|  | //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass performs various transformations related to eliminating memcpy | 
|  | // calls, or transforming sets of stores into memset's. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Scalar/MemCpyOptimizer.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/iterator_range.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/CaptureTracking.h" | 
|  | #include "llvm/Analysis/GlobalsModRef.h" | 
|  | #include "llvm/Analysis/Loads.h" | 
|  | #include "llvm/Analysis/MemoryLocation.h" | 
|  | #include "llvm/Analysis/MemorySSA.h" | 
|  | #include "llvm/Analysis/MemorySSAUpdater.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/PassManager.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <optional> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "memcpyopt" | 
|  |  | 
|  | static cl::opt<bool> EnableMemCpyOptWithoutLibcalls( | 
|  | "enable-memcpyopt-without-libcalls", cl::Hidden, | 
|  | cl::desc("Enable memcpyopt even when libcalls are disabled")); | 
|  |  | 
|  | STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); | 
|  | STATISTIC(NumMemSetInfer, "Number of memsets inferred"); | 
|  | STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy"); | 
|  | STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset"); | 
|  | STATISTIC(NumCallSlot,    "Number of call slot optimizations performed"); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Represents a range of memset'd bytes with the ByteVal value. | 
|  | /// This allows us to analyze stores like: | 
|  | ///   store 0 -> P+1 | 
|  | ///   store 0 -> P+0 | 
|  | ///   store 0 -> P+3 | 
|  | ///   store 0 -> P+2 | 
|  | /// which sometimes happens with stores to arrays of structs etc.  When we see | 
|  | /// the first store, we make a range [1, 2).  The second store extends the range | 
|  | /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the | 
|  | /// two ranges into [0, 3) which is memset'able. | 
|  | struct MemsetRange { | 
|  | // Start/End - A semi range that describes the span that this range covers. | 
|  | // The range is closed at the start and open at the end: [Start, End). | 
|  | int64_t Start, End; | 
|  |  | 
|  | /// StartPtr - The getelementptr instruction that points to the start of the | 
|  | /// range. | 
|  | Value *StartPtr; | 
|  |  | 
|  | /// Alignment - The known alignment of the first store. | 
|  | MaybeAlign Alignment; | 
|  |  | 
|  | /// TheStores - The actual stores that make up this range. | 
|  | SmallVector<Instruction*, 16> TheStores; | 
|  |  | 
|  | bool isProfitableToUseMemset(const DataLayout &DL) const; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const { | 
|  | // If we found more than 4 stores to merge or 16 bytes, use memset. | 
|  | if (TheStores.size() >= 4 || End-Start >= 16) return true; | 
|  |  | 
|  | // If there is nothing to merge, don't do anything. | 
|  | if (TheStores.size() < 2) return false; | 
|  |  | 
|  | // If any of the stores are a memset, then it is always good to extend the | 
|  | // memset. | 
|  | for (Instruction *SI : TheStores) | 
|  | if (!isa<StoreInst>(SI)) | 
|  | return true; | 
|  |  | 
|  | // Assume that the code generator is capable of merging pairs of stores | 
|  | // together if it wants to. | 
|  | if (TheStores.size() == 2) return false; | 
|  |  | 
|  | // If we have fewer than 8 stores, it can still be worthwhile to do this. | 
|  | // For example, merging 4 i8 stores into an i32 store is useful almost always. | 
|  | // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the | 
|  | // memset will be split into 2 32-bit stores anyway) and doing so can | 
|  | // pessimize the llvm optimizer. | 
|  | // | 
|  | // Since we don't have perfect knowledge here, make some assumptions: assume | 
|  | // the maximum GPR width is the same size as the largest legal integer | 
|  | // size. If so, check to see whether we will end up actually reducing the | 
|  | // number of stores used. | 
|  | unsigned Bytes = unsigned(End-Start); | 
|  | unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8; | 
|  | if (MaxIntSize == 0) | 
|  | MaxIntSize = 1; | 
|  | unsigned NumPointerStores = Bytes / MaxIntSize; | 
|  |  | 
|  | // Assume the remaining bytes if any are done a byte at a time. | 
|  | unsigned NumByteStores = Bytes % MaxIntSize; | 
|  |  | 
|  | // If we will reduce the # stores (according to this heuristic), do the | 
|  | // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 | 
|  | // etc. | 
|  | return TheStores.size() > NumPointerStores+NumByteStores; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class MemsetRanges { | 
|  | using range_iterator = SmallVectorImpl<MemsetRange>::iterator; | 
|  |  | 
|  | /// A sorted list of the memset ranges. | 
|  | SmallVector<MemsetRange, 8> Ranges; | 
|  |  | 
|  | const DataLayout &DL; | 
|  |  | 
|  | public: | 
|  | MemsetRanges(const DataLayout &DL) : DL(DL) {} | 
|  |  | 
|  | using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator; | 
|  |  | 
|  | const_iterator begin() const { return Ranges.begin(); } | 
|  | const_iterator end() const { return Ranges.end(); } | 
|  | bool empty() const { return Ranges.empty(); } | 
|  |  | 
|  | void addInst(int64_t OffsetFromFirst, Instruction *Inst) { | 
|  | if (auto *SI = dyn_cast<StoreInst>(Inst)) | 
|  | addStore(OffsetFromFirst, SI); | 
|  | else | 
|  | addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst)); | 
|  | } | 
|  |  | 
|  | void addStore(int64_t OffsetFromFirst, StoreInst *SI) { | 
|  | TypeSize StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType()); | 
|  | assert(!StoreSize.isScalable() && "Can't track scalable-typed stores"); | 
|  | addRange(OffsetFromFirst, StoreSize.getFixedValue(), | 
|  | SI->getPointerOperand(), SI->getAlign(), SI); | 
|  | } | 
|  |  | 
|  | void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { | 
|  | int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue(); | 
|  | addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlign(), MSI); | 
|  | } | 
|  |  | 
|  | void addRange(int64_t Start, int64_t Size, Value *Ptr, MaybeAlign Alignment, | 
|  | Instruction *Inst); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Add a new store to the MemsetRanges data structure.  This adds a | 
|  | /// new range for the specified store at the specified offset, merging into | 
|  | /// existing ranges as appropriate. | 
|  | void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, | 
|  | MaybeAlign Alignment, Instruction *Inst) { | 
|  | int64_t End = Start+Size; | 
|  |  | 
|  | range_iterator I = partition_point( | 
|  | Ranges, [=](const MemsetRange &O) { return O.End < Start; }); | 
|  |  | 
|  | // We now know that I == E, in which case we didn't find anything to merge | 
|  | // with, or that Start <= I->End.  If End < I->Start or I == E, then we need | 
|  | // to insert a new range.  Handle this now. | 
|  | if (I == Ranges.end() || End < I->Start) { | 
|  | MemsetRange &R = *Ranges.insert(I, MemsetRange()); | 
|  | R.Start        = Start; | 
|  | R.End          = End; | 
|  | R.StartPtr     = Ptr; | 
|  | R.Alignment    = Alignment; | 
|  | R.TheStores.push_back(Inst); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // This store overlaps with I, add it. | 
|  | I->TheStores.push_back(Inst); | 
|  |  | 
|  | // At this point, we may have an interval that completely contains our store. | 
|  | // If so, just add it to the interval and return. | 
|  | if (I->Start <= Start && I->End >= End) | 
|  | return; | 
|  |  | 
|  | // Now we know that Start <= I->End and End >= I->Start so the range overlaps | 
|  | // but is not entirely contained within the range. | 
|  |  | 
|  | // See if the range extends the start of the range.  In this case, it couldn't | 
|  | // possibly cause it to join the prior range, because otherwise we would have | 
|  | // stopped on *it*. | 
|  | if (Start < I->Start) { | 
|  | I->Start = Start; | 
|  | I->StartPtr = Ptr; | 
|  | I->Alignment = Alignment; | 
|  | } | 
|  |  | 
|  | // Now we know that Start <= I->End and Start >= I->Start (so the startpoint | 
|  | // is in or right at the end of I), and that End >= I->Start.  Extend I out to | 
|  | // End. | 
|  | if (End > I->End) { | 
|  | I->End = End; | 
|  | range_iterator NextI = I; | 
|  | while (++NextI != Ranges.end() && End >= NextI->Start) { | 
|  | // Merge the range in. | 
|  | I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); | 
|  | if (NextI->End > I->End) | 
|  | I->End = NextI->End; | 
|  | Ranges.erase(NextI); | 
|  | NextI = I; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                         MemCpyOptLegacyPass Pass | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Check that V is either not accessible by the caller, or unwinding cannot | 
|  | // occur between Start and End. | 
|  | static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start, | 
|  | Instruction *End) { | 
|  | assert(Start->getParent() == End->getParent() && "Must be in same block"); | 
|  | // Function can't unwind, so it also can't be visible through unwinding. | 
|  | if (Start->getFunction()->doesNotThrow()) | 
|  | return false; | 
|  |  | 
|  | // Object is not visible on unwind. | 
|  | // TODO: Support RequiresNoCaptureBeforeUnwind case. | 
|  | bool RequiresNoCaptureBeforeUnwind; | 
|  | if (isNotVisibleOnUnwind(getUnderlyingObject(V), | 
|  | RequiresNoCaptureBeforeUnwind) && | 
|  | !RequiresNoCaptureBeforeUnwind) | 
|  | return false; | 
|  |  | 
|  | // Check whether there are any unwinding instructions in the range. | 
|  | return any_of(make_range(Start->getIterator(), End->getIterator()), | 
|  | [](const Instruction &I) { return I.mayThrow(); }); | 
|  | } | 
|  |  | 
|  | void MemCpyOptPass::eraseInstruction(Instruction *I) { | 
|  | MSSAU->removeMemoryAccess(I); | 
|  | I->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // Check for mod or ref of Loc between Start and End, excluding both boundaries. | 
|  | // Start and End must be in the same block. | 
|  | // If SkippedLifetimeStart is provided, skip over one clobbering lifetime.start | 
|  | // intrinsic and store it inside SkippedLifetimeStart. | 
|  | static bool accessedBetween(BatchAAResults &AA, MemoryLocation Loc, | 
|  | const MemoryUseOrDef *Start, | 
|  | const MemoryUseOrDef *End, | 
|  | Instruction **SkippedLifetimeStart = nullptr) { | 
|  | assert(Start->getBlock() == End->getBlock() && "Only local supported"); | 
|  | for (const MemoryAccess &MA : | 
|  | make_range(++Start->getIterator(), End->getIterator())) { | 
|  | Instruction *I = cast<MemoryUseOrDef>(MA).getMemoryInst(); | 
|  | if (isModOrRefSet(AA.getModRefInfo(I, Loc))) { | 
|  | auto *II = dyn_cast<IntrinsicInst>(I); | 
|  | if (II && II->getIntrinsicID() == Intrinsic::lifetime_start && | 
|  | SkippedLifetimeStart && !*SkippedLifetimeStart) { | 
|  | *SkippedLifetimeStart = I; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check for mod of Loc between Start and End, excluding both boundaries. | 
|  | // Start and End can be in different blocks. | 
|  | static bool writtenBetween(MemorySSA *MSSA, BatchAAResults &AA, | 
|  | MemoryLocation Loc, const MemoryUseOrDef *Start, | 
|  | const MemoryUseOrDef *End) { | 
|  | if (isa<MemoryUse>(End)) { | 
|  | // For MemoryUses, getClobberingMemoryAccess may skip non-clobbering writes. | 
|  | // Manually check read accesses between Start and End, if they are in the | 
|  | // same block, for clobbers. Otherwise assume Loc is clobbered. | 
|  | return Start->getBlock() != End->getBlock() || | 
|  | any_of( | 
|  | make_range(std::next(Start->getIterator()), End->getIterator()), | 
|  | [&AA, Loc](const MemoryAccess &Acc) { | 
|  | if (isa<MemoryUse>(&Acc)) | 
|  | return false; | 
|  | Instruction *AccInst = | 
|  | cast<MemoryUseOrDef>(&Acc)->getMemoryInst(); | 
|  | return isModSet(AA.getModRefInfo(AccInst, Loc)); | 
|  | }); | 
|  | } | 
|  |  | 
|  | // TODO: Only walk until we hit Start. | 
|  | MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( | 
|  | End->getDefiningAccess(), Loc, AA); | 
|  | return !MSSA->dominates(Clobber, Start); | 
|  | } | 
|  |  | 
|  | /// When scanning forward over instructions, we look for some other patterns to | 
|  | /// fold away. In particular, this looks for stores to neighboring locations of | 
|  | /// memory. If it sees enough consecutive ones, it attempts to merge them | 
|  | /// together into a memcpy/memset. | 
|  | Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst, | 
|  | Value *StartPtr, | 
|  | Value *ByteVal) { | 
|  | const DataLayout &DL = StartInst->getModule()->getDataLayout(); | 
|  |  | 
|  | // We can't track scalable types | 
|  | if (auto *SI = dyn_cast<StoreInst>(StartInst)) | 
|  | if (DL.getTypeStoreSize(SI->getOperand(0)->getType()).isScalable()) | 
|  | return nullptr; | 
|  |  | 
|  | // Okay, so we now have a single store that can be splatable.  Scan to find | 
|  | // all subsequent stores of the same value to offset from the same pointer. | 
|  | // Join these together into ranges, so we can decide whether contiguous blocks | 
|  | // are stored. | 
|  | MemsetRanges Ranges(DL); | 
|  |  | 
|  | BasicBlock::iterator BI(StartInst); | 
|  |  | 
|  | // Keeps track of the last memory use or def before the insertion point for | 
|  | // the new memset. The new MemoryDef for the inserted memsets will be inserted | 
|  | // after MemInsertPoint. It points to either LastMemDef or to the last user | 
|  | // before the insertion point of the memset, if there are any such users. | 
|  | MemoryUseOrDef *MemInsertPoint = nullptr; | 
|  | // Keeps track of the last MemoryDef between StartInst and the insertion point | 
|  | // for the new memset. This will become the defining access of the inserted | 
|  | // memsets. | 
|  | MemoryDef *LastMemDef = nullptr; | 
|  | for (++BI; !BI->isTerminator(); ++BI) { | 
|  | auto *CurrentAcc = cast_or_null<MemoryUseOrDef>( | 
|  | MSSAU->getMemorySSA()->getMemoryAccess(&*BI)); | 
|  | if (CurrentAcc) { | 
|  | MemInsertPoint = CurrentAcc; | 
|  | if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc)) | 
|  | LastMemDef = CurrentDef; | 
|  | } | 
|  |  | 
|  | // Calls that only access inaccessible memory do not block merging | 
|  | // accessible stores. | 
|  | if (auto *CB = dyn_cast<CallBase>(BI)) { | 
|  | if (CB->onlyAccessesInaccessibleMemory()) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) { | 
|  | // If the instruction is readnone, ignore it, otherwise bail out.  We | 
|  | // don't even allow readonly here because we don't want something like: | 
|  | // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). | 
|  | if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) | 
|  | break; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (auto *NextStore = dyn_cast<StoreInst>(BI)) { | 
|  | // If this is a store, see if we can merge it in. | 
|  | if (!NextStore->isSimple()) break; | 
|  |  | 
|  | Value *StoredVal = NextStore->getValueOperand(); | 
|  |  | 
|  | // Don't convert stores of non-integral pointer types to memsets (which | 
|  | // stores integers). | 
|  | if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) | 
|  | break; | 
|  |  | 
|  | // We can't track ranges involving scalable types. | 
|  | if (DL.getTypeStoreSize(StoredVal->getType()).isScalable()) | 
|  | break; | 
|  |  | 
|  | // Check to see if this stored value is of the same byte-splattable value. | 
|  | Value *StoredByte = isBytewiseValue(StoredVal, DL); | 
|  | if (isa<UndefValue>(ByteVal) && StoredByte) | 
|  | ByteVal = StoredByte; | 
|  | if (ByteVal != StoredByte) | 
|  | break; | 
|  |  | 
|  | // Check to see if this store is to a constant offset from the start ptr. | 
|  | std::optional<int64_t> Offset = | 
|  | NextStore->getPointerOperand()->getPointerOffsetFrom(StartPtr, DL); | 
|  | if (!Offset) | 
|  | break; | 
|  |  | 
|  | Ranges.addStore(*Offset, NextStore); | 
|  | } else { | 
|  | auto *MSI = cast<MemSetInst>(BI); | 
|  |  | 
|  | if (MSI->isVolatile() || ByteVal != MSI->getValue() || | 
|  | !isa<ConstantInt>(MSI->getLength())) | 
|  | break; | 
|  |  | 
|  | // Check to see if this store is to a constant offset from the start ptr. | 
|  | std::optional<int64_t> Offset = | 
|  | MSI->getDest()->getPointerOffsetFrom(StartPtr, DL); | 
|  | if (!Offset) | 
|  | break; | 
|  |  | 
|  | Ranges.addMemSet(*Offset, MSI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have no ranges, then we just had a single store with nothing that | 
|  | // could be merged in.  This is a very common case of course. | 
|  | if (Ranges.empty()) | 
|  | return nullptr; | 
|  |  | 
|  | // If we had at least one store that could be merged in, add the starting | 
|  | // store as well.  We try to avoid this unless there is at least something | 
|  | // interesting as a small compile-time optimization. | 
|  | Ranges.addInst(0, StartInst); | 
|  |  | 
|  | // If we create any memsets, we put it right before the first instruction that | 
|  | // isn't part of the memset block.  This ensure that the memset is dominated | 
|  | // by any addressing instruction needed by the start of the block. | 
|  | IRBuilder<> Builder(&*BI); | 
|  |  | 
|  | // Now that we have full information about ranges, loop over the ranges and | 
|  | // emit memset's for anything big enough to be worthwhile. | 
|  | Instruction *AMemSet = nullptr; | 
|  | for (const MemsetRange &Range : Ranges) { | 
|  | if (Range.TheStores.size() == 1) continue; | 
|  |  | 
|  | // If it is profitable to lower this range to memset, do so now. | 
|  | if (!Range.isProfitableToUseMemset(DL)) | 
|  | continue; | 
|  |  | 
|  | // Otherwise, we do want to transform this!  Create a new memset. | 
|  | // Get the starting pointer of the block. | 
|  | StartPtr = Range.StartPtr; | 
|  |  | 
|  | AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start, | 
|  | Range.Alignment); | 
|  | AMemSet->mergeDIAssignID(Range.TheStores); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI | 
|  | : Range.TheStores) dbgs() | 
|  | << *SI << '\n'; | 
|  | dbgs() << "With: " << *AMemSet << '\n'); | 
|  | if (!Range.TheStores.empty()) | 
|  | AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); | 
|  |  | 
|  | assert(LastMemDef && MemInsertPoint && | 
|  | "Both LastMemDef and MemInsertPoint need to be set"); | 
|  | auto *NewDef = | 
|  | cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI | 
|  | ? MSSAU->createMemoryAccessBefore( | 
|  | AMemSet, LastMemDef, MemInsertPoint) | 
|  | : MSSAU->createMemoryAccessAfter( | 
|  | AMemSet, LastMemDef, MemInsertPoint)); | 
|  | MSSAU->insertDef(NewDef, /*RenameUses=*/true); | 
|  | LastMemDef = NewDef; | 
|  | MemInsertPoint = NewDef; | 
|  |  | 
|  | // Zap all the stores. | 
|  | for (Instruction *SI : Range.TheStores) | 
|  | eraseInstruction(SI); | 
|  |  | 
|  | ++NumMemSetInfer; | 
|  | } | 
|  |  | 
|  | return AMemSet; | 
|  | } | 
|  |  | 
|  | // This method try to lift a store instruction before position P. | 
|  | // It will lift the store and its argument + that anything that | 
|  | // may alias with these. | 
|  | // The method returns true if it was successful. | 
|  | bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) { | 
|  | // If the store alias this position, early bail out. | 
|  | MemoryLocation StoreLoc = MemoryLocation::get(SI); | 
|  | if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc))) | 
|  | return false; | 
|  |  | 
|  | // Keep track of the arguments of all instruction we plan to lift | 
|  | // so we can make sure to lift them as well if appropriate. | 
|  | DenseSet<Instruction*> Args; | 
|  | auto AddArg = [&](Value *Arg) { | 
|  | auto *I = dyn_cast<Instruction>(Arg); | 
|  | if (I && I->getParent() == SI->getParent()) { | 
|  | // Cannot hoist user of P above P | 
|  | if (I == P) return false; | 
|  | Args.insert(I); | 
|  | } | 
|  | return true; | 
|  | }; | 
|  | if (!AddArg(SI->getPointerOperand())) | 
|  | return false; | 
|  |  | 
|  | // Instruction to lift before P. | 
|  | SmallVector<Instruction *, 8> ToLift{SI}; | 
|  |  | 
|  | // Memory locations of lifted instructions. | 
|  | SmallVector<MemoryLocation, 8> MemLocs{StoreLoc}; | 
|  |  | 
|  | // Lifted calls. | 
|  | SmallVector<const CallBase *, 8> Calls; | 
|  |  | 
|  | const MemoryLocation LoadLoc = MemoryLocation::get(LI); | 
|  |  | 
|  | for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) { | 
|  | auto *C = &*I; | 
|  |  | 
|  | // Make sure hoisting does not perform a store that was not guaranteed to | 
|  | // happen. | 
|  | if (!isGuaranteedToTransferExecutionToSuccessor(C)) | 
|  | return false; | 
|  |  | 
|  | bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, std::nullopt)); | 
|  |  | 
|  | bool NeedLift = false; | 
|  | if (Args.erase(C)) | 
|  | NeedLift = true; | 
|  | else if (MayAlias) { | 
|  | NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) { | 
|  | return isModOrRefSet(AA->getModRefInfo(C, ML)); | 
|  | }); | 
|  |  | 
|  | if (!NeedLift) | 
|  | NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) { | 
|  | return isModOrRefSet(AA->getModRefInfo(C, Call)); | 
|  | }); | 
|  | } | 
|  |  | 
|  | if (!NeedLift) | 
|  | continue; | 
|  |  | 
|  | if (MayAlias) { | 
|  | // Since LI is implicitly moved downwards past the lifted instructions, | 
|  | // none of them may modify its source. | 
|  | if (isModSet(AA->getModRefInfo(C, LoadLoc))) | 
|  | return false; | 
|  | else if (const auto *Call = dyn_cast<CallBase>(C)) { | 
|  | // If we can't lift this before P, it's game over. | 
|  | if (isModOrRefSet(AA->getModRefInfo(P, Call))) | 
|  | return false; | 
|  |  | 
|  | Calls.push_back(Call); | 
|  | } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) { | 
|  | // If we can't lift this before P, it's game over. | 
|  | auto ML = MemoryLocation::get(C); | 
|  | if (isModOrRefSet(AA->getModRefInfo(P, ML))) | 
|  | return false; | 
|  |  | 
|  | MemLocs.push_back(ML); | 
|  | } else | 
|  | // We don't know how to lift this instruction. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ToLift.push_back(C); | 
|  | for (Value *Op : C->operands()) | 
|  | if (!AddArg(Op)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Find MSSA insertion point. Normally P will always have a corresponding | 
|  | // memory access before which we can insert. However, with non-standard AA | 
|  | // pipelines, there may be a mismatch between AA and MSSA, in which case we | 
|  | // will scan for a memory access before P. In either case, we know for sure | 
|  | // that at least the load will have a memory access. | 
|  | // TODO: Simplify this once P will be determined by MSSA, in which case the | 
|  | // discrepancy can no longer occur. | 
|  | MemoryUseOrDef *MemInsertPoint = nullptr; | 
|  | if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) { | 
|  | MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator()); | 
|  | } else { | 
|  | const Instruction *ConstP = P; | 
|  | for (const Instruction &I : make_range(++ConstP->getReverseIterator(), | 
|  | ++LI->getReverseIterator())) { | 
|  | if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) { | 
|  | MemInsertPoint = MA; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // We made it, we need to lift. | 
|  | for (auto *I : llvm::reverse(ToLift)) { | 
|  | LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n"); | 
|  | I->moveBefore(P); | 
|  | assert(MemInsertPoint && "Must have found insert point"); | 
|  | if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) { | 
|  | MSSAU->moveAfter(MA, MemInsertPoint); | 
|  | MemInsertPoint = MA; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool MemCpyOptPass::processStoreOfLoad(StoreInst *SI, LoadInst *LI, | 
|  | const DataLayout &DL, | 
|  | BasicBlock::iterator &BBI) { | 
|  | if (!LI->isSimple() || !LI->hasOneUse() || | 
|  | LI->getParent() != SI->getParent()) | 
|  | return false; | 
|  |  | 
|  | auto *T = LI->getType(); | 
|  | // Don't introduce calls to memcpy/memmove intrinsics out of thin air if | 
|  | // the corresponding libcalls are not available. | 
|  | // TODO: We should really distinguish between libcall availability and | 
|  | // our ability to introduce intrinsics. | 
|  | if (T->isAggregateType() && | 
|  | (EnableMemCpyOptWithoutLibcalls || | 
|  | (TLI->has(LibFunc_memcpy) && TLI->has(LibFunc_memmove)))) { | 
|  | MemoryLocation LoadLoc = MemoryLocation::get(LI); | 
|  |  | 
|  | // We use alias analysis to check if an instruction may store to | 
|  | // the memory we load from in between the load and the store. If | 
|  | // such an instruction is found, we try to promote there instead | 
|  | // of at the store position. | 
|  | // TODO: Can use MSSA for this. | 
|  | Instruction *P = SI; | 
|  | for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) { | 
|  | if (isModSet(AA->getModRefInfo(&I, LoadLoc))) { | 
|  | P = &I; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We found an instruction that may write to the loaded memory. | 
|  | // We can try to promote at this position instead of the store | 
|  | // position if nothing aliases the store memory after this and the store | 
|  | // destination is not in the range. | 
|  | if (P && P != SI) { | 
|  | if (!moveUp(SI, P, LI)) | 
|  | P = nullptr; | 
|  | } | 
|  |  | 
|  | // If a valid insertion position is found, then we can promote | 
|  | // the load/store pair to a memcpy. | 
|  | if (P) { | 
|  | // If we load from memory that may alias the memory we store to, | 
|  | // memmove must be used to preserve semantic. If not, memcpy can | 
|  | // be used. Also, if we load from constant memory, memcpy can be used | 
|  | // as the constant memory won't be modified. | 
|  | bool UseMemMove = false; | 
|  | if (isModSet(AA->getModRefInfo(SI, LoadLoc))) | 
|  | UseMemMove = true; | 
|  |  | 
|  | uint64_t Size = DL.getTypeStoreSize(T); | 
|  |  | 
|  | IRBuilder<> Builder(P); | 
|  | Instruction *M; | 
|  | if (UseMemMove) | 
|  | M = Builder.CreateMemMove( | 
|  | SI->getPointerOperand(), SI->getAlign(), | 
|  | LI->getPointerOperand(), LI->getAlign(), Size); | 
|  | else | 
|  | M = Builder.CreateMemCpy( | 
|  | SI->getPointerOperand(), SI->getAlign(), | 
|  | LI->getPointerOperand(), LI->getAlign(), Size); | 
|  | M->copyMetadata(*SI, LLVMContext::MD_DIAssignID); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => " | 
|  | << *M << "\n"); | 
|  |  | 
|  | auto *LastDef = | 
|  | cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)); | 
|  | auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef); | 
|  | MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); | 
|  |  | 
|  | eraseInstruction(SI); | 
|  | eraseInstruction(LI); | 
|  | ++NumMemCpyInstr; | 
|  |  | 
|  | // Make sure we do not invalidate the iterator. | 
|  | BBI = M->getIterator(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Detect cases where we're performing call slot forwarding, but | 
|  | // happen to be using a load-store pair to implement it, rather than | 
|  | // a memcpy. | 
|  | BatchAAResults BAA(*AA); | 
|  | auto GetCall = [&]() -> CallInst * { | 
|  | // We defer this expensive clobber walk until the cheap checks | 
|  | // have been done on the source inside performCallSlotOptzn. | 
|  | if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>( | 
|  | MSSA->getWalker()->getClobberingMemoryAccess(LI, BAA))) | 
|  | return dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst()); | 
|  | return nullptr; | 
|  | }; | 
|  |  | 
|  | bool Changed = performCallSlotOptzn( | 
|  | LI, SI, SI->getPointerOperand()->stripPointerCasts(), | 
|  | LI->getPointerOperand()->stripPointerCasts(), | 
|  | DL.getTypeStoreSize(SI->getOperand(0)->getType()), | 
|  | std::min(SI->getAlign(), LI->getAlign()), BAA, GetCall); | 
|  | if (Changed) { | 
|  | eraseInstruction(SI); | 
|  | eraseInstruction(LI); | 
|  | ++NumMemCpyInstr; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { | 
|  | if (!SI->isSimple()) return false; | 
|  |  | 
|  | // Avoid merging nontemporal stores since the resulting | 
|  | // memcpy/memset would not be able to preserve the nontemporal hint. | 
|  | // In theory we could teach how to propagate the !nontemporal metadata to | 
|  | // memset calls. However, that change would force the backend to | 
|  | // conservatively expand !nontemporal memset calls back to sequences of | 
|  | // store instructions (effectively undoing the merging). | 
|  | if (SI->getMetadata(LLVMContext::MD_nontemporal)) | 
|  | return false; | 
|  |  | 
|  | const DataLayout &DL = SI->getModule()->getDataLayout(); | 
|  |  | 
|  | Value *StoredVal = SI->getValueOperand(); | 
|  |  | 
|  | // Not all the transforms below are correct for non-integral pointers, bail | 
|  | // until we've audited the individual pieces. | 
|  | if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) | 
|  | return false; | 
|  |  | 
|  | // Load to store forwarding can be interpreted as memcpy. | 
|  | if (auto *LI = dyn_cast<LoadInst>(StoredVal)) | 
|  | return processStoreOfLoad(SI, LI, DL, BBI); | 
|  |  | 
|  | // The following code creates memset intrinsics out of thin air. Don't do | 
|  | // this if the corresponding libfunc is not available. | 
|  | // TODO: We should really distinguish between libcall availability and | 
|  | // our ability to introduce intrinsics. | 
|  | if (!(TLI->has(LibFunc_memset) || EnableMemCpyOptWithoutLibcalls)) | 
|  | return false; | 
|  |  | 
|  | // There are two cases that are interesting for this code to handle: memcpy | 
|  | // and memset.  Right now we only handle memset. | 
|  |  | 
|  | // Ensure that the value being stored is something that can be memset'able a | 
|  | // byte at a time like "0" or "-1" or any width, as well as things like | 
|  | // 0xA0A0A0A0 and 0.0. | 
|  | auto *V = SI->getOperand(0); | 
|  | if (Value *ByteVal = isBytewiseValue(V, DL)) { | 
|  | if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), | 
|  | ByteVal)) { | 
|  | BBI = I->getIterator(); // Don't invalidate iterator. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If we have an aggregate, we try to promote it to memset regardless | 
|  | // of opportunity for merging as it can expose optimization opportunities | 
|  | // in subsequent passes. | 
|  | auto *T = V->getType(); | 
|  | if (T->isAggregateType()) { | 
|  | uint64_t Size = DL.getTypeStoreSize(T); | 
|  | IRBuilder<> Builder(SI); | 
|  | auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, | 
|  | SI->getAlign()); | 
|  | M->copyMetadata(*SI, LLVMContext::MD_DIAssignID); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n"); | 
|  |  | 
|  | // The newly inserted memset is immediately overwritten by the original | 
|  | // store, so we do not need to rename uses. | 
|  | auto *StoreDef = cast<MemoryDef>(MSSA->getMemoryAccess(SI)); | 
|  | auto *NewAccess = MSSAU->createMemoryAccessBefore( | 
|  | M, StoreDef->getDefiningAccess(), StoreDef); | 
|  | MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/false); | 
|  |  | 
|  | eraseInstruction(SI); | 
|  | NumMemSetInfer++; | 
|  |  | 
|  | // Make sure we do not invalidate the iterator. | 
|  | BBI = M->getIterator(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { | 
|  | // See if there is another memset or store neighboring this memset which | 
|  | // allows us to widen out the memset to do a single larger store. | 
|  | if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile()) | 
|  | if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), | 
|  | MSI->getValue())) { | 
|  | BBI = I->getIterator(); // Don't invalidate iterator. | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Takes a memcpy and a call that it depends on, | 
|  | /// and checks for the possibility of a call slot optimization by having | 
|  | /// the call write its result directly into the destination of the memcpy. | 
|  | bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad, | 
|  | Instruction *cpyStore, Value *cpyDest, | 
|  | Value *cpySrc, TypeSize cpySize, | 
|  | Align cpyDestAlign, BatchAAResults &BAA, | 
|  | std::function<CallInst *()> GetC) { | 
|  | // The general transformation to keep in mind is | 
|  | // | 
|  | //   call @func(..., src, ...) | 
|  | //   memcpy(dest, src, ...) | 
|  | // | 
|  | // -> | 
|  | // | 
|  | //   memcpy(dest, src, ...) | 
|  | //   call @func(..., dest, ...) | 
|  | // | 
|  | // Since moving the memcpy is technically awkward, we additionally check that | 
|  | // src only holds uninitialized values at the moment of the call, meaning that | 
|  | // the memcpy can be discarded rather than moved. | 
|  |  | 
|  | // We can't optimize scalable types. | 
|  | if (cpySize.isScalable()) | 
|  | return false; | 
|  |  | 
|  | // Require that src be an alloca.  This simplifies the reasoning considerably. | 
|  | auto *srcAlloca = dyn_cast<AllocaInst>(cpySrc); | 
|  | if (!srcAlloca) | 
|  | return false; | 
|  |  | 
|  | ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); | 
|  | if (!srcArraySize) | 
|  | return false; | 
|  |  | 
|  | const DataLayout &DL = cpyLoad->getModule()->getDataLayout(); | 
|  | uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) * | 
|  | srcArraySize->getZExtValue(); | 
|  |  | 
|  | if (cpySize < srcSize) | 
|  | return false; | 
|  |  | 
|  | CallInst *C = GetC(); | 
|  | if (!C) | 
|  | return false; | 
|  |  | 
|  | // Lifetime marks shouldn't be operated on. | 
|  | if (Function *F = C->getCalledFunction()) | 
|  | if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start) | 
|  | return false; | 
|  |  | 
|  |  | 
|  | if (C->getParent() != cpyStore->getParent()) { | 
|  | LLVM_DEBUG(dbgs() << "Call Slot: block local restriction\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MemoryLocation DestLoc = isa<StoreInst>(cpyStore) ? | 
|  | MemoryLocation::get(cpyStore) : | 
|  | MemoryLocation::getForDest(cast<MemCpyInst>(cpyStore)); | 
|  |  | 
|  | // Check that nothing touches the dest of the copy between | 
|  | // the call and the store/memcpy. | 
|  | Instruction *SkippedLifetimeStart = nullptr; | 
|  | if (accessedBetween(BAA, DestLoc, MSSA->getMemoryAccess(C), | 
|  | MSSA->getMemoryAccess(cpyStore), &SkippedLifetimeStart)) { | 
|  | LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer modified after call\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we need to move a lifetime.start above the call, make sure that we can | 
|  | // actually do so. If the argument is bitcasted for example, we would have to | 
|  | // move the bitcast as well, which we don't handle. | 
|  | if (SkippedLifetimeStart) { | 
|  | auto *LifetimeArg = | 
|  | dyn_cast<Instruction>(SkippedLifetimeStart->getOperand(1)); | 
|  | if (LifetimeArg && LifetimeArg->getParent() == C->getParent() && | 
|  | C->comesBefore(LifetimeArg)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check that accessing the first srcSize bytes of dest will not cause a | 
|  | // trap.  Otherwise the transform is invalid since it might cause a trap | 
|  | // to occur earlier than it otherwise would. | 
|  | if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpySize), | 
|  | DL, C, AC, DT)) { | 
|  | LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer not dereferenceable\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Make sure that nothing can observe cpyDest being written early. There are | 
|  | // a number of cases to consider: | 
|  | //  1. cpyDest cannot be accessed between C and cpyStore as a precondition of | 
|  | //     the transform. | 
|  | //  2. C itself may not access cpyDest (prior to the transform). This is | 
|  | //     checked further below. | 
|  | //  3. If cpyDest is accessible to the caller of this function (potentially | 
|  | //     captured and not based on an alloca), we need to ensure that we cannot | 
|  | //     unwind between C and cpyStore. This is checked here. | 
|  | //  4. If cpyDest is potentially captured, there may be accesses to it from | 
|  | //     another thread. In this case, we need to check that cpyStore is | 
|  | //     guaranteed to be executed if C is. As it is a non-atomic access, it | 
|  | //     renders accesses from other threads undefined. | 
|  | //     TODO: This is currently not checked. | 
|  | if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore)) { | 
|  | LLVM_DEBUG(dbgs() << "Call Slot: Dest may be visible through unwinding\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check that dest points to memory that is at least as aligned as src. | 
|  | Align srcAlign = srcAlloca->getAlign(); | 
|  | bool isDestSufficientlyAligned = srcAlign <= cpyDestAlign; | 
|  | // If dest is not aligned enough and we can't increase its alignment then | 
|  | // bail out. | 
|  | if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) { | 
|  | LLVM_DEBUG(dbgs() << "Call Slot: Dest not sufficiently aligned\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check that src is not accessed except via the call and the memcpy.  This | 
|  | // guarantees that it holds only undefined values when passed in (so the final | 
|  | // memcpy can be dropped), that it is not read or written between the call and | 
|  | // the memcpy, and that writing beyond the end of it is undefined. | 
|  | SmallVector<User *, 8> srcUseList(srcAlloca->users()); | 
|  | while (!srcUseList.empty()) { | 
|  | User *U = srcUseList.pop_back_val(); | 
|  |  | 
|  | if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) { | 
|  | append_range(srcUseList, U->users()); | 
|  | continue; | 
|  | } | 
|  | if (const auto *G = dyn_cast<GetElementPtrInst>(U)) { | 
|  | if (!G->hasAllZeroIndices()) | 
|  | return false; | 
|  |  | 
|  | append_range(srcUseList, U->users()); | 
|  | continue; | 
|  | } | 
|  | if (const auto *IT = dyn_cast<IntrinsicInst>(U)) | 
|  | if (IT->isLifetimeStartOrEnd()) | 
|  | continue; | 
|  |  | 
|  | if (U != C && U != cpyLoad) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check whether src is captured by the called function, in which case there | 
|  | // may be further indirect uses of src. | 
|  | bool SrcIsCaptured = any_of(C->args(), [&](Use &U) { | 
|  | return U->stripPointerCasts() == cpySrc && | 
|  | !C->doesNotCapture(C->getArgOperandNo(&U)); | 
|  | }); | 
|  |  | 
|  | // If src is captured, then check whether there are any potential uses of | 
|  | // src through the captured pointer before the lifetime of src ends, either | 
|  | // due to a lifetime.end or a return from the function. | 
|  | if (SrcIsCaptured) { | 
|  | // Check that dest is not captured before/at the call. We have already | 
|  | // checked that src is not captured before it. If either had been captured, | 
|  | // then the call might be comparing the argument against the captured dest | 
|  | // or src pointer. | 
|  | Value *DestObj = getUnderlyingObject(cpyDest); | 
|  | if (!isIdentifiedFunctionLocal(DestObj) || | 
|  | PointerMayBeCapturedBefore(DestObj, /* ReturnCaptures */ true, | 
|  | /* StoreCaptures */ true, C, DT, | 
|  | /* IncludeI */ true)) | 
|  | return false; | 
|  |  | 
|  | MemoryLocation SrcLoc = | 
|  | MemoryLocation(srcAlloca, LocationSize::precise(srcSize)); | 
|  | for (Instruction &I : | 
|  | make_range(++C->getIterator(), C->getParent()->end())) { | 
|  | // Lifetime of srcAlloca ends at lifetime.end. | 
|  | if (auto *II = dyn_cast<IntrinsicInst>(&I)) { | 
|  | if (II->getIntrinsicID() == Intrinsic::lifetime_end && | 
|  | II->getArgOperand(1)->stripPointerCasts() == srcAlloca && | 
|  | cast<ConstantInt>(II->getArgOperand(0))->uge(srcSize)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Lifetime of srcAlloca ends at return. | 
|  | if (isa<ReturnInst>(&I)) | 
|  | break; | 
|  |  | 
|  | // Ignore the direct read of src in the load. | 
|  | if (&I == cpyLoad) | 
|  | continue; | 
|  |  | 
|  | // Check whether this instruction may mod/ref src through the captured | 
|  | // pointer (we have already any direct mod/refs in the loop above). | 
|  | // Also bail if we hit a terminator, as we don't want to scan into other | 
|  | // blocks. | 
|  | if (isModOrRefSet(BAA.getModRefInfo(&I, SrcLoc)) || I.isTerminator()) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Since we're changing the parameter to the callsite, we need to make sure | 
|  | // that what would be the new parameter dominates the callsite. | 
|  | if (!DT->dominates(cpyDest, C)) { | 
|  | // Support moving a constant index GEP before the call. | 
|  | auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest); | 
|  | if (GEP && GEP->hasAllConstantIndices() && | 
|  | DT->dominates(GEP->getPointerOperand(), C)) | 
|  | GEP->moveBefore(C); | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // In addition to knowing that the call does not access src in some | 
|  | // unexpected manner, for example via a global, which we deduce from | 
|  | // the use analysis, we also need to know that it does not sneakily | 
|  | // access dest.  We rely on AA to figure this out for us. | 
|  | MemoryLocation DestWithSrcSize(cpyDest, LocationSize::precise(srcSize)); | 
|  | ModRefInfo MR = BAA.getModRefInfo(C, DestWithSrcSize); | 
|  | // If necessary, perform additional analysis. | 
|  | if (isModOrRefSet(MR)) | 
|  | MR = BAA.callCapturesBefore(C, DestWithSrcSize, DT); | 
|  | if (isModOrRefSet(MR)) | 
|  | return false; | 
|  |  | 
|  | // We can't create address space casts here because we don't know if they're | 
|  | // safe for the target. | 
|  | if (cpySrc->getType()->getPointerAddressSpace() != | 
|  | cpyDest->getType()->getPointerAddressSpace()) | 
|  | return false; | 
|  | for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) | 
|  | if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc && | 
|  | cpySrc->getType()->getPointerAddressSpace() != | 
|  | C->getArgOperand(ArgI)->getType()->getPointerAddressSpace()) | 
|  | return false; | 
|  |  | 
|  | // All the checks have passed, so do the transformation. | 
|  | bool changedArgument = false; | 
|  | for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) | 
|  | if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) { | 
|  | Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest | 
|  | : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), | 
|  | cpyDest->getName(), C); | 
|  | changedArgument = true; | 
|  | if (C->getArgOperand(ArgI)->getType() == Dest->getType()) | 
|  | C->setArgOperand(ArgI, Dest); | 
|  | else | 
|  | C->setArgOperand(ArgI, CastInst::CreatePointerCast( | 
|  | Dest, C->getArgOperand(ArgI)->getType(), | 
|  | Dest->getName(), C)); | 
|  | } | 
|  |  | 
|  | if (!changedArgument) | 
|  | return false; | 
|  |  | 
|  | // If the destination wasn't sufficiently aligned then increase its alignment. | 
|  | if (!isDestSufficientlyAligned) { | 
|  | assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!"); | 
|  | cast<AllocaInst>(cpyDest)->setAlignment(srcAlign); | 
|  | } | 
|  |  | 
|  | if (SkippedLifetimeStart) { | 
|  | SkippedLifetimeStart->moveBefore(C); | 
|  | MSSAU->moveBefore(MSSA->getMemoryAccess(SkippedLifetimeStart), | 
|  | MSSA->getMemoryAccess(C)); | 
|  | } | 
|  |  | 
|  | // Update AA metadata | 
|  | // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be | 
|  | // handled here, but combineMetadata doesn't support them yet | 
|  | unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, | 
|  | LLVMContext::MD_noalias, | 
|  | LLVMContext::MD_invariant_group, | 
|  | LLVMContext::MD_access_group}; | 
|  | combineMetadata(C, cpyLoad, KnownIDs, true); | 
|  | if (cpyLoad != cpyStore) | 
|  | combineMetadata(C, cpyStore, KnownIDs, true); | 
|  |  | 
|  | ++NumCallSlot; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// We've found that the (upward scanning) memory dependence of memcpy 'M' is | 
|  | /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can. | 
|  | bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M, | 
|  | MemCpyInst *MDep, | 
|  | BatchAAResults &BAA) { | 
|  | // We can only transforms memcpy's where the dest of one is the source of the | 
|  | // other. | 
|  | if (M->getSource() != MDep->getDest() || MDep->isVolatile()) | 
|  | return false; | 
|  |  | 
|  | // If dep instruction is reading from our current input, then it is a noop | 
|  | // transfer and substituting the input won't change this instruction.  Just | 
|  | // ignore the input and let someone else zap MDep.  This handles cases like: | 
|  | //    memcpy(a <- a) | 
|  | //    memcpy(b <- a) | 
|  | if (M->getSource() == MDep->getSource()) | 
|  | return false; | 
|  |  | 
|  | // Second, the length of the memcpy's must be the same, or the preceding one | 
|  | // must be larger than the following one. | 
|  | if (MDep->getLength() != M->getLength()) { | 
|  | auto *MDepLen = dyn_cast<ConstantInt>(MDep->getLength()); | 
|  | auto *MLen = dyn_cast<ConstantInt>(M->getLength()); | 
|  | if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Verify that the copied-from memory doesn't change in between the two | 
|  | // transfers.  For example, in: | 
|  | //    memcpy(a <- b) | 
|  | //    *b = 42; | 
|  | //    memcpy(c <- a) | 
|  | // It would be invalid to transform the second memcpy into memcpy(c <- b). | 
|  | // | 
|  | // TODO: If the code between M and MDep is transparent to the destination "c", | 
|  | // then we could still perform the xform by moving M up to the first memcpy. | 
|  | // TODO: It would be sufficient to check the MDep source up to the memcpy | 
|  | // size of M, rather than MDep. | 
|  | if (writtenBetween(MSSA, BAA, MemoryLocation::getForSource(MDep), | 
|  | MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(M))) | 
|  | return false; | 
|  |  | 
|  | // If the dest of the second might alias the source of the first, then the | 
|  | // source and dest might overlap. In addition, if the source of the first | 
|  | // points to constant memory, they won't overlap by definition. Otherwise, we | 
|  | // still want to eliminate the intermediate value, but we have to generate a | 
|  | // memmove instead of memcpy. | 
|  | bool UseMemMove = false; | 
|  | if (isModSet(BAA.getModRefInfo(M, MemoryLocation::getForSource(MDep)))) { | 
|  | // Don't convert llvm.memcpy.inline into memmove because memmove can be | 
|  | // lowered as a call, and that is not allowed for llvm.memcpy.inline (and | 
|  | // there is no inline version of llvm.memmove) | 
|  | if (isa<MemCpyInlineInst>(M)) | 
|  | return false; | 
|  | UseMemMove = true; | 
|  | } | 
|  |  | 
|  | // If all checks passed, then we can transform M. | 
|  | LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n" | 
|  | << *MDep << '\n' << *M << '\n'); | 
|  |  | 
|  | // TODO: Is this worth it if we're creating a less aligned memcpy? For | 
|  | // example we could be moving from movaps -> movq on x86. | 
|  | IRBuilder<> Builder(M); | 
|  | Instruction *NewM; | 
|  | if (UseMemMove) | 
|  | NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(), | 
|  | MDep->getRawSource(), MDep->getSourceAlign(), | 
|  | M->getLength(), M->isVolatile()); | 
|  | else if (isa<MemCpyInlineInst>(M)) { | 
|  | // llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is | 
|  | // never allowed since that would allow the latter to be lowered as a call | 
|  | // to an external function. | 
|  | NewM = Builder.CreateMemCpyInline( | 
|  | M->getRawDest(), M->getDestAlign(), MDep->getRawSource(), | 
|  | MDep->getSourceAlign(), M->getLength(), M->isVolatile()); | 
|  | } else | 
|  | NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(), | 
|  | MDep->getRawSource(), MDep->getSourceAlign(), | 
|  | M->getLength(), M->isVolatile()); | 
|  | NewM->copyMetadata(*M, LLVMContext::MD_DIAssignID); | 
|  |  | 
|  | assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M))); | 
|  | auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)); | 
|  | auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); | 
|  | MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); | 
|  |  | 
|  | // Remove the instruction we're replacing. | 
|  | eraseInstruction(M); | 
|  | ++NumMemCpyInstr; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// We've found that the (upward scanning) memory dependence of \p MemCpy is | 
|  | /// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that | 
|  | /// weren't copied over by \p MemCpy. | 
|  | /// | 
|  | /// In other words, transform: | 
|  | /// \code | 
|  | ///   memset(dst, c, dst_size); | 
|  | ///   ... | 
|  | ///   memcpy(dst, src, src_size); | 
|  | /// \endcode | 
|  | /// into: | 
|  | /// \code | 
|  | ///   ... | 
|  | ///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size); | 
|  | ///   memcpy(dst, src, src_size); | 
|  | /// \endcode | 
|  | /// | 
|  | /// The memset is sunk to just before the memcpy to ensure that src_size is | 
|  | /// present when emitting the simplified memset. | 
|  | bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy, | 
|  | MemSetInst *MemSet, | 
|  | BatchAAResults &BAA) { | 
|  | // We can only transform memset/memcpy with the same destination. | 
|  | if (!BAA.isMustAlias(MemSet->getDest(), MemCpy->getDest())) | 
|  | return false; | 
|  |  | 
|  | // Check that src and dst of the memcpy aren't the same. While memcpy | 
|  | // operands cannot partially overlap, exact equality is allowed. | 
|  | if (isModSet(BAA.getModRefInfo(MemCpy, MemoryLocation::getForSource(MemCpy)))) | 
|  | return false; | 
|  |  | 
|  | // We know that dst up to src_size is not written. We now need to make sure | 
|  | // that dst up to dst_size is not accessed. (If we did not move the memset, | 
|  | // checking for reads would be sufficient.) | 
|  | if (accessedBetween(BAA, MemoryLocation::getForDest(MemSet), | 
|  | MSSA->getMemoryAccess(MemSet), | 
|  | MSSA->getMemoryAccess(MemCpy))) | 
|  | return false; | 
|  |  | 
|  | // Use the same i8* dest as the memcpy, killing the memset dest if different. | 
|  | Value *Dest = MemCpy->getRawDest(); | 
|  | Value *DestSize = MemSet->getLength(); | 
|  | Value *SrcSize = MemCpy->getLength(); | 
|  |  | 
|  | if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy)) | 
|  | return false; | 
|  |  | 
|  | // If the sizes are the same, simply drop the memset instead of generating | 
|  | // a replacement with zero size. | 
|  | if (DestSize == SrcSize) { | 
|  | eraseInstruction(MemSet); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // By default, create an unaligned memset. | 
|  | Align Alignment = Align(1); | 
|  | // If Dest is aligned, and SrcSize is constant, use the minimum alignment | 
|  | // of the sum. | 
|  | const Align DestAlign = std::max(MemSet->getDestAlign().valueOrOne(), | 
|  | MemCpy->getDestAlign().valueOrOne()); | 
|  | if (DestAlign > 1) | 
|  | if (auto *SrcSizeC = dyn_cast<ConstantInt>(SrcSize)) | 
|  | Alignment = commonAlignment(DestAlign, SrcSizeC->getZExtValue()); | 
|  |  | 
|  | IRBuilder<> Builder(MemCpy); | 
|  |  | 
|  | // Preserve the debug location of the old memset for the code emitted here | 
|  | // related to the new memset. This is correct according to the rules in | 
|  | // https://llvm.org/docs/HowToUpdateDebugInfo.html about "when to preserve an | 
|  | // instruction location", given that we move the memset within the basic | 
|  | // block. | 
|  | assert(MemSet->getParent() == MemCpy->getParent() && | 
|  | "Preserving debug location based on moving memset within BB."); | 
|  | Builder.SetCurrentDebugLocation(MemSet->getDebugLoc()); | 
|  |  | 
|  | // If the sizes have different types, zext the smaller one. | 
|  | if (DestSize->getType() != SrcSize->getType()) { | 
|  | if (DestSize->getType()->getIntegerBitWidth() > | 
|  | SrcSize->getType()->getIntegerBitWidth()) | 
|  | SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType()); | 
|  | else | 
|  | DestSize = Builder.CreateZExt(DestSize, SrcSize->getType()); | 
|  | } | 
|  |  | 
|  | Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize); | 
|  | Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize); | 
|  | Value *MemsetLen = Builder.CreateSelect( | 
|  | Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff); | 
|  | unsigned DestAS = Dest->getType()->getPointerAddressSpace(); | 
|  | Instruction *NewMemSet = Builder.CreateMemSet( | 
|  | Builder.CreateGEP( | 
|  | Builder.getInt8Ty(), | 
|  | Builder.CreatePointerCast(Dest, Builder.getInt8PtrTy(DestAS)), | 
|  | SrcSize), | 
|  | MemSet->getOperand(1), MemsetLen, Alignment); | 
|  |  | 
|  | assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) && | 
|  | "MemCpy must be a MemoryDef"); | 
|  | // The new memset is inserted before the memcpy, and it is known that the | 
|  | // memcpy's defining access is the memset about to be removed. | 
|  | auto *LastDef = | 
|  | cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); | 
|  | auto *NewAccess = MSSAU->createMemoryAccessBefore( | 
|  | NewMemSet, LastDef->getDefiningAccess(), LastDef); | 
|  | MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); | 
|  |  | 
|  | eraseInstruction(MemSet); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Determine whether the instruction has undefined content for the given Size, | 
|  | /// either because it was freshly alloca'd or started its lifetime. | 
|  | static bool hasUndefContents(MemorySSA *MSSA, BatchAAResults &AA, Value *V, | 
|  | MemoryDef *Def, Value *Size) { | 
|  | if (MSSA->isLiveOnEntryDef(Def)) | 
|  | return isa<AllocaInst>(getUnderlyingObject(V)); | 
|  |  | 
|  | if (auto *II = dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) { | 
|  | if (II->getIntrinsicID() == Intrinsic::lifetime_start) { | 
|  | auto *LTSize = cast<ConstantInt>(II->getArgOperand(0)); | 
|  |  | 
|  | if (auto *CSize = dyn_cast<ConstantInt>(Size)) { | 
|  | if (AA.isMustAlias(V, II->getArgOperand(1)) && | 
|  | LTSize->getZExtValue() >= CSize->getZExtValue()) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If the lifetime.start covers a whole alloca (as it almost always | 
|  | // does) and we're querying a pointer based on that alloca, then we know | 
|  | // the memory is definitely undef, regardless of how exactly we alias. | 
|  | // The size also doesn't matter, as an out-of-bounds access would be UB. | 
|  | if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V))) { | 
|  | if (getUnderlyingObject(II->getArgOperand(1)) == Alloca) { | 
|  | const DataLayout &DL = Alloca->getModule()->getDataLayout(); | 
|  | if (std::optional<TypeSize> AllocaSize = | 
|  | Alloca->getAllocationSize(DL)) | 
|  | if (*AllocaSize == LTSize->getValue()) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Transform memcpy to memset when its source was just memset. | 
|  | /// In other words, turn: | 
|  | /// \code | 
|  | ///   memset(dst1, c, dst1_size); | 
|  | ///   memcpy(dst2, dst1, dst2_size); | 
|  | /// \endcode | 
|  | /// into: | 
|  | /// \code | 
|  | ///   memset(dst1, c, dst1_size); | 
|  | ///   memset(dst2, c, dst2_size); | 
|  | /// \endcode | 
|  | /// When dst2_size <= dst1_size. | 
|  | bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy, | 
|  | MemSetInst *MemSet, | 
|  | BatchAAResults &BAA) { | 
|  | // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and | 
|  | // memcpying from the same address. Otherwise it is hard to reason about. | 
|  | if (!BAA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource())) | 
|  | return false; | 
|  |  | 
|  | Value *MemSetSize = MemSet->getLength(); | 
|  | Value *CopySize = MemCpy->getLength(); | 
|  |  | 
|  | if (MemSetSize != CopySize) { | 
|  | // Make sure the memcpy doesn't read any more than what the memset wrote. | 
|  | // Don't worry about sizes larger than i64. | 
|  |  | 
|  | // A known memset size is required. | 
|  | auto *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize); | 
|  | if (!CMemSetSize) | 
|  | return false; | 
|  |  | 
|  | // A known memcpy size is also required. | 
|  | auto  *CCopySize = dyn_cast<ConstantInt>(CopySize); | 
|  | if (!CCopySize) | 
|  | return false; | 
|  | if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) { | 
|  | // If the memcpy is larger than the memset, but the memory was undef prior | 
|  | // to the memset, we can just ignore the tail. Technically we're only | 
|  | // interested in the bytes from MemSetSize..CopySize here, but as we can't | 
|  | // easily represent this location, we use the full 0..CopySize range. | 
|  | MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy); | 
|  | bool CanReduceSize = false; | 
|  | MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet); | 
|  | MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( | 
|  | MemSetAccess->getDefiningAccess(), MemCpyLoc, BAA); | 
|  | if (auto *MD = dyn_cast<MemoryDef>(Clobber)) | 
|  | if (hasUndefContents(MSSA, BAA, MemCpy->getSource(), MD, CopySize)) | 
|  | CanReduceSize = true; | 
|  |  | 
|  | if (!CanReduceSize) | 
|  | return false; | 
|  | CopySize = MemSetSize; | 
|  | } | 
|  | } | 
|  |  | 
|  | IRBuilder<> Builder(MemCpy); | 
|  | Instruction *NewM = | 
|  | Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), | 
|  | CopySize, MemCpy->getDestAlign()); | 
|  | auto *LastDef = | 
|  | cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); | 
|  | auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); | 
|  | MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Perform simplification of memcpy's.  If we have memcpy A | 
|  | /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite | 
|  | /// B to be a memcpy from X to Z (or potentially a memmove, depending on | 
|  | /// circumstances). This allows later passes to remove the first memcpy | 
|  | /// altogether. | 
|  | bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) { | 
|  | // We can only optimize non-volatile memcpy's. | 
|  | if (M->isVolatile()) return false; | 
|  |  | 
|  | // If the source and destination of the memcpy are the same, then zap it. | 
|  | if (M->getSource() == M->getDest()) { | 
|  | ++BBI; | 
|  | eraseInstruction(M); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If copying from a constant, try to turn the memcpy into a memset. | 
|  | if (auto *GV = dyn_cast<GlobalVariable>(M->getSource())) | 
|  | if (GV->isConstant() && GV->hasDefinitiveInitializer()) | 
|  | if (Value *ByteVal = isBytewiseValue(GV->getInitializer(), | 
|  | M->getModule()->getDataLayout())) { | 
|  | IRBuilder<> Builder(M); | 
|  | Instruction *NewM = Builder.CreateMemSet( | 
|  | M->getRawDest(), ByteVal, M->getLength(), M->getDestAlign(), false); | 
|  | auto *LastDef = | 
|  | cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)); | 
|  | auto *NewAccess = | 
|  | MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); | 
|  | MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); | 
|  |  | 
|  | eraseInstruction(M); | 
|  | ++NumCpyToSet; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | BatchAAResults BAA(*AA); | 
|  | MemoryUseOrDef *MA = MSSA->getMemoryAccess(M); | 
|  | // FIXME: Not using getClobberingMemoryAccess() here due to PR54682. | 
|  | MemoryAccess *AnyClobber = MA->getDefiningAccess(); | 
|  | MemoryLocation DestLoc = MemoryLocation::getForDest(M); | 
|  | const MemoryAccess *DestClobber = | 
|  | MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc, BAA); | 
|  |  | 
|  | // Try to turn a partially redundant memset + memcpy into | 
|  | // smaller memset + memcpy.  We don't need the memcpy size for this. | 
|  | // The memcpy must post-dom the memset, so limit this to the same basic | 
|  | // block. A non-local generalization is likely not worthwhile. | 
|  | if (auto *MD = dyn_cast<MemoryDef>(DestClobber)) | 
|  | if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst())) | 
|  | if (DestClobber->getBlock() == M->getParent()) | 
|  | if (processMemSetMemCpyDependence(M, MDep, BAA)) | 
|  | return true; | 
|  |  | 
|  | MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess( | 
|  | AnyClobber, MemoryLocation::getForSource(M), BAA); | 
|  |  | 
|  | // There are four possible optimizations we can do for memcpy: | 
|  | //   a) memcpy-memcpy xform which exposes redundance for DSE. | 
|  | //   b) call-memcpy xform for return slot optimization. | 
|  | //   c) memcpy from freshly alloca'd space or space that has just started | 
|  | //      its lifetime copies undefined data, and we can therefore eliminate | 
|  | //      the memcpy in favor of the data that was already at the destination. | 
|  | //   d) memcpy from a just-memset'd source can be turned into memset. | 
|  | if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) { | 
|  | if (Instruction *MI = MD->getMemoryInst()) { | 
|  | if (auto *CopySize = dyn_cast<ConstantInt>(M->getLength())) { | 
|  | if (auto *C = dyn_cast<CallInst>(MI)) { | 
|  | if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(), | 
|  | TypeSize::getFixed(CopySize->getZExtValue()), | 
|  | M->getDestAlign().valueOrOne(), BAA, | 
|  | [C]() -> CallInst * { return C; })) { | 
|  | LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n" | 
|  | << "    call: " << *C << "\n" | 
|  | << "    memcpy: " << *M << "\n"); | 
|  | eraseInstruction(M); | 
|  | ++NumMemCpyInstr; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (auto *MDep = dyn_cast<MemCpyInst>(MI)) | 
|  | return processMemCpyMemCpyDependence(M, MDep, BAA); | 
|  | if (auto *MDep = dyn_cast<MemSetInst>(MI)) { | 
|  | if (performMemCpyToMemSetOptzn(M, MDep, BAA)) { | 
|  | LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n"); | 
|  | eraseInstruction(M); | 
|  | ++NumCpyToSet; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (hasUndefContents(MSSA, BAA, M->getSource(), MD, M->getLength())) { | 
|  | LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n"); | 
|  | eraseInstruction(M); | 
|  | ++NumMemCpyInstr; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed | 
|  | /// not to alias. | 
|  | bool MemCpyOptPass::processMemMove(MemMoveInst *M) { | 
|  | // See if the source could be modified by this memmove potentially. | 
|  | if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(M)))) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M | 
|  | << "\n"); | 
|  |  | 
|  | // If not, then we know we can transform this. | 
|  | Type *ArgTys[3] = { M->getRawDest()->getType(), | 
|  | M->getRawSource()->getType(), | 
|  | M->getLength()->getType() }; | 
|  | M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(), | 
|  | Intrinsic::memcpy, ArgTys)); | 
|  |  | 
|  | // For MemorySSA nothing really changes (except that memcpy may imply stricter | 
|  | // aliasing guarantees). | 
|  |  | 
|  | ++NumMoveToCpy; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// This is called on every byval argument in call sites. | 
|  | bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) { | 
|  | const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout(); | 
|  | // Find out what feeds this byval argument. | 
|  | Value *ByValArg = CB.getArgOperand(ArgNo); | 
|  | Type *ByValTy = CB.getParamByValType(ArgNo); | 
|  | TypeSize ByValSize = DL.getTypeAllocSize(ByValTy); | 
|  | MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize)); | 
|  | MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB); | 
|  | if (!CallAccess) | 
|  | return false; | 
|  | MemCpyInst *MDep = nullptr; | 
|  | BatchAAResults BAA(*AA); | 
|  | MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( | 
|  | CallAccess->getDefiningAccess(), Loc, BAA); | 
|  | if (auto *MD = dyn_cast<MemoryDef>(Clobber)) | 
|  | MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst()); | 
|  |  | 
|  | // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by | 
|  | // a memcpy, see if we can byval from the source of the memcpy instead of the | 
|  | // result. | 
|  | if (!MDep || MDep->isVolatile() || | 
|  | ByValArg->stripPointerCasts() != MDep->getDest()) | 
|  | return false; | 
|  |  | 
|  | // The length of the memcpy must be larger or equal to the size of the byval. | 
|  | auto *C1 = dyn_cast<ConstantInt>(MDep->getLength()); | 
|  | if (!C1 || !TypeSize::isKnownGE( | 
|  | TypeSize::getFixed(C1->getValue().getZExtValue()), ByValSize)) | 
|  | return false; | 
|  |  | 
|  | // Get the alignment of the byval.  If the call doesn't specify the alignment, | 
|  | // then it is some target specific value that we can't know. | 
|  | MaybeAlign ByValAlign = CB.getParamAlign(ArgNo); | 
|  | if (!ByValAlign) return false; | 
|  |  | 
|  | // If it is greater than the memcpy, then we check to see if we can force the | 
|  | // source of the memcpy to the alignment we need.  If we fail, we bail out. | 
|  | MaybeAlign MemDepAlign = MDep->getSourceAlign(); | 
|  | if ((!MemDepAlign || *MemDepAlign < *ByValAlign) && | 
|  | getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC, | 
|  | DT) < *ByValAlign) | 
|  | return false; | 
|  |  | 
|  | // The address space of the memcpy source must match the byval argument | 
|  | if (MDep->getSource()->getType()->getPointerAddressSpace() != | 
|  | ByValArg->getType()->getPointerAddressSpace()) | 
|  | return false; | 
|  |  | 
|  | // Verify that the copied-from memory doesn't change in between the memcpy and | 
|  | // the byval call. | 
|  | //    memcpy(a <- b) | 
|  | //    *b = 42; | 
|  | //    foo(*a) | 
|  | // It would be invalid to transform the second memcpy into foo(*b). | 
|  | if (writtenBetween(MSSA, BAA, MemoryLocation::getForSource(MDep), | 
|  | MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(&CB))) | 
|  | return false; | 
|  |  | 
|  | Value *TmpCast = MDep->getSource(); | 
|  | if (MDep->getSource()->getType() != ByValArg->getType()) { | 
|  | BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), | 
|  | "tmpcast", &CB); | 
|  | // Set the tmpcast's DebugLoc to MDep's | 
|  | TmpBitCast->setDebugLoc(MDep->getDebugLoc()); | 
|  | TmpCast = TmpBitCast; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n" | 
|  | << "  " << *MDep << "\n" | 
|  | << "  " << CB << "\n"); | 
|  |  | 
|  | // Otherwise we're good!  Update the byval argument. | 
|  | CB.setArgOperand(ArgNo, TmpCast); | 
|  | ++NumMemCpyInstr; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Executes one iteration of MemCpyOptPass. | 
|  | bool MemCpyOptPass::iterateOnFunction(Function &F) { | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // Walk all instruction in the function. | 
|  | for (BasicBlock &BB : F) { | 
|  | // Skip unreachable blocks. For example processStore assumes that an | 
|  | // instruction in a BB can't be dominated by a later instruction in the | 
|  | // same BB (which is a scenario that can happen for an unreachable BB that | 
|  | // has itself as a predecessor). | 
|  | if (!DT->isReachableFromEntry(&BB)) | 
|  | continue; | 
|  |  | 
|  | for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { | 
|  | // Avoid invalidating the iterator. | 
|  | Instruction *I = &*BI++; | 
|  |  | 
|  | bool RepeatInstruction = false; | 
|  |  | 
|  | if (auto *SI = dyn_cast<StoreInst>(I)) | 
|  | MadeChange |= processStore(SI, BI); | 
|  | else if (auto *M = dyn_cast<MemSetInst>(I)) | 
|  | RepeatInstruction = processMemSet(M, BI); | 
|  | else if (auto *M = dyn_cast<MemCpyInst>(I)) | 
|  | RepeatInstruction = processMemCpy(M, BI); | 
|  | else if (auto *M = dyn_cast<MemMoveInst>(I)) | 
|  | RepeatInstruction = processMemMove(M); | 
|  | else if (auto *CB = dyn_cast<CallBase>(I)) { | 
|  | for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) | 
|  | if (CB->isByValArgument(i)) | 
|  | MadeChange |= processByValArgument(*CB, i); | 
|  | } | 
|  |  | 
|  | // Reprocess the instruction if desired. | 
|  | if (RepeatInstruction) { | 
|  | if (BI != BB.begin()) | 
|  | --BI; | 
|  | MadeChange = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) { | 
|  | auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); | 
|  | auto *AA = &AM.getResult<AAManager>(F); | 
|  | auto *AC = &AM.getResult<AssumptionAnalysis>(F); | 
|  | auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); | 
|  | auto *MSSA = &AM.getResult<MemorySSAAnalysis>(F); | 
|  |  | 
|  | bool MadeChange = runImpl(F, &TLI, AA, AC, DT, &MSSA->getMSSA()); | 
|  | if (!MadeChange) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | PreservedAnalyses PA; | 
|  | PA.preserveSet<CFGAnalyses>(); | 
|  | PA.preserve<MemorySSAAnalysis>(); | 
|  | return PA; | 
|  | } | 
|  |  | 
|  | bool MemCpyOptPass::runImpl(Function &F, TargetLibraryInfo *TLI_, | 
|  | AliasAnalysis *AA_, AssumptionCache *AC_, | 
|  | DominatorTree *DT_, MemorySSA *MSSA_) { | 
|  | bool MadeChange = false; | 
|  | TLI = TLI_; | 
|  | AA = AA_; | 
|  | AC = AC_; | 
|  | DT = DT_; | 
|  | MSSA = MSSA_; | 
|  | MemorySSAUpdater MSSAU_(MSSA_); | 
|  | MSSAU = &MSSAU_; | 
|  |  | 
|  | while (true) { | 
|  | if (!iterateOnFunction(F)) | 
|  | break; | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | if (VerifyMemorySSA) | 
|  | MSSA_->verifyMemorySSA(); | 
|  |  | 
|  | return MadeChange; | 
|  | } |