|  | //===- LoopUnrollAnalyzer.cpp - Unrolling Effect Estimation -----*- C++ -*-===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements UnrolledInstAnalyzer class. It's used for predicting | 
|  | // potential effects that loop unrolling might have, such as enabling constant | 
|  | // propagation and other optimizations. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/LoopUnrollAnalyzer.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | /// Try to simplify instruction \param I using its SCEV expression. | 
|  | /// | 
|  | /// The idea is that some AddRec expressions become constants, which then | 
|  | /// could trigger folding of other instructions. However, that only happens | 
|  | /// for expressions whose start value is also constant, which isn't always the | 
|  | /// case. In another common and important case the start value is just some | 
|  | /// address (i.e. SCEVUnknown) - in this case we compute the offset and save | 
|  | /// it along with the base address instead. | 
|  | bool UnrolledInstAnalyzer::simplifyInstWithSCEV(Instruction *I) { | 
|  | if (!SE.isSCEVable(I->getType())) | 
|  | return false; | 
|  |  | 
|  | const SCEV *S = SE.getSCEV(I); | 
|  | if (auto *SC = dyn_cast<SCEVConstant>(S)) { | 
|  | SimplifiedValues[I] = SC->getValue(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If we have a loop invariant computation, we only need to compute it once. | 
|  | // Given that, all but the first occurance are free. | 
|  | if (!IterationNumber->isZero() && SE.isLoopInvariant(S, L)) | 
|  | return true; | 
|  |  | 
|  | auto *AR = dyn_cast<SCEVAddRecExpr>(S); | 
|  | if (!AR || AR->getLoop() != L) | 
|  | return false; | 
|  |  | 
|  | const SCEV *ValueAtIteration = AR->evaluateAtIteration(IterationNumber, SE); | 
|  | // Check if the AddRec expression becomes a constant. | 
|  | if (auto *SC = dyn_cast<SCEVConstant>(ValueAtIteration)) { | 
|  | SimplifiedValues[I] = SC->getValue(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check if the offset from the base address becomes a constant. | 
|  | auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(S)); | 
|  | if (!Base) | 
|  | return false; | 
|  | auto *Offset = | 
|  | dyn_cast<SCEVConstant>(SE.getMinusSCEV(ValueAtIteration, Base)); | 
|  | if (!Offset) | 
|  | return false; | 
|  | SimplifiedAddress Address; | 
|  | Address.Base = Base->getValue(); | 
|  | Address.Offset = Offset->getValue(); | 
|  | SimplifiedAddresses[I] = Address; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Try to simplify binary operator I. | 
|  | /// | 
|  | /// TODO: Probably it's worth to hoist the code for estimating the | 
|  | /// simplifications effects to a separate class, since we have a very similar | 
|  | /// code in InlineCost already. | 
|  | bool UnrolledInstAnalyzer::visitBinaryOperator(BinaryOperator &I) { | 
|  | Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); | 
|  | if (!isa<Constant>(LHS)) | 
|  | if (Value *SimpleLHS = SimplifiedValues.lookup(LHS)) | 
|  | LHS = SimpleLHS; | 
|  | if (!isa<Constant>(RHS)) | 
|  | if (Value *SimpleRHS = SimplifiedValues.lookup(RHS)) | 
|  | RHS = SimpleRHS; | 
|  |  | 
|  | Value *SimpleV = nullptr; | 
|  | const DataLayout &DL = I.getModule()->getDataLayout(); | 
|  | if (auto FI = dyn_cast<FPMathOperator>(&I)) | 
|  | SimpleV = | 
|  | simplifyBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL); | 
|  | else | 
|  | SimpleV = simplifyBinOp(I.getOpcode(), LHS, RHS, DL); | 
|  |  | 
|  | if (SimpleV) { | 
|  | SimplifiedValues[&I] = SimpleV; | 
|  | return true; | 
|  | } | 
|  | return Base::visitBinaryOperator(I); | 
|  | } | 
|  |  | 
|  | /// Try to fold load I. | 
|  | bool UnrolledInstAnalyzer::visitLoad(LoadInst &I) { | 
|  | Value *AddrOp = I.getPointerOperand(); | 
|  |  | 
|  | auto AddressIt = SimplifiedAddresses.find(AddrOp); | 
|  | if (AddressIt == SimplifiedAddresses.end()) | 
|  | return false; | 
|  | ConstantInt *SimplifiedAddrOp = AddressIt->second.Offset; | 
|  |  | 
|  | auto *GV = dyn_cast<GlobalVariable>(AddressIt->second.Base); | 
|  | // We're only interested in loads that can be completely folded to a | 
|  | // constant. | 
|  | if (!GV || !GV->hasDefinitiveInitializer() || !GV->isConstant()) | 
|  | return false; | 
|  |  | 
|  | ConstantDataSequential *CDS = | 
|  | dyn_cast<ConstantDataSequential>(GV->getInitializer()); | 
|  | if (!CDS) | 
|  | return false; | 
|  |  | 
|  | // We might have a vector load from an array. FIXME: for now we just bail | 
|  | // out in this case, but we should be able to resolve and simplify such | 
|  | // loads. | 
|  | if (CDS->getElementType() != I.getType()) | 
|  | return false; | 
|  |  | 
|  | unsigned ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U; | 
|  | if (SimplifiedAddrOp->getValue().getActiveBits() > 64) | 
|  | return false; | 
|  | int64_t SimplifiedAddrOpV = SimplifiedAddrOp->getSExtValue(); | 
|  | if (SimplifiedAddrOpV < 0) { | 
|  | // FIXME: For now we conservatively ignore out of bound accesses, but | 
|  | // we're allowed to perform the optimization in this case. | 
|  | return false; | 
|  | } | 
|  | uint64_t Index = static_cast<uint64_t>(SimplifiedAddrOpV) / ElemSize; | 
|  | if (Index >= CDS->getNumElements()) { | 
|  | // FIXME: For now we conservatively ignore out of bound accesses, but | 
|  | // we're allowed to perform the optimization in this case. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Constant *CV = CDS->getElementAsConstant(Index); | 
|  | assert(CV && "Constant expected."); | 
|  | SimplifiedValues[&I] = CV; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Try to simplify cast instruction. | 
|  | bool UnrolledInstAnalyzer::visitCastInst(CastInst &I) { | 
|  | Value *Op = I.getOperand(0); | 
|  | if (Value *Simplified = SimplifiedValues.lookup(Op)) | 
|  | Op = Simplified; | 
|  |  | 
|  | // The cast can be invalid, because SimplifiedValues contains results of SCEV | 
|  | // analysis, which operates on integers (and, e.g., might convert i8* null to | 
|  | // i32 0). | 
|  | if (CastInst::castIsValid(I.getOpcode(), Op, I.getType())) { | 
|  | const DataLayout &DL = I.getModule()->getDataLayout(); | 
|  | if (Value *V = simplifyCastInst(I.getOpcode(), Op, I.getType(), DL)) { | 
|  | SimplifiedValues[&I] = V; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Base::visitCastInst(I); | 
|  | } | 
|  |  | 
|  | /// Try to simplify cmp instruction. | 
|  | bool UnrolledInstAnalyzer::visitCmpInst(CmpInst &I) { | 
|  | Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); | 
|  |  | 
|  | // First try to handle simplified comparisons. | 
|  | if (!isa<Constant>(LHS)) | 
|  | if (Value *SimpleLHS = SimplifiedValues.lookup(LHS)) | 
|  | LHS = SimpleLHS; | 
|  | if (!isa<Constant>(RHS)) | 
|  | if (Value *SimpleRHS = SimplifiedValues.lookup(RHS)) | 
|  | RHS = SimpleRHS; | 
|  |  | 
|  | if (!isa<Constant>(LHS) && !isa<Constant>(RHS)) { | 
|  | auto SimplifiedLHS = SimplifiedAddresses.find(LHS); | 
|  | if (SimplifiedLHS != SimplifiedAddresses.end()) { | 
|  | auto SimplifiedRHS = SimplifiedAddresses.find(RHS); | 
|  | if (SimplifiedRHS != SimplifiedAddresses.end()) { | 
|  | SimplifiedAddress &LHSAddr = SimplifiedLHS->second; | 
|  | SimplifiedAddress &RHSAddr = SimplifiedRHS->second; | 
|  | if (LHSAddr.Base == RHSAddr.Base) { | 
|  | LHS = LHSAddr.Offset; | 
|  | RHS = RHSAddr.Offset; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | const DataLayout &DL = I.getModule()->getDataLayout(); | 
|  | if (Value *V = simplifyCmpInst(I.getPredicate(), LHS, RHS, DL)) { | 
|  | SimplifiedValues[&I] = V; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return Base::visitCmpInst(I); | 
|  | } | 
|  |  | 
|  | bool UnrolledInstAnalyzer::visitPHINode(PHINode &PN) { | 
|  | // Run base visitor first. This way we can gather some useful for later | 
|  | // analysis information. | 
|  | if (Base::visitPHINode(PN)) | 
|  | return true; | 
|  |  | 
|  | // The loop induction PHI nodes are definitionally free. | 
|  | return PN.getParent() == L->getHeader(); | 
|  | } | 
|  |  | 
|  | bool UnrolledInstAnalyzer::visitInstruction(Instruction &I) { | 
|  | return simplifyInstWithSCEV(&I); | 
|  | } |