| //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass implements whole program optimization of virtual calls in cases |
| // where we know (via !type metadata) that the list of callees is fixed. This |
| // includes the following: |
| // - Single implementation devirtualization: if a virtual call has a single |
| // possible callee, replace all calls with a direct call to that callee. |
| // - Virtual constant propagation: if the virtual function's return type is an |
| // integer <=64 bits and all possible callees are readnone, for each class and |
| // each list of constant arguments: evaluate the function, store the return |
| // value alongside the virtual table, and rewrite each virtual call as a load |
| // from the virtual table. |
| // - Uniform return value optimization: if the conditions for virtual constant |
| // propagation hold and each function returns the same constant value, replace |
| // each virtual call with that constant. |
| // - Unique return value optimization for i1 return values: if the conditions |
| // for virtual constant propagation hold and a single vtable's function |
| // returns 0, or a single vtable's function returns 1, replace each virtual |
| // call with a comparison of the vptr against that vtable's address. |
| // |
| // This pass is intended to be used during the regular and thin LTO pipelines: |
| // |
| // During regular LTO, the pass determines the best optimization for each |
| // virtual call and applies the resolutions directly to virtual calls that are |
| // eligible for virtual call optimization (i.e. calls that use either of the |
| // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). |
| // |
| // During hybrid Regular/ThinLTO, the pass operates in two phases: |
| // - Export phase: this is run during the thin link over a single merged module |
| // that contains all vtables with !type metadata that participate in the link. |
| // The pass computes a resolution for each virtual call and stores it in the |
| // type identifier summary. |
| // - Import phase: this is run during the thin backends over the individual |
| // modules. The pass applies the resolutions previously computed during the |
| // import phase to each eligible virtual call. |
| // |
| // During ThinLTO, the pass operates in two phases: |
| // - Export phase: this is run during the thin link over the index which |
| // contains a summary of all vtables with !type metadata that participate in |
| // the link. It computes a resolution for each virtual call and stores it in |
| // the type identifier summary. Only single implementation devirtualization |
| // is supported. |
| // - Import phase: (same as with hybrid case above). |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/IPO/WholeProgramDevirt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseMapInfo.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/BasicAliasAnalysis.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/TypeMetadataUtils.h" |
| #include "llvm/Bitcode/BitcodeReader.h" |
| #include "llvm/Bitcode/BitcodeWriter.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/ModuleSummaryIndexYAML.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/PassRegistry.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Errc.h" |
| #include "llvm/Support/Error.h" |
| #include "llvm/Support/FileSystem.h" |
| #include "llvm/Support/GlobPattern.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Transforms/IPO.h" |
| #include "llvm/Transforms/IPO/FunctionAttrs.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Evaluator.h" |
| #include <algorithm> |
| #include <cstddef> |
| #include <map> |
| #include <set> |
| #include <string> |
| |
| using namespace llvm; |
| using namespace wholeprogramdevirt; |
| |
| #define DEBUG_TYPE "wholeprogramdevirt" |
| |
| static cl::opt<PassSummaryAction> ClSummaryAction( |
| "wholeprogramdevirt-summary-action", |
| cl::desc("What to do with the summary when running this pass"), |
| cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"), |
| clEnumValN(PassSummaryAction::Import, "import", |
| "Import typeid resolutions from summary and globals"), |
| clEnumValN(PassSummaryAction::Export, "export", |
| "Export typeid resolutions to summary and globals")), |
| cl::Hidden); |
| |
| static cl::opt<std::string> ClReadSummary( |
| "wholeprogramdevirt-read-summary", |
| cl::desc( |
| "Read summary from given bitcode or YAML file before running pass"), |
| cl::Hidden); |
| |
| static cl::opt<std::string> ClWriteSummary( |
| "wholeprogramdevirt-write-summary", |
| cl::desc("Write summary to given bitcode or YAML file after running pass. " |
| "Output file format is deduced from extension: *.bc means writing " |
| "bitcode, otherwise YAML"), |
| cl::Hidden); |
| |
| static cl::opt<unsigned> |
| ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden, |
| cl::init(10), cl::ZeroOrMore, |
| cl::desc("Maximum number of call targets per " |
| "call site to enable branch funnels")); |
| |
| static cl::opt<bool> |
| PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden, |
| cl::init(false), cl::ZeroOrMore, |
| cl::desc("Print index-based devirtualization messages")); |
| |
| /// Provide a way to force enable whole program visibility in tests. |
| /// This is needed to support legacy tests that don't contain |
| /// !vcall_visibility metadata (the mere presense of type tests |
| /// previously implied hidden visibility). |
| static cl::opt<bool> |
| WholeProgramVisibility("whole-program-visibility", cl::init(false), |
| cl::Hidden, cl::ZeroOrMore, |
| cl::desc("Enable whole program visibility")); |
| |
| /// Provide a way to force disable whole program for debugging or workarounds, |
| /// when enabled via the linker. |
| static cl::opt<bool> DisableWholeProgramVisibility( |
| "disable-whole-program-visibility", cl::init(false), cl::Hidden, |
| cl::ZeroOrMore, |
| cl::desc("Disable whole program visibility (overrides enabling options)")); |
| |
| /// Provide way to prevent certain function from being devirtualized |
| static cl::list<std::string> |
| SkipFunctionNames("wholeprogramdevirt-skip", |
| cl::desc("Prevent function(s) from being devirtualized"), |
| cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated); |
| |
| /// Mechanism to add runtime checking of devirtualization decisions, trapping on |
| /// any that are not correct. Useful for debugging undefined behavior leading to |
| /// failures with WPD. |
| static cl::opt<bool> |
| CheckDevirt("wholeprogramdevirt-check", cl::init(false), cl::Hidden, |
| cl::ZeroOrMore, |
| cl::desc("Add code to trap on incorrect devirtualizations")); |
| |
| namespace { |
| struct PatternList { |
| std::vector<GlobPattern> Patterns; |
| template <class T> void init(const T &StringList) { |
| for (const auto &S : StringList) |
| if (Expected<GlobPattern> Pat = GlobPattern::create(S)) |
| Patterns.push_back(std::move(*Pat)); |
| } |
| bool match(StringRef S) { |
| for (const GlobPattern &P : Patterns) |
| if (P.match(S)) |
| return true; |
| return false; |
| } |
| }; |
| } // namespace |
| |
| // Find the minimum offset that we may store a value of size Size bits at. If |
| // IsAfter is set, look for an offset before the object, otherwise look for an |
| // offset after the object. |
| uint64_t |
| wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets, |
| bool IsAfter, uint64_t Size) { |
| // Find a minimum offset taking into account only vtable sizes. |
| uint64_t MinByte = 0; |
| for (const VirtualCallTarget &Target : Targets) { |
| if (IsAfter) |
| MinByte = std::max(MinByte, Target.minAfterBytes()); |
| else |
| MinByte = std::max(MinByte, Target.minBeforeBytes()); |
| } |
| |
| // Build a vector of arrays of bytes covering, for each target, a slice of the |
| // used region (see AccumBitVector::BytesUsed in |
| // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively, |
| // this aligns the used regions to start at MinByte. |
| // |
| // In this example, A, B and C are vtables, # is a byte already allocated for |
| // a virtual function pointer, AAAA... (etc.) are the used regions for the |
| // vtables and Offset(X) is the value computed for the Offset variable below |
| // for X. |
| // |
| // Offset(A) |
| // | | |
| // |MinByte |
| // A: ################AAAAAAAA|AAAAAAAA |
| // B: ########BBBBBBBBBBBBBBBB|BBBB |
| // C: ########################|CCCCCCCCCCCCCCCC |
| // | Offset(B) | |
| // |
| // This code produces the slices of A, B and C that appear after the divider |
| // at MinByte. |
| std::vector<ArrayRef<uint8_t>> Used; |
| for (const VirtualCallTarget &Target : Targets) { |
| ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed |
| : Target.TM->Bits->Before.BytesUsed; |
| uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes() |
| : MinByte - Target.minBeforeBytes(); |
| |
| // Disregard used regions that are smaller than Offset. These are |
| // effectively all-free regions that do not need to be checked. |
| if (VTUsed.size() > Offset) |
| Used.push_back(VTUsed.slice(Offset)); |
| } |
| |
| if (Size == 1) { |
| // Find a free bit in each member of Used. |
| for (unsigned I = 0;; ++I) { |
| uint8_t BitsUsed = 0; |
| for (auto &&B : Used) |
| if (I < B.size()) |
| BitsUsed |= B[I]; |
| if (BitsUsed != 0xff) |
| return (MinByte + I) * 8 + |
| countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined); |
| } |
| } else { |
| // Find a free (Size/8) byte region in each member of Used. |
| // FIXME: see if alignment helps. |
| for (unsigned I = 0;; ++I) { |
| for (auto &&B : Used) { |
| unsigned Byte = 0; |
| while ((I + Byte) < B.size() && Byte < (Size / 8)) { |
| if (B[I + Byte]) |
| goto NextI; |
| ++Byte; |
| } |
| } |
| return (MinByte + I) * 8; |
| NextI:; |
| } |
| } |
| } |
| |
| void wholeprogramdevirt::setBeforeReturnValues( |
| MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore, |
| unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { |
| if (BitWidth == 1) |
| OffsetByte = -(AllocBefore / 8 + 1); |
| else |
| OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8); |
| OffsetBit = AllocBefore % 8; |
| |
| for (VirtualCallTarget &Target : Targets) { |
| if (BitWidth == 1) |
| Target.setBeforeBit(AllocBefore); |
| else |
| Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8); |
| } |
| } |
| |
| void wholeprogramdevirt::setAfterReturnValues( |
| MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter, |
| unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { |
| if (BitWidth == 1) |
| OffsetByte = AllocAfter / 8; |
| else |
| OffsetByte = (AllocAfter + 7) / 8; |
| OffsetBit = AllocAfter % 8; |
| |
| for (VirtualCallTarget &Target : Targets) { |
| if (BitWidth == 1) |
| Target.setAfterBit(AllocAfter); |
| else |
| Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8); |
| } |
| } |
| |
| VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM) |
| : Fn(Fn), TM(TM), |
| IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {} |
| |
| namespace { |
| |
| // A slot in a set of virtual tables. The TypeID identifies the set of virtual |
| // tables, and the ByteOffset is the offset in bytes from the address point to |
| // the virtual function pointer. |
| struct VTableSlot { |
| Metadata *TypeID; |
| uint64_t ByteOffset; |
| }; |
| |
| } // end anonymous namespace |
| |
| namespace llvm { |
| |
| template <> struct DenseMapInfo<VTableSlot> { |
| static VTableSlot getEmptyKey() { |
| return {DenseMapInfo<Metadata *>::getEmptyKey(), |
| DenseMapInfo<uint64_t>::getEmptyKey()}; |
| } |
| static VTableSlot getTombstoneKey() { |
| return {DenseMapInfo<Metadata *>::getTombstoneKey(), |
| DenseMapInfo<uint64_t>::getTombstoneKey()}; |
| } |
| static unsigned getHashValue(const VTableSlot &I) { |
| return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^ |
| DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); |
| } |
| static bool isEqual(const VTableSlot &LHS, |
| const VTableSlot &RHS) { |
| return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; |
| } |
| }; |
| |
| template <> struct DenseMapInfo<VTableSlotSummary> { |
| static VTableSlotSummary getEmptyKey() { |
| return {DenseMapInfo<StringRef>::getEmptyKey(), |
| DenseMapInfo<uint64_t>::getEmptyKey()}; |
| } |
| static VTableSlotSummary getTombstoneKey() { |
| return {DenseMapInfo<StringRef>::getTombstoneKey(), |
| DenseMapInfo<uint64_t>::getTombstoneKey()}; |
| } |
| static unsigned getHashValue(const VTableSlotSummary &I) { |
| return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^ |
| DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); |
| } |
| static bool isEqual(const VTableSlotSummary &LHS, |
| const VTableSlotSummary &RHS) { |
| return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; |
| } |
| }; |
| |
| } // end namespace llvm |
| |
| namespace { |
| |
| // A virtual call site. VTable is the loaded virtual table pointer, and CS is |
| // the indirect virtual call. |
| struct VirtualCallSite { |
| Value *VTable = nullptr; |
| CallBase &CB; |
| |
| // If non-null, this field points to the associated unsafe use count stored in |
| // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description |
| // of that field for details. |
| unsigned *NumUnsafeUses = nullptr; |
| |
| void |
| emitRemark(const StringRef OptName, const StringRef TargetName, |
| function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) { |
| Function *F = CB.getCaller(); |
| DebugLoc DLoc = CB.getDebugLoc(); |
| BasicBlock *Block = CB.getParent(); |
| |
| using namespace ore; |
| OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block) |
| << NV("Optimization", OptName) |
| << ": devirtualized a call to " |
| << NV("FunctionName", TargetName)); |
| } |
| |
| void replaceAndErase( |
| const StringRef OptName, const StringRef TargetName, bool RemarksEnabled, |
| function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, |
| Value *New) { |
| if (RemarksEnabled) |
| emitRemark(OptName, TargetName, OREGetter); |
| CB.replaceAllUsesWith(New); |
| if (auto *II = dyn_cast<InvokeInst>(&CB)) { |
| BranchInst::Create(II->getNormalDest(), &CB); |
| II->getUnwindDest()->removePredecessor(II->getParent()); |
| } |
| CB.eraseFromParent(); |
| // This use is no longer unsafe. |
| if (NumUnsafeUses) |
| --*NumUnsafeUses; |
| } |
| }; |
| |
| // Call site information collected for a specific VTableSlot and possibly a list |
| // of constant integer arguments. The grouping by arguments is handled by the |
| // VTableSlotInfo class. |
| struct CallSiteInfo { |
| /// The set of call sites for this slot. Used during regular LTO and the |
| /// import phase of ThinLTO (as well as the export phase of ThinLTO for any |
| /// call sites that appear in the merged module itself); in each of these |
| /// cases we are directly operating on the call sites at the IR level. |
| std::vector<VirtualCallSite> CallSites; |
| |
| /// Whether all call sites represented by this CallSiteInfo, including those |
| /// in summaries, have been devirtualized. This starts off as true because a |
| /// default constructed CallSiteInfo represents no call sites. |
| bool AllCallSitesDevirted = true; |
| |
| // These fields are used during the export phase of ThinLTO and reflect |
| // information collected from function summaries. |
| |
| /// Whether any function summary contains an llvm.assume(llvm.type.test) for |
| /// this slot. |
| bool SummaryHasTypeTestAssumeUsers = false; |
| |
| /// CFI-specific: a vector containing the list of function summaries that use |
| /// the llvm.type.checked.load intrinsic and therefore will require |
| /// resolutions for llvm.type.test in order to implement CFI checks if |
| /// devirtualization was unsuccessful. If devirtualization was successful, the |
| /// pass will clear this vector by calling markDevirt(). If at the end of the |
| /// pass the vector is non-empty, we will need to add a use of llvm.type.test |
| /// to each of the function summaries in the vector. |
| std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers; |
| std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers; |
| |
| bool isExported() const { |
| return SummaryHasTypeTestAssumeUsers || |
| !SummaryTypeCheckedLoadUsers.empty(); |
| } |
| |
| void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) { |
| SummaryTypeCheckedLoadUsers.push_back(FS); |
| AllCallSitesDevirted = false; |
| } |
| |
| void addSummaryTypeTestAssumeUser(FunctionSummary *FS) { |
| SummaryTypeTestAssumeUsers.push_back(FS); |
| SummaryHasTypeTestAssumeUsers = true; |
| AllCallSitesDevirted = false; |
| } |
| |
| void markDevirt() { |
| AllCallSitesDevirted = true; |
| |
| // As explained in the comment for SummaryTypeCheckedLoadUsers. |
| SummaryTypeCheckedLoadUsers.clear(); |
| } |
| }; |
| |
| // Call site information collected for a specific VTableSlot. |
| struct VTableSlotInfo { |
| // The set of call sites which do not have all constant integer arguments |
| // (excluding "this"). |
| CallSiteInfo CSInfo; |
| |
| // The set of call sites with all constant integer arguments (excluding |
| // "this"), grouped by argument list. |
| std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo; |
| |
| void addCallSite(Value *VTable, CallBase &CB, unsigned *NumUnsafeUses); |
| |
| private: |
| CallSiteInfo &findCallSiteInfo(CallBase &CB); |
| }; |
| |
| CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallBase &CB) { |
| std::vector<uint64_t> Args; |
| auto *CBType = dyn_cast<IntegerType>(CB.getType()); |
| if (!CBType || CBType->getBitWidth() > 64 || CB.arg_empty()) |
| return CSInfo; |
| for (auto &&Arg : drop_begin(CB.args())) { |
| auto *CI = dyn_cast<ConstantInt>(Arg); |
| if (!CI || CI->getBitWidth() > 64) |
| return CSInfo; |
| Args.push_back(CI->getZExtValue()); |
| } |
| return ConstCSInfo[Args]; |
| } |
| |
| void VTableSlotInfo::addCallSite(Value *VTable, CallBase &CB, |
| unsigned *NumUnsafeUses) { |
| auto &CSI = findCallSiteInfo(CB); |
| CSI.AllCallSitesDevirted = false; |
| CSI.CallSites.push_back({VTable, CB, NumUnsafeUses}); |
| } |
| |
| struct DevirtModule { |
| Module &M; |
| function_ref<AAResults &(Function &)> AARGetter; |
| function_ref<DominatorTree &(Function &)> LookupDomTree; |
| |
| ModuleSummaryIndex *ExportSummary; |
| const ModuleSummaryIndex *ImportSummary; |
| |
| IntegerType *Int8Ty; |
| PointerType *Int8PtrTy; |
| IntegerType *Int32Ty; |
| IntegerType *Int64Ty; |
| IntegerType *IntPtrTy; |
| /// Sizeless array type, used for imported vtables. This provides a signal |
| /// to analyzers that these imports may alias, as they do for example |
| /// when multiple unique return values occur in the same vtable. |
| ArrayType *Int8Arr0Ty; |
| |
| bool RemarksEnabled; |
| function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter; |
| |
| MapVector<VTableSlot, VTableSlotInfo> CallSlots; |
| |
| // Calls that have already been optimized. We may add a call to multiple |
| // VTableSlotInfos if vtable loads are coalesced and need to make sure not to |
| // optimize a call more than once. |
| SmallPtrSet<CallBase *, 8> OptimizedCalls; |
| |
| // This map keeps track of the number of "unsafe" uses of a loaded function |
| // pointer. The key is the associated llvm.type.test intrinsic call generated |
| // by this pass. An unsafe use is one that calls the loaded function pointer |
| // directly. Every time we eliminate an unsafe use (for example, by |
| // devirtualizing it or by applying virtual constant propagation), we |
| // decrement the value stored in this map. If a value reaches zero, we can |
| // eliminate the type check by RAUWing the associated llvm.type.test call with |
| // true. |
| std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest; |
| PatternList FunctionsToSkip; |
| |
| DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter, |
| function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, |
| function_ref<DominatorTree &(Function &)> LookupDomTree, |
| ModuleSummaryIndex *ExportSummary, |
| const ModuleSummaryIndex *ImportSummary) |
| : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree), |
| ExportSummary(ExportSummary), ImportSummary(ImportSummary), |
| Int8Ty(Type::getInt8Ty(M.getContext())), |
| Int8PtrTy(Type::getInt8PtrTy(M.getContext())), |
| Int32Ty(Type::getInt32Ty(M.getContext())), |
| Int64Ty(Type::getInt64Ty(M.getContext())), |
| IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)), |
| Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M.getContext()), 0)), |
| RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) { |
| assert(!(ExportSummary && ImportSummary)); |
| FunctionsToSkip.init(SkipFunctionNames); |
| } |
| |
| bool areRemarksEnabled(); |
| |
| void |
| scanTypeTestUsers(Function *TypeTestFunc, |
| DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); |
| void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc); |
| |
| void buildTypeIdentifierMap( |
| std::vector<VTableBits> &Bits, |
| DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); |
| bool |
| tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot, |
| const std::set<TypeMemberInfo> &TypeMemberInfos, |
| uint64_t ByteOffset); |
| |
| void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn, |
| bool &IsExported); |
| bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary, |
| MutableArrayRef<VirtualCallTarget> TargetsForSlot, |
| VTableSlotInfo &SlotInfo, |
| WholeProgramDevirtResolution *Res); |
| |
| void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT, |
| bool &IsExported); |
| void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot, |
| VTableSlotInfo &SlotInfo, |
| WholeProgramDevirtResolution *Res, VTableSlot Slot); |
| |
| bool tryEvaluateFunctionsWithArgs( |
| MutableArrayRef<VirtualCallTarget> TargetsForSlot, |
| ArrayRef<uint64_t> Args); |
| |
| void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, |
| uint64_t TheRetVal); |
| bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, |
| CallSiteInfo &CSInfo, |
| WholeProgramDevirtResolution::ByArg *Res); |
| |
| // Returns the global symbol name that is used to export information about the |
| // given vtable slot and list of arguments. |
| std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args, |
| StringRef Name); |
| |
| bool shouldExportConstantsAsAbsoluteSymbols(); |
| |
| // This function is called during the export phase to create a symbol |
| // definition containing information about the given vtable slot and list of |
| // arguments. |
| void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, |
| Constant *C); |
| void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, |
| uint32_t Const, uint32_t &Storage); |
| |
| // This function is called during the import phase to create a reference to |
| // the symbol definition created during the export phase. |
| Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, |
| StringRef Name); |
| Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, |
| StringRef Name, IntegerType *IntTy, |
| uint32_t Storage); |
| |
| Constant *getMemberAddr(const TypeMemberInfo *M); |
| |
| void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne, |
| Constant *UniqueMemberAddr); |
| bool tryUniqueRetValOpt(unsigned BitWidth, |
| MutableArrayRef<VirtualCallTarget> TargetsForSlot, |
| CallSiteInfo &CSInfo, |
| WholeProgramDevirtResolution::ByArg *Res, |
| VTableSlot Slot, ArrayRef<uint64_t> Args); |
| |
| void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, |
| Constant *Byte, Constant *Bit); |
| bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot, |
| VTableSlotInfo &SlotInfo, |
| WholeProgramDevirtResolution *Res, VTableSlot Slot); |
| |
| void rebuildGlobal(VTableBits &B); |
| |
| // Apply the summary resolution for Slot to all virtual calls in SlotInfo. |
| void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo); |
| |
| // If we were able to eliminate all unsafe uses for a type checked load, |
| // eliminate the associated type tests by replacing them with true. |
| void removeRedundantTypeTests(); |
| |
| bool run(); |
| |
| // Lower the module using the action and summary passed as command line |
| // arguments. For testing purposes only. |
| static bool |
| runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter, |
| function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, |
| function_ref<DominatorTree &(Function &)> LookupDomTree); |
| }; |
| |
| struct DevirtIndex { |
| ModuleSummaryIndex &ExportSummary; |
| // The set in which to record GUIDs exported from their module by |
| // devirtualization, used by client to ensure they are not internalized. |
| std::set<GlobalValue::GUID> &ExportedGUIDs; |
| // A map in which to record the information necessary to locate the WPD |
| // resolution for local targets in case they are exported by cross module |
| // importing. |
| std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap; |
| |
| MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots; |
| |
| PatternList FunctionsToSkip; |
| |
| DevirtIndex( |
| ModuleSummaryIndex &ExportSummary, |
| std::set<GlobalValue::GUID> &ExportedGUIDs, |
| std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) |
| : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs), |
| LocalWPDTargetsMap(LocalWPDTargetsMap) { |
| FunctionsToSkip.init(SkipFunctionNames); |
| } |
| |
| bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot, |
| const TypeIdCompatibleVtableInfo TIdInfo, |
| uint64_t ByteOffset); |
| |
| bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot, |
| VTableSlotSummary &SlotSummary, |
| VTableSlotInfo &SlotInfo, |
| WholeProgramDevirtResolution *Res, |
| std::set<ValueInfo> &DevirtTargets); |
| |
| void run(); |
| }; |
| |
| struct WholeProgramDevirt : public ModulePass { |
| static char ID; |
| |
| bool UseCommandLine = false; |
| |
| ModuleSummaryIndex *ExportSummary = nullptr; |
| const ModuleSummaryIndex *ImportSummary = nullptr; |
| |
| WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) { |
| initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| WholeProgramDevirt(ModuleSummaryIndex *ExportSummary, |
| const ModuleSummaryIndex *ImportSummary) |
| : ModulePass(ID), ExportSummary(ExportSummary), |
| ImportSummary(ImportSummary) { |
| initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnModule(Module &M) override { |
| if (skipModule(M)) |
| return false; |
| |
| // In the new pass manager, we can request the optimization |
| // remark emitter pass on a per-function-basis, which the |
| // OREGetter will do for us. |
| // In the old pass manager, this is harder, so we just build |
| // an optimization remark emitter on the fly, when we need it. |
| std::unique_ptr<OptimizationRemarkEmitter> ORE; |
| auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { |
| ORE = std::make_unique<OptimizationRemarkEmitter>(F); |
| return *ORE; |
| }; |
| |
| auto LookupDomTree = [this](Function &F) -> DominatorTree & { |
| return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); |
| }; |
| |
| if (UseCommandLine) |
| return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter, |
| LookupDomTree); |
| |
| return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree, |
| ExportSummary, ImportSummary) |
| .run(); |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<AssumptionCacheTracker>(); |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt", |
| "Whole program devirtualization", false, false) |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt", |
| "Whole program devirtualization", false, false) |
| char WholeProgramDevirt::ID = 0; |
| |
| ModulePass * |
| llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary, |
| const ModuleSummaryIndex *ImportSummary) { |
| return new WholeProgramDevirt(ExportSummary, ImportSummary); |
| } |
| |
| PreservedAnalyses WholeProgramDevirtPass::run(Module &M, |
| ModuleAnalysisManager &AM) { |
| auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); |
| auto AARGetter = [&](Function &F) -> AAResults & { |
| return FAM.getResult<AAManager>(F); |
| }; |
| auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { |
| return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); |
| }; |
| auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & { |
| return FAM.getResult<DominatorTreeAnalysis>(F); |
| }; |
| if (UseCommandLine) { |
| if (DevirtModule::runForTesting(M, AARGetter, OREGetter, LookupDomTree)) |
| return PreservedAnalyses::all(); |
| return PreservedAnalyses::none(); |
| } |
| if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary, |
| ImportSummary) |
| .run()) |
| return PreservedAnalyses::all(); |
| return PreservedAnalyses::none(); |
| } |
| |
| // Enable whole program visibility if enabled by client (e.g. linker) or |
| // internal option, and not force disabled. |
| static bool hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) { |
| return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) && |
| !DisableWholeProgramVisibility; |
| } |
| |
| namespace llvm { |
| |
| /// If whole program visibility asserted, then upgrade all public vcall |
| /// visibility metadata on vtable definitions to linkage unit visibility in |
| /// Module IR (for regular or hybrid LTO). |
| void updateVCallVisibilityInModule( |
| Module &M, bool WholeProgramVisibilityEnabledInLTO, |
| const DenseSet<GlobalValue::GUID> &DynamicExportSymbols) { |
| if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) |
| return; |
| for (GlobalVariable &GV : M.globals()) |
| // Add linkage unit visibility to any variable with type metadata, which are |
| // the vtable definitions. We won't have an existing vcall_visibility |
| // metadata on vtable definitions with public visibility. |
| if (GV.hasMetadata(LLVMContext::MD_type) && |
| GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic && |
| // Don't upgrade the visibility for symbols exported to the dynamic |
| // linker, as we have no information on their eventual use. |
| !DynamicExportSymbols.count(GV.getGUID())) |
| GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit); |
| } |
| |
| /// If whole program visibility asserted, then upgrade all public vcall |
| /// visibility metadata on vtable definition summaries to linkage unit |
| /// visibility in Module summary index (for ThinLTO). |
| void updateVCallVisibilityInIndex( |
| ModuleSummaryIndex &Index, bool WholeProgramVisibilityEnabledInLTO, |
| const DenseSet<GlobalValue::GUID> &DynamicExportSymbols) { |
| if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) |
| return; |
| for (auto &P : Index) { |
| for (auto &S : P.second.SummaryList) { |
| auto *GVar = dyn_cast<GlobalVarSummary>(S.get()); |
| if (!GVar || |
| GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic || |
| // Don't upgrade the visibility for symbols exported to the dynamic |
| // linker, as we have no information on their eventual use. |
| DynamicExportSymbols.count(P.first)) |
| continue; |
| GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit); |
| } |
| } |
| } |
| |
| void runWholeProgramDevirtOnIndex( |
| ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs, |
| std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) { |
| DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run(); |
| } |
| |
| void updateIndexWPDForExports( |
| ModuleSummaryIndex &Summary, |
| function_ref<bool(StringRef, ValueInfo)> isExported, |
| std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) { |
| for (auto &T : LocalWPDTargetsMap) { |
| auto &VI = T.first; |
| // This was enforced earlier during trySingleImplDevirt. |
| assert(VI.getSummaryList().size() == 1 && |
| "Devirt of local target has more than one copy"); |
| auto &S = VI.getSummaryList()[0]; |
| if (!isExported(S->modulePath(), VI)) |
| continue; |
| |
| // It's been exported by a cross module import. |
| for (auto &SlotSummary : T.second) { |
| auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID); |
| assert(TIdSum); |
| auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset); |
| assert(WPDRes != TIdSum->WPDRes.end()); |
| WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal( |
| WPDRes->second.SingleImplName, |
| Summary.getModuleHash(S->modulePath())); |
| } |
| } |
| } |
| |
| } // end namespace llvm |
| |
| static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) { |
| // Check that summary index contains regular LTO module when performing |
| // export to prevent occasional use of index from pure ThinLTO compilation |
| // (-fno-split-lto-module). This kind of summary index is passed to |
| // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting. |
| const auto &ModPaths = Summary->modulePaths(); |
| if (ClSummaryAction != PassSummaryAction::Import && |
| ModPaths.find(ModuleSummaryIndex::getRegularLTOModuleName()) == |
| ModPaths.end()) |
| return createStringError( |
| errc::invalid_argument, |
| "combined summary should contain Regular LTO module"); |
| return ErrorSuccess(); |
| } |
| |
| bool DevirtModule::runForTesting( |
| Module &M, function_ref<AAResults &(Function &)> AARGetter, |
| function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, |
| function_ref<DominatorTree &(Function &)> LookupDomTree) { |
| std::unique_ptr<ModuleSummaryIndex> Summary = |
| std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); |
| |
| // Handle the command-line summary arguments. This code is for testing |
| // purposes only, so we handle errors directly. |
| if (!ClReadSummary.empty()) { |
| ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary + |
| ": "); |
| auto ReadSummaryFile = |
| ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary))); |
| if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr = |
| getModuleSummaryIndex(*ReadSummaryFile)) { |
| Summary = std::move(*SummaryOrErr); |
| ExitOnErr(checkCombinedSummaryForTesting(Summary.get())); |
| } else { |
| // Try YAML if we've failed with bitcode. |
| consumeError(SummaryOrErr.takeError()); |
| yaml::Input In(ReadSummaryFile->getBuffer()); |
| In >> *Summary; |
| ExitOnErr(errorCodeToError(In.error())); |
| } |
| } |
| |
| bool Changed = |
| DevirtModule(M, AARGetter, OREGetter, LookupDomTree, |
| ClSummaryAction == PassSummaryAction::Export ? Summary.get() |
| : nullptr, |
| ClSummaryAction == PassSummaryAction::Import ? Summary.get() |
| : nullptr) |
| .run(); |
| |
| if (!ClWriteSummary.empty()) { |
| ExitOnError ExitOnErr( |
| "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": "); |
| std::error_code EC; |
| if (StringRef(ClWriteSummary).endswith(".bc")) { |
| raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None); |
| ExitOnErr(errorCodeToError(EC)); |
| WriteIndexToFile(*Summary, OS); |
| } else { |
| raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_TextWithCRLF); |
| ExitOnErr(errorCodeToError(EC)); |
| yaml::Output Out(OS); |
| Out << *Summary; |
| } |
| } |
| |
| return Changed; |
| } |
| |
| void DevirtModule::buildTypeIdentifierMap( |
| std::vector<VTableBits> &Bits, |
| DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { |
| DenseMap<GlobalVariable *, VTableBits *> GVToBits; |
| Bits.reserve(M.getGlobalList().size()); |
| SmallVector<MDNode *, 2> Types; |
| for (GlobalVariable &GV : M.globals()) { |
| Types.clear(); |
| GV.getMetadata(LLVMContext::MD_type, Types); |
| if (GV.isDeclaration() || Types.empty()) |
| continue; |
| |
| VTableBits *&BitsPtr = GVToBits[&GV]; |
| if (!BitsPtr) { |
| Bits.emplace_back(); |
| Bits.back().GV = &GV; |
| Bits.back().ObjectSize = |
| M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType()); |
| BitsPtr = &Bits.back(); |
| } |
| |
| for (MDNode *Type : Types) { |
| auto TypeID = Type->getOperand(1).get(); |
| |
| uint64_t Offset = |
| cast<ConstantInt>( |
| cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) |
| ->getZExtValue(); |
| |
| TypeIdMap[TypeID].insert({BitsPtr, Offset}); |
| } |
| } |
| } |
| |
| bool DevirtModule::tryFindVirtualCallTargets( |
| std::vector<VirtualCallTarget> &TargetsForSlot, |
| const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) { |
| for (const TypeMemberInfo &TM : TypeMemberInfos) { |
| if (!TM.Bits->GV->isConstant()) |
| return false; |
| |
| // We cannot perform whole program devirtualization analysis on a vtable |
| // with public LTO visibility. |
| if (TM.Bits->GV->getVCallVisibility() == |
| GlobalObject::VCallVisibilityPublic) |
| return false; |
| |
| Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(), |
| TM.Offset + ByteOffset, M); |
| if (!Ptr) |
| return false; |
| |
| auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts()); |
| if (!Fn) |
| return false; |
| |
| if (FunctionsToSkip.match(Fn->getName())) |
| return false; |
| |
| // We can disregard __cxa_pure_virtual as a possible call target, as |
| // calls to pure virtuals are UB. |
| if (Fn->getName() == "__cxa_pure_virtual") |
| continue; |
| |
| TargetsForSlot.push_back({Fn, &TM}); |
| } |
| |
| // Give up if we couldn't find any targets. |
| return !TargetsForSlot.empty(); |
| } |
| |
| bool DevirtIndex::tryFindVirtualCallTargets( |
| std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo, |
| uint64_t ByteOffset) { |
| for (const TypeIdOffsetVtableInfo &P : TIdInfo) { |
| // Find a representative copy of the vtable initializer. |
| // We can have multiple available_externally, linkonce_odr and weak_odr |
| // vtable initializers. We can also have multiple external vtable |
| // initializers in the case of comdats, which we cannot check here. |
| // The linker should give an error in this case. |
| // |
| // Also, handle the case of same-named local Vtables with the same path |
| // and therefore the same GUID. This can happen if there isn't enough |
| // distinguishing path when compiling the source file. In that case we |
| // conservatively return false early. |
| const GlobalVarSummary *VS = nullptr; |
| bool LocalFound = false; |
| for (auto &S : P.VTableVI.getSummaryList()) { |
| if (GlobalValue::isLocalLinkage(S->linkage())) { |
| if (LocalFound) |
| return false; |
| LocalFound = true; |
| } |
| auto *CurVS = cast<GlobalVarSummary>(S->getBaseObject()); |
| if (!CurVS->vTableFuncs().empty() || |
| // Previously clang did not attach the necessary type metadata to |
| // available_externally vtables, in which case there would not |
| // be any vtable functions listed in the summary and we need |
| // to treat this case conservatively (in case the bitcode is old). |
| // However, we will also not have any vtable functions in the |
| // case of a pure virtual base class. In that case we do want |
| // to set VS to avoid treating it conservatively. |
| !GlobalValue::isAvailableExternallyLinkage(S->linkage())) { |
| VS = CurVS; |
| // We cannot perform whole program devirtualization analysis on a vtable |
| // with public LTO visibility. |
| if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic) |
| return false; |
| } |
| } |
| // There will be no VS if all copies are available_externally having no |
| // type metadata. In that case we can't safely perform WPD. |
| if (!VS) |
| return false; |
| if (!VS->isLive()) |
| continue; |
| for (auto VTP : VS->vTableFuncs()) { |
| if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset) |
| continue; |
| |
| TargetsForSlot.push_back(VTP.FuncVI); |
| } |
| } |
| |
| // Give up if we couldn't find any targets. |
| return !TargetsForSlot.empty(); |
| } |
| |
| void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo, |
| Constant *TheFn, bool &IsExported) { |
| // Don't devirtualize function if we're told to skip it |
| // in -wholeprogramdevirt-skip. |
| if (FunctionsToSkip.match(TheFn->stripPointerCasts()->getName())) |
| return; |
| auto Apply = [&](CallSiteInfo &CSInfo) { |
| for (auto &&VCallSite : CSInfo.CallSites) { |
| if (!OptimizedCalls.insert(&VCallSite.CB).second) |
| continue; |
| |
| if (RemarksEnabled) |
| VCallSite.emitRemark("single-impl", |
| TheFn->stripPointerCasts()->getName(), OREGetter); |
| auto &CB = VCallSite.CB; |
| assert(!CB.getCalledFunction() && "devirtualizing direct call?"); |
| IRBuilder<> Builder(&CB); |
| Value *Callee = |
| Builder.CreateBitCast(TheFn, CB.getCalledOperand()->getType()); |
| |
| // If checking is enabled, add support to compare the virtual function |
| // pointer to the devirtualized target. In case of a mismatch, perform a |
| // debug trap. |
| if (CheckDevirt) { |
| auto *Cond = Builder.CreateICmpNE(CB.getCalledOperand(), Callee); |
| Instruction *ThenTerm = |
| SplitBlockAndInsertIfThen(Cond, &CB, /*Unreachable=*/false); |
| Builder.SetInsertPoint(ThenTerm); |
| Function *TrapFn = Intrinsic::getDeclaration(&M, Intrinsic::debugtrap); |
| auto *CallTrap = Builder.CreateCall(TrapFn); |
| CallTrap->setDebugLoc(CB.getDebugLoc()); |
| } |
| |
| // Devirtualize. |
| CB.setCalledOperand(Callee); |
| |
| // This use is no longer unsafe. |
| if (VCallSite.NumUnsafeUses) |
| --*VCallSite.NumUnsafeUses; |
| } |
| if (CSInfo.isExported()) |
| IsExported = true; |
| CSInfo.markDevirt(); |
| }; |
| Apply(SlotInfo.CSInfo); |
| for (auto &P : SlotInfo.ConstCSInfo) |
| Apply(P.second); |
| } |
| |
| static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) { |
| // We can't add calls if we haven't seen a definition |
| if (Callee.getSummaryList().empty()) |
| return false; |
| |
| // Insert calls into the summary index so that the devirtualized targets |
| // are eligible for import. |
| // FIXME: Annotate type tests with hotness. For now, mark these as hot |
| // to better ensure we have the opportunity to inline them. |
| bool IsExported = false; |
| auto &S = Callee.getSummaryList()[0]; |
| CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0); |
| auto AddCalls = [&](CallSiteInfo &CSInfo) { |
| for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) { |
| FS->addCall({Callee, CI}); |
| IsExported |= S->modulePath() != FS->modulePath(); |
| } |
| for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) { |
| FS->addCall({Callee, CI}); |
| IsExported |= S->modulePath() != FS->modulePath(); |
| } |
| }; |
| AddCalls(SlotInfo.CSInfo); |
| for (auto &P : SlotInfo.ConstCSInfo) |
| AddCalls(P.second); |
| return IsExported; |
| } |
| |
| bool DevirtModule::trySingleImplDevirt( |
| ModuleSummaryIndex *ExportSummary, |
| MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, |
| WholeProgramDevirtResolution *Res) { |
| // See if the program contains a single implementation of this virtual |
| // function. |
| Function *TheFn = TargetsForSlot[0].Fn; |
| for (auto &&Target : TargetsForSlot) |
| if (TheFn != Target.Fn) |
| return false; |
| |
| // If so, update each call site to call that implementation directly. |
| if (RemarksEnabled) |
| TargetsForSlot[0].WasDevirt = true; |
| |
| bool IsExported = false; |
| applySingleImplDevirt(SlotInfo, TheFn, IsExported); |
| if (!IsExported) |
| return false; |
| |
| // If the only implementation has local linkage, we must promote to external |
| // to make it visible to thin LTO objects. We can only get here during the |
| // ThinLTO export phase. |
| if (TheFn->hasLocalLinkage()) { |
| std::string NewName = (TheFn->getName() + ".llvm.merged").str(); |
| |
| // Since we are renaming the function, any comdats with the same name must |
| // also be renamed. This is required when targeting COFF, as the comdat name |
| // must match one of the names of the symbols in the comdat. |
| if (Comdat *C = TheFn->getComdat()) { |
| if (C->getName() == TheFn->getName()) { |
| Comdat *NewC = M.getOrInsertComdat(NewName); |
| NewC->setSelectionKind(C->getSelectionKind()); |
| for (GlobalObject &GO : M.global_objects()) |
| if (GO.getComdat() == C) |
| GO.setComdat(NewC); |
| } |
| } |
| |
| TheFn->setLinkage(GlobalValue::ExternalLinkage); |
| TheFn->setVisibility(GlobalValue::HiddenVisibility); |
| TheFn->setName(NewName); |
| } |
| if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID())) |
| // Any needed promotion of 'TheFn' has already been done during |
| // LTO unit split, so we can ignore return value of AddCalls. |
| AddCalls(SlotInfo, TheFnVI); |
| |
| Res->TheKind = WholeProgramDevirtResolution::SingleImpl; |
| Res->SingleImplName = std::string(TheFn->getName()); |
| |
| return true; |
| } |
| |
| bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot, |
| VTableSlotSummary &SlotSummary, |
| VTableSlotInfo &SlotInfo, |
| WholeProgramDevirtResolution *Res, |
| std::set<ValueInfo> &DevirtTargets) { |
| // See if the program contains a single implementation of this virtual |
| // function. |
| auto TheFn = TargetsForSlot[0]; |
| for (auto &&Target : TargetsForSlot) |
| if (TheFn != Target) |
| return false; |
| |
| // Don't devirtualize if we don't have target definition. |
| auto Size = TheFn.getSummaryList().size(); |
| if (!Size) |
| return false; |
| |
| // Don't devirtualize function if we're told to skip it |
| // in -wholeprogramdevirt-skip. |
| if (FunctionsToSkip.match(TheFn.name())) |
| return false; |
| |
| // If the summary list contains multiple summaries where at least one is |
| // a local, give up, as we won't know which (possibly promoted) name to use. |
| for (auto &S : TheFn.getSummaryList()) |
| if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1) |
| return false; |
| |
| // Collect functions devirtualized at least for one call site for stats. |
| if (PrintSummaryDevirt) |
| DevirtTargets.insert(TheFn); |
| |
| auto &S = TheFn.getSummaryList()[0]; |
| bool IsExported = AddCalls(SlotInfo, TheFn); |
| if (IsExported) |
| ExportedGUIDs.insert(TheFn.getGUID()); |
| |
| // Record in summary for use in devirtualization during the ThinLTO import |
| // step. |
| Res->TheKind = WholeProgramDevirtResolution::SingleImpl; |
| if (GlobalValue::isLocalLinkage(S->linkage())) { |
| if (IsExported) |
| // If target is a local function and we are exporting it by |
| // devirtualizing a call in another module, we need to record the |
| // promoted name. |
| Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal( |
| TheFn.name(), ExportSummary.getModuleHash(S->modulePath())); |
| else { |
| LocalWPDTargetsMap[TheFn].push_back(SlotSummary); |
| Res->SingleImplName = std::string(TheFn.name()); |
| } |
| } else |
| Res->SingleImplName = std::string(TheFn.name()); |
| |
| // Name will be empty if this thin link driven off of serialized combined |
| // index (e.g. llvm-lto). However, WPD is not supported/invoked for the |
| // legacy LTO API anyway. |
| assert(!Res->SingleImplName.empty()); |
| |
| return true; |
| } |
| |
| void DevirtModule::tryICallBranchFunnel( |
| MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, |
| WholeProgramDevirtResolution *Res, VTableSlot Slot) { |
| Triple T(M.getTargetTriple()); |
| if (T.getArch() != Triple::x86_64) |
| return; |
| |
| if (TargetsForSlot.size() > ClThreshold) |
| return; |
| |
| bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted; |
| if (!HasNonDevirt) |
| for (auto &P : SlotInfo.ConstCSInfo) |
| if (!P.second.AllCallSitesDevirted) { |
| HasNonDevirt = true; |
| break; |
| } |
| |
| if (!HasNonDevirt) |
| return; |
| |
| FunctionType *FT = |
| FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true); |
| Function *JT; |
| if (isa<MDString>(Slot.TypeID)) { |
| JT = Function::Create(FT, Function::ExternalLinkage, |
| M.getDataLayout().getProgramAddressSpace(), |
| getGlobalName(Slot, {}, "branch_funnel"), &M); |
| JT->setVisibility(GlobalValue::HiddenVisibility); |
| } else { |
| JT = Function::Create(FT, Function::InternalLinkage, |
| M.getDataLayout().getProgramAddressSpace(), |
| "branch_funnel", &M); |
| } |
| JT->addParamAttr(0, Attribute::Nest); |
| |
| std::vector<Value *> JTArgs; |
| JTArgs.push_back(JT->arg_begin()); |
| for (auto &T : TargetsForSlot) { |
| JTArgs.push_back(getMemberAddr(T.TM)); |
| JTArgs.push_back(T.Fn); |
| } |
| |
| BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr); |
| Function *Intr = |
| Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {}); |
| |
| auto *CI = CallInst::Create(Intr, JTArgs, "", BB); |
| CI->setTailCallKind(CallInst::TCK_MustTail); |
| ReturnInst::Create(M.getContext(), nullptr, BB); |
| |
| bool IsExported = false; |
| applyICallBranchFunnel(SlotInfo, JT, IsExported); |
| if (IsExported) |
| Res->TheKind = WholeProgramDevirtResolution::BranchFunnel; |
| } |
| |
| void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo, |
| Constant *JT, bool &IsExported) { |
| auto Apply = [&](CallSiteInfo &CSInfo) { |
| if (CSInfo.isExported()) |
| IsExported = true; |
| if (CSInfo.AllCallSitesDevirted) |
| return; |
| for (auto &&VCallSite : CSInfo.CallSites) { |
| CallBase &CB = VCallSite.CB; |
| |
| // Jump tables are only profitable if the retpoline mitigation is enabled. |
| Attribute FSAttr = CB.getCaller()->getFnAttribute("target-features"); |
| if (!FSAttr.isValid() || |
| !FSAttr.getValueAsString().contains("+retpoline")) |
| continue; |
| |
| if (RemarksEnabled) |
| VCallSite.emitRemark("branch-funnel", |
| JT->stripPointerCasts()->getName(), OREGetter); |
| |
| // Pass the address of the vtable in the nest register, which is r10 on |
| // x86_64. |
| std::vector<Type *> NewArgs; |
| NewArgs.push_back(Int8PtrTy); |
| append_range(NewArgs, CB.getFunctionType()->params()); |
| FunctionType *NewFT = |
| FunctionType::get(CB.getFunctionType()->getReturnType(), NewArgs, |
| CB.getFunctionType()->isVarArg()); |
| PointerType *NewFTPtr = PointerType::getUnqual(NewFT); |
| |
| IRBuilder<> IRB(&CB); |
| std::vector<Value *> Args; |
| Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy)); |
| llvm::append_range(Args, CB.args()); |
| |
| CallBase *NewCS = nullptr; |
| if (isa<CallInst>(CB)) |
| NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args); |
| else |
| NewCS = IRB.CreateInvoke(NewFT, IRB.CreateBitCast(JT, NewFTPtr), |
| cast<InvokeInst>(CB).getNormalDest(), |
| cast<InvokeInst>(CB).getUnwindDest(), Args); |
| NewCS->setCallingConv(CB.getCallingConv()); |
| |
| AttributeList Attrs = CB.getAttributes(); |
| std::vector<AttributeSet> NewArgAttrs; |
| NewArgAttrs.push_back(AttributeSet::get( |
| M.getContext(), ArrayRef<Attribute>{Attribute::get( |
| M.getContext(), Attribute::Nest)})); |
| for (unsigned I = 0; I + 2 < Attrs.getNumAttrSets(); ++I) |
| NewArgAttrs.push_back(Attrs.getParamAttrs(I)); |
| NewCS->setAttributes( |
| AttributeList::get(M.getContext(), Attrs.getFnAttrs(), |
| Attrs.getRetAttrs(), NewArgAttrs)); |
| |
| CB.replaceAllUsesWith(NewCS); |
| CB.eraseFromParent(); |
| |
| // This use is no longer unsafe. |
| if (VCallSite.NumUnsafeUses) |
| --*VCallSite.NumUnsafeUses; |
| } |
| // Don't mark as devirtualized because there may be callers compiled without |
| // retpoline mitigation, which would mean that they are lowered to |
| // llvm.type.test and therefore require an llvm.type.test resolution for the |
| // type identifier. |
| }; |
| Apply(SlotInfo.CSInfo); |
| for (auto &P : SlotInfo.ConstCSInfo) |
| Apply(P.second); |
| } |
| |
| bool DevirtModule::tryEvaluateFunctionsWithArgs( |
| MutableArrayRef<VirtualCallTarget> TargetsForSlot, |
| ArrayRef<uint64_t> Args) { |
| // Evaluate each function and store the result in each target's RetVal |
| // field. |
| for (VirtualCallTarget &Target : TargetsForSlot) { |
| if (Target.Fn->arg_size() != Args.size() + 1) |
| return false; |
| |
| Evaluator Eval(M.getDataLayout(), nullptr); |
| SmallVector<Constant *, 2> EvalArgs; |
| EvalArgs.push_back( |
| Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0))); |
| for (unsigned I = 0; I != Args.size(); ++I) { |
| auto *ArgTy = dyn_cast<IntegerType>( |
| Target.Fn->getFunctionType()->getParamType(I + 1)); |
| if (!ArgTy) |
| return false; |
| EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I])); |
| } |
| |
| Constant *RetVal; |
| if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) || |
| !isa<ConstantInt>(RetVal)) |
| return false; |
| Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue(); |
| } |
| return true; |
| } |
| |
| void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, |
| uint64_t TheRetVal) { |
| for (auto Call : CSInfo.CallSites) { |
| if (!OptimizedCalls.insert(&Call.CB).second) |
| continue; |
| Call.replaceAndErase( |
| "uniform-ret-val", FnName, RemarksEnabled, OREGetter, |
| ConstantInt::get(cast<IntegerType>(Call.CB.getType()), TheRetVal)); |
| } |
| CSInfo.markDevirt(); |
| } |
| |
| bool DevirtModule::tryUniformRetValOpt( |
| MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo, |
| WholeProgramDevirtResolution::ByArg *Res) { |
| // Uniform return value optimization. If all functions return the same |
| // constant, replace all calls with that constant. |
| uint64_t TheRetVal = TargetsForSlot[0].RetVal; |
| for (const VirtualCallTarget &Target : TargetsForSlot) |
| if (Target.RetVal != TheRetVal) |
| return false; |
| |
| if (CSInfo.isExported()) { |
| Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; |
| Res->Info = TheRetVal; |
| } |
| |
| applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal); |
| if (RemarksEnabled) |
| for (auto &&Target : TargetsForSlot) |
| Target.WasDevirt = true; |
| return true; |
| } |
| |
| std::string DevirtModule::getGlobalName(VTableSlot Slot, |
| ArrayRef<uint64_t> Args, |
| StringRef Name) { |
| std::string FullName = "__typeid_"; |
| raw_string_ostream OS(FullName); |
| OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset; |
| for (uint64_t Arg : Args) |
| OS << '_' << Arg; |
| OS << '_' << Name; |
| return OS.str(); |
| } |
| |
| bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() { |
| Triple T(M.getTargetTriple()); |
| return T.isX86() && T.getObjectFormat() == Triple::ELF; |
| } |
| |
| void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, |
| StringRef Name, Constant *C) { |
| GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage, |
| getGlobalName(Slot, Args, Name), C, &M); |
| GA->setVisibility(GlobalValue::HiddenVisibility); |
| } |
| |
| void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, |
| StringRef Name, uint32_t Const, |
| uint32_t &Storage) { |
| if (shouldExportConstantsAsAbsoluteSymbols()) { |
| exportGlobal( |
| Slot, Args, Name, |
| ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy)); |
| return; |
| } |
| |
| Storage = Const; |
| } |
| |
| Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, |
| StringRef Name) { |
| Constant *C = |
| M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Arr0Ty); |
| auto *GV = dyn_cast<GlobalVariable>(C); |
| if (GV) |
| GV->setVisibility(GlobalValue::HiddenVisibility); |
| return C; |
| } |
| |
| Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, |
| StringRef Name, IntegerType *IntTy, |
| uint32_t Storage) { |
| if (!shouldExportConstantsAsAbsoluteSymbols()) |
| return ConstantInt::get(IntTy, Storage); |
| |
| Constant *C = importGlobal(Slot, Args, Name); |
| auto *GV = cast<GlobalVariable>(C->stripPointerCasts()); |
| C = ConstantExpr::getPtrToInt(C, IntTy); |
| |
| // We only need to set metadata if the global is newly created, in which |
| // case it would not have hidden visibility. |
| if (GV->hasMetadata(LLVMContext::MD_absolute_symbol)) |
| return C; |
| |
| auto SetAbsRange = [&](uint64_t Min, uint64_t Max) { |
| auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min)); |
| auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max)); |
| GV->setMetadata(LLVMContext::MD_absolute_symbol, |
| MDNode::get(M.getContext(), {MinC, MaxC})); |
| }; |
| unsigned AbsWidth = IntTy->getBitWidth(); |
| if (AbsWidth == IntPtrTy->getBitWidth()) |
| SetAbsRange(~0ull, ~0ull); // Full set. |
| else |
| SetAbsRange(0, 1ull << AbsWidth); |
| return C; |
| } |
| |
| void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, |
| bool IsOne, |
| Constant *UniqueMemberAddr) { |
| for (auto &&Call : CSInfo.CallSites) { |
| if (!OptimizedCalls.insert(&Call.CB).second) |
| continue; |
| IRBuilder<> B(&Call.CB); |
| Value *Cmp = |
| B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, Call.VTable, |
| B.CreateBitCast(UniqueMemberAddr, Call.VTable->getType())); |
| Cmp = B.CreateZExt(Cmp, Call.CB.getType()); |
| Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter, |
| Cmp); |
| } |
| CSInfo.markDevirt(); |
| } |
| |
| Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) { |
| Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy); |
| return ConstantExpr::getGetElementPtr(Int8Ty, C, |
| ConstantInt::get(Int64Ty, M->Offset)); |
| } |
| |
| bool DevirtModule::tryUniqueRetValOpt( |
| unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot, |
| CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res, |
| VTableSlot Slot, ArrayRef<uint64_t> Args) { |
| // IsOne controls whether we look for a 0 or a 1. |
| auto tryUniqueRetValOptFor = [&](bool IsOne) { |
| const TypeMemberInfo *UniqueMember = nullptr; |
| for (const VirtualCallTarget &Target : TargetsForSlot) { |
| if (Target.RetVal == (IsOne ? 1 : 0)) { |
| if (UniqueMember) |
| return false; |
| UniqueMember = Target.TM; |
| } |
| } |
| |
| // We should have found a unique member or bailed out by now. We already |
| // checked for a uniform return value in tryUniformRetValOpt. |
| assert(UniqueMember); |
| |
| Constant *UniqueMemberAddr = getMemberAddr(UniqueMember); |
| if (CSInfo.isExported()) { |
| Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; |
| Res->Info = IsOne; |
| |
| exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr); |
| } |
| |
| // Replace each call with the comparison. |
| applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne, |
| UniqueMemberAddr); |
| |
| // Update devirtualization statistics for targets. |
| if (RemarksEnabled) |
| for (auto &&Target : TargetsForSlot) |
| Target.WasDevirt = true; |
| |
| return true; |
| }; |
| |
| if (BitWidth == 1) { |
| if (tryUniqueRetValOptFor(true)) |
| return true; |
| if (tryUniqueRetValOptFor(false)) |
| return true; |
| } |
| return false; |
| } |
| |
| void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, |
| Constant *Byte, Constant *Bit) { |
| for (auto Call : CSInfo.CallSites) { |
| if (!OptimizedCalls.insert(&Call.CB).second) |
| continue; |
| auto *RetType = cast<IntegerType>(Call.CB.getType()); |
| IRBuilder<> B(&Call.CB); |
| Value *Addr = |
| B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte); |
| if (RetType->getBitWidth() == 1) { |
| Value *Bits = B.CreateLoad(Int8Ty, Addr); |
| Value *BitsAndBit = B.CreateAnd(Bits, Bit); |
| auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0)); |
| Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled, |
| OREGetter, IsBitSet); |
| } else { |
| Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo()); |
| Value *Val = B.CreateLoad(RetType, ValAddr); |
| Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled, |
| OREGetter, Val); |
| } |
| } |
| CSInfo.markDevirt(); |
| } |
| |
| bool DevirtModule::tryVirtualConstProp( |
| MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, |
| WholeProgramDevirtResolution *Res, VTableSlot Slot) { |
| // This only works if the function returns an integer. |
| auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType()); |
| if (!RetType) |
| return false; |
| unsigned BitWidth = RetType->getBitWidth(); |
| if (BitWidth > 64) |
| return false; |
| |
| // Make sure that each function is defined, does not access memory, takes at |
| // least one argument, does not use its first argument (which we assume is |
| // 'this'), and has the same return type. |
| // |
| // Note that we test whether this copy of the function is readnone, rather |
| // than testing function attributes, which must hold for any copy of the |
| // function, even a less optimized version substituted at link time. This is |
| // sound because the virtual constant propagation optimizations effectively |
| // inline all implementations of the virtual function into each call site, |
| // rather than using function attributes to perform local optimization. |
| for (VirtualCallTarget &Target : TargetsForSlot) { |
| if (Target.Fn->isDeclaration() || |
| computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) != |
| MAK_ReadNone || |
| Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() || |
| Target.Fn->getReturnType() != RetType) |
| return false; |
| } |
| |
| for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) { |
| if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first)) |
| continue; |
| |
| WholeProgramDevirtResolution::ByArg *ResByArg = nullptr; |
| if (Res) |
| ResByArg = &Res->ResByArg[CSByConstantArg.first]; |
| |
| if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg)) |
| continue; |
| |
| if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second, |
| ResByArg, Slot, CSByConstantArg.first)) |
| continue; |
| |
| // Find an allocation offset in bits in all vtables associated with the |
| // type. |
| uint64_t AllocBefore = |
| findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth); |
| uint64_t AllocAfter = |
| findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth); |
| |
| // Calculate the total amount of padding needed to store a value at both |
| // ends of the object. |
| uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0; |
| for (auto &&Target : TargetsForSlot) { |
| TotalPaddingBefore += std::max<int64_t>( |
| (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0); |
| TotalPaddingAfter += std::max<int64_t>( |
| (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0); |
| } |
| |
| // If the amount of padding is too large, give up. |
| // FIXME: do something smarter here. |
| if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128) |
| continue; |
| |
| // Calculate the offset to the value as a (possibly negative) byte offset |
| // and (if applicable) a bit offset, and store the values in the targets. |
| int64_t OffsetByte; |
| uint64_t OffsetBit; |
| if (TotalPaddingBefore <= TotalPaddingAfter) |
| setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte, |
| OffsetBit); |
| else |
| setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte, |
| OffsetBit); |
| |
| if (RemarksEnabled) |
| for (auto &&Target : TargetsForSlot) |
| Target.WasDevirt = true; |
| |
| |
| if (CSByConstantArg.second.isExported()) { |
| ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; |
| exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte, |
| ResByArg->Byte); |
| exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit, |
| ResByArg->Bit); |
| } |
| |
| // Rewrite each call to a load from OffsetByte/OffsetBit. |
| Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte); |
| Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit); |
| applyVirtualConstProp(CSByConstantArg.second, |
| TargetsForSlot[0].Fn->getName(), ByteConst, BitConst); |
| } |
| return true; |
| } |
| |
| void DevirtModule::rebuildGlobal(VTableBits &B) { |
| if (B.Before.Bytes.empty() && B.After.Bytes.empty()) |
| return; |
| |
| // Align the before byte array to the global's minimum alignment so that we |
| // don't break any alignment requirements on the global. |
| Align Alignment = M.getDataLayout().getValueOrABITypeAlignment( |
| B.GV->getAlign(), B.GV->getValueType()); |
| B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment)); |
| |
| // Before was stored in reverse order; flip it now. |
| for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I) |
| std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]); |
| |
| // Build an anonymous global containing the before bytes, followed by the |
| // original initializer, followed by the after bytes. |
| auto NewInit = ConstantStruct::getAnon( |
| {ConstantDataArray::get(M.getContext(), B.Before.Bytes), |
| B.GV->getInitializer(), |
| ConstantDataArray::get(M.getContext(), B.After.Bytes)}); |
| auto NewGV = |
| new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(), |
| GlobalVariable::PrivateLinkage, NewInit, "", B.GV); |
| NewGV->setSection(B.GV->getSection()); |
| NewGV->setComdat(B.GV->getComdat()); |
| NewGV->setAlignment(MaybeAlign(B.GV->getAlignment())); |
| |
| // Copy the original vtable's metadata to the anonymous global, adjusting |
| // offsets as required. |
| NewGV->copyMetadata(B.GV, B.Before.Bytes.size()); |
| |
| // Build an alias named after the original global, pointing at the second |
| // element (the original initializer). |
| auto Alias = GlobalAlias::create( |
| B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "", |
| ConstantExpr::getGetElementPtr( |
| NewInit->getType(), NewGV, |
| ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0), |
| ConstantInt::get(Int32Ty, 1)}), |
| &M); |
| Alias->setVisibility(B.GV->getVisibility()); |
| Alias->takeName(B.GV); |
| |
| B.GV->replaceAllUsesWith(Alias); |
| B.GV->eraseFromParent(); |
| } |
| |
| bool DevirtModule::areRemarksEnabled() { |
| const auto &FL = M.getFunctionList(); |
| for (const Function &Fn : FL) { |
| const auto &BBL = Fn.getBasicBlockList(); |
| if (BBL.empty()) |
| continue; |
| auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front()); |
| return DI.isEnabled(); |
| } |
| return false; |
| } |
| |
| void DevirtModule::scanTypeTestUsers( |
| Function *TypeTestFunc, |
| DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { |
| // Find all virtual calls via a virtual table pointer %p under an assumption |
| // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p |
| // points to a member of the type identifier %md. Group calls by (type ID, |
| // offset) pair (effectively the identity of the virtual function) and store |
| // to CallSlots. |
| for (Use &U : llvm::make_early_inc_range(TypeTestFunc->uses())) { |
| auto *CI = dyn_cast<CallInst>(U.getUser()); |
| if (!CI) |
| continue; |
| |
| // Search for virtual calls based on %p and add them to DevirtCalls. |
| SmallVector<DevirtCallSite, 1> DevirtCalls; |
| SmallVector<CallInst *, 1> Assumes; |
| auto &DT = LookupDomTree(*CI->getFunction()); |
| findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); |
| |
| Metadata *TypeId = |
| cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata(); |
| // If we found any, add them to CallSlots. |
| if (!Assumes.empty()) { |
| Value *Ptr = CI->getArgOperand(0)->stripPointerCasts(); |
| for (DevirtCallSite Call : DevirtCalls) |
| CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, nullptr); |
| } |
| |
| auto RemoveTypeTestAssumes = [&]() { |
| // We no longer need the assumes or the type test. |
| for (auto Assume : Assumes) |
| Assume->eraseFromParent(); |
| // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we |
| // may use the vtable argument later. |
| if (CI->use_empty()) |
| CI->eraseFromParent(); |
| }; |
| |
| // At this point we could remove all type test assume sequences, as they |
| // were originally inserted for WPD. However, we can keep these in the |
| // code stream for later analysis (e.g. to help drive more efficient ICP |
| // sequences). They will eventually be removed by a second LowerTypeTests |
| // invocation that cleans them up. In order to do this correctly, the first |
| // LowerTypeTests invocation needs to know that they have "Unknown" type |
| // test resolution, so that they aren't treated as Unsat and lowered to |
| // False, which will break any uses on assumes. Below we remove any type |
| // test assumes that will not be treated as Unknown by LTT. |
| |
| // The type test assumes will be treated by LTT as Unsat if the type id is |
| // not used on a global (in which case it has no entry in the TypeIdMap). |
| if (!TypeIdMap.count(TypeId)) |
| RemoveTypeTestAssumes(); |
| |
| // For ThinLTO importing, we need to remove the type test assumes if this is |
| // an MDString type id without a corresponding TypeIdSummary. Any |
| // non-MDString type ids are ignored and treated as Unknown by LTT, so their |
| // type test assumes can be kept. If the MDString type id is missing a |
| // TypeIdSummary (e.g. because there was no use on a vcall, preventing the |
| // exporting phase of WPD from analyzing it), then it would be treated as |
| // Unsat by LTT and we need to remove its type test assumes here. If not |
| // used on a vcall we don't need them for later optimization use in any |
| // case. |
| else if (ImportSummary && isa<MDString>(TypeId)) { |
| const TypeIdSummary *TidSummary = |
| ImportSummary->getTypeIdSummary(cast<MDString>(TypeId)->getString()); |
| if (!TidSummary) |
| RemoveTypeTestAssumes(); |
| else |
| // If one was created it should not be Unsat, because if we reached here |
| // the type id was used on a global. |
| assert(TidSummary->TTRes.TheKind != TypeTestResolution::Unsat); |
| } |
| } |
| } |
| |
| void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) { |
| Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test); |
| |
| for (Use &U : llvm::make_early_inc_range(TypeCheckedLoadFunc->uses())) { |
| auto *CI = dyn_cast<CallInst>(U.getUser()); |
| if (!CI) |
| continue; |
| |
| Value *Ptr = CI->getArgOperand(0); |
| Value *Offset = CI->getArgOperand(1); |
| Value *TypeIdValue = CI->getArgOperand(2); |
| Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata(); |
| |
| SmallVector<DevirtCallSite, 1> DevirtCalls; |
| SmallVector<Instruction *, 1> LoadedPtrs; |
| SmallVector<Instruction *, 1> Preds; |
| bool HasNonCallUses = false; |
| auto &DT = LookupDomTree(*CI->getFunction()); |
| findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, |
| HasNonCallUses, CI, DT); |
| |
| // Start by generating "pessimistic" code that explicitly loads the function |
| // pointer from the vtable and performs the type check. If possible, we will |
| // eliminate the load and the type check later. |
| |
| // If possible, only generate the load at the point where it is used. |
| // This helps avoid unnecessary spills. |
| IRBuilder<> LoadB( |
| (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI); |
| Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset); |
| Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy)); |
| Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr); |
| |
| for (Instruction *LoadedPtr : LoadedPtrs) { |
| LoadedPtr->replaceAllUsesWith(LoadedValue); |
| LoadedPtr->eraseFromParent(); |
| } |
| |
| // Likewise for the type test. |
| IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI); |
| CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue}); |
| |
| for (Instruction *Pred : Preds) { |
| Pred->replaceAllUsesWith(TypeTestCall); |
| Pred->eraseFromParent(); |
| } |
| |
| // We have already erased any extractvalue instructions that refer to the |
| // intrinsic call, but the intrinsic may have other non-extractvalue uses |
| // (although this is unlikely). In that case, explicitly build a pair and |
| // RAUW it. |
| if (!CI->use_empty()) { |
| Value *Pair = UndefValue::get(CI->getType()); |
| IRBuilder<> B(CI); |
| Pair = B.CreateInsertValue(Pair, LoadedValue, {0}); |
| Pair = B.CreateInsertValue(Pair, TypeTestCall, {1}); |
| CI->replaceAllUsesWith(Pair); |
| } |
| |
| // The number of unsafe uses is initially the number of uses. |
| auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall]; |
| NumUnsafeUses = DevirtCalls.size(); |
| |
| // If the function pointer has a non-call user, we cannot eliminate the type |
| // check, as one of those users may eventually call the pointer. Increment |
| // the unsafe use count to make sure it cannot reach zero. |
| if (HasNonCallUses) |
| ++NumUnsafeUses; |
| for (DevirtCallSite Call : DevirtCalls) { |
| CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, |
| &NumUnsafeUses); |
| } |
| |
| CI->eraseFromParent(); |
| } |
| } |
| |
| void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) { |
| auto *TypeId = dyn_cast<MDString>(Slot.TypeID); |
| if (!TypeId) |
| return; |
| const TypeIdSummary *TidSummary = |
| ImportSummary->getTypeIdSummary(TypeId->getString()); |
| if (!TidSummary) |
| return; |
| auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset); |
| if (ResI == TidSummary->WPDRes.end()) |
| return; |
| const WholeProgramDevirtResolution &Res = ResI->second; |
| |
| if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) { |
| assert(!Res.SingleImplName.empty()); |
| // The type of the function in the declaration is irrelevant because every |
| // call site will cast it to the correct type. |
| Constant *SingleImpl = |
| cast<Constant>(M.getOrInsertFunction(Res.SingleImplName, |
| Type::getVoidTy(M.getContext())) |
| .getCallee()); |
| |
| // This is the import phase so we should not be exporting anything. |
| bool IsExported = false; |
| applySingleImplDevirt(SlotInfo, SingleImpl, IsExported); |
| assert(!IsExported); |
| } |
| |
| for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) { |
| auto I = Res.ResByArg.find(CSByConstantArg.first); |
| if (I == Res.ResByArg.end()) |
| continue; |
| auto &ResByArg = I->second; |
| // FIXME: We should figure out what to do about the "function name" argument |
| // to the apply* functions, as the function names are unavailable during the |
| // importing phase. For now we just pass the empty string. This does not |
| // impact correctness because the function names are just used for remarks. |
| switch (ResByArg.TheKind) { |
| case WholeProgramDevirtResolution::ByArg::UniformRetVal: |
| applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info); |
| break; |
| case WholeProgramDevirtResolution::ByArg::UniqueRetVal: { |
| Constant *UniqueMemberAddr = |
| importGlobal(Slot, CSByConstantArg.first, "unique_member"); |
| applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info, |
| UniqueMemberAddr); |
| break; |
| } |
| case WholeProgramDevirtResolution::ByArg::VirtualConstProp: { |
| Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte", |
| Int32Ty, ResByArg.Byte); |
| Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty, |
| ResByArg.Bit); |
| applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit); |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) { |
| // The type of the function is irrelevant, because it's bitcast at calls |
| // anyhow. |
| Constant *JT = cast<Constant>( |
| M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"), |
| Type::getVoidTy(M.getContext())) |
| .getCallee()); |
| bool IsExported = false; |
| applyICallBranchFunnel(SlotInfo, JT, IsExported); |
| assert(!IsExported); |
| } |
| } |
| |
| void DevirtModule::removeRedundantTypeTests() { |
| auto True = ConstantInt::getTrue(M.getContext()); |
| for (auto &&U : NumUnsafeUsesForTypeTest) { |
| if (U.second == 0) { |
| U.first->replaceAllUsesWith(True); |
| U.first->eraseFromParent(); |
| } |
| } |
| } |
| |
| bool DevirtModule::run() { |
| // If only some of the modules were split, we cannot correctly perform |
| // this transformation. We already checked for the presense of type tests |
| // with partially split modules during the thin link, and would have emitted |
| // an error if any were found, so here we can simply return. |
| if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) || |
| (ImportSummary && ImportSummary->partiallySplitLTOUnits())) |
| return false; |
| |
| Function *TypeTestFunc = |
| M.getFunction(Intrinsic::getName(Intrinsic::type_test)); |
| Function *TypeCheckedLoadFunc = |
| M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); |
| Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume)); |
| |
| // Normally if there are no users of the devirtualization intrinsics in the |
| // module, this pass has nothing to do. But if we are exporting, we also need |
| // to handle any users that appear only in the function summaries. |
| if (!ExportSummary && |
| (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc || |
| AssumeFunc->use_empty()) && |
| (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty())) |
| return false; |
| |
| // Rebuild type metadata into a map for easy lookup. |
| std::vector<VTableBits> Bits; |
| DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap; |
| buildTypeIdentifierMap(Bits, TypeIdMap); |
| |
| if (TypeTestFunc && AssumeFunc) |
| scanTypeTestUsers(TypeTestFunc, TypeIdMap); |
| |
| if (TypeCheckedLoadFunc) |
| scanTypeCheckedLoadUsers(TypeCheckedLoadFunc); |
| |
| if (ImportSummary) { |
| for (auto &S : CallSlots) |
| importResolution(S.first, S.second); |
| |
| removeRedundantTypeTests(); |
| |
| // We have lowered or deleted the type instrinsics, so we will no |
| // longer have enough information to reason about the liveness of virtual |
| // function pointers in GlobalDCE. |
| for (GlobalVariable &GV : M.globals()) |
| GV.eraseMetadata(LLVMContext::MD_vcall_visibility); |
| |
| // The rest of the code is only necessary when exporting or during regular |
| // LTO, so we are done. |
| return true; |
| } |
| |
| if (TypeIdMap.empty()) |
| return true; |
| |
| // Collect information from summary about which calls to try to devirtualize. |
| if (ExportSummary) { |
| DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID; |
| for (auto &P : TypeIdMap) { |
| if (auto *TypeId = dyn_cast<MDString>(P.first)) |
| MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back( |
| TypeId); |
| } |
| |
| for (auto &P : *ExportSummary) { |
| for (auto &S : P.second.SummaryList) { |
| auto *FS = dyn_cast<FunctionSummary>(S.get()); |
| if (!FS) |
| continue; |
| // FIXME: Only add live functions. |
| for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { |
| for (Metadata *MD : MetadataByGUID[VF.GUID]) { |
| CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS); |
| } |
| } |
| for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { |
| for (Metadata *MD : MetadataByGUID[VF.GUID]) { |
| CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); |
| } |
| } |
| for (const FunctionSummary::ConstVCall &VC : |
| FS->type_test_assume_const_vcalls()) { |
| for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { |
| CallSlots[{MD, VC.VFunc.Offset}] |
| .ConstCSInfo[VC.Args] |
| .addSummaryTypeTestAssumeUser(FS); |
| } |
| } |
| for (const FunctionSummary::ConstVCall &VC : |
| FS->type_checked_load_const_vcalls()) { |
| for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { |
| CallSlots[{MD, VC.VFunc.Offset}] |
| .ConstCSInfo[VC.Args] |
| .addSummaryTypeCheckedLoadUser(FS); |
| } |
| } |
| } |
| } |
| } |
| |
| // For each (type, offset) pair: |
| bool DidVirtualConstProp = false; |
| std::map<std::string, Function*> DevirtTargets; |
| for (auto &S : CallSlots) { |
| // Search each of the members of the type identifier for the virtual |
| // function implementation at offset S.first.ByteOffset, and add to |
| // TargetsForSlot. |
| std::vector<VirtualCallTarget> TargetsForSlot; |
| WholeProgramDevirtResolution *Res = nullptr; |
| const std::set<TypeMemberInfo> &TypeMemberInfos = TypeIdMap[S.first.TypeID]; |
| if (ExportSummary && isa<MDString>(S.first.TypeID) && |
| TypeMemberInfos.size()) |
| // For any type id used on a global's type metadata, create the type id |
| // summary resolution regardless of whether we can devirtualize, so that |
| // lower type tests knows the type id is not Unsat. If it was not used on |
| // a global's type metadata, the TypeIdMap entry set will be empty, and |
| // we don't want to create an entry (with the default Unknown type |
| // resolution), which can prevent detection of the Unsat. |
| Res = &ExportSummary |
| ->getOrInsertTypeIdSummary( |
| cast<MDString>(S.first.TypeID)->getString()) |
| .WPDRes[S.first.ByteOffset]; |
| if (tryFindVirtualCallTargets(TargetsForSlot, TypeMemberInfos, |
| S.first.ByteOffset)) { |
| |
| if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) { |
| DidVirtualConstProp |= |
| tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first); |
| |
| tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first); |
| } |
| |
| // Collect functions devirtualized at least for one call site for stats. |
| if (RemarksEnabled) |
| for (const auto &T : TargetsForSlot) |
| if (T.WasDevirt) |
| DevirtTargets[std::string(T.Fn->getName())] = T.Fn; |
| } |
| |
| // CFI-specific: if we are exporting and any llvm.type.checked.load |
| // intrinsics were *not* devirtualized, we need to add the resulting |
| // llvm.type.test intrinsics to the function summaries so that the |
| // LowerTypeTests pass will export them. |
| if (ExportSummary && isa<MDString>(S.first.TypeID)) { |
| auto GUID = |
| GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString()); |
| for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers) |
| FS->addTypeTest(GUID); |
| for (auto &CCS : S.second.ConstCSInfo) |
| for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers) |
| FS->addTypeTest(GUID); |
| } |
| } |
| |
| if (RemarksEnabled) { |
| // Generate remarks for each devirtualized function. |
| for (const auto &DT : DevirtTargets) { |
| Function *F = DT.second; |
| |
| using namespace ore; |
| OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F) |
| << "devirtualized " |
| << NV("FunctionName", DT.first)); |
| } |
| } |
| |
| removeRedundantTypeTests(); |
| |
| // Rebuild each global we touched as part of virtual constant propagation to |
| // include the before and after bytes. |
| if (DidVirtualConstProp) |
| for (VTableBits &B : Bits) |
| rebuildGlobal(B); |
| |
| // We have lowered or deleted the type instrinsics, so we will no |
| // longer have enough information to reason about the liveness of virtual |
| // function pointers in GlobalDCE. |
| for (GlobalVariable &GV : M.globals()) |
| GV.eraseMetadata(LLVMContext::MD_vcall_visibility); |
| |
| return true; |
| } |
| |
| void DevirtIndex::run() { |
| if (ExportSummary.typeIdCompatibleVtableMap().empty()) |
| return; |
| |
| DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID; |
| for (auto &P : ExportSummary.typeIdCompatibleVtableMap()) { |
| NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first); |
| } |
| |
| // Collect information from summary about which calls to try to devirtualize. |
| for (auto &P : ExportSummary) { |
| for (auto &S : P.second.SummaryList) { |
| auto *FS = dyn_cast<FunctionSummary>(S.get()); |
| if (!FS) |
| continue; |
| // FIXME: Only add live functions. |
| for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { |
| for (StringRef Name : NameByGUID[VF.GUID]) { |
| CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS); |
| } |
| } |
| for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { |
| for (StringRef Name : NameByGUID[VF.GUID]) { |
| CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); |
| } |
| } |
| for (const FunctionSummary::ConstVCall &VC : |
| FS->type_test_assume_const_vcalls()) { |
| for (StringRef Name : NameByGUID[VC.VFunc.GUID]) { |
| CallSlots[{Name, VC.VFunc.Offset}] |
| .ConstCSInfo[VC.Args] |
| .addSummaryTypeTestAssumeUser(FS); |
| } |
| } |
| for (const FunctionSummary::ConstVCall &VC : |
| FS->type_checked_load_const_vcalls()) { |
| for (StringRef Name : NameByGUID[VC.VFunc.GUID]) { |
| CallSlots[{Name, VC.VFunc.Offset}] |
| .ConstCSInfo[VC.Args] |
| .addSummaryTypeCheckedLoadUser(FS); |
| } |
| } |
| } |
| } |
| |
| std::set<ValueInfo> DevirtTargets; |
| // For each (type, offset) pair: |
| for (auto &S : CallSlots) { |
| // Search each of the members of the type identifier for the virtual |
| // function implementation at offset S.first.ByteOffset, and add to |
| // TargetsForSlot. |
| std::vector<ValueInfo> TargetsForSlot; |
| auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID); |
| assert(TidSummary); |
| // Create the type id summary resolution regardlness of whether we can |
| // devirtualize, so that lower type tests knows the type id is used on |
| // a global and not Unsat. |
| WholeProgramDevirtResolution *Res = |
| &ExportSummary.getOrInsertTypeIdSummary(S.first.TypeID) |
| .WPDRes[S.first.ByteOffset]; |
| if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary, |
| S.first.ByteOffset)) { |
| |
| if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res, |
| DevirtTargets)) |
| continue; |
| } |
| } |
| |
| // Optionally have the thin link print message for each devirtualized |
| // function. |
| if (PrintSummaryDevirt) |
| for (const auto &DT : DevirtTargets) |
| errs() << "Devirtualized call to " << DT << "\n"; |
| } |