * 2^5)
double kd;
int k_p, k_m;
#ifdef LIBC_TARGET_CPU_HAS_NEAREST_INT
kd = fputil::nearest_integer(ExpBase::LOG2_B * xd);
k_p = static_cast<int>(kd);
k_m = -k_p;
#else
constexpr double HALF_WAY[2] = {0.5, -0.5};
k_p = static_cast<int>(
fputil::multiply_add(xd, ExpBase::LOG2_B, HALF_WAY[x < 0.0f]));
k_m = -k_p;
kd = static_cast<double>(k_p);
#endif // LIBC_TARGET_CPU_HAS_NEAREST_INT
// hi = floor(kf * 2^(-5))
// exp_hi = shift hi to the exponent field of double precision.
int64_t exp_hi_p = static_cast<int64_t>((k_p >> ExpBase::MID_BITS))
<< fputil::FPBits<double>::FRACTION_LEN;
int64_t exp_hi_m = static_cast<int64_t>((k_m >> ExpBase::MID_BITS))
<< fputil::FPBits<double>::FRACTION_LEN;
// mh_p = 2^(hi + mid)
// mh_m = 2^(-(hi + mid))
// mh_bits_* = bit field of mh_*
int64_t mh_bits_p = ExpBase::EXP_2_MID[k_p & ExpBase::MID_MASK] + exp_hi_p;
int64_t mh_bits_m = ExpBase::EXP_2_MID[k_m & ExpBase::MID_MASK] + exp_hi_m;
double mh_p = fputil::FPBits<double>(uint64_t(mh_bits_p)).get_val();
double mh_m = fputil::FPBits<double>(uint64_t(mh_bits_m)).get_val();
// mh_sum = 2^(hi + mid) + 2^(-(hi + mid))
double mh_sum = mh_p + mh_m;
// mh_diff = 2^(hi + mid) - 2^(-(hi + mid))
double mh_diff = mh_p - mh_m;
// dx = lo = x - (hi + mid) * log(2)
double dx =
fputil::multiply_add(kd, ExpBase::M_LOGB_2_LO,
fputil::multiply_add(kd, ExpBase::M_LOGB_2_HI, xd));
double dx2 = dx * dx;
// c0 = 1 + COEFFS[0] * lo^2
// P_even = (1 + COEFFS[0] * lo^2 + COEFFS[2] * lo^4) / 2
double p_even = fputil::polyeval(dx2, 0.5, ExpBase::COEFFS[0] * 0.5,
ExpBase::COEFFS[2] * 0.5);
// P_odd = (1 + COEFFS[1] * lo^2 + COEFFS[3] * lo^4) / 2
double p_odd = fputil::polyeval(dx2, 0.5, ExpBase::COEFFS[1] * 0.5,
ExpBase::COEFFS[3] * 0.5);
double r;
if constexpr (is_sinh)
r = fputil::multiply_add(dx * mh_sum, p_odd, p_even * mh_diff);
else
r = fputil::multiply_add(dx * mh_diff, p_odd, p_even * mh_sum);
return r;
}
} // namespace sinhfcoshf_internal
} // namespace math
} // namespace LIBC_NAMESPACE_DECL
#endif // LLVM_LIBC_SRC___SUPPORT_MATH_SINHFCOSHF_UTILS_H