commit | c8eb535aed0368c20b25fe05bca563ab38dd91e9 | [log] [tgz] |
---|---|---|
author | eopXD <yueh.ting.chen@gmail.com> | Thu Mar 23 01:51:39 2023 -0700 |
committer | eopXD <yueh.ting.chen@gmail.com> | Fri May 19 09:39:36 2023 -0700 |
tree | 8a2b1d6e9853b9498c3cfb58cb47afa9d251fec8 | |
parent | dae175423a07fbc63cf9d996751609361493f925 [diff] |
[1/11][IR] Permit load/store/alloca for struct of the same scalable vector type This patch-set aims to simplify the existing RVV segment load/store intrinsics to use a type that represents a tuple of vectors instead. To achieve this, first we need to relax the current limitation for an aggregate type to be a target of load/store/alloca when the aggregate type contains homogeneous scalable vector types. Then to adjust the prolog of an LLVM function during lowering to clang. Finally we re-define the RVV segment load/store intrinsics to use the tuple types. The pull request under the RVV intrinsic specification is riscv-non-isa/rvv-intrinsic-doc#198 --- This is the 1st patch of the patch-set. This patch is originated from D98169. This patch allows aggregate type (StructType) that contains homogeneous scalable vector types to be a target of load/store/alloca. The RFC of this patch was posted in LLVM Discourse. https://discourse.llvm.org/t/rfc-ir-permit-load-store-alloca-for-struct-of-the-same-scalable-vector-type/69527 The main changes in this patch are: Extend `StructLayout::StructSize` from `uint64_t` to `TypeSize` to accommodate an expression of scalable size. Allow `StructType:isSized` to also return true for homogeneous scalable vector types. Let `Type::isScalableTy` return true when `Type` is `StructType` and contains scalable vectors Extra description is added in the LLVM Language Reference Manual on the relaxation of this patch. Authored-by: Hsiangkai Wang <kai.wang@sifive.com> Co-Authored-by: eop Chen <eop.chen@sifive.com> Reviewed By: craig.topper, nikic Differential Revision: https://reviews.llvm.org/D146872
Welcome to the LLVM project!
This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.
The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.
C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.
Other components include: the libc++ C++ standard library, the LLD linker, and more.
Consult the Getting Started with LLVM page for information on building and running LLVM.
For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.
Join the LLVM Discourse forums, Discord chat, or #llvm IRC channel on OFTC.
The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.