| //===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the PassManagerBuilder class, which is used to set up a |
| // "standard" optimization sequence suitable for languages like C and C++. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/IPO/PassManagerBuilder.h" |
| #include "llvm-c/Transforms/PassManagerBuilder.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Analysis/BasicAliasAnalysis.h" |
| #include "llvm/Analysis/CFLAndersAliasAnalysis.h" |
| #include "llvm/Analysis/CFLSteensAliasAnalysis.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/Analysis/InlineCost.h" |
| #include "llvm/Analysis/Passes.h" |
| #include "llvm/Analysis/ScopedNoAliasAA.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/TypeBasedAliasAnalysis.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/LegacyPassManager.h" |
| #include "llvm/IR/Verifier.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ManagedStatic.h" |
| #include "llvm/Target/CGPassBuilderOption.h" |
| #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h" |
| #include "llvm/Transforms/IPO.h" |
| #include "llvm/Transforms/IPO/Attributor.h" |
| #include "llvm/Transforms/IPO/ForceFunctionAttrs.h" |
| #include "llvm/Transforms/IPO/FunctionAttrs.h" |
| #include "llvm/Transforms/IPO/InferFunctionAttrs.h" |
| #include "llvm/Transforms/InstCombine/InstCombine.h" |
| #include "llvm/Transforms/Instrumentation.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Scalar/GVN.h" |
| #include "llvm/Transforms/Scalar/InstSimplifyPass.h" |
| #include "llvm/Transforms/Scalar/LICM.h" |
| #include "llvm/Transforms/Scalar/LoopUnrollPass.h" |
| #include "llvm/Transforms/Scalar/SCCP.h" |
| #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" |
| #include "llvm/Transforms/Utils.h" |
| #include "llvm/Transforms/Vectorize.h" |
| #include "llvm/Transforms/Vectorize/LoopVectorize.h" |
| #include "llvm/Transforms/Vectorize/SLPVectorizer.h" |
| #include "llvm/Transforms/Vectorize/VectorCombine.h" |
| |
| using namespace llvm; |
| |
| namespace llvm { |
| cl::opt<bool> RunPartialInlining("enable-partial-inlining", cl::init(false), |
| cl::Hidden, cl::ZeroOrMore, |
| cl::desc("Run Partial inlinining pass")); |
| |
| static cl::opt<bool> |
| UseGVNAfterVectorization("use-gvn-after-vectorization", |
| cl::init(false), cl::Hidden, |
| cl::desc("Run GVN instead of Early CSE after vectorization passes")); |
| |
| cl::opt<bool> ExtraVectorizerPasses( |
| "extra-vectorizer-passes", cl::init(false), cl::Hidden, |
| cl::desc("Run cleanup optimization passes after vectorization.")); |
| |
| static cl::opt<bool> |
| RunLoopRerolling("reroll-loops", cl::Hidden, |
| cl::desc("Run the loop rerolling pass")); |
| |
| cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden, |
| cl::desc("Run the NewGVN pass")); |
| |
| // Experimental option to use CFL-AA |
| static cl::opt<::CFLAAType> |
| UseCFLAA("use-cfl-aa", cl::init(::CFLAAType::None), cl::Hidden, |
| cl::desc("Enable the new, experimental CFL alias analysis"), |
| cl::values(clEnumValN(::CFLAAType::None, "none", "Disable CFL-AA"), |
| clEnumValN(::CFLAAType::Steensgaard, "steens", |
| "Enable unification-based CFL-AA"), |
| clEnumValN(::CFLAAType::Andersen, "anders", |
| "Enable inclusion-based CFL-AA"), |
| clEnumValN(::CFLAAType::Both, "both", |
| "Enable both variants of CFL-AA"))); |
| |
| cl::opt<bool> EnableLoopInterchange( |
| "enable-loopinterchange", cl::init(false), cl::Hidden, |
| cl::desc("Enable the experimental LoopInterchange Pass")); |
| |
| cl::opt<bool> EnableUnrollAndJam("enable-unroll-and-jam", cl::init(false), |
| cl::Hidden, |
| cl::desc("Enable Unroll And Jam Pass")); |
| |
| cl::opt<bool> EnableLoopFlatten("enable-loop-flatten", cl::init(false), |
| cl::Hidden, |
| cl::desc("Enable the LoopFlatten Pass")); |
| |
| cl::opt<bool> EnableDFAJumpThreading("enable-dfa-jump-thread", |
| cl::desc("Enable DFA jump threading."), |
| cl::init(false), cl::Hidden); |
| |
| static cl::opt<bool> |
| EnablePrepareForThinLTO("prepare-for-thinlto", cl::init(false), cl::Hidden, |
| cl::desc("Enable preparation for ThinLTO.")); |
| |
| static cl::opt<bool> |
| EnablePerformThinLTO("perform-thinlto", cl::init(false), cl::Hidden, |
| cl::desc("Enable performing ThinLTO.")); |
| |
| cl::opt<bool> EnableHotColdSplit("hot-cold-split", cl::init(false), |
| cl::ZeroOrMore, cl::desc("Enable hot-cold splitting pass")); |
| |
| cl::opt<bool> EnableIROutliner("ir-outliner", cl::init(false), cl::Hidden, |
| cl::desc("Enable ir outliner pass")); |
| |
| static cl::opt<bool> UseLoopVersioningLICM( |
| "enable-loop-versioning-licm", cl::init(false), cl::Hidden, |
| cl::desc("Enable the experimental Loop Versioning LICM pass")); |
| |
| cl::opt<bool> |
| DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden, |
| cl::desc("Disable pre-instrumentation inliner")); |
| |
| cl::opt<int> PreInlineThreshold( |
| "preinline-threshold", cl::Hidden, cl::init(75), cl::ZeroOrMore, |
| cl::desc("Control the amount of inlining in pre-instrumentation inliner " |
| "(default = 75)")); |
| |
| cl::opt<bool> |
| EnableGVNHoist("enable-gvn-hoist", cl::init(false), cl::ZeroOrMore, |
| cl::desc("Enable the GVN hoisting pass (default = off)")); |
| |
| static cl::opt<bool> |
| DisableLibCallsShrinkWrap("disable-libcalls-shrinkwrap", cl::init(false), |
| cl::Hidden, |
| cl::desc("Disable shrink-wrap library calls")); |
| |
| static cl::opt<bool> EnableSimpleLoopUnswitch( |
| "enable-simple-loop-unswitch", cl::init(false), cl::Hidden, |
| cl::desc("Enable the simple loop unswitch pass. Also enables independent " |
| "cleanup passes integrated into the loop pass manager pipeline.")); |
| |
| cl::opt<bool> |
| EnableGVNSink("enable-gvn-sink", cl::init(false), cl::ZeroOrMore, |
| cl::desc("Enable the GVN sinking pass (default = off)")); |
| |
| // This option is used in simplifying testing SampleFDO optimizations for |
| // profile loading. |
| cl::opt<bool> |
| EnableCHR("enable-chr", cl::init(true), cl::Hidden, |
| cl::desc("Enable control height reduction optimization (CHR)")); |
| |
| cl::opt<bool> FlattenedProfileUsed( |
| "flattened-profile-used", cl::init(false), cl::Hidden, |
| cl::desc("Indicate the sample profile being used is flattened, i.e., " |
| "no inline hierachy exists in the profile. ")); |
| |
| cl::opt<bool> EnableOrderFileInstrumentation( |
| "enable-order-file-instrumentation", cl::init(false), cl::Hidden, |
| cl::desc("Enable order file instrumentation (default = off)")); |
| |
| cl::opt<bool> EnableMatrix( |
| "enable-matrix", cl::init(false), cl::Hidden, |
| cl::desc("Enable lowering of the matrix intrinsics")); |
| |
| cl::opt<bool> EnableConstraintElimination( |
| "enable-constraint-elimination", cl::init(false), cl::Hidden, |
| cl::desc( |
| "Enable pass to eliminate conditions based on linear constraints.")); |
| |
| cl::opt<bool> EnableFunctionSpecialization( |
| "enable-function-specialization", cl::init(false), cl::Hidden, |
| cl::desc("Enable Function Specialization pass")); |
| |
| cl::opt<AttributorRunOption> AttributorRun( |
| "attributor-enable", cl::Hidden, cl::init(AttributorRunOption::NONE), |
| cl::desc("Enable the attributor inter-procedural deduction pass."), |
| cl::values(clEnumValN(AttributorRunOption::ALL, "all", |
| "enable all attributor runs"), |
| clEnumValN(AttributorRunOption::MODULE, "module", |
| "enable module-wide attributor runs"), |
| clEnumValN(AttributorRunOption::CGSCC, "cgscc", |
| "enable call graph SCC attributor runs"), |
| clEnumValN(AttributorRunOption::NONE, "none", |
| "disable attributor runs"))); |
| |
| extern cl::opt<bool> EnableKnowledgeRetention; |
| } // namespace llvm |
| |
| PassManagerBuilder::PassManagerBuilder() { |
| OptLevel = 2; |
| SizeLevel = 0; |
| LibraryInfo = nullptr; |
| Inliner = nullptr; |
| DisableUnrollLoops = false; |
| SLPVectorize = false; |
| LoopVectorize = true; |
| LoopsInterleaved = true; |
| RerollLoops = RunLoopRerolling; |
| NewGVN = RunNewGVN; |
| LicmMssaOptCap = SetLicmMssaOptCap; |
| LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap; |
| DisableGVNLoadPRE = false; |
| ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll; |
| VerifyInput = false; |
| VerifyOutput = false; |
| MergeFunctions = false; |
| PrepareForLTO = false; |
| EnablePGOInstrGen = false; |
| EnablePGOCSInstrGen = false; |
| EnablePGOCSInstrUse = false; |
| PGOInstrGen = ""; |
| PGOInstrUse = ""; |
| PGOSampleUse = ""; |
| PrepareForThinLTO = EnablePrepareForThinLTO; |
| PerformThinLTO = EnablePerformThinLTO; |
| DivergentTarget = false; |
| CallGraphProfile = true; |
| } |
| |
| PassManagerBuilder::~PassManagerBuilder() { |
| delete LibraryInfo; |
| delete Inliner; |
| } |
| |
| /// Set of global extensions, automatically added as part of the standard set. |
| static ManagedStatic< |
| SmallVector<std::tuple<PassManagerBuilder::ExtensionPointTy, |
| PassManagerBuilder::ExtensionFn, |
| PassManagerBuilder::GlobalExtensionID>, |
| 8>> |
| GlobalExtensions; |
| static PassManagerBuilder::GlobalExtensionID GlobalExtensionsCounter; |
| |
| /// Check if GlobalExtensions is constructed and not empty. |
| /// Since GlobalExtensions is a managed static, calling 'empty()' will trigger |
| /// the construction of the object. |
| static bool GlobalExtensionsNotEmpty() { |
| return GlobalExtensions.isConstructed() && !GlobalExtensions->empty(); |
| } |
| |
| PassManagerBuilder::GlobalExtensionID |
| PassManagerBuilder::addGlobalExtension(PassManagerBuilder::ExtensionPointTy Ty, |
| PassManagerBuilder::ExtensionFn Fn) { |
| auto ExtensionID = GlobalExtensionsCounter++; |
| GlobalExtensions->push_back(std::make_tuple(Ty, std::move(Fn), ExtensionID)); |
| return ExtensionID; |
| } |
| |
| void PassManagerBuilder::removeGlobalExtension( |
| PassManagerBuilder::GlobalExtensionID ExtensionID) { |
| // RegisterStandardPasses may try to call this function after GlobalExtensions |
| // has already been destroyed; doing so should not generate an error. |
| if (!GlobalExtensions.isConstructed()) |
| return; |
| |
| auto GlobalExtension = |
| llvm::find_if(*GlobalExtensions, [ExtensionID](const auto &elem) { |
| return std::get<2>(elem) == ExtensionID; |
| }); |
| assert(GlobalExtension != GlobalExtensions->end() && |
| "The extension ID to be removed should always be valid."); |
| |
| GlobalExtensions->erase(GlobalExtension); |
| } |
| |
| void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) { |
| Extensions.push_back(std::make_pair(Ty, std::move(Fn))); |
| } |
| |
| void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy, |
| legacy::PassManagerBase &PM) const { |
| if (GlobalExtensionsNotEmpty()) { |
| for (auto &Ext : *GlobalExtensions) { |
| if (std::get<0>(Ext) == ETy) |
| std::get<1>(Ext)(*this, PM); |
| } |
| } |
| for (unsigned i = 0, e = Extensions.size(); i != e; ++i) |
| if (Extensions[i].first == ETy) |
| Extensions[i].second(*this, PM); |
| } |
| |
| void PassManagerBuilder::addInitialAliasAnalysisPasses( |
| legacy::PassManagerBase &PM) const { |
| switch (UseCFLAA) { |
| case ::CFLAAType::Steensgaard: |
| PM.add(createCFLSteensAAWrapperPass()); |
| break; |
| case ::CFLAAType::Andersen: |
| PM.add(createCFLAndersAAWrapperPass()); |
| break; |
| case ::CFLAAType::Both: |
| PM.add(createCFLSteensAAWrapperPass()); |
| PM.add(createCFLAndersAAWrapperPass()); |
| break; |
| default: |
| break; |
| } |
| |
| // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that |
| // BasicAliasAnalysis wins if they disagree. This is intended to help |
| // support "obvious" type-punning idioms. |
| PM.add(createTypeBasedAAWrapperPass()); |
| PM.add(createScopedNoAliasAAWrapperPass()); |
| } |
| |
| void PassManagerBuilder::populateFunctionPassManager( |
| legacy::FunctionPassManager &FPM) { |
| addExtensionsToPM(EP_EarlyAsPossible, FPM); |
| |
| // Add LibraryInfo if we have some. |
| if (LibraryInfo) |
| FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); |
| |
| // The backends do not handle matrix intrinsics currently. |
| // Make sure they are also lowered in O0. |
| // FIXME: A lightweight version of the pass should run in the backend |
| // pipeline on demand. |
| if (EnableMatrix && OptLevel == 0) |
| FPM.add(createLowerMatrixIntrinsicsMinimalPass()); |
| |
| if (OptLevel == 0) return; |
| |
| addInitialAliasAnalysisPasses(FPM); |
| |
| // Lower llvm.expect to metadata before attempting transforms. |
| // Compare/branch metadata may alter the behavior of passes like SimplifyCFG. |
| FPM.add(createLowerExpectIntrinsicPass()); |
| FPM.add(createCFGSimplificationPass()); |
| FPM.add(createSROAPass()); |
| FPM.add(createEarlyCSEPass()); |
| } |
| |
| // Do PGO instrumentation generation or use pass as the option specified. |
| void PassManagerBuilder::addPGOInstrPasses(legacy::PassManagerBase &MPM, |
| bool IsCS = false) { |
| if (IsCS) { |
| if (!EnablePGOCSInstrGen && !EnablePGOCSInstrUse) |
| return; |
| } else if (!EnablePGOInstrGen && PGOInstrUse.empty() && PGOSampleUse.empty()) |
| return; |
| |
| // Perform the preinline and cleanup passes for O1 and above. |
| // We will not do this inline for context sensitive PGO (when IsCS is true). |
| if (OptLevel > 0 && !DisablePreInliner && PGOSampleUse.empty() && !IsCS) { |
| // Create preinline pass. We construct an InlineParams object and specify |
| // the threshold here to avoid the command line options of the regular |
| // inliner to influence pre-inlining. The only fields of InlineParams we |
| // care about are DefaultThreshold and HintThreshold. |
| InlineParams IP; |
| IP.DefaultThreshold = PreInlineThreshold; |
| // FIXME: The hint threshold has the same value used by the regular inliner |
| // when not optimzing for size. This should probably be lowered after |
| // performance testing. |
| // Use PreInlineThreshold for both -Os and -Oz. Not running preinliner makes |
| // the instrumented binary unusably large. Even if PreInlineThreshold is not |
| // correct thresold for -Oz, it is better than not running preinliner. |
| IP.HintThreshold = SizeLevel > 0 ? PreInlineThreshold : 325; |
| |
| MPM.add(createFunctionInliningPass(IP)); |
| MPM.add(createSROAPass()); |
| MPM.add(createEarlyCSEPass()); // Catch trivial redundancies |
| MPM.add(createCFGSimplificationPass()); // Merge & remove BBs |
| MPM.add(createInstructionCombiningPass()); // Combine silly seq's |
| addExtensionsToPM(EP_Peephole, MPM); |
| } |
| if ((EnablePGOInstrGen && !IsCS) || (EnablePGOCSInstrGen && IsCS)) { |
| MPM.add(createPGOInstrumentationGenLegacyPass(IsCS)); |
| // Add the profile lowering pass. |
| InstrProfOptions Options; |
| if (!PGOInstrGen.empty()) |
| Options.InstrProfileOutput = PGOInstrGen; |
| Options.DoCounterPromotion = true; |
| Options.UseBFIInPromotion = IsCS; |
| MPM.add(createLoopRotatePass()); |
| MPM.add(createInstrProfilingLegacyPass(Options, IsCS)); |
| } |
| if (!PGOInstrUse.empty()) |
| MPM.add(createPGOInstrumentationUseLegacyPass(PGOInstrUse, IsCS)); |
| // Indirect call promotion that promotes intra-module targets only. |
| // For ThinLTO this is done earlier due to interactions with globalopt |
| // for imported functions. We don't run this at -O0. |
| if (OptLevel > 0 && !IsCS) |
| MPM.add( |
| createPGOIndirectCallPromotionLegacyPass(false, !PGOSampleUse.empty())); |
| } |
| void PassManagerBuilder::addFunctionSimplificationPasses( |
| legacy::PassManagerBase &MPM) { |
| // Start of function pass. |
| // Break up aggregate allocas, using SSAUpdater. |
| assert(OptLevel >= 1 && "Calling function optimizer with no optimization level!"); |
| MPM.add(createSROAPass()); |
| MPM.add(createEarlyCSEPass(true /* Enable mem-ssa. */)); // Catch trivial redundancies |
| if (EnableKnowledgeRetention) |
| MPM.add(createAssumeSimplifyPass()); |
| |
| if (OptLevel > 1) { |
| if (EnableGVNHoist) |
| MPM.add(createGVNHoistPass()); |
| if (EnableGVNSink) { |
| MPM.add(createGVNSinkPass()); |
| MPM.add(createCFGSimplificationPass()); |
| } |
| } |
| |
| if (EnableConstraintElimination) |
| MPM.add(createConstraintEliminationPass()); |
| |
| if (OptLevel > 1) { |
| // Speculative execution if the target has divergent branches; otherwise nop. |
| MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass()); |
| |
| MPM.add(createJumpThreadingPass()); // Thread jumps. |
| MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals |
| } |
| MPM.add(createCFGSimplificationPass()); // Merge & remove BBs |
| // Combine silly seq's |
| if (OptLevel > 2) |
| MPM.add(createAggressiveInstCombinerPass()); |
| MPM.add(createInstructionCombiningPass()); |
| if (SizeLevel == 0 && !DisableLibCallsShrinkWrap) |
| MPM.add(createLibCallsShrinkWrapPass()); |
| addExtensionsToPM(EP_Peephole, MPM); |
| |
| // Optimize memory intrinsic calls based on the profiled size information. |
| if (SizeLevel == 0) |
| MPM.add(createPGOMemOPSizeOptLegacyPass()); |
| |
| // TODO: Investigate the cost/benefit of tail call elimination on debugging. |
| if (OptLevel > 1) |
| MPM.add(createTailCallEliminationPass()); // Eliminate tail calls |
| MPM.add(createCFGSimplificationPass()); // Merge & remove BBs |
| MPM.add(createReassociatePass()); // Reassociate expressions |
| |
| // The matrix extension can introduce large vector operations early, which can |
| // benefit from running vector-combine early on. |
| if (EnableMatrix) |
| MPM.add(createVectorCombinePass()); |
| |
| // Begin the loop pass pipeline. |
| if (EnableSimpleLoopUnswitch) { |
| // The simple loop unswitch pass relies on separate cleanup passes. Schedule |
| // them first so when we re-process a loop they run before other loop |
| // passes. |
| MPM.add(createLoopInstSimplifyPass()); |
| MPM.add(createLoopSimplifyCFGPass()); |
| } |
| // Try to remove as much code from the loop header as possible, |
| // to reduce amount of IR that will have to be duplicated. |
| // TODO: Investigate promotion cap for O1. |
| MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); |
| // Rotate Loop - disable header duplication at -Oz |
| MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1, PrepareForLTO)); |
| // TODO: Investigate promotion cap for O1. |
| MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); |
| if (EnableSimpleLoopUnswitch) |
| MPM.add(createSimpleLoopUnswitchLegacyPass()); |
| else |
| MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget)); |
| // FIXME: We break the loop pass pipeline here in order to do full |
| // simplifycfg. Eventually loop-simplifycfg should be enhanced to replace the |
| // need for this. |
| MPM.add(createCFGSimplificationPass()); |
| MPM.add(createInstructionCombiningPass()); |
| // We resume loop passes creating a second loop pipeline here. |
| if (EnableLoopFlatten) { |
| MPM.add(createLoopFlattenPass()); // Flatten loops |
| MPM.add(createLoopSimplifyCFGPass()); |
| } |
| MPM.add(createLoopIdiomPass()); // Recognize idioms like memset. |
| MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars |
| addExtensionsToPM(EP_LateLoopOptimizations, MPM); |
| MPM.add(createLoopDeletionPass()); // Delete dead loops |
| |
| if (EnableLoopInterchange) |
| MPM.add(createLoopInterchangePass()); // Interchange loops |
| |
| // Unroll small loops and perform peeling. |
| MPM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops, |
| ForgetAllSCEVInLoopUnroll)); |
| addExtensionsToPM(EP_LoopOptimizerEnd, MPM); |
| // This ends the loop pass pipelines. |
| |
| // Break up allocas that may now be splittable after loop unrolling. |
| MPM.add(createSROAPass()); |
| |
| if (OptLevel > 1) { |
| MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds |
| MPM.add(NewGVN ? createNewGVNPass() |
| : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies |
| } |
| MPM.add(createSCCPPass()); // Constant prop with SCCP |
| |
| if (EnableConstraintElimination) |
| MPM.add(createConstraintEliminationPass()); |
| |
| // Delete dead bit computations (instcombine runs after to fold away the dead |
| // computations, and then ADCE will run later to exploit any new DCE |
| // opportunities that creates). |
| MPM.add(createBitTrackingDCEPass()); // Delete dead bit computations |
| |
| // Run instcombine after redundancy elimination to exploit opportunities |
| // opened up by them. |
| MPM.add(createInstructionCombiningPass()); |
| addExtensionsToPM(EP_Peephole, MPM); |
| if (OptLevel > 1) { |
| if (EnableDFAJumpThreading && SizeLevel == 0) |
| MPM.add(createDFAJumpThreadingPass()); |
| |
| MPM.add(createJumpThreadingPass()); // Thread jumps |
| MPM.add(createCorrelatedValuePropagationPass()); |
| } |
| MPM.add(createAggressiveDCEPass()); // Delete dead instructions |
| |
| MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset |
| // TODO: Investigate if this is too expensive at O1. |
| if (OptLevel > 1) { |
| MPM.add(createDeadStoreEliminationPass()); // Delete dead stores |
| MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); |
| } |
| |
| addExtensionsToPM(EP_ScalarOptimizerLate, MPM); |
| |
| if (RerollLoops) |
| MPM.add(createLoopRerollPass()); |
| |
| // Merge & remove BBs and sink & hoist common instructions. |
| MPM.add(createCFGSimplificationPass( |
| SimplifyCFGOptions().hoistCommonInsts(true).sinkCommonInsts(true))); |
| // Clean up after everything. |
| MPM.add(createInstructionCombiningPass()); |
| addExtensionsToPM(EP_Peephole, MPM); |
| |
| if (EnableCHR && OptLevel >= 3 && |
| (!PGOInstrUse.empty() || !PGOSampleUse.empty() || EnablePGOCSInstrGen)) |
| MPM.add(createControlHeightReductionLegacyPass()); |
| } |
| |
| /// FIXME: Should LTO cause any differences to this set of passes? |
| void PassManagerBuilder::addVectorPasses(legacy::PassManagerBase &PM, |
| bool IsFullLTO) { |
| PM.add(createLoopVectorizePass(!LoopsInterleaved, !LoopVectorize)); |
| |
| if (IsFullLTO) { |
| // The vectorizer may have significantly shortened a loop body; unroll |
| // again. Unroll small loops to hide loop backedge latency and saturate any |
| // parallel execution resources of an out-of-order processor. We also then |
| // need to clean up redundancies and loop invariant code. |
| // FIXME: It would be really good to use a loop-integrated instruction |
| // combiner for cleanup here so that the unrolling and LICM can be pipelined |
| // across the loop nests. |
| // We do UnrollAndJam in a separate LPM to ensure it happens before unroll |
| if (EnableUnrollAndJam && !DisableUnrollLoops) |
| PM.add(createLoopUnrollAndJamPass(OptLevel)); |
| PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops, |
| ForgetAllSCEVInLoopUnroll)); |
| PM.add(createWarnMissedTransformationsPass()); |
| } |
| |
| if (!IsFullLTO) { |
| // Eliminate loads by forwarding stores from the previous iteration to loads |
| // of the current iteration. |
| PM.add(createLoopLoadEliminationPass()); |
| } |
| // Cleanup after the loop optimization passes. |
| PM.add(createInstructionCombiningPass()); |
| |
| if (OptLevel > 1 && ExtraVectorizerPasses) { |
| // At higher optimization levels, try to clean up any runtime overlap and |
| // alignment checks inserted by the vectorizer. We want to track correlated |
| // runtime checks for two inner loops in the same outer loop, fold any |
| // common computations, hoist loop-invariant aspects out of any outer loop, |
| // and unswitch the runtime checks if possible. Once hoisted, we may have |
| // dead (or speculatable) control flows or more combining opportunities. |
| PM.add(createEarlyCSEPass()); |
| PM.add(createCorrelatedValuePropagationPass()); |
| PM.add(createInstructionCombiningPass()); |
| PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); |
| PM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget)); |
| PM.add(createCFGSimplificationPass()); |
| PM.add(createInstructionCombiningPass()); |
| } |
| |
| // Now that we've formed fast to execute loop structures, we do further |
| // optimizations. These are run afterward as they might block doing complex |
| // analyses and transforms such as what are needed for loop vectorization. |
| |
| // Cleanup after loop vectorization, etc. Simplification passes like CVP and |
| // GVN, loop transforms, and others have already run, so it's now better to |
| // convert to more optimized IR using more aggressive simplify CFG options. |
| // The extra sinking transform can create larger basic blocks, so do this |
| // before SLP vectorization. |
| PM.add(createCFGSimplificationPass(SimplifyCFGOptions() |
| .forwardSwitchCondToPhi(true) |
| .convertSwitchToLookupTable(true) |
| .needCanonicalLoops(false) |
| .hoistCommonInsts(true) |
| .sinkCommonInsts(true))); |
| |
| if (IsFullLTO) { |
| PM.add(createSCCPPass()); // Propagate exposed constants |
| PM.add(createInstructionCombiningPass()); // Clean up again |
| PM.add(createBitTrackingDCEPass()); |
| } |
| |
| // Optimize parallel scalar instruction chains into SIMD instructions. |
| if (SLPVectorize) { |
| PM.add(createSLPVectorizerPass()); |
| if (OptLevel > 1 && ExtraVectorizerPasses) |
| PM.add(createEarlyCSEPass()); |
| } |
| |
| // Enhance/cleanup vector code. |
| PM.add(createVectorCombinePass()); |
| |
| if (!IsFullLTO) { |
| addExtensionsToPM(EP_Peephole, PM); |
| PM.add(createInstructionCombiningPass()); |
| |
| if (EnableUnrollAndJam && !DisableUnrollLoops) { |
| // Unroll and Jam. We do this before unroll but need to be in a separate |
| // loop pass manager in order for the outer loop to be processed by |
| // unroll and jam before the inner loop is unrolled. |
| PM.add(createLoopUnrollAndJamPass(OptLevel)); |
| } |
| |
| // Unroll small loops |
| PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops, |
| ForgetAllSCEVInLoopUnroll)); |
| |
| if (!DisableUnrollLoops) { |
| // LoopUnroll may generate some redundency to cleanup. |
| PM.add(createInstructionCombiningPass()); |
| |
| // Runtime unrolling will introduce runtime check in loop prologue. If the |
| // unrolled loop is a inner loop, then the prologue will be inside the |
| // outer loop. LICM pass can help to promote the runtime check out if the |
| // checked value is loop invariant. |
| PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); |
| } |
| |
| PM.add(createWarnMissedTransformationsPass()); |
| } |
| |
| // After vectorization and unrolling, assume intrinsics may tell us more |
| // about pointer alignments. |
| PM.add(createAlignmentFromAssumptionsPass()); |
| |
| if (IsFullLTO) |
| PM.add(createInstructionCombiningPass()); |
| } |
| |
| void PassManagerBuilder::populateModulePassManager( |
| legacy::PassManagerBase &MPM) { |
| // Whether this is a default or *LTO pre-link pipeline. The FullLTO post-link |
| // is handled separately, so just check this is not the ThinLTO post-link. |
| bool DefaultOrPreLinkPipeline = !PerformThinLTO; |
| |
| MPM.add(createAnnotation2MetadataLegacyPass()); |
| |
| if (!PGOSampleUse.empty()) { |
| MPM.add(createPruneEHPass()); |
| // In ThinLTO mode, when flattened profile is used, all the available |
| // profile information will be annotated in PreLink phase so there is |
| // no need to load the profile again in PostLink. |
| if (!(FlattenedProfileUsed && PerformThinLTO)) |
| MPM.add(createSampleProfileLoaderPass(PGOSampleUse)); |
| } |
| |
| // Allow forcing function attributes as a debugging and tuning aid. |
| MPM.add(createForceFunctionAttrsLegacyPass()); |
| |
| // If all optimizations are disabled, just run the always-inline pass and, |
| // if enabled, the function merging pass. |
| if (OptLevel == 0) { |
| addPGOInstrPasses(MPM); |
| if (Inliner) { |
| MPM.add(Inliner); |
| Inliner = nullptr; |
| } |
| |
| // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly |
| // creates a CGSCC pass manager, but we don't want to add extensions into |
| // that pass manager. To prevent this we insert a no-op module pass to reset |
| // the pass manager to get the same behavior as EP_OptimizerLast in non-O0 |
| // builds. The function merging pass is |
| if (MergeFunctions) |
| MPM.add(createMergeFunctionsPass()); |
| else if (GlobalExtensionsNotEmpty() || !Extensions.empty()) |
| MPM.add(createBarrierNoopPass()); |
| |
| if (PerformThinLTO) { |
| MPM.add(createLowerTypeTestsPass(nullptr, nullptr, true)); |
| // Drop available_externally and unreferenced globals. This is necessary |
| // with ThinLTO in order to avoid leaving undefined references to dead |
| // globals in the object file. |
| MPM.add(createEliminateAvailableExternallyPass()); |
| MPM.add(createGlobalDCEPass()); |
| } |
| |
| addExtensionsToPM(EP_EnabledOnOptLevel0, MPM); |
| |
| if (PrepareForLTO || PrepareForThinLTO) { |
| MPM.add(createCanonicalizeAliasesPass()); |
| // Rename anon globals to be able to export them in the summary. |
| // This has to be done after we add the extensions to the pass manager |
| // as there could be passes (e.g. Adddress sanitizer) which introduce |
| // new unnamed globals. |
| MPM.add(createNameAnonGlobalPass()); |
| } |
| |
| MPM.add(createAnnotationRemarksLegacyPass()); |
| return; |
| } |
| |
| // Add LibraryInfo if we have some. |
| if (LibraryInfo) |
| MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); |
| |
| addInitialAliasAnalysisPasses(MPM); |
| |
| // For ThinLTO there are two passes of indirect call promotion. The |
| // first is during the compile phase when PerformThinLTO=false and |
| // intra-module indirect call targets are promoted. The second is during |
| // the ThinLTO backend when PerformThinLTO=true, when we promote imported |
| // inter-module indirect calls. For that we perform indirect call promotion |
| // earlier in the pass pipeline, here before globalopt. Otherwise imported |
| // available_externally functions look unreferenced and are removed. |
| if (PerformThinLTO) { |
| MPM.add(createPGOIndirectCallPromotionLegacyPass(/*InLTO = */ true, |
| !PGOSampleUse.empty())); |
| MPM.add(createLowerTypeTestsPass(nullptr, nullptr, true)); |
| } |
| |
| // For SamplePGO in ThinLTO compile phase, we do not want to unroll loops |
| // as it will change the CFG too much to make the 2nd profile annotation |
| // in backend more difficult. |
| bool PrepareForThinLTOUsingPGOSampleProfile = |
| PrepareForThinLTO && !PGOSampleUse.empty(); |
| if (PrepareForThinLTOUsingPGOSampleProfile) |
| DisableUnrollLoops = true; |
| |
| // Infer attributes about declarations if possible. |
| MPM.add(createInferFunctionAttrsLegacyPass()); |
| |
| // Infer attributes on declarations, call sites, arguments, etc. |
| if (AttributorRun & AttributorRunOption::MODULE) |
| MPM.add(createAttributorLegacyPass()); |
| |
| addExtensionsToPM(EP_ModuleOptimizerEarly, MPM); |
| |
| if (OptLevel > 2) |
| MPM.add(createCallSiteSplittingPass()); |
| |
| // Propage constant function arguments by specializing the functions. |
| if (OptLevel > 2 && EnableFunctionSpecialization) |
| MPM.add(createFunctionSpecializationPass()); |
| |
| MPM.add(createIPSCCPPass()); // IP SCCP |
| MPM.add(createCalledValuePropagationPass()); |
| |
| MPM.add(createGlobalOptimizerPass()); // Optimize out global vars |
| // Promote any localized global vars. |
| MPM.add(createPromoteMemoryToRegisterPass()); |
| |
| MPM.add(createDeadArgEliminationPass()); // Dead argument elimination |
| |
| MPM.add(createInstructionCombiningPass()); // Clean up after IPCP & DAE |
| addExtensionsToPM(EP_Peephole, MPM); |
| MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE |
| |
| // For SamplePGO in ThinLTO compile phase, we do not want to do indirect |
| // call promotion as it will change the CFG too much to make the 2nd |
| // profile annotation in backend more difficult. |
| // PGO instrumentation is added during the compile phase for ThinLTO, do |
| // not run it a second time |
| if (DefaultOrPreLinkPipeline && !PrepareForThinLTOUsingPGOSampleProfile) |
| addPGOInstrPasses(MPM); |
| |
| // Create profile COMDAT variables. Lld linker wants to see all variables |
| // before the LTO/ThinLTO link since it needs to resolve symbols/comdats. |
| if (!PerformThinLTO && EnablePGOCSInstrGen) |
| MPM.add(createPGOInstrumentationGenCreateVarLegacyPass(PGOInstrGen)); |
| |
| // We add a module alias analysis pass here. In part due to bugs in the |
| // analysis infrastructure this "works" in that the analysis stays alive |
| // for the entire SCC pass run below. |
| MPM.add(createGlobalsAAWrapperPass()); |
| |
| // Start of CallGraph SCC passes. |
| MPM.add(createPruneEHPass()); // Remove dead EH info |
| bool RunInliner = false; |
| if (Inliner) { |
| MPM.add(Inliner); |
| Inliner = nullptr; |
| RunInliner = true; |
| } |
| |
| // Infer attributes on declarations, call sites, arguments, etc. for an SCC. |
| if (AttributorRun & AttributorRunOption::CGSCC) |
| MPM.add(createAttributorCGSCCLegacyPass()); |
| |
| // Try to perform OpenMP specific optimizations. This is a (quick!) no-op if |
| // there are no OpenMP runtime calls present in the module. |
| if (OptLevel > 1) |
| MPM.add(createOpenMPOptCGSCCLegacyPass()); |
| |
| MPM.add(createPostOrderFunctionAttrsLegacyPass()); |
| if (OptLevel > 2) |
| MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args |
| |
| addExtensionsToPM(EP_CGSCCOptimizerLate, MPM); |
| addFunctionSimplificationPasses(MPM); |
| |
| // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC |
| // pass manager that we are specifically trying to avoid. To prevent this |
| // we must insert a no-op module pass to reset the pass manager. |
| MPM.add(createBarrierNoopPass()); |
| |
| if (RunPartialInlining) |
| MPM.add(createPartialInliningPass()); |
| |
| if (OptLevel > 1 && !PrepareForLTO && !PrepareForThinLTO) |
| // Remove avail extern fns and globals definitions if we aren't |
| // compiling an object file for later LTO. For LTO we want to preserve |
| // these so they are eligible for inlining at link-time. Note if they |
| // are unreferenced they will be removed by GlobalDCE later, so |
| // this only impacts referenced available externally globals. |
| // Eventually they will be suppressed during codegen, but eliminating |
| // here enables more opportunity for GlobalDCE as it may make |
| // globals referenced by available external functions dead |
| // and saves running remaining passes on the eliminated functions. |
| MPM.add(createEliminateAvailableExternallyPass()); |
| |
| // CSFDO instrumentation and use pass. Don't invoke this for Prepare pass |
| // for LTO and ThinLTO -- The actual pass will be called after all inlines |
| // are performed. |
| // Need to do this after COMDAT variables have been eliminated, |
| // (i.e. after EliminateAvailableExternallyPass). |
| if (!(PrepareForLTO || PrepareForThinLTO)) |
| addPGOInstrPasses(MPM, /* IsCS */ true); |
| |
| if (EnableOrderFileInstrumentation) |
| MPM.add(createInstrOrderFilePass()); |
| |
| MPM.add(createReversePostOrderFunctionAttrsPass()); |
| |
| // The inliner performs some kind of dead code elimination as it goes, |
| // but there are cases that are not really caught by it. We might |
| // at some point consider teaching the inliner about them, but it |
| // is OK for now to run GlobalOpt + GlobalDCE in tandem as their |
| // benefits generally outweight the cost, making the whole pipeline |
| // faster. |
| if (RunInliner) { |
| MPM.add(createGlobalOptimizerPass()); |
| MPM.add(createGlobalDCEPass()); |
| } |
| |
| // If we are planning to perform ThinLTO later, let's not bloat the code with |
| // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes |
| // during ThinLTO and perform the rest of the optimizations afterward. |
| if (PrepareForThinLTO) { |
| // Ensure we perform any last passes, but do so before renaming anonymous |
| // globals in case the passes add any. |
| addExtensionsToPM(EP_OptimizerLast, MPM); |
| MPM.add(createCanonicalizeAliasesPass()); |
| // Rename anon globals to be able to export them in the summary. |
| MPM.add(createNameAnonGlobalPass()); |
| return; |
| } |
| |
| if (PerformThinLTO) |
| // Optimize globals now when performing ThinLTO, this enables more |
| // optimizations later. |
| MPM.add(createGlobalOptimizerPass()); |
| |
| // Scheduling LoopVersioningLICM when inlining is over, because after that |
| // we may see more accurate aliasing. Reason to run this late is that too |
| // early versioning may prevent further inlining due to increase of code |
| // size. By placing it just after inlining other optimizations which runs |
| // later might get benefit of no-alias assumption in clone loop. |
| if (UseLoopVersioningLICM) { |
| MPM.add(createLoopVersioningLICMPass()); // Do LoopVersioningLICM |
| MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); |
| } |
| |
| // We add a fresh GlobalsModRef run at this point. This is particularly |
| // useful as the above will have inlined, DCE'ed, and function-attr |
| // propagated everything. We should at this point have a reasonably minimal |
| // and richly annotated call graph. By computing aliasing and mod/ref |
| // information for all local globals here, the late loop passes and notably |
| // the vectorizer will be able to use them to help recognize vectorizable |
| // memory operations. |
| // |
| // Note that this relies on a bug in the pass manager which preserves |
| // a module analysis into a function pass pipeline (and throughout it) so |
| // long as the first function pass doesn't invalidate the module analysis. |
| // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for |
| // this to work. Fortunately, it is trivial to preserve AliasAnalysis |
| // (doing nothing preserves it as it is required to be conservatively |
| // correct in the face of IR changes). |
| MPM.add(createGlobalsAAWrapperPass()); |
| |
| MPM.add(createFloat2IntPass()); |
| MPM.add(createLowerConstantIntrinsicsPass()); |
| |
| if (EnableMatrix) { |
| MPM.add(createLowerMatrixIntrinsicsPass()); |
| // CSE the pointer arithmetic of the column vectors. This allows alias |
| // analysis to establish no-aliasing between loads and stores of different |
| // columns of the same matrix. |
| MPM.add(createEarlyCSEPass(false)); |
| } |
| |
| addExtensionsToPM(EP_VectorizerStart, MPM); |
| |
| // Re-rotate loops in all our loop nests. These may have fallout out of |
| // rotated form due to GVN or other transformations, and the vectorizer relies |
| // on the rotated form. Disable header duplication at -Oz. |
| MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1, PrepareForLTO)); |
| |
| // Distribute loops to allow partial vectorization. I.e. isolate dependences |
| // into separate loop that would otherwise inhibit vectorization. This is |
| // currently only performed for loops marked with the metadata |
| // llvm.loop.distribute=true or when -enable-loop-distribute is specified. |
| MPM.add(createLoopDistributePass()); |
| |
| addVectorPasses(MPM, /* IsFullLTO */ false); |
| |
| // FIXME: We shouldn't bother with this anymore. |
| MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes |
| |
| // GlobalOpt already deletes dead functions and globals, at -O2 try a |
| // late pass of GlobalDCE. It is capable of deleting dead cycles. |
| if (OptLevel > 1) { |
| MPM.add(createGlobalDCEPass()); // Remove dead fns and globals. |
| MPM.add(createConstantMergePass()); // Merge dup global constants |
| } |
| |
| // See comment in the new PM for justification of scheduling splitting at |
| // this stage (\ref buildModuleSimplificationPipeline). |
| if (EnableHotColdSplit && !(PrepareForLTO || PrepareForThinLTO)) |
| MPM.add(createHotColdSplittingPass()); |
| |
| if (EnableIROutliner) |
| MPM.add(createIROutlinerPass()); |
| |
| if (MergeFunctions) |
| MPM.add(createMergeFunctionsPass()); |
| |
| // Add Module flag "CG Profile" based on Branch Frequency Information. |
| if (CallGraphProfile) |
| MPM.add(createCGProfileLegacyPass()); |
| |
| // LoopSink pass sinks instructions hoisted by LICM, which serves as a |
| // canonicalization pass that enables other optimizations. As a result, |
| // LoopSink pass needs to be a very late IR pass to avoid undoing LICM |
| // result too early. |
| MPM.add(createLoopSinkPass()); |
| // Get rid of LCSSA nodes. |
| MPM.add(createInstSimplifyLegacyPass()); |
| |
| // This hoists/decomposes div/rem ops. It should run after other sink/hoist |
| // passes to avoid re-sinking, but before SimplifyCFG because it can allow |
| // flattening of blocks. |
| MPM.add(createDivRemPairsPass()); |
| |
| // LoopSink (and other loop passes since the last simplifyCFG) might have |
| // resulted in single-entry-single-exit or empty blocks. Clean up the CFG. |
| MPM.add(createCFGSimplificationPass()); |
| |
| addExtensionsToPM(EP_OptimizerLast, MPM); |
| |
| if (PrepareForLTO) { |
| MPM.add(createCanonicalizeAliasesPass()); |
| // Rename anon globals to be able to handle them in the summary |
| MPM.add(createNameAnonGlobalPass()); |
| } |
| |
| MPM.add(createAnnotationRemarksLegacyPass()); |
| } |
| |
| void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) { |
| // Load sample profile before running the LTO optimization pipeline. |
| if (!PGOSampleUse.empty()) { |
| PM.add(createPruneEHPass()); |
| PM.add(createSampleProfileLoaderPass(PGOSampleUse)); |
| } |
| |
| // Remove unused virtual tables to improve the quality of code generated by |
| // whole-program devirtualization and bitset lowering. |
| PM.add(createGlobalDCEPass()); |
| |
| // Provide AliasAnalysis services for optimizations. |
| addInitialAliasAnalysisPasses(PM); |
| |
| // Allow forcing function attributes as a debugging and tuning aid. |
| PM.add(createForceFunctionAttrsLegacyPass()); |
| |
| // Infer attributes about declarations if possible. |
| PM.add(createInferFunctionAttrsLegacyPass()); |
| |
| if (OptLevel > 1) { |
| // Split call-site with more constrained arguments. |
| PM.add(createCallSiteSplittingPass()); |
| |
| // Indirect call promotion. This should promote all the targets that are |
| // left by the earlier promotion pass that promotes intra-module targets. |
| // This two-step promotion is to save the compile time. For LTO, it should |
| // produce the same result as if we only do promotion here. |
| PM.add( |
| createPGOIndirectCallPromotionLegacyPass(true, !PGOSampleUse.empty())); |
| |
| // Propage constant function arguments by specializing the functions. |
| if (EnableFunctionSpecialization && OptLevel > 2) |
| PM.add(createFunctionSpecializationPass()); |
| |
| // Propagate constants at call sites into the functions they call. This |
| // opens opportunities for globalopt (and inlining) by substituting function |
| // pointers passed as arguments to direct uses of functions. |
| PM.add(createIPSCCPPass()); |
| |
| // Attach metadata to indirect call sites indicating the set of functions |
| // they may target at run-time. This should follow IPSCCP. |
| PM.add(createCalledValuePropagationPass()); |
| |
| // Infer attributes on declarations, call sites, arguments, etc. |
| if (AttributorRun & AttributorRunOption::MODULE) |
| PM.add(createAttributorLegacyPass()); |
| } |
| |
| // Infer attributes about definitions. The readnone attribute in particular is |
| // required for virtual constant propagation. |
| PM.add(createPostOrderFunctionAttrsLegacyPass()); |
| PM.add(createReversePostOrderFunctionAttrsPass()); |
| |
| // Split globals using inrange annotations on GEP indices. This can help |
| // improve the quality of generated code when virtual constant propagation or |
| // control flow integrity are enabled. |
| PM.add(createGlobalSplitPass()); |
| |
| // Apply whole-program devirtualization and virtual constant propagation. |
| PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr)); |
| |
| // That's all we need at opt level 1. |
| if (OptLevel == 1) |
| return; |
| |
| // Now that we internalized some globals, see if we can hack on them! |
| PM.add(createGlobalOptimizerPass()); |
| // Promote any localized global vars. |
| PM.add(createPromoteMemoryToRegisterPass()); |
| |
| // Linking modules together can lead to duplicated global constants, only |
| // keep one copy of each constant. |
| PM.add(createConstantMergePass()); |
| |
| // Remove unused arguments from functions. |
| PM.add(createDeadArgEliminationPass()); |
| |
| // Reduce the code after globalopt and ipsccp. Both can open up significant |
| // simplification opportunities, and both can propagate functions through |
| // function pointers. When this happens, we often have to resolve varargs |
| // calls, etc, so let instcombine do this. |
| if (OptLevel > 2) |
| PM.add(createAggressiveInstCombinerPass()); |
| PM.add(createInstructionCombiningPass()); |
| addExtensionsToPM(EP_Peephole, PM); |
| |
| // Inline small functions |
| bool RunInliner = Inliner; |
| if (RunInliner) { |
| PM.add(Inliner); |
| Inliner = nullptr; |
| } |
| |
| PM.add(createPruneEHPass()); // Remove dead EH info. |
| |
| // CSFDO instrumentation and use pass. |
| addPGOInstrPasses(PM, /* IsCS */ true); |
| |
| // Infer attributes on declarations, call sites, arguments, etc. for an SCC. |
| if (AttributorRun & AttributorRunOption::CGSCC) |
| PM.add(createAttributorCGSCCLegacyPass()); |
| |
| // Try to perform OpenMP specific optimizations. This is a (quick!) no-op if |
| // there are no OpenMP runtime calls present in the module. |
| if (OptLevel > 1) |
| PM.add(createOpenMPOptCGSCCLegacyPass()); |
| |
| // Optimize globals again if we ran the inliner. |
| if (RunInliner) |
| PM.add(createGlobalOptimizerPass()); |
| PM.add(createGlobalDCEPass()); // Remove dead functions. |
| |
| // If we didn't decide to inline a function, check to see if we can |
| // transform it to pass arguments by value instead of by reference. |
| PM.add(createArgumentPromotionPass()); |
| |
| // The IPO passes may leave cruft around. Clean up after them. |
| PM.add(createInstructionCombiningPass()); |
| addExtensionsToPM(EP_Peephole, PM); |
| PM.add(createJumpThreadingPass(/*FreezeSelectCond*/ true)); |
| |
| // Break up allocas |
| PM.add(createSROAPass()); |
| |
| // LTO provides additional opportunities for tailcall elimination due to |
| // link-time inlining, and visibility of nocapture attribute. |
| if (OptLevel > 1) |
| PM.add(createTailCallEliminationPass()); |
| |
| // Infer attributes on declarations, call sites, arguments, etc. |
| PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture. |
| // Run a few AA driven optimizations here and now, to cleanup the code. |
| PM.add(createGlobalsAAWrapperPass()); // IP alias analysis. |
| |
| PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); |
| PM.add(NewGVN ? createNewGVNPass() |
| : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies. |
| PM.add(createMemCpyOptPass()); // Remove dead memcpys. |
| |
| // Nuke dead stores. |
| PM.add(createDeadStoreEliminationPass()); |
| PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds. |
| |
| // More loops are countable; try to optimize them. |
| if (EnableLoopFlatten) |
| PM.add(createLoopFlattenPass()); |
| PM.add(createIndVarSimplifyPass()); |
| PM.add(createLoopDeletionPass()); |
| if (EnableLoopInterchange) |
| PM.add(createLoopInterchangePass()); |
| |
| if (EnableConstraintElimination) |
| PM.add(createConstraintEliminationPass()); |
| |
| // Unroll small loops and perform peeling. |
| PM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops, |
| ForgetAllSCEVInLoopUnroll)); |
| PM.add(createLoopDistributePass()); |
| |
| addVectorPasses(PM, /* IsFullLTO */ true); |
| |
| addExtensionsToPM(EP_Peephole, PM); |
| |
| PM.add(createJumpThreadingPass(/*FreezeSelectCond*/ true)); |
| } |
| |
| void PassManagerBuilder::addLateLTOOptimizationPasses( |
| legacy::PassManagerBase &PM) { |
| // See comment in the new PM for justification of scheduling splitting at |
| // this stage (\ref buildLTODefaultPipeline). |
| if (EnableHotColdSplit) |
| PM.add(createHotColdSplittingPass()); |
| |
| // Delete basic blocks, which optimization passes may have killed. |
| PM.add( |
| createCFGSimplificationPass(SimplifyCFGOptions().hoistCommonInsts(true))); |
| |
| // Drop bodies of available externally objects to improve GlobalDCE. |
| PM.add(createEliminateAvailableExternallyPass()); |
| |
| // Now that we have optimized the program, discard unreachable functions. |
| PM.add(createGlobalDCEPass()); |
| |
| // FIXME: this is profitable (for compiler time) to do at -O0 too, but |
| // currently it damages debug info. |
| if (MergeFunctions) |
| PM.add(createMergeFunctionsPass()); |
| } |
| |
| void PassManagerBuilder::populateThinLTOPassManager( |
| legacy::PassManagerBase &PM) { |
| PerformThinLTO = true; |
| if (LibraryInfo) |
| PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); |
| |
| if (VerifyInput) |
| PM.add(createVerifierPass()); |
| |
| if (ImportSummary) { |
| // This pass imports type identifier resolutions for whole-program |
| // devirtualization and CFI. It must run early because other passes may |
| // disturb the specific instruction patterns that these passes look for, |
| // creating dependencies on resolutions that may not appear in the summary. |
| // |
| // For example, GVN may transform the pattern assume(type.test) appearing in |
| // two basic blocks into assume(phi(type.test, type.test)), which would |
| // transform a dependency on a WPD resolution into a dependency on a type |
| // identifier resolution for CFI. |
| // |
| // Also, WPD has access to more precise information than ICP and can |
| // devirtualize more effectively, so it should operate on the IR first. |
| PM.add(createWholeProgramDevirtPass(nullptr, ImportSummary)); |
| PM.add(createLowerTypeTestsPass(nullptr, ImportSummary)); |
| } |
| |
| populateModulePassManager(PM); |
| |
| if (VerifyOutput) |
| PM.add(createVerifierPass()); |
| PerformThinLTO = false; |
| } |
| |
| void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) { |
| if (LibraryInfo) |
| PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); |
| |
| if (VerifyInput) |
| PM.add(createVerifierPass()); |
| |
| addExtensionsToPM(EP_FullLinkTimeOptimizationEarly, PM); |
| |
| if (OptLevel != 0) |
| addLTOOptimizationPasses(PM); |
| else { |
| // The whole-program-devirt pass needs to run at -O0 because only it knows |
| // about the llvm.type.checked.load intrinsic: it needs to both lower the |
| // intrinsic itself and handle it in the summary. |
| PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr)); |
| } |
| |
| // Create a function that performs CFI checks for cross-DSO calls with targets |
| // in the current module. |
| PM.add(createCrossDSOCFIPass()); |
| |
| // Lower type metadata and the type.test intrinsic. This pass supports Clang's |
| // control flow integrity mechanisms (-fsanitize=cfi*) and needs to run at |
| // link time if CFI is enabled. The pass does nothing if CFI is disabled. |
| PM.add(createLowerTypeTestsPass(ExportSummary, nullptr)); |
| // Run a second time to clean up any type tests left behind by WPD for use |
| // in ICP (which is performed earlier than this in the regular LTO pipeline). |
| PM.add(createLowerTypeTestsPass(nullptr, nullptr, true)); |
| |
| if (OptLevel != 0) |
| addLateLTOOptimizationPasses(PM); |
| |
| addExtensionsToPM(EP_FullLinkTimeOptimizationLast, PM); |
| |
| PM.add(createAnnotationRemarksLegacyPass()); |
| |
| if (VerifyOutput) |
| PM.add(createVerifierPass()); |
| } |
| |
| LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() { |
| PassManagerBuilder *PMB = new PassManagerBuilder(); |
| return wrap(PMB); |
| } |
| |
| void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) { |
| PassManagerBuilder *Builder = unwrap(PMB); |
| delete Builder; |
| } |
| |
| void |
| LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB, |
| unsigned OptLevel) { |
| PassManagerBuilder *Builder = unwrap(PMB); |
| Builder->OptLevel = OptLevel; |
| } |
| |
| void |
| LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB, |
| unsigned SizeLevel) { |
| PassManagerBuilder *Builder = unwrap(PMB); |
| Builder->SizeLevel = SizeLevel; |
| } |
| |
| void |
| LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB, |
| LLVMBool Value) { |
| // NOTE: The DisableUnitAtATime switch has been removed. |
| } |
| |
| void |
| LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB, |
| LLVMBool Value) { |
| PassManagerBuilder *Builder = unwrap(PMB); |
| Builder->DisableUnrollLoops = Value; |
| } |
| |
| void |
| LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB, |
| LLVMBool Value) { |
| // NOTE: The simplify-libcalls pass has been removed. |
| } |
| |
| void |
| LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB, |
| unsigned Threshold) { |
| PassManagerBuilder *Builder = unwrap(PMB); |
| Builder->Inliner = createFunctionInliningPass(Threshold); |
| } |
| |
| void |
| LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB, |
| LLVMPassManagerRef PM) { |
| PassManagerBuilder *Builder = unwrap(PMB); |
| legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM); |
| Builder->populateFunctionPassManager(*FPM); |
| } |
| |
| void |
| LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB, |
| LLVMPassManagerRef PM) { |
| PassManagerBuilder *Builder = unwrap(PMB); |
| legacy::PassManagerBase *MPM = unwrap(PM); |
| Builder->populateModulePassManager(*MPM); |
| } |
| |
| void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB, |
| LLVMPassManagerRef PM, |
| LLVMBool Internalize, |
| LLVMBool RunInliner) { |
| PassManagerBuilder *Builder = unwrap(PMB); |
| legacy::PassManagerBase *LPM = unwrap(PM); |
| |
| // A small backwards compatibility hack. populateLTOPassManager used to take |
| // an RunInliner option. |
| if (RunInliner && !Builder->Inliner) |
| Builder->Inliner = createFunctionInliningPass(); |
| |
| Builder->populateLTOPassManager(*LPM); |
| } |