| //===- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop -------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass transforms loops that contain branches on loop-invariant conditions |
| // to multiple loops. For example, it turns the left into the right code: |
| // |
| // for (...) if (lic) |
| // A for (...) |
| // if (lic) A; B; C |
| // B else |
| // C for (...) |
| // A; C |
| // |
| // This can increase the size of the code exponentially (doubling it every time |
| // a loop is unswitched) so we only unswitch if the resultant code will be |
| // smaller than a threshold. |
| // |
| // This pass expects LICM to be run before it to hoist invariant conditions out |
| // of the loop, to make the unswitching opportunity obvious. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/CodeMetrics.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/LazyBlockFrequencyInfo.h" |
| #include "llvm/Analysis/LegacyDivergenceAnalysis.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/LoopIterator.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/MemorySSA.h" |
| #include "llvm/Analysis/MemorySSAUpdater.h" |
| #include "llvm/Analysis/MustExecute.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Scalar/LoopPassManager.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/LoopUtils.h" |
| #include "llvm/Transforms/Utils/ValueMapper.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <map> |
| #include <set> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "loop-unswitch" |
| |
| STATISTIC(NumBranches, "Number of branches unswitched"); |
| STATISTIC(NumSwitches, "Number of switches unswitched"); |
| STATISTIC(NumGuards, "Number of guards unswitched"); |
| STATISTIC(NumSelects , "Number of selects unswitched"); |
| STATISTIC(NumTrivial , "Number of unswitches that are trivial"); |
| STATISTIC(NumSimplify, "Number of simplifications of unswitched code"); |
| STATISTIC(TotalInsts, "Total number of instructions analyzed"); |
| |
| // The specific value of 100 here was chosen based only on intuition and a |
| // few specific examples. |
| static cl::opt<unsigned> |
| Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"), |
| cl::init(100), cl::Hidden); |
| |
| static cl::opt<unsigned> |
| MSSAThreshold("loop-unswitch-memoryssa-threshold", |
| cl::desc("Max number of memory uses to explore during " |
| "partial unswitching analysis"), |
| cl::init(100), cl::Hidden); |
| |
| namespace { |
| |
| class LUAnalysisCache { |
| using UnswitchedValsMap = |
| DenseMap<const SwitchInst *, SmallPtrSet<const Value *, 8>>; |
| using UnswitchedValsIt = UnswitchedValsMap::iterator; |
| |
| struct LoopProperties { |
| unsigned CanBeUnswitchedCount; |
| unsigned WasUnswitchedCount; |
| unsigned SizeEstimation; |
| UnswitchedValsMap UnswitchedVals; |
| }; |
| |
| // Here we use std::map instead of DenseMap, since we need to keep valid |
| // LoopProperties pointer for current loop for better performance. |
| using LoopPropsMap = std::map<const Loop *, LoopProperties>; |
| using LoopPropsMapIt = LoopPropsMap::iterator; |
| |
| LoopPropsMap LoopsProperties; |
| UnswitchedValsMap *CurLoopInstructions = nullptr; |
| LoopProperties *CurrentLoopProperties = nullptr; |
| |
| // A loop unswitching with an estimated cost above this threshold |
| // is not performed. MaxSize is turned into unswitching quota for |
| // the current loop, and reduced correspondingly, though note that |
| // the quota is returned by releaseMemory() when the loop has been |
| // processed, so that MaxSize will return to its previous |
| // value. So in most cases MaxSize will equal the Threshold flag |
| // when a new loop is processed. An exception to that is that |
| // MaxSize will have a smaller value while processing nested loops |
| // that were introduced due to loop unswitching of an outer loop. |
| // |
| // FIXME: The way that MaxSize works is subtle and depends on the |
| // pass manager processing loops and calling releaseMemory() in a |
| // specific order. It would be good to find a more straightforward |
| // way of doing what MaxSize does. |
| unsigned MaxSize; |
| |
| public: |
| LUAnalysisCache() : MaxSize(Threshold) {} |
| |
| // Analyze loop. Check its size, calculate is it possible to unswitch |
| // it. Returns true if we can unswitch this loop. |
| bool countLoop(const Loop *L, const TargetTransformInfo &TTI, |
| AssumptionCache *AC); |
| |
| // Clean all data related to given loop. |
| void forgetLoop(const Loop *L); |
| |
| // Mark case value as unswitched. |
| // Since SI instruction can be partly unswitched, in order to avoid |
| // extra unswitching in cloned loops keep track all unswitched values. |
| void setUnswitched(const SwitchInst *SI, const Value *V); |
| |
| // Check was this case value unswitched before or not. |
| bool isUnswitched(const SwitchInst *SI, const Value *V); |
| |
| // Returns true if another unswitching could be done within the cost |
| // threshold. |
| bool costAllowsUnswitching(); |
| |
| // Clone all loop-unswitch related loop properties. |
| // Redistribute unswitching quotas. |
| // Note, that new loop data is stored inside the VMap. |
| void cloneData(const Loop *NewLoop, const Loop *OldLoop, |
| const ValueToValueMapTy &VMap); |
| }; |
| |
| class LoopUnswitch : public LoopPass { |
| LoopInfo *LI; // Loop information |
| LPPassManager *LPM; |
| AssumptionCache *AC; |
| |
| // Used to check if second loop needs processing after |
| // rewriteLoopBodyWithConditionConstant rewrites first loop. |
| std::vector<Loop*> LoopProcessWorklist; |
| |
| LUAnalysisCache BranchesInfo; |
| |
| bool OptimizeForSize; |
| bool RedoLoop = false; |
| |
| Loop *CurrentLoop = nullptr; |
| DominatorTree *DT = nullptr; |
| MemorySSA *MSSA = nullptr; |
| AAResults *AA = nullptr; |
| std::unique_ptr<MemorySSAUpdater> MSSAU; |
| BasicBlock *LoopHeader = nullptr; |
| BasicBlock *LoopPreheader = nullptr; |
| |
| bool SanitizeMemory; |
| SimpleLoopSafetyInfo SafetyInfo; |
| |
| // LoopBlocks contains all of the basic blocks of the loop, including the |
| // preheader of the loop, the body of the loop, and the exit blocks of the |
| // loop, in that order. |
| std::vector<BasicBlock*> LoopBlocks; |
| // NewBlocks contained cloned copy of basic blocks from LoopBlocks. |
| std::vector<BasicBlock*> NewBlocks; |
| |
| bool HasBranchDivergence; |
| |
| public: |
| static char ID; // Pass ID, replacement for typeid |
| |
| explicit LoopUnswitch(bool Os = false, bool HasBranchDivergence = false) |
| : LoopPass(ID), OptimizeForSize(Os), |
| HasBranchDivergence(HasBranchDivergence) { |
| initializeLoopUnswitchPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnLoop(Loop *L, LPPassManager &LPM) override; |
| bool processCurrentLoop(); |
| bool isUnreachableDueToPreviousUnswitching(BasicBlock *); |
| |
| /// This transformation requires natural loop information & requires that |
| /// loop preheaders be inserted into the CFG. |
| /// |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| // Lazy BFI and BPI are marked as preserved here so Loop Unswitching |
| // can remain part of the same loop pass as LICM |
| AU.addPreserved<LazyBlockFrequencyInfoPass>(); |
| AU.addPreserved<LazyBranchProbabilityInfoPass>(); |
| AU.addRequired<AssumptionCacheTracker>(); |
| AU.addRequired<TargetTransformInfoWrapperPass>(); |
| AU.addRequired<MemorySSAWrapperPass>(); |
| AU.addPreserved<MemorySSAWrapperPass>(); |
| if (HasBranchDivergence) |
| AU.addRequired<LegacyDivergenceAnalysis>(); |
| getLoopAnalysisUsage(AU); |
| } |
| |
| private: |
| void releaseMemory() override { BranchesInfo.forgetLoop(CurrentLoop); } |
| |
| void initLoopData() { |
| LoopHeader = CurrentLoop->getHeader(); |
| LoopPreheader = CurrentLoop->getLoopPreheader(); |
| } |
| |
| /// Split all of the edges from inside the loop to their exit blocks. |
| /// Update the appropriate Phi nodes as we do so. |
| void splitExitEdges(Loop *L, |
| const SmallVectorImpl<BasicBlock *> &ExitBlocks); |
| |
| bool tryTrivialLoopUnswitch(bool &Changed); |
| |
| bool unswitchIfProfitable(Value *LoopCond, Constant *Val, |
| Instruction *TI = nullptr, |
| ArrayRef<Instruction *> ToDuplicate = {}); |
| void unswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val, |
| BasicBlock *ExitBlock, Instruction *TI); |
| void unswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L, |
| Instruction *TI, |
| ArrayRef<Instruction *> ToDuplicate = {}); |
| |
| void rewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, |
| Constant *Val, bool IsEqual); |
| |
| void |
| emitPreheaderBranchOnCondition(Value *LIC, Constant *Val, |
| BasicBlock *TrueDest, BasicBlock *FalseDest, |
| BranchInst *OldBranch, Instruction *TI, |
| ArrayRef<Instruction *> ToDuplicate = {}); |
| |
| void simplifyCode(std::vector<Instruction *> &Worklist, Loop *L); |
| |
| /// Given that the Invariant is not equal to Val. Simplify instructions |
| /// in the loop. |
| Value *simplifyInstructionWithNotEqual(Instruction *Inst, Value *Invariant, |
| Constant *Val); |
| }; |
| |
| } // end anonymous namespace |
| |
| // Analyze loop. Check its size, calculate is it possible to unswitch |
| // it. Returns true if we can unswitch this loop. |
| bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI, |
| AssumptionCache *AC) { |
| LoopPropsMapIt PropsIt; |
| bool Inserted; |
| std::tie(PropsIt, Inserted) = |
| LoopsProperties.insert(std::make_pair(L, LoopProperties())); |
| |
| LoopProperties &Props = PropsIt->second; |
| |
| if (Inserted) { |
| // New loop. |
| |
| // Limit the number of instructions to avoid causing significant code |
| // expansion, and the number of basic blocks, to avoid loops with |
| // large numbers of branches which cause loop unswitching to go crazy. |
| // This is a very ad-hoc heuristic. |
| |
| SmallPtrSet<const Value *, 32> EphValues; |
| CodeMetrics::collectEphemeralValues(L, AC, EphValues); |
| |
| // FIXME: This is overly conservative because it does not take into |
| // consideration code simplification opportunities and code that can |
| // be shared by the resultant unswitched loops. |
| CodeMetrics Metrics; |
| for (BasicBlock *BB : L->blocks()) |
| Metrics.analyzeBasicBlock(BB, TTI, EphValues); |
| |
| Props.SizeEstimation = Metrics.NumInsts; |
| Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation); |
| Props.WasUnswitchedCount = 0; |
| MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount; |
| |
| if (Metrics.notDuplicatable) { |
| LLVM_DEBUG(dbgs() << "NOT unswitching loop %" << L->getHeader()->getName() |
| << ", contents cannot be " |
| << "duplicated!\n"); |
| return false; |
| } |
| } |
| |
| // Be careful. This links are good only before new loop addition. |
| CurrentLoopProperties = &Props; |
| CurLoopInstructions = &Props.UnswitchedVals; |
| |
| return true; |
| } |
| |
| // Clean all data related to given loop. |
| void LUAnalysisCache::forgetLoop(const Loop *L) { |
| LoopPropsMapIt LIt = LoopsProperties.find(L); |
| |
| if (LIt != LoopsProperties.end()) { |
| LoopProperties &Props = LIt->second; |
| MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) * |
| Props.SizeEstimation; |
| LoopsProperties.erase(LIt); |
| } |
| |
| CurrentLoopProperties = nullptr; |
| CurLoopInstructions = nullptr; |
| } |
| |
| // Mark case value as unswitched. |
| // Since SI instruction can be partly unswitched, in order to avoid |
| // extra unswitching in cloned loops keep track all unswitched values. |
| void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) { |
| (*CurLoopInstructions)[SI].insert(V); |
| } |
| |
| // Check was this case value unswitched before or not. |
| bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) { |
| return (*CurLoopInstructions)[SI].count(V); |
| } |
| |
| bool LUAnalysisCache::costAllowsUnswitching() { |
| return CurrentLoopProperties->CanBeUnswitchedCount > 0; |
| } |
| |
| // Clone all loop-unswitch related loop properties. |
| // Redistribute unswitching quotas. |
| // Note, that new loop data is stored inside the VMap. |
| void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop, |
| const ValueToValueMapTy &VMap) { |
| LoopProperties &NewLoopProps = LoopsProperties[NewLoop]; |
| LoopProperties &OldLoopProps = *CurrentLoopProperties; |
| UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals; |
| |
| // Reallocate "can-be-unswitched quota" |
| |
| --OldLoopProps.CanBeUnswitchedCount; |
| ++OldLoopProps.WasUnswitchedCount; |
| NewLoopProps.WasUnswitchedCount = 0; |
| unsigned Quota = OldLoopProps.CanBeUnswitchedCount; |
| NewLoopProps.CanBeUnswitchedCount = Quota / 2; |
| OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2; |
| |
| NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation; |
| |
| // Clone unswitched values info: |
| // for new loop switches we clone info about values that was |
| // already unswitched and has redundant successors. |
| for (const auto &I : Insts) { |
| const SwitchInst *OldInst = I.first; |
| Value *NewI = VMap.lookup(OldInst); |
| const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI); |
| assert(NewInst && "All instructions that are in SrcBB must be in VMap."); |
| |
| NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst]; |
| } |
| } |
| |
| char LoopUnswitch::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops", |
| false, false) |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| INITIALIZE_PASS_DEPENDENCY(LoopPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) |
| INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) |
| INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops", |
| false, false) |
| |
| Pass *llvm::createLoopUnswitchPass(bool Os, bool HasBranchDivergence) { |
| return new LoopUnswitch(Os, HasBranchDivergence); |
| } |
| |
| /// Operator chain lattice. |
| enum OperatorChain { |
| OC_OpChainNone, ///< There is no operator. |
| OC_OpChainOr, ///< There are only ORs. |
| OC_OpChainAnd, ///< There are only ANDs. |
| OC_OpChainMixed ///< There are ANDs and ORs. |
| }; |
| |
| /// Cond is a condition that occurs in L. If it is invariant in the loop, or has |
| /// an invariant piece, return the invariant. Otherwise, return null. |
| // |
| /// NOTE: findLIVLoopCondition will not return a partial LIV by walking up a |
| /// mixed operator chain, as we can not reliably find a value which will |
| /// simplify the operator chain. If the chain is AND-only or OR-only, we can use |
| /// 0 or ~0 to simplify the chain. |
| /// |
| /// NOTE: In case a partial LIV and a mixed operator chain, we may be able to |
| /// simplify the condition itself to a loop variant condition, but at the |
| /// cost of creating an entirely new loop. |
| static Value *findLIVLoopCondition(Value *Cond, Loop *L, bool &Changed, |
| OperatorChain &ParentChain, |
| DenseMap<Value *, Value *> &Cache, |
| MemorySSAUpdater *MSSAU) { |
| auto CacheIt = Cache.find(Cond); |
| if (CacheIt != Cache.end()) |
| return CacheIt->second; |
| |
| // We started analyze new instruction, increment scanned instructions counter. |
| ++TotalInsts; |
| |
| // We can never unswitch on vector conditions. |
| if (Cond->getType()->isVectorTy()) |
| return nullptr; |
| |
| // Constants should be folded, not unswitched on! |
| if (isa<Constant>(Cond)) return nullptr; |
| |
| // TODO: Handle: br (VARIANT|INVARIANT). |
| |
| // Hoist simple values out. |
| if (L->makeLoopInvariant(Cond, Changed, nullptr, MSSAU)) { |
| Cache[Cond] = Cond; |
| return Cond; |
| } |
| |
| // Walk up the operator chain to find partial invariant conditions. |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond)) |
| if (BO->getOpcode() == Instruction::And || |
| BO->getOpcode() == Instruction::Or) { |
| // Given the previous operator, compute the current operator chain status. |
| OperatorChain NewChain; |
| switch (ParentChain) { |
| case OC_OpChainNone: |
| NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd : |
| OC_OpChainOr; |
| break; |
| case OC_OpChainOr: |
| NewChain = BO->getOpcode() == Instruction::Or ? OC_OpChainOr : |
| OC_OpChainMixed; |
| break; |
| case OC_OpChainAnd: |
| NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd : |
| OC_OpChainMixed; |
| break; |
| case OC_OpChainMixed: |
| NewChain = OC_OpChainMixed; |
| break; |
| } |
| |
| // If we reach a Mixed state, we do not want to keep walking up as we can not |
| // reliably find a value that will simplify the chain. With this check, we |
| // will return null on the first sight of mixed chain and the caller will |
| // either backtrack to find partial LIV in other operand or return null. |
| if (NewChain != OC_OpChainMixed) { |
| // Update the current operator chain type before we search up the chain. |
| ParentChain = NewChain; |
| // If either the left or right side is invariant, we can unswitch on this, |
| // which will cause the branch to go away in one loop and the condition to |
| // simplify in the other one. |
| if (Value *LHS = findLIVLoopCondition(BO->getOperand(0), L, Changed, |
| ParentChain, Cache, MSSAU)) { |
| Cache[Cond] = LHS; |
| return LHS; |
| } |
| // We did not manage to find a partial LIV in operand(0). Backtrack and try |
| // operand(1). |
| ParentChain = NewChain; |
| if (Value *RHS = findLIVLoopCondition(BO->getOperand(1), L, Changed, |
| ParentChain, Cache, MSSAU)) { |
| Cache[Cond] = RHS; |
| return RHS; |
| } |
| } |
| } |
| |
| Cache[Cond] = nullptr; |
| return nullptr; |
| } |
| |
| /// Cond is a condition that occurs in L. If it is invariant in the loop, or has |
| /// an invariant piece, return the invariant along with the operator chain type. |
| /// Otherwise, return null. |
| static std::pair<Value *, OperatorChain> |
| findLIVLoopCondition(Value *Cond, Loop *L, bool &Changed, |
| MemorySSAUpdater *MSSAU) { |
| DenseMap<Value *, Value *> Cache; |
| OperatorChain OpChain = OC_OpChainNone; |
| Value *FCond = findLIVLoopCondition(Cond, L, Changed, OpChain, Cache, MSSAU); |
| |
| // In case we do find a LIV, it can not be obtained by walking up a mixed |
| // operator chain. |
| assert((!FCond || OpChain != OC_OpChainMixed) && |
| "Do not expect a partial LIV with mixed operator chain"); |
| return {FCond, OpChain}; |
| } |
| |
| bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPMRef) { |
| if (skipLoop(L)) |
| return false; |
| |
| AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache( |
| *L->getHeader()->getParent()); |
| LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| LPM = &LPMRef; |
| DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); |
| MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); |
| CurrentLoop = L; |
| Function *F = CurrentLoop->getHeader()->getParent(); |
| |
| SanitizeMemory = F->hasFnAttribute(Attribute::SanitizeMemory); |
| if (SanitizeMemory) |
| SafetyInfo.computeLoopSafetyInfo(L); |
| |
| if (VerifyMemorySSA) |
| MSSA->verifyMemorySSA(); |
| |
| bool Changed = false; |
| do { |
| assert(CurrentLoop->isLCSSAForm(*DT)); |
| if (VerifyMemorySSA) |
| MSSA->verifyMemorySSA(); |
| RedoLoop = false; |
| Changed |= processCurrentLoop(); |
| } while (RedoLoop); |
| |
| if (VerifyMemorySSA) |
| MSSA->verifyMemorySSA(); |
| |
| return Changed; |
| } |
| |
| // Return true if the BasicBlock BB is unreachable from the loop header. |
| // Return false, otherwise. |
| bool LoopUnswitch::isUnreachableDueToPreviousUnswitching(BasicBlock *BB) { |
| auto *Node = DT->getNode(BB)->getIDom(); |
| BasicBlock *DomBB = Node->getBlock(); |
| while (CurrentLoop->contains(DomBB)) { |
| BranchInst *BInst = dyn_cast<BranchInst>(DomBB->getTerminator()); |
| |
| Node = DT->getNode(DomBB)->getIDom(); |
| DomBB = Node->getBlock(); |
| |
| if (!BInst || !BInst->isConditional()) |
| continue; |
| |
| Value *Cond = BInst->getCondition(); |
| if (!isa<ConstantInt>(Cond)) |
| continue; |
| |
| BasicBlock *UnreachableSucc = |
| Cond == ConstantInt::getTrue(Cond->getContext()) |
| ? BInst->getSuccessor(1) |
| : BInst->getSuccessor(0); |
| |
| if (DT->dominates(UnreachableSucc, BB)) |
| return true; |
| } |
| return false; |
| } |
| |
| /// FIXME: Remove this workaround when freeze related patches are done. |
| /// LoopUnswitch and Equality propagation in GVN have discrepancy about |
| /// whether branch on undef/poison has undefine behavior. Here it is to |
| /// rule out some common cases that we found such discrepancy already |
| /// causing problems. Detail could be found in PR31652. Note if the |
| /// func returns true, it is unsafe. But if it is false, it doesn't mean |
| /// it is necessarily safe. |
| static bool equalityPropUnSafe(Value &LoopCond) { |
| ICmpInst *CI = dyn_cast<ICmpInst>(&LoopCond); |
| if (!CI || !CI->isEquality()) |
| return false; |
| |
| Value *LHS = CI->getOperand(0); |
| Value *RHS = CI->getOperand(1); |
| if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) |
| return true; |
| |
| auto HasUndefInPHI = [](PHINode &PN) { |
| for (Value *Opd : PN.incoming_values()) { |
| if (isa<UndefValue>(Opd)) |
| return true; |
| } |
| return false; |
| }; |
| PHINode *LPHI = dyn_cast<PHINode>(LHS); |
| PHINode *RPHI = dyn_cast<PHINode>(RHS); |
| if ((LPHI && HasUndefInPHI(*LPHI)) || (RPHI && HasUndefInPHI(*RPHI))) |
| return true; |
| |
| auto HasUndefInSelect = [](SelectInst &SI) { |
| if (isa<UndefValue>(SI.getTrueValue()) || |
| isa<UndefValue>(SI.getFalseValue())) |
| return true; |
| return false; |
| }; |
| SelectInst *LSI = dyn_cast<SelectInst>(LHS); |
| SelectInst *RSI = dyn_cast<SelectInst>(RHS); |
| if ((LSI && HasUndefInSelect(*LSI)) || (RSI && HasUndefInSelect(*RSI))) |
| return true; |
| return false; |
| } |
| |
| /// Do actual work and unswitch loop if possible and profitable. |
| bool LoopUnswitch::processCurrentLoop() { |
| bool Changed = false; |
| |
| initLoopData(); |
| |
| // If LoopSimplify was unable to form a preheader, don't do any unswitching. |
| if (!LoopPreheader) |
| return false; |
| |
| // Loops with indirectbr cannot be cloned. |
| if (!CurrentLoop->isSafeToClone()) |
| return false; |
| |
| // Without dedicated exits, splitting the exit edge may fail. |
| if (!CurrentLoop->hasDedicatedExits()) |
| return false; |
| |
| LLVMContext &Context = LoopHeader->getContext(); |
| |
| // Analyze loop cost, and stop unswitching if loop content can not be duplicated. |
| if (!BranchesInfo.countLoop( |
| CurrentLoop, |
| getAnalysis<TargetTransformInfoWrapperPass>().getTTI( |
| *CurrentLoop->getHeader()->getParent()), |
| AC)) |
| return false; |
| |
| // Try trivial unswitch first before loop over other basic blocks in the loop. |
| if (tryTrivialLoopUnswitch(Changed)) { |
| return true; |
| } |
| |
| // Do not do non-trivial unswitch while optimizing for size. |
| // FIXME: Use Function::hasOptSize(). |
| if (OptimizeForSize || |
| LoopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize)) |
| return Changed; |
| |
| // Run through the instructions in the loop, keeping track of three things: |
| // |
| // - That we do not unswitch loops containing convergent operations, as we |
| // might be making them control dependent on the unswitch value when they |
| // were not before. |
| // FIXME: This could be refined to only bail if the convergent operation is |
| // not already control-dependent on the unswitch value. |
| // |
| // - That basic blocks in the loop contain invokes whose predecessor edges we |
| // cannot split. |
| // |
| // - The set of guard intrinsics encountered (these are non terminator |
| // instructions that are also profitable to be unswitched). |
| |
| SmallVector<IntrinsicInst *, 4> Guards; |
| |
| for (const auto BB : CurrentLoop->blocks()) { |
| for (auto &I : *BB) { |
| auto *CB = dyn_cast<CallBase>(&I); |
| if (!CB) |
| continue; |
| if (CB->isConvergent()) |
| return Changed; |
| if (auto *II = dyn_cast<InvokeInst>(&I)) |
| if (!II->getUnwindDest()->canSplitPredecessors()) |
| return Changed; |
| if (auto *II = dyn_cast<IntrinsicInst>(&I)) |
| if (II->getIntrinsicID() == Intrinsic::experimental_guard) |
| Guards.push_back(II); |
| } |
| } |
| |
| for (IntrinsicInst *Guard : Guards) { |
| Value *LoopCond = findLIVLoopCondition(Guard->getOperand(0), CurrentLoop, |
| Changed, MSSAU.get()) |
| .first; |
| if (LoopCond && |
| unswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) { |
| // NB! Unswitching (if successful) could have erased some of the |
| // instructions in Guards leaving dangling pointers there. This is fine |
| // because we're returning now, and won't look at Guards again. |
| ++NumGuards; |
| return true; |
| } |
| } |
| |
| // Loop over all of the basic blocks in the loop. If we find an interior |
| // block that is branching on a loop-invariant condition, we can unswitch this |
| // loop. |
| for (Loop::block_iterator I = CurrentLoop->block_begin(), |
| E = CurrentLoop->block_end(); |
| I != E; ++I) { |
| Instruction *TI = (*I)->getTerminator(); |
| |
| // Unswitching on a potentially uninitialized predicate is not |
| // MSan-friendly. Limit this to the cases when the original predicate is |
| // guaranteed to execute, to avoid creating a use-of-uninitialized-value |
| // in the code that did not have one. |
| // This is a workaround for the discrepancy between LLVM IR and MSan |
| // semantics. See PR28054 for more details. |
| if (SanitizeMemory && |
| !SafetyInfo.isGuaranteedToExecute(*TI, DT, CurrentLoop)) |
| continue; |
| |
| if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { |
| // Some branches may be rendered unreachable because of previous |
| // unswitching. |
| // Unswitch only those branches that are reachable. |
| if (isUnreachableDueToPreviousUnswitching(*I)) |
| continue; |
| |
| // If this isn't branching on an invariant condition, we can't unswitch |
| // it. |
| if (BI->isConditional()) { |
| // See if this, or some part of it, is loop invariant. If so, we can |
| // unswitch on it if we desire. |
| Value *LoopCond = findLIVLoopCondition(BI->getCondition(), CurrentLoop, |
| Changed, MSSAU.get()) |
| .first; |
| if (LoopCond && !equalityPropUnSafe(*LoopCond) && |
| unswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) { |
| ++NumBranches; |
| return true; |
| } |
| } |
| } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { |
| Value *SC = SI->getCondition(); |
| Value *LoopCond; |
| OperatorChain OpChain; |
| std::tie(LoopCond, OpChain) = |
| findLIVLoopCondition(SC, CurrentLoop, Changed, MSSAU.get()); |
| |
| unsigned NumCases = SI->getNumCases(); |
| if (LoopCond && NumCases) { |
| // Find a value to unswitch on: |
| // FIXME: this should chose the most expensive case! |
| // FIXME: scan for a case with a non-critical edge? |
| Constant *UnswitchVal = nullptr; |
| // Find a case value such that at least one case value is unswitched |
| // out. |
| if (OpChain == OC_OpChainAnd) { |
| // If the chain only has ANDs and the switch has a case value of 0. |
| // Dropping in a 0 to the chain will unswitch out the 0-casevalue. |
| auto *AllZero = cast<ConstantInt>(Constant::getNullValue(SC->getType())); |
| if (BranchesInfo.isUnswitched(SI, AllZero)) |
| continue; |
| // We are unswitching 0 out. |
| UnswitchVal = AllZero; |
| } else if (OpChain == OC_OpChainOr) { |
| // If the chain only has ORs and the switch has a case value of ~0. |
| // Dropping in a ~0 to the chain will unswitch out the ~0-casevalue. |
| auto *AllOne = cast<ConstantInt>(Constant::getAllOnesValue(SC->getType())); |
| if (BranchesInfo.isUnswitched(SI, AllOne)) |
| continue; |
| // We are unswitching ~0 out. |
| UnswitchVal = AllOne; |
| } else { |
| assert(OpChain == OC_OpChainNone && |
| "Expect to unswitch on trivial chain"); |
| // Do not process same value again and again. |
| // At this point we have some cases already unswitched and |
| // some not yet unswitched. Let's find the first not yet unswitched one. |
| for (auto Case : SI->cases()) { |
| Constant *UnswitchValCandidate = Case.getCaseValue(); |
| if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) { |
| UnswitchVal = UnswitchValCandidate; |
| break; |
| } |
| } |
| } |
| |
| if (!UnswitchVal) |
| continue; |
| |
| if (unswitchIfProfitable(LoopCond, UnswitchVal)) { |
| ++NumSwitches; |
| // In case of a full LIV, UnswitchVal is the value we unswitched out. |
| // In case of a partial LIV, we only unswitch when its an AND-chain |
| // or OR-chain. In both cases switch input value simplifies to |
| // UnswitchVal. |
| BranchesInfo.setUnswitched(SI, UnswitchVal); |
| return true; |
| } |
| } |
| } |
| |
| // Scan the instructions to check for unswitchable values. |
| for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end(); |
| BBI != E; ++BBI) |
| if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) { |
| Value *LoopCond = findLIVLoopCondition(SI->getCondition(), CurrentLoop, |
| Changed, MSSAU.get()) |
| .first; |
| if (LoopCond && |
| unswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) { |
| ++NumSelects; |
| return true; |
| } |
| } |
| } |
| |
| // Check if there is a header condition that is invariant along the patch from |
| // either the true or false successors to the header. This allows unswitching |
| // conditions depending on memory accesses, if there's a path not clobbering |
| // the memory locations. Check if this transform has been disabled using |
| // metadata, to avoid unswitching the same loop multiple times. |
| if (MSSA && |
| !findOptionMDForLoop(CurrentLoop, "llvm.loop.unswitch.partial.disable")) { |
| if (auto Info = |
| hasPartialIVCondition(*CurrentLoop, MSSAThreshold, *MSSA, *AA)) { |
| assert(!Info->InstToDuplicate.empty() && |
| "need at least a partially invariant condition"); |
| LLVM_DEBUG(dbgs() << "loop-unswitch: Found partially invariant condition " |
| << *Info->InstToDuplicate[0] << "\n"); |
| |
| Instruction *TI = CurrentLoop->getHeader()->getTerminator(); |
| Value *LoopCond = Info->InstToDuplicate[0]; |
| |
| // If the partially unswitched path is a no-op and has a single exit |
| // block, we do not need to do full unswitching. Instead, we can directly |
| // branch to the exit. |
| // TODO: Instead of duplicating the checks, we could also just directly |
| // branch to the exit from the conditional branch in the loop. |
| if (Info->PathIsNoop) { |
| if (HasBranchDivergence && |
| getAnalysis<LegacyDivergenceAnalysis>().isDivergent(LoopCond)) { |
| LLVM_DEBUG(dbgs() << "NOT unswitching loop %" |
| << CurrentLoop->getHeader()->getName() |
| << " at non-trivial condition '" |
| << *Info->KnownValue << "' == " << *LoopCond << "\n" |
| << ". Condition is divergent.\n"); |
| return false; |
| } |
| |
| ++NumBranches; |
| |
| BasicBlock *TrueDest = LoopHeader; |
| BasicBlock *FalseDest = Info->ExitForPath; |
| if (Info->KnownValue->isOneValue()) |
| std::swap(TrueDest, FalseDest); |
| |
| auto *OldBr = |
| cast<BranchInst>(CurrentLoop->getLoopPreheader()->getTerminator()); |
| emitPreheaderBranchOnCondition(LoopCond, Info->KnownValue, TrueDest, |
| FalseDest, OldBr, TI, |
| Info->InstToDuplicate); |
| delete OldBr; |
| RedoLoop = false; |
| return true; |
| } |
| |
| // Otherwise, the path is not a no-op. Run regular unswitching. |
| if (unswitchIfProfitable(LoopCond, Info->KnownValue, |
| CurrentLoop->getHeader()->getTerminator(), |
| Info->InstToDuplicate)) { |
| ++NumBranches; |
| RedoLoop = false; |
| return true; |
| } |
| } |
| } |
| |
| return Changed; |
| } |
| |
| /// Check to see if all paths from BB exit the loop with no side effects |
| /// (including infinite loops). |
| /// |
| /// If true, we return true and set ExitBB to the block we |
| /// exit through. |
| /// |
| static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB, |
| BasicBlock *&ExitBB, |
| std::set<BasicBlock*> &Visited) { |
| if (!Visited.insert(BB).second) { |
| // Already visited. Without more analysis, this could indicate an infinite |
| // loop. |
| return false; |
| } |
| if (!L->contains(BB)) { |
| // Otherwise, this is a loop exit, this is fine so long as this is the |
| // first exit. |
| if (ExitBB) return false; |
| ExitBB = BB; |
| return true; |
| } |
| |
| // Otherwise, this is an unvisited intra-loop node. Check all successors. |
| for (BasicBlock *Succ : successors(BB)) { |
| // Check to see if the successor is a trivial loop exit. |
| if (!isTrivialLoopExitBlockHelper(L, Succ, ExitBB, Visited)) |
| return false; |
| } |
| |
| // Okay, everything after this looks good, check to make sure that this block |
| // doesn't include any side effects. |
| for (Instruction &I : *BB) |
| if (I.mayHaveSideEffects()) |
| return false; |
| |
| return true; |
| } |
| |
| /// Return true if the specified block unconditionally leads to an exit from |
| /// the specified loop, and has no side-effects in the process. If so, return |
| /// the block that is exited to, otherwise return null. |
| static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) { |
| std::set<BasicBlock*> Visited; |
| Visited.insert(L->getHeader()); // Branches to header make infinite loops. |
| BasicBlock *ExitBB = nullptr; |
| if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited)) |
| return ExitBB; |
| return nullptr; |
| } |
| |
| /// We have found that we can unswitch CurrentLoop when LoopCond == Val to |
| /// simplify the loop. If we decide that this is profitable, |
| /// unswitch the loop, reprocess the pieces, then return true. |
| bool LoopUnswitch::unswitchIfProfitable(Value *LoopCond, Constant *Val, |
| Instruction *TI, |
| ArrayRef<Instruction *> ToDuplicate) { |
| // Check to see if it would be profitable to unswitch current loop. |
| if (!BranchesInfo.costAllowsUnswitching()) { |
| LLVM_DEBUG(dbgs() << "NOT unswitching loop %" |
| << CurrentLoop->getHeader()->getName() |
| << " at non-trivial condition '" << *Val |
| << "' == " << *LoopCond << "\n" |
| << ". Cost too high.\n"); |
| return false; |
| } |
| if (HasBranchDivergence && |
| getAnalysis<LegacyDivergenceAnalysis>().isDivergent(LoopCond)) { |
| LLVM_DEBUG(dbgs() << "NOT unswitching loop %" |
| << CurrentLoop->getHeader()->getName() |
| << " at non-trivial condition '" << *Val |
| << "' == " << *LoopCond << "\n" |
| << ". Condition is divergent.\n"); |
| return false; |
| } |
| |
| unswitchNontrivialCondition(LoopCond, Val, CurrentLoop, TI, ToDuplicate); |
| return true; |
| } |
| |
| /// Emit a conditional branch on two values if LIC == Val, branch to TrueDst, |
| /// otherwise branch to FalseDest. Insert the code immediately before OldBranch |
| /// and remove (but not erase!) it from the function. |
| void LoopUnswitch::emitPreheaderBranchOnCondition( |
| Value *LIC, Constant *Val, BasicBlock *TrueDest, BasicBlock *FalseDest, |
| BranchInst *OldBranch, Instruction *TI, |
| ArrayRef<Instruction *> ToDuplicate) { |
| assert(OldBranch->isUnconditional() && "Preheader is not split correctly"); |
| assert(TrueDest != FalseDest && "Branch targets should be different"); |
| |
| // Insert a conditional branch on LIC to the two preheaders. The original |
| // code is the true version and the new code is the false version. |
| Value *BranchVal = LIC; |
| bool Swapped = false; |
| |
| if (!ToDuplicate.empty()) { |
| ValueToValueMapTy Old2New; |
| for (Instruction *I : reverse(ToDuplicate)) { |
| auto *New = I->clone(); |
| New->insertBefore(OldBranch); |
| RemapInstruction(New, Old2New, |
| RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); |
| Old2New[I] = New; |
| |
| if (MSSAU) { |
| MemorySSA *MSSA = MSSAU->getMemorySSA(); |
| auto *MemA = dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(I)); |
| if (!MemA) |
| continue; |
| |
| Loop *L = LI->getLoopFor(I->getParent()); |
| auto *DefiningAccess = MemA->getDefiningAccess(); |
| // Get the first defining access before the loop. |
| while (L->contains(DefiningAccess->getBlock())) { |
| // If the defining access is a MemoryPhi, get the incoming |
| // value for the pre-header as defining access. |
| if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess)) { |
| DefiningAccess = |
| MemPhi->getIncomingValueForBlock(L->getLoopPreheader()); |
| } else { |
| DefiningAccess = |
| cast<MemoryDef>(DefiningAccess)->getDefiningAccess(); |
| } |
| } |
| MSSAU->createMemoryAccessInBB(New, DefiningAccess, New->getParent(), |
| MemorySSA::BeforeTerminator); |
| } |
| } |
| BranchVal = Old2New[ToDuplicate[0]]; |
| } else { |
| |
| if (!isa<ConstantInt>(Val) || |
| Val->getType() != Type::getInt1Ty(LIC->getContext())) |
| BranchVal = new ICmpInst(OldBranch, ICmpInst::ICMP_EQ, LIC, Val); |
| else if (Val != ConstantInt::getTrue(Val->getContext())) { |
| // We want to enter the new loop when the condition is true. |
| std::swap(TrueDest, FalseDest); |
| Swapped = true; |
| } |
| } |
| |
| // Old branch will be removed, so save its parent and successor to update the |
| // DomTree. |
| auto *OldBranchSucc = OldBranch->getSuccessor(0); |
| auto *OldBranchParent = OldBranch->getParent(); |
| |
| // Insert the new branch. |
| BranchInst *BI = |
| IRBuilder<>(OldBranch).CreateCondBr(BranchVal, TrueDest, FalseDest, TI); |
| if (Swapped) |
| BI->swapProfMetadata(); |
| |
| // Remove the old branch so there is only one branch at the end. This is |
| // needed to perform DomTree's internal DFS walk on the function's CFG. |
| OldBranch->removeFromParent(); |
| |
| // Inform the DT about the new branch. |
| if (DT) { |
| // First, add both successors. |
| SmallVector<DominatorTree::UpdateType, 3> Updates; |
| if (TrueDest != OldBranchSucc) |
| Updates.push_back({DominatorTree::Insert, OldBranchParent, TrueDest}); |
| if (FalseDest != OldBranchSucc) |
| Updates.push_back({DominatorTree::Insert, OldBranchParent, FalseDest}); |
| // If both of the new successors are different from the old one, inform the |
| // DT that the edge was deleted. |
| if (OldBranchSucc != TrueDest && OldBranchSucc != FalseDest) { |
| Updates.push_back({DominatorTree::Delete, OldBranchParent, OldBranchSucc}); |
| } |
| |
| if (MSSAU) |
| MSSAU->applyUpdates(Updates, *DT, /*UpdateDT=*/true); |
| else |
| DT->applyUpdates(Updates); |
| } |
| |
| // If either edge is critical, split it. This helps preserve LoopSimplify |
| // form for enclosing loops. |
| auto Options = |
| CriticalEdgeSplittingOptions(DT, LI, MSSAU.get()).setPreserveLCSSA(); |
| SplitCriticalEdge(BI, 0, Options); |
| SplitCriticalEdge(BI, 1, Options); |
| } |
| |
| /// Given a loop that has a trivial unswitchable condition in it (a cond branch |
| /// from its header block to its latch block, where the path through the loop |
| /// that doesn't execute its body has no side-effects), unswitch it. This |
| /// doesn't involve any code duplication, just moving the conditional branch |
| /// outside of the loop and updating loop info. |
| void LoopUnswitch::unswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val, |
| BasicBlock *ExitBlock, |
| Instruction *TI) { |
| LLVM_DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %" |
| << LoopHeader->getName() << " [" << L->getBlocks().size() |
| << " blocks] in Function " |
| << L->getHeader()->getParent()->getName() |
| << " on cond: " << *Val << " == " << *Cond << "\n"); |
| // We are going to make essential changes to CFG. This may invalidate cached |
| // information for L or one of its parent loops in SCEV. |
| if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>()) |
| SEWP->getSE().forgetTopmostLoop(L); |
| |
| // First step, split the preheader, so that we know that there is a safe place |
| // to insert the conditional branch. We will change LoopPreheader to have a |
| // conditional branch on Cond. |
| BasicBlock *NewPH = SplitEdge(LoopPreheader, LoopHeader, DT, LI, MSSAU.get()); |
| |
| // Now that we have a place to insert the conditional branch, create a place |
| // to branch to: this is the exit block out of the loop that we should |
| // short-circuit to. |
| |
| // Split this block now, so that the loop maintains its exit block, and so |
| // that the jump from the preheader can execute the contents of the exit block |
| // without actually branching to it (the exit block should be dominated by the |
| // loop header, not the preheader). |
| assert(!L->contains(ExitBlock) && "Exit block is in the loop?"); |
| BasicBlock *NewExit = |
| SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI, MSSAU.get()); |
| |
| // Okay, now we have a position to branch from and a position to branch to, |
| // insert the new conditional branch. |
| auto *OldBranch = dyn_cast<BranchInst>(LoopPreheader->getTerminator()); |
| assert(OldBranch && "Failed to split the preheader"); |
| emitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, OldBranch, TI); |
| |
| // emitPreheaderBranchOnCondition removed the OldBranch from the function. |
| // Delete it, as it is no longer needed. |
| delete OldBranch; |
| |
| // We need to reprocess this loop, it could be unswitched again. |
| RedoLoop = true; |
| |
| // Now that we know that the loop is never entered when this condition is a |
| // particular value, rewrite the loop with this info. We know that this will |
| // at least eliminate the old branch. |
| rewriteLoopBodyWithConditionConstant(L, Cond, Val, /*IsEqual=*/false); |
| |
| ++NumTrivial; |
| } |
| |
| /// Check if the first non-constant condition starting from the loop header is |
| /// a trivial unswitch condition: that is, a condition controls whether or not |
| /// the loop does anything at all. If it is a trivial condition, unswitching |
| /// produces no code duplications (equivalently, it produces a simpler loop and |
| /// a new empty loop, which gets deleted). Therefore always unswitch trivial |
| /// condition. |
| bool LoopUnswitch::tryTrivialLoopUnswitch(bool &Changed) { |
| BasicBlock *CurrentBB = CurrentLoop->getHeader(); |
| Instruction *CurrentTerm = CurrentBB->getTerminator(); |
| LLVMContext &Context = CurrentBB->getContext(); |
| |
| // If loop header has only one reachable successor (currently via an |
| // unconditional branch or constant foldable conditional branch, but |
| // should also consider adding constant foldable switch instruction in |
| // future), we should keep looking for trivial condition candidates in |
| // the successor as well. An alternative is to constant fold conditions |
| // and merge successors into loop header (then we only need to check header's |
| // terminator). The reason for not doing this in LoopUnswitch pass is that |
| // it could potentially break LoopPassManager's invariants. Folding dead |
| // branches could either eliminate the current loop or make other loops |
| // unreachable. LCSSA form might also not be preserved after deleting |
| // branches. The following code keeps traversing loop header's successors |
| // until it finds the trivial condition candidate (condition that is not a |
| // constant). Since unswitching generates branches with constant conditions, |
| // this scenario could be very common in practice. |
| SmallPtrSet<BasicBlock*, 8> Visited; |
| |
| while (true) { |
| // If we exit loop or reach a previous visited block, then |
| // we can not reach any trivial condition candidates (unfoldable |
| // branch instructions or switch instructions) and no unswitch |
| // can happen. Exit and return false. |
| if (!CurrentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second) |
| return false; |
| |
| // Check if this loop will execute any side-effecting instructions (e.g. |
| // stores, calls, volatile loads) in the part of the loop that the code |
| // *would* execute. Check the header first. |
| for (Instruction &I : *CurrentBB) |
| if (I.mayHaveSideEffects()) |
| return false; |
| |
| if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) { |
| if (BI->isUnconditional()) { |
| CurrentBB = BI->getSuccessor(0); |
| } else if (BI->getCondition() == ConstantInt::getTrue(Context)) { |
| CurrentBB = BI->getSuccessor(0); |
| } else if (BI->getCondition() == ConstantInt::getFalse(Context)) { |
| CurrentBB = BI->getSuccessor(1); |
| } else { |
| // Found a trivial condition candidate: non-foldable conditional branch. |
| break; |
| } |
| } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) { |
| // At this point, any constant-foldable instructions should have probably |
| // been folded. |
| ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); |
| if (!Cond) |
| break; |
| // Find the target block we are definitely going to. |
| CurrentBB = SI->findCaseValue(Cond)->getCaseSuccessor(); |
| } else { |
| // We do not understand these terminator instructions. |
| break; |
| } |
| |
| CurrentTerm = CurrentBB->getTerminator(); |
| } |
| |
| // CondVal is the condition that controls the trivial condition. |
| // LoopExitBB is the BasicBlock that loop exits when meets trivial condition. |
| Constant *CondVal = nullptr; |
| BasicBlock *LoopExitBB = nullptr; |
| |
| if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) { |
| // If this isn't branching on an invariant condition, we can't unswitch it. |
| if (!BI->isConditional()) |
| return false; |
| |
| Value *LoopCond = findLIVLoopCondition(BI->getCondition(), CurrentLoop, |
| Changed, MSSAU.get()) |
| .first; |
| |
| // Unswitch only if the trivial condition itself is an LIV (not |
| // partial LIV which could occur in and/or) |
| if (!LoopCond || LoopCond != BI->getCondition()) |
| return false; |
| |
| // Check to see if a successor of the branch is guaranteed to |
| // exit through a unique exit block without having any |
| // side-effects. If so, determine the value of Cond that causes |
| // it to do this. |
| if ((LoopExitBB = |
| isTrivialLoopExitBlock(CurrentLoop, BI->getSuccessor(0)))) { |
| CondVal = ConstantInt::getTrue(Context); |
| } else if ((LoopExitBB = |
| isTrivialLoopExitBlock(CurrentLoop, BI->getSuccessor(1)))) { |
| CondVal = ConstantInt::getFalse(Context); |
| } |
| |
| // If we didn't find a single unique LoopExit block, or if the loop exit |
| // block contains phi nodes, this isn't trivial. |
| if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin())) |
| return false; // Can't handle this. |
| |
| if (equalityPropUnSafe(*LoopCond)) |
| return false; |
| |
| unswitchTrivialCondition(CurrentLoop, LoopCond, CondVal, LoopExitBB, |
| CurrentTerm); |
| ++NumBranches; |
| return true; |
| } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) { |
| // If this isn't switching on an invariant condition, we can't unswitch it. |
| Value *LoopCond = findLIVLoopCondition(SI->getCondition(), CurrentLoop, |
| Changed, MSSAU.get()) |
| .first; |
| |
| // Unswitch only if the trivial condition itself is an LIV (not |
| // partial LIV which could occur in and/or) |
| if (!LoopCond || LoopCond != SI->getCondition()) |
| return false; |
| |
| // Check to see if a successor of the switch is guaranteed to go to the |
| // latch block or exit through a one exit block without having any |
| // side-effects. If so, determine the value of Cond that causes it to do |
| // this. |
| // Note that we can't trivially unswitch on the default case or |
| // on already unswitched cases. |
| for (auto Case : SI->cases()) { |
| BasicBlock *LoopExitCandidate; |
| if ((LoopExitCandidate = |
| isTrivialLoopExitBlock(CurrentLoop, Case.getCaseSuccessor()))) { |
| // Okay, we found a trivial case, remember the value that is trivial. |
| ConstantInt *CaseVal = Case.getCaseValue(); |
| |
| // Check that it was not unswitched before, since already unswitched |
| // trivial vals are looks trivial too. |
| if (BranchesInfo.isUnswitched(SI, CaseVal)) |
| continue; |
| LoopExitBB = LoopExitCandidate; |
| CondVal = CaseVal; |
| break; |
| } |
| } |
| |
| // If we didn't find a single unique LoopExit block, or if the loop exit |
| // block contains phi nodes, this isn't trivial. |
| if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin())) |
| return false; // Can't handle this. |
| |
| unswitchTrivialCondition(CurrentLoop, LoopCond, CondVal, LoopExitBB, |
| nullptr); |
| |
| // We are only unswitching full LIV. |
| BranchesInfo.setUnswitched(SI, CondVal); |
| ++NumSwitches; |
| return true; |
| } |
| return false; |
| } |
| |
| /// Split all of the edges from inside the loop to their exit blocks. |
| /// Update the appropriate Phi nodes as we do so. |
| void LoopUnswitch::splitExitEdges( |
| Loop *L, const SmallVectorImpl<BasicBlock *> &ExitBlocks) { |
| |
| for (unsigned I = 0, E = ExitBlocks.size(); I != E; ++I) { |
| BasicBlock *ExitBlock = ExitBlocks[I]; |
| SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBlock)); |
| |
| // Although SplitBlockPredecessors doesn't preserve loop-simplify in |
| // general, if we call it on all predecessors of all exits then it does. |
| SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI, MSSAU.get(), |
| /*PreserveLCSSA*/ true); |
| } |
| } |
| |
| /// We determined that the loop is profitable to unswitch when LIC equal Val. |
| /// Split it into loop versions and test the condition outside of either loop. |
| /// Return the loops created as Out1/Out2. |
| void LoopUnswitch::unswitchNontrivialCondition( |
| Value *LIC, Constant *Val, Loop *L, Instruction *TI, |
| ArrayRef<Instruction *> ToDuplicate) { |
| Function *F = LoopHeader->getParent(); |
| LLVM_DEBUG(dbgs() << "loop-unswitch: Unswitching loop %" |
| << LoopHeader->getName() << " [" << L->getBlocks().size() |
| << " blocks] in Function " << F->getName() << " when '" |
| << *Val << "' == " << *LIC << "\n"); |
| |
| // We are going to make essential changes to CFG. This may invalidate cached |
| // information for L or one of its parent loops in SCEV. |
| if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>()) |
| SEWP->getSE().forgetTopmostLoop(L); |
| |
| LoopBlocks.clear(); |
| NewBlocks.clear(); |
| |
| if (MSSAU && VerifyMemorySSA) |
| MSSA->verifyMemorySSA(); |
| |
| // First step, split the preheader and exit blocks, and add these blocks to |
| // the LoopBlocks list. |
| BasicBlock *NewPreheader = |
| SplitEdge(LoopPreheader, LoopHeader, DT, LI, MSSAU.get()); |
| LoopBlocks.push_back(NewPreheader); |
| |
| // We want the loop to come after the preheader, but before the exit blocks. |
| llvm::append_range(LoopBlocks, L->blocks()); |
| |
| SmallVector<BasicBlock*, 8> ExitBlocks; |
| L->getUniqueExitBlocks(ExitBlocks); |
| |
| // Split all of the edges from inside the loop to their exit blocks. Update |
| // the appropriate Phi nodes as we do so. |
| splitExitEdges(L, ExitBlocks); |
| |
| // The exit blocks may have been changed due to edge splitting, recompute. |
| ExitBlocks.clear(); |
| L->getUniqueExitBlocks(ExitBlocks); |
| |
| // Add exit blocks to the loop blocks. |
| llvm::append_range(LoopBlocks, ExitBlocks); |
| |
| // Next step, clone all of the basic blocks that make up the loop (including |
| // the loop preheader and exit blocks), keeping track of the mapping between |
| // the instructions and blocks. |
| NewBlocks.reserve(LoopBlocks.size()); |
| ValueToValueMapTy VMap; |
| for (unsigned I = 0, E = LoopBlocks.size(); I != E; ++I) { |
| BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[I], VMap, ".us", F); |
| |
| NewBlocks.push_back(NewBB); |
| VMap[LoopBlocks[I]] = NewBB; // Keep the BB mapping. |
| } |
| |
| // Splice the newly inserted blocks into the function right before the |
| // original preheader. |
| F->getBasicBlockList().splice(NewPreheader->getIterator(), |
| F->getBasicBlockList(), |
| NewBlocks[0]->getIterator(), F->end()); |
| |
| // Now we create the new Loop object for the versioned loop. |
| Loop *NewLoop = cloneLoop(L, L->getParentLoop(), VMap, LI, LPM); |
| |
| // Recalculate unswitching quota, inherit simplified switches info for NewBB, |
| // Probably clone more loop-unswitch related loop properties. |
| BranchesInfo.cloneData(NewLoop, L, VMap); |
| |
| Loop *ParentLoop = L->getParentLoop(); |
| if (ParentLoop) { |
| // Make sure to add the cloned preheader and exit blocks to the parent loop |
| // as well. |
| ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI); |
| } |
| |
| for (unsigned EBI = 0, EBE = ExitBlocks.size(); EBI != EBE; ++EBI) { |
| BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[EBI]]); |
| // The new exit block should be in the same loop as the old one. |
| if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[EBI])) |
| ExitBBLoop->addBasicBlockToLoop(NewExit, *LI); |
| |
| assert(NewExit->getTerminator()->getNumSuccessors() == 1 && |
| "Exit block should have been split to have one successor!"); |
| BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0); |
| |
| // If the successor of the exit block had PHI nodes, add an entry for |
| // NewExit. |
| for (PHINode &PN : ExitSucc->phis()) { |
| Value *V = PN.getIncomingValueForBlock(ExitBlocks[EBI]); |
| ValueToValueMapTy::iterator It = VMap.find(V); |
| if (It != VMap.end()) V = It->second; |
| PN.addIncoming(V, NewExit); |
| } |
| |
| if (LandingPadInst *LPad = NewExit->getLandingPadInst()) { |
| PHINode *PN = PHINode::Create(LPad->getType(), 0, "", |
| &*ExitSucc->getFirstInsertionPt()); |
| |
| for (BasicBlock *BB : predecessors(ExitSucc)) { |
| LandingPadInst *LPI = BB->getLandingPadInst(); |
| LPI->replaceAllUsesWith(PN); |
| PN->addIncoming(LPI, BB); |
| } |
| } |
| } |
| |
| // Rewrite the code to refer to itself. |
| for (unsigned NBI = 0, NBE = NewBlocks.size(); NBI != NBE; ++NBI) { |
| for (Instruction &I : *NewBlocks[NBI]) { |
| RemapInstruction(&I, VMap, |
| RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); |
| if (auto *II = dyn_cast<AssumeInst>(&I)) |
| AC->registerAssumption(II); |
| } |
| } |
| |
| // Rewrite the original preheader to select between versions of the loop. |
| BranchInst *OldBR = cast<BranchInst>(LoopPreheader->getTerminator()); |
| assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] && |
| "Preheader splitting did not work correctly!"); |
| |
| if (MSSAU) { |
| // Update MemorySSA after cloning, and before splitting to unreachables, |
| // since that invalidates the 1:1 mapping of clones in VMap. |
| LoopBlocksRPO LBRPO(L); |
| LBRPO.perform(LI); |
| MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, VMap); |
| } |
| |
| // Emit the new branch that selects between the two versions of this loop. |
| emitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR, |
| TI, ToDuplicate); |
| if (MSSAU) { |
| // Update MemoryPhis in Exit blocks. |
| MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMap, *DT); |
| if (VerifyMemorySSA) |
| MSSA->verifyMemorySSA(); |
| } |
| |
| // The OldBr was replaced by a new one and removed (but not erased) by |
| // emitPreheaderBranchOnCondition. It is no longer needed, so delete it. |
| delete OldBR; |
| |
| LoopProcessWorklist.push_back(NewLoop); |
| RedoLoop = true; |
| |
| // Keep a WeakTrackingVH holding onto LIC. If the first call to |
| // RewriteLoopBody |
| // deletes the instruction (for example by simplifying a PHI that feeds into |
| // the condition that we're unswitching on), we don't rewrite the second |
| // iteration. |
| WeakTrackingVH LICHandle(LIC); |
| |
| if (ToDuplicate.empty()) { |
| // Now we rewrite the original code to know that the condition is true and |
| // the new code to know that the condition is false. |
| rewriteLoopBodyWithConditionConstant(L, LIC, Val, /*IsEqual=*/false); |
| |
| // It's possible that simplifying one loop could cause the other to be |
| // changed to another value or a constant. If its a constant, don't |
| // simplify it. |
| if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop && |
| LICHandle && !isa<Constant>(LICHandle)) |
| rewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, |
| /*IsEqual=*/true); |
| } else { |
| // Partial unswitching. Update the condition in the right loop with the |
| // constant. |
| auto *CC = cast<ConstantInt>(Val); |
| if (CC->isOneValue()) { |
| rewriteLoopBodyWithConditionConstant(NewLoop, VMap[LIC], Val, |
| /*IsEqual=*/true); |
| } else |
| rewriteLoopBodyWithConditionConstant(L, LIC, Val, /*IsEqual=*/true); |
| |
| // Mark the new loop as partially unswitched, to avoid unswitching on the |
| // same condition again. |
| auto &Context = NewLoop->getHeader()->getContext(); |
| MDNode *DisableUnswitchMD = MDNode::get( |
| Context, MDString::get(Context, "llvm.loop.unswitch.partial.disable")); |
| MDNode *NewLoopID = makePostTransformationMetadata( |
| Context, L->getLoopID(), {"llvm.loop.unswitch.partial"}, |
| {DisableUnswitchMD}); |
| NewLoop->setLoopID(NewLoopID); |
| } |
| |
| if (MSSA && VerifyMemorySSA) |
| MSSA->verifyMemorySSA(); |
| } |
| |
| /// Remove all instances of I from the worklist vector specified. |
| static void removeFromWorklist(Instruction *I, |
| std::vector<Instruction *> &Worklist) { |
| llvm::erase_value(Worklist, I); |
| } |
| |
| /// When we find that I really equals V, remove I from the |
| /// program, replacing all uses with V and update the worklist. |
| static void replaceUsesOfWith(Instruction *I, Value *V, |
| std::vector<Instruction *> &Worklist, Loop *L, |
| LPPassManager *LPM, MemorySSAUpdater *MSSAU) { |
| LLVM_DEBUG(dbgs() << "Replace with '" << *V << "': " << *I << "\n"); |
| |
| // Add uses to the worklist, which may be dead now. |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) |
| if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i))) |
| Worklist.push_back(Use); |
| |
| // Add users to the worklist which may be simplified now. |
| for (User *U : I->users()) |
| Worklist.push_back(cast<Instruction>(U)); |
| removeFromWorklist(I, Worklist); |
| I->replaceAllUsesWith(V); |
| if (!I->mayHaveSideEffects()) { |
| if (MSSAU) |
| MSSAU->removeMemoryAccess(I); |
| I->eraseFromParent(); |
| } |
| ++NumSimplify; |
| } |
| |
| /// We know either that the value LIC has the value specified by Val in the |
| /// specified loop, or we know it does NOT have that value. |
| /// Rewrite any uses of LIC or of properties correlated to it. |
| void LoopUnswitch::rewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, |
| Constant *Val, |
| bool IsEqual) { |
| assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?"); |
| |
| // FIXME: Support correlated properties, like: |
| // for (...) |
| // if (li1 < li2) |
| // ... |
| // if (li1 > li2) |
| // ... |
| |
| // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches, |
| // selects, switches. |
| std::vector<Instruction*> Worklist; |
| LLVMContext &Context = Val->getContext(); |
| |
| // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC |
| // in the loop with the appropriate one directly. |
| if (IsEqual || (isa<ConstantInt>(Val) && |
| Val->getType()->isIntegerTy(1))) { |
| Value *Replacement; |
| if (IsEqual) |
| Replacement = Val; |
| else |
| Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()), |
| !cast<ConstantInt>(Val)->getZExtValue()); |
| |
| for (User *U : LIC->users()) { |
| Instruction *UI = dyn_cast<Instruction>(U); |
| if (!UI || !L->contains(UI)) |
| continue; |
| Worklist.push_back(UI); |
| } |
| |
| for (Instruction *UI : Worklist) |
| UI->replaceUsesOfWith(LIC, Replacement); |
| |
| simplifyCode(Worklist, L); |
| return; |
| } |
| |
| // Otherwise, we don't know the precise value of LIC, but we do know that it |
| // is certainly NOT "Val". As such, simplify any uses in the loop that we |
| // can. This case occurs when we unswitch switch statements. |
| for (User *U : LIC->users()) { |
| Instruction *UI = dyn_cast<Instruction>(U); |
| if (!UI || !L->contains(UI)) |
| continue; |
| |
| // At this point, we know LIC is definitely not Val. Try to use some simple |
| // logic to simplify the user w.r.t. to the context. |
| if (Value *Replacement = simplifyInstructionWithNotEqual(UI, LIC, Val)) { |
| if (LI->replacementPreservesLCSSAForm(UI, Replacement)) { |
| // This in-loop instruction has been simplified w.r.t. its context, |
| // i.e. LIC != Val, make sure we propagate its replacement value to |
| // all its users. |
| // |
| // We can not yet delete UI, the LIC user, yet, because that would invalidate |
| // the LIC->users() iterator !. However, we can make this instruction |
| // dead by replacing all its users and push it onto the worklist so that |
| // it can be properly deleted and its operands simplified. |
| UI->replaceAllUsesWith(Replacement); |
| } |
| } |
| |
| // This is a LIC user, push it into the worklist so that simplifyCode can |
| // attempt to simplify it. |
| Worklist.push_back(UI); |
| |
| // If we know that LIC is not Val, use this info to simplify code. |
| SwitchInst *SI = dyn_cast<SwitchInst>(UI); |
| if (!SI || !isa<ConstantInt>(Val)) continue; |
| |
| // NOTE: if a case value for the switch is unswitched out, we record it |
| // after the unswitch finishes. We can not record it here as the switch |
| // is not a direct user of the partial LIV. |
| SwitchInst::CaseHandle DeadCase = |
| *SI->findCaseValue(cast<ConstantInt>(Val)); |
| // Default case is live for multiple values. |
| if (DeadCase == *SI->case_default()) |
| continue; |
| |
| // Found a dead case value. Don't remove PHI nodes in the |
| // successor if they become single-entry, those PHI nodes may |
| // be in the Users list. |
| |
| BasicBlock *Switch = SI->getParent(); |
| BasicBlock *SISucc = DeadCase.getCaseSuccessor(); |
| BasicBlock *Latch = L->getLoopLatch(); |
| |
| if (!SI->findCaseDest(SISucc)) continue; // Edge is critical. |
| // If the DeadCase successor dominates the loop latch, then the |
| // transformation isn't safe since it will delete the sole predecessor edge |
| // to the latch. |
| if (Latch && DT->dominates(SISucc, Latch)) |
| continue; |
| |
| // FIXME: This is a hack. We need to keep the successor around |
| // and hooked up so as to preserve the loop structure, because |
| // trying to update it is complicated. So instead we preserve the |
| // loop structure and put the block on a dead code path. |
| SplitEdge(Switch, SISucc, DT, LI, MSSAU.get()); |
| // Compute the successors instead of relying on the return value |
| // of SplitEdge, since it may have split the switch successor |
| // after PHI nodes. |
| BasicBlock *NewSISucc = DeadCase.getCaseSuccessor(); |
| BasicBlock *OldSISucc = *succ_begin(NewSISucc); |
| // Create an "unreachable" destination. |
| BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable", |
| Switch->getParent(), |
| OldSISucc); |
| new UnreachableInst(Context, Abort); |
| // Force the new case destination to branch to the "unreachable" |
| // block while maintaining a (dead) CFG edge to the old block. |
| NewSISucc->getTerminator()->eraseFromParent(); |
| BranchInst::Create(Abort, OldSISucc, |
| ConstantInt::getTrue(Context), NewSISucc); |
| // Release the PHI operands for this edge. |
| for (PHINode &PN : NewSISucc->phis()) |
| PN.setIncomingValueForBlock(Switch, UndefValue::get(PN.getType())); |
| // Tell the domtree about the new block. We don't fully update the |
| // domtree here -- instead we force it to do a full recomputation |
| // after the pass is complete -- but we do need to inform it of |
| // new blocks. |
| DT->addNewBlock(Abort, NewSISucc); |
| } |
| |
| simplifyCode(Worklist, L); |
| } |
| |
| /// Now that we have simplified some instructions in the loop, walk over it and |
| /// constant prop, dce, and fold control flow where possible. Note that this is |
| /// effectively a very simple loop-structure-aware optimizer. During processing |
| /// of this loop, L could very well be deleted, so it must not be used. |
| /// |
| /// FIXME: When the loop optimizer is more mature, separate this out to a new |
| /// pass. |
| /// |
| void LoopUnswitch::simplifyCode(std::vector<Instruction *> &Worklist, Loop *L) { |
| const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); |
| while (!Worklist.empty()) { |
| Instruction *I = Worklist.back(); |
| Worklist.pop_back(); |
| |
| // Simple DCE. |
| if (isInstructionTriviallyDead(I)) { |
| LLVM_DEBUG(dbgs() << "Remove dead instruction '" << *I << "\n"); |
| |
| // Add uses to the worklist, which may be dead now. |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) |
| if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i))) |
| Worklist.push_back(Use); |
| removeFromWorklist(I, Worklist); |
| if (MSSAU) |
| MSSAU->removeMemoryAccess(I); |
| I->eraseFromParent(); |
| ++NumSimplify; |
| continue; |
| } |
| |
| // See if instruction simplification can hack this up. This is common for |
| // things like "select false, X, Y" after unswitching made the condition be |
| // 'false'. TODO: update the domtree properly so we can pass it here. |
| if (Value *V = SimplifyInstruction(I, DL)) |
| if (LI->replacementPreservesLCSSAForm(I, V)) { |
| replaceUsesOfWith(I, V, Worklist, L, LPM, MSSAU.get()); |
| continue; |
| } |
| |
| // Special case hacks that appear commonly in unswitched code. |
| if (BranchInst *BI = dyn_cast<BranchInst>(I)) { |
| if (BI->isUnconditional()) { |
| // If BI's parent is the only pred of the successor, fold the two blocks |
| // together. |
| BasicBlock *Pred = BI->getParent(); |
| (void)Pred; |
| BasicBlock *Succ = BI->getSuccessor(0); |
| BasicBlock *SinglePred = Succ->getSinglePredecessor(); |
| if (!SinglePred) continue; // Nothing to do. |
| assert(SinglePred == Pred && "CFG broken"); |
| |
| // Make the LPM and Worklist updates specific to LoopUnswitch. |
| removeFromWorklist(BI, Worklist); |
| auto SuccIt = Succ->begin(); |
| while (PHINode *PN = dyn_cast<PHINode>(SuccIt++)) { |
| for (unsigned It = 0, E = PN->getNumOperands(); It != E; ++It) |
| if (Instruction *Use = dyn_cast<Instruction>(PN->getOperand(It))) |
| Worklist.push_back(Use); |
| for (User *U : PN->users()) |
| Worklist.push_back(cast<Instruction>(U)); |
| removeFromWorklist(PN, Worklist); |
| ++NumSimplify; |
| } |
| // Merge the block and make the remaining analyses updates. |
| DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); |
| MergeBlockIntoPredecessor(Succ, &DTU, LI, MSSAU.get()); |
| ++NumSimplify; |
| continue; |
| } |
| |
| continue; |
| } |
| } |
| } |
| |
| /// Simple simplifications we can do given the information that Cond is |
| /// definitely not equal to Val. |
| Value *LoopUnswitch::simplifyInstructionWithNotEqual(Instruction *Inst, |
| Value *Invariant, |
| Constant *Val) { |
| // icmp eq cond, val -> false |
| ICmpInst *CI = dyn_cast<ICmpInst>(Inst); |
| if (CI && CI->isEquality()) { |
| Value *Op0 = CI->getOperand(0); |
| Value *Op1 = CI->getOperand(1); |
| if ((Op0 == Invariant && Op1 == Val) || (Op0 == Val && Op1 == Invariant)) { |
| LLVMContext &Ctx = Inst->getContext(); |
| if (CI->getPredicate() == CmpInst::ICMP_EQ) |
| return ConstantInt::getFalse(Ctx); |
| else |
| return ConstantInt::getTrue(Ctx); |
| } |
| } |
| |
| // FIXME: there may be other opportunities, e.g. comparison with floating |
| // point, or Invariant - Val != 0, etc. |
| return nullptr; |
| } |