| //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // OpenMP specific optimizations: |
| // |
| // - Deduplication of runtime calls, e.g., omp_get_thread_num. |
| // - Replacing globalized device memory with stack memory. |
| // - Replacing globalized device memory with shared memory. |
| // - Parallel region merging. |
| // - Transforming generic-mode device kernels to SPMD mode. |
| // - Specializing the state machine for generic-mode device kernels. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/IPO/OpenMPOpt.h" |
| |
| #include "llvm/ADT/EnumeratedArray.h" |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Analysis/CallGraph.h" |
| #include "llvm/Analysis/CallGraphSCCPass.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Frontend/OpenMP/OMPConstants.h" |
| #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" |
| #include "llvm/IR/Assumptions.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/IntrinsicsAMDGPU.h" |
| #include "llvm/IR/IntrinsicsNVPTX.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Transforms/IPO.h" |
| #include "llvm/Transforms/IPO/Attributor.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/CallGraphUpdater.h" |
| #include "llvm/Transforms/Utils/CodeExtractor.h" |
| |
| #include <algorithm> |
| |
| using namespace llvm; |
| using namespace omp; |
| |
| #define DEBUG_TYPE "openmp-opt" |
| |
| static cl::opt<bool> DisableOpenMPOptimizations( |
| "openmp-opt-disable", cl::ZeroOrMore, |
| cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, |
| cl::init(false)); |
| |
| static cl::opt<bool> EnableParallelRegionMerging( |
| "openmp-opt-enable-merging", cl::ZeroOrMore, |
| cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, |
| cl::init(false)); |
| |
| static cl::opt<bool> |
| DisableInternalization("openmp-opt-disable-internalization", cl::ZeroOrMore, |
| cl::desc("Disable function internalization."), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), |
| cl::Hidden); |
| static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", |
| cl::init(false), cl::Hidden); |
| |
| static cl::opt<bool> HideMemoryTransferLatency( |
| "openmp-hide-memory-transfer-latency", |
| cl::desc("[WIP] Tries to hide the latency of host to device memory" |
| " transfers"), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<bool> DisableOpenMPOptDeglobalization( |
| "openmp-opt-disable-deglobalization", cl::ZeroOrMore, |
| cl::desc("Disable OpenMP optimizations involving deglobalization."), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<bool> DisableOpenMPOptSPMDization( |
| "openmp-opt-disable-spmdization", cl::ZeroOrMore, |
| cl::desc("Disable OpenMP optimizations involving SPMD-ization."), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<bool> DisableOpenMPOptFolding( |
| "openmp-opt-disable-folding", cl::ZeroOrMore, |
| cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden, |
| cl::init(false)); |
| |
| static cl::opt<bool> DisableOpenMPOptStateMachineRewrite( |
| "openmp-opt-disable-state-machine-rewrite", cl::ZeroOrMore, |
| cl::desc("Disable OpenMP optimizations that replace the state machine."), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<bool> PrintModuleAfterOptimizations( |
| "openmp-opt-print-module", cl::ZeroOrMore, |
| cl::desc("Print the current module after OpenMP optimizations."), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<bool> AlwaysInlineDeviceFunctions( |
| "openmp-opt-inline-device", cl::ZeroOrMore, |
| cl::desc("Inline all applicible functions on the device."), cl::Hidden, |
| cl::init(false)); |
| |
| static cl::opt<bool> |
| EnableVerboseRemarks("openmp-opt-verbose-remarks", cl::ZeroOrMore, |
| cl::desc("Enables more verbose remarks."), cl::Hidden, |
| cl::init(false)); |
| |
| static cl::opt<unsigned> |
| SetFixpointIterations("openmp-opt-max-iterations", cl::Hidden, |
| cl::desc("Maximal number of attributor iterations."), |
| cl::init(256)); |
| |
| STATISTIC(NumOpenMPRuntimeCallsDeduplicated, |
| "Number of OpenMP runtime calls deduplicated"); |
| STATISTIC(NumOpenMPParallelRegionsDeleted, |
| "Number of OpenMP parallel regions deleted"); |
| STATISTIC(NumOpenMPRuntimeFunctionsIdentified, |
| "Number of OpenMP runtime functions identified"); |
| STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, |
| "Number of OpenMP runtime function uses identified"); |
| STATISTIC(NumOpenMPTargetRegionKernels, |
| "Number of OpenMP target region entry points (=kernels) identified"); |
| STATISTIC(NumOpenMPTargetRegionKernelsSPMD, |
| "Number of OpenMP target region entry points (=kernels) executed in " |
| "SPMD-mode instead of generic-mode"); |
| STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, |
| "Number of OpenMP target region entry points (=kernels) executed in " |
| "generic-mode without a state machines"); |
| STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, |
| "Number of OpenMP target region entry points (=kernels) executed in " |
| "generic-mode with customized state machines with fallback"); |
| STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, |
| "Number of OpenMP target region entry points (=kernels) executed in " |
| "generic-mode with customized state machines without fallback"); |
| STATISTIC( |
| NumOpenMPParallelRegionsReplacedInGPUStateMachine, |
| "Number of OpenMP parallel regions replaced with ID in GPU state machines"); |
| STATISTIC(NumOpenMPParallelRegionsMerged, |
| "Number of OpenMP parallel regions merged"); |
| STATISTIC(NumBytesMovedToSharedMemory, |
| "Amount of memory pushed to shared memory"); |
| |
| #if !defined(NDEBUG) |
| static constexpr auto TAG = "[" DEBUG_TYPE "]"; |
| #endif |
| |
| namespace { |
| |
| enum class AddressSpace : unsigned { |
| Generic = 0, |
| Global = 1, |
| Shared = 3, |
| Constant = 4, |
| Local = 5, |
| }; |
| |
| struct AAHeapToShared; |
| |
| struct AAICVTracker; |
| |
| /// OpenMP specific information. For now, stores RFIs and ICVs also needed for |
| /// Attributor runs. |
| struct OMPInformationCache : public InformationCache { |
| OMPInformationCache(Module &M, AnalysisGetter &AG, |
| BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, |
| SmallPtrSetImpl<Kernel> &Kernels) |
| : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), |
| Kernels(Kernels) { |
| |
| OMPBuilder.initialize(); |
| initializeRuntimeFunctions(); |
| initializeInternalControlVars(); |
| } |
| |
| /// Generic information that describes an internal control variable. |
| struct InternalControlVarInfo { |
| /// The kind, as described by InternalControlVar enum. |
| InternalControlVar Kind; |
| |
| /// The name of the ICV. |
| StringRef Name; |
| |
| /// Environment variable associated with this ICV. |
| StringRef EnvVarName; |
| |
| /// Initial value kind. |
| ICVInitValue InitKind; |
| |
| /// Initial value. |
| ConstantInt *InitValue; |
| |
| /// Setter RTL function associated with this ICV. |
| RuntimeFunction Setter; |
| |
| /// Getter RTL function associated with this ICV. |
| RuntimeFunction Getter; |
| |
| /// RTL Function corresponding to the override clause of this ICV |
| RuntimeFunction Clause; |
| }; |
| |
| /// Generic information that describes a runtime function |
| struct RuntimeFunctionInfo { |
| |
| /// The kind, as described by the RuntimeFunction enum. |
| RuntimeFunction Kind; |
| |
| /// The name of the function. |
| StringRef Name; |
| |
| /// Flag to indicate a variadic function. |
| bool IsVarArg; |
| |
| /// The return type of the function. |
| Type *ReturnType; |
| |
| /// The argument types of the function. |
| SmallVector<Type *, 8> ArgumentTypes; |
| |
| /// The declaration if available. |
| Function *Declaration = nullptr; |
| |
| /// Uses of this runtime function per function containing the use. |
| using UseVector = SmallVector<Use *, 16>; |
| |
| /// Clear UsesMap for runtime function. |
| void clearUsesMap() { UsesMap.clear(); } |
| |
| /// Boolean conversion that is true if the runtime function was found. |
| operator bool() const { return Declaration; } |
| |
| /// Return the vector of uses in function \p F. |
| UseVector &getOrCreateUseVector(Function *F) { |
| std::shared_ptr<UseVector> &UV = UsesMap[F]; |
| if (!UV) |
| UV = std::make_shared<UseVector>(); |
| return *UV; |
| } |
| |
| /// Return the vector of uses in function \p F or `nullptr` if there are |
| /// none. |
| const UseVector *getUseVector(Function &F) const { |
| auto I = UsesMap.find(&F); |
| if (I != UsesMap.end()) |
| return I->second.get(); |
| return nullptr; |
| } |
| |
| /// Return how many functions contain uses of this runtime function. |
| size_t getNumFunctionsWithUses() const { return UsesMap.size(); } |
| |
| /// Return the number of arguments (or the minimal number for variadic |
| /// functions). |
| size_t getNumArgs() const { return ArgumentTypes.size(); } |
| |
| /// Run the callback \p CB on each use and forget the use if the result is |
| /// true. The callback will be fed the function in which the use was |
| /// encountered as second argument. |
| void foreachUse(SmallVectorImpl<Function *> &SCC, |
| function_ref<bool(Use &, Function &)> CB) { |
| for (Function *F : SCC) |
| foreachUse(CB, F); |
| } |
| |
| /// Run the callback \p CB on each use within the function \p F and forget |
| /// the use if the result is true. |
| void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { |
| SmallVector<unsigned, 8> ToBeDeleted; |
| ToBeDeleted.clear(); |
| |
| unsigned Idx = 0; |
| UseVector &UV = getOrCreateUseVector(F); |
| |
| for (Use *U : UV) { |
| if (CB(*U, *F)) |
| ToBeDeleted.push_back(Idx); |
| ++Idx; |
| } |
| |
| // Remove the to-be-deleted indices in reverse order as prior |
| // modifications will not modify the smaller indices. |
| while (!ToBeDeleted.empty()) { |
| unsigned Idx = ToBeDeleted.pop_back_val(); |
| UV[Idx] = UV.back(); |
| UV.pop_back(); |
| } |
| } |
| |
| private: |
| /// Map from functions to all uses of this runtime function contained in |
| /// them. |
| DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; |
| |
| public: |
| /// Iterators for the uses of this runtime function. |
| decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } |
| decltype(UsesMap)::iterator end() { return UsesMap.end(); } |
| }; |
| |
| /// An OpenMP-IR-Builder instance |
| OpenMPIRBuilder OMPBuilder; |
| |
| /// Map from runtime function kind to the runtime function description. |
| EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, |
| RuntimeFunction::OMPRTL___last> |
| RFIs; |
| |
| /// Map from function declarations/definitions to their runtime enum type. |
| DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; |
| |
| /// Map from ICV kind to the ICV description. |
| EnumeratedArray<InternalControlVarInfo, InternalControlVar, |
| InternalControlVar::ICV___last> |
| ICVs; |
| |
| /// Helper to initialize all internal control variable information for those |
| /// defined in OMPKinds.def. |
| void initializeInternalControlVars() { |
| #define ICV_RT_SET(_Name, RTL) \ |
| { \ |
| auto &ICV = ICVs[_Name]; \ |
| ICV.Setter = RTL; \ |
| } |
| #define ICV_RT_GET(Name, RTL) \ |
| { \ |
| auto &ICV = ICVs[Name]; \ |
| ICV.Getter = RTL; \ |
| } |
| #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ |
| { \ |
| auto &ICV = ICVs[Enum]; \ |
| ICV.Name = _Name; \ |
| ICV.Kind = Enum; \ |
| ICV.InitKind = Init; \ |
| ICV.EnvVarName = _EnvVarName; \ |
| switch (ICV.InitKind) { \ |
| case ICV_IMPLEMENTATION_DEFINED: \ |
| ICV.InitValue = nullptr; \ |
| break; \ |
| case ICV_ZERO: \ |
| ICV.InitValue = ConstantInt::get( \ |
| Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ |
| break; \ |
| case ICV_FALSE: \ |
| ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ |
| break; \ |
| case ICV_LAST: \ |
| break; \ |
| } \ |
| } |
| #include "llvm/Frontend/OpenMP/OMPKinds.def" |
| } |
| |
| /// Returns true if the function declaration \p F matches the runtime |
| /// function types, that is, return type \p RTFRetType, and argument types |
| /// \p RTFArgTypes. |
| static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, |
| SmallVector<Type *, 8> &RTFArgTypes) { |
| // TODO: We should output information to the user (under debug output |
| // and via remarks). |
| |
| if (!F) |
| return false; |
| if (F->getReturnType() != RTFRetType) |
| return false; |
| if (F->arg_size() != RTFArgTypes.size()) |
| return false; |
| |
| auto *RTFTyIt = RTFArgTypes.begin(); |
| for (Argument &Arg : F->args()) { |
| if (Arg.getType() != *RTFTyIt) |
| return false; |
| |
| ++RTFTyIt; |
| } |
| |
| return true; |
| } |
| |
| // Helper to collect all uses of the declaration in the UsesMap. |
| unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { |
| unsigned NumUses = 0; |
| if (!RFI.Declaration) |
| return NumUses; |
| OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); |
| |
| if (CollectStats) { |
| NumOpenMPRuntimeFunctionsIdentified += 1; |
| NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); |
| } |
| |
| // TODO: We directly convert uses into proper calls and unknown uses. |
| for (Use &U : RFI.Declaration->uses()) { |
| if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { |
| if (ModuleSlice.count(UserI->getFunction())) { |
| RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); |
| ++NumUses; |
| } |
| } else { |
| RFI.getOrCreateUseVector(nullptr).push_back(&U); |
| ++NumUses; |
| } |
| } |
| return NumUses; |
| } |
| |
| // Helper function to recollect uses of a runtime function. |
| void recollectUsesForFunction(RuntimeFunction RTF) { |
| auto &RFI = RFIs[RTF]; |
| RFI.clearUsesMap(); |
| collectUses(RFI, /*CollectStats*/ false); |
| } |
| |
| // Helper function to recollect uses of all runtime functions. |
| void recollectUses() { |
| for (int Idx = 0; Idx < RFIs.size(); ++Idx) |
| recollectUsesForFunction(static_cast<RuntimeFunction>(Idx)); |
| } |
| |
| /// Helper to initialize all runtime function information for those defined |
| /// in OpenMPKinds.def. |
| void initializeRuntimeFunctions() { |
| Module &M = *((*ModuleSlice.begin())->getParent()); |
| |
| // Helper macros for handling __VA_ARGS__ in OMP_RTL |
| #define OMP_TYPE(VarName, ...) \ |
| Type *VarName = OMPBuilder.VarName; \ |
| (void)VarName; |
| |
| #define OMP_ARRAY_TYPE(VarName, ...) \ |
| ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ |
| (void)VarName##Ty; \ |
| PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ |
| (void)VarName##PtrTy; |
| |
| #define OMP_FUNCTION_TYPE(VarName, ...) \ |
| FunctionType *VarName = OMPBuilder.VarName; \ |
| (void)VarName; \ |
| PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ |
| (void)VarName##Ptr; |
| |
| #define OMP_STRUCT_TYPE(VarName, ...) \ |
| StructType *VarName = OMPBuilder.VarName; \ |
| (void)VarName; \ |
| PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ |
| (void)VarName##Ptr; |
| |
| #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ |
| { \ |
| SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ |
| Function *F = M.getFunction(_Name); \ |
| RTLFunctions.insert(F); \ |
| if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ |
| RuntimeFunctionIDMap[F] = _Enum; \ |
| F->removeFnAttr(Attribute::NoInline); \ |
| auto &RFI = RFIs[_Enum]; \ |
| RFI.Kind = _Enum; \ |
| RFI.Name = _Name; \ |
| RFI.IsVarArg = _IsVarArg; \ |
| RFI.ReturnType = OMPBuilder._ReturnType; \ |
| RFI.ArgumentTypes = std::move(ArgsTypes); \ |
| RFI.Declaration = F; \ |
| unsigned NumUses = collectUses(RFI); \ |
| (void)NumUses; \ |
| LLVM_DEBUG({ \ |
| dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ |
| << " found\n"; \ |
| if (RFI.Declaration) \ |
| dbgs() << TAG << "-> got " << NumUses << " uses in " \ |
| << RFI.getNumFunctionsWithUses() \ |
| << " different functions.\n"; \ |
| }); \ |
| } \ |
| } |
| #include "llvm/Frontend/OpenMP/OMPKinds.def" |
| |
| // TODO: We should attach the attributes defined in OMPKinds.def. |
| } |
| |
| /// Collection of known kernels (\see Kernel) in the module. |
| SmallPtrSetImpl<Kernel> &Kernels; |
| |
| /// Collection of known OpenMP runtime functions.. |
| DenseSet<const Function *> RTLFunctions; |
| }; |
| |
| template <typename Ty, bool InsertInvalidates = true> |
| struct BooleanStateWithSetVector : public BooleanState { |
| bool contains(const Ty &Elem) const { return Set.contains(Elem); } |
| bool insert(const Ty &Elem) { |
| if (InsertInvalidates) |
| BooleanState::indicatePessimisticFixpoint(); |
| return Set.insert(Elem); |
| } |
| |
| const Ty &operator[](int Idx) const { return Set[Idx]; } |
| bool operator==(const BooleanStateWithSetVector &RHS) const { |
| return BooleanState::operator==(RHS) && Set == RHS.Set; |
| } |
| bool operator!=(const BooleanStateWithSetVector &RHS) const { |
| return !(*this == RHS); |
| } |
| |
| bool empty() const { return Set.empty(); } |
| size_t size() const { return Set.size(); } |
| |
| /// "Clamp" this state with \p RHS. |
| BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) { |
| BooleanState::operator^=(RHS); |
| Set.insert(RHS.Set.begin(), RHS.Set.end()); |
| return *this; |
| } |
| |
| private: |
| /// A set to keep track of elements. |
| SetVector<Ty> Set; |
| |
| public: |
| typename decltype(Set)::iterator begin() { return Set.begin(); } |
| typename decltype(Set)::iterator end() { return Set.end(); } |
| typename decltype(Set)::const_iterator begin() const { return Set.begin(); } |
| typename decltype(Set)::const_iterator end() const { return Set.end(); } |
| }; |
| |
| template <typename Ty, bool InsertInvalidates = true> |
| using BooleanStateWithPtrSetVector = |
| BooleanStateWithSetVector<Ty *, InsertInvalidates>; |
| |
| struct KernelInfoState : AbstractState { |
| /// Flag to track if we reached a fixpoint. |
| bool IsAtFixpoint = false; |
| |
| /// The parallel regions (identified by the outlined parallel functions) that |
| /// can be reached from the associated function. |
| BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false> |
| ReachedKnownParallelRegions; |
| |
| /// State to track what parallel region we might reach. |
| BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; |
| |
| /// State to track if we are in SPMD-mode, assumed or know, and why we decided |
| /// we cannot be. If it is assumed, then RequiresFullRuntime should also be |
| /// false. |
| BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker; |
| |
| /// The __kmpc_target_init call in this kernel, if any. If we find more than |
| /// one we abort as the kernel is malformed. |
| CallBase *KernelInitCB = nullptr; |
| |
| /// The __kmpc_target_deinit call in this kernel, if any. If we find more than |
| /// one we abort as the kernel is malformed. |
| CallBase *KernelDeinitCB = nullptr; |
| |
| /// Flag to indicate if the associated function is a kernel entry. |
| bool IsKernelEntry = false; |
| |
| /// State to track what kernel entries can reach the associated function. |
| BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries; |
| |
| /// State to indicate if we can track parallel level of the associated |
| /// function. We will give up tracking if we encounter unknown caller or the |
| /// caller is __kmpc_parallel_51. |
| BooleanStateWithSetVector<uint8_t> ParallelLevels; |
| |
| /// Abstract State interface |
| ///{ |
| |
| KernelInfoState() {} |
| KernelInfoState(bool BestState) { |
| if (!BestState) |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractState::isValidState(...) |
| bool isValidState() const override { return true; } |
| |
| /// See AbstractState::isAtFixpoint(...) |
| bool isAtFixpoint() const override { return IsAtFixpoint; } |
| |
| /// See AbstractState::indicatePessimisticFixpoint(...) |
| ChangeStatus indicatePessimisticFixpoint() override { |
| IsAtFixpoint = true; |
| ReachingKernelEntries.indicatePessimisticFixpoint(); |
| SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
| ReachedKnownParallelRegions.indicatePessimisticFixpoint(); |
| ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); |
| return ChangeStatus::CHANGED; |
| } |
| |
| /// See AbstractState::indicateOptimisticFixpoint(...) |
| ChangeStatus indicateOptimisticFixpoint() override { |
| IsAtFixpoint = true; |
| ReachingKernelEntries.indicateOptimisticFixpoint(); |
| SPMDCompatibilityTracker.indicateOptimisticFixpoint(); |
| ReachedKnownParallelRegions.indicateOptimisticFixpoint(); |
| ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); |
| return ChangeStatus::UNCHANGED; |
| } |
| |
| /// Return the assumed state |
| KernelInfoState &getAssumed() { return *this; } |
| const KernelInfoState &getAssumed() const { return *this; } |
| |
| bool operator==(const KernelInfoState &RHS) const { |
| if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) |
| return false; |
| if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) |
| return false; |
| if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) |
| return false; |
| if (ReachingKernelEntries != RHS.ReachingKernelEntries) |
| return false; |
| return true; |
| } |
| |
| /// Returns true if this kernel contains any OpenMP parallel regions. |
| bool mayContainParallelRegion() { |
| return !ReachedKnownParallelRegions.empty() || |
| !ReachedUnknownParallelRegions.empty(); |
| } |
| |
| /// Return empty set as the best state of potential values. |
| static KernelInfoState getBestState() { return KernelInfoState(true); } |
| |
| static KernelInfoState getBestState(KernelInfoState &KIS) { |
| return getBestState(); |
| } |
| |
| /// Return full set as the worst state of potential values. |
| static KernelInfoState getWorstState() { return KernelInfoState(false); } |
| |
| /// "Clamp" this state with \p KIS. |
| KernelInfoState operator^=(const KernelInfoState &KIS) { |
| // Do not merge two different _init and _deinit call sites. |
| if (KIS.KernelInitCB) { |
| if (KernelInitCB && KernelInitCB != KIS.KernelInitCB) |
| llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " |
| "assumptions."); |
| KernelInitCB = KIS.KernelInitCB; |
| } |
| if (KIS.KernelDeinitCB) { |
| if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) |
| llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " |
| "assumptions."); |
| KernelDeinitCB = KIS.KernelDeinitCB; |
| } |
| SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; |
| ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; |
| ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; |
| return *this; |
| } |
| |
| KernelInfoState operator&=(const KernelInfoState &KIS) { |
| return (*this ^= KIS); |
| } |
| |
| ///} |
| }; |
| |
| /// Used to map the values physically (in the IR) stored in an offload |
| /// array, to a vector in memory. |
| struct OffloadArray { |
| /// Physical array (in the IR). |
| AllocaInst *Array = nullptr; |
| /// Mapped values. |
| SmallVector<Value *, 8> StoredValues; |
| /// Last stores made in the offload array. |
| SmallVector<StoreInst *, 8> LastAccesses; |
| |
| OffloadArray() = default; |
| |
| /// Initializes the OffloadArray with the values stored in \p Array before |
| /// instruction \p Before is reached. Returns false if the initialization |
| /// fails. |
| /// This MUST be used immediately after the construction of the object. |
| bool initialize(AllocaInst &Array, Instruction &Before) { |
| if (!Array.getAllocatedType()->isArrayTy()) |
| return false; |
| |
| if (!getValues(Array, Before)) |
| return false; |
| |
| this->Array = &Array; |
| return true; |
| } |
| |
| static const unsigned DeviceIDArgNum = 1; |
| static const unsigned BasePtrsArgNum = 3; |
| static const unsigned PtrsArgNum = 4; |
| static const unsigned SizesArgNum = 5; |
| |
| private: |
| /// Traverses the BasicBlock where \p Array is, collecting the stores made to |
| /// \p Array, leaving StoredValues with the values stored before the |
| /// instruction \p Before is reached. |
| bool getValues(AllocaInst &Array, Instruction &Before) { |
| // Initialize container. |
| const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); |
| StoredValues.assign(NumValues, nullptr); |
| LastAccesses.assign(NumValues, nullptr); |
| |
| // TODO: This assumes the instruction \p Before is in the same |
| // BasicBlock as Array. Make it general, for any control flow graph. |
| BasicBlock *BB = Array.getParent(); |
| if (BB != Before.getParent()) |
| return false; |
| |
| const DataLayout &DL = Array.getModule()->getDataLayout(); |
| const unsigned int PointerSize = DL.getPointerSize(); |
| |
| for (Instruction &I : *BB) { |
| if (&I == &Before) |
| break; |
| |
| if (!isa<StoreInst>(&I)) |
| continue; |
| |
| auto *S = cast<StoreInst>(&I); |
| int64_t Offset = -1; |
| auto *Dst = |
| GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); |
| if (Dst == &Array) { |
| int64_t Idx = Offset / PointerSize; |
| StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); |
| LastAccesses[Idx] = S; |
| } |
| } |
| |
| return isFilled(); |
| } |
| |
| /// Returns true if all values in StoredValues and |
| /// LastAccesses are not nullptrs. |
| bool isFilled() { |
| const unsigned NumValues = StoredValues.size(); |
| for (unsigned I = 0; I < NumValues; ++I) { |
| if (!StoredValues[I] || !LastAccesses[I]) |
| return false; |
| } |
| |
| return true; |
| } |
| }; |
| |
| struct OpenMPOpt { |
| |
| using OptimizationRemarkGetter = |
| function_ref<OptimizationRemarkEmitter &(Function *)>; |
| |
| OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, |
| OptimizationRemarkGetter OREGetter, |
| OMPInformationCache &OMPInfoCache, Attributor &A) |
| : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), |
| OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} |
| |
| /// Check if any remarks are enabled for openmp-opt |
| bool remarksEnabled() { |
| auto &Ctx = M.getContext(); |
| return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); |
| } |
| |
| /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. |
| bool run(bool IsModulePass) { |
| if (SCC.empty()) |
| return false; |
| |
| bool Changed = false; |
| |
| LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() |
| << " functions in a slice with " |
| << OMPInfoCache.ModuleSlice.size() << " functions\n"); |
| |
| if (IsModulePass) { |
| Changed |= runAttributor(IsModulePass); |
| |
| // Recollect uses, in case Attributor deleted any. |
| OMPInfoCache.recollectUses(); |
| |
| // TODO: This should be folded into buildCustomStateMachine. |
| Changed |= rewriteDeviceCodeStateMachine(); |
| |
| if (remarksEnabled()) |
| analysisGlobalization(); |
| } else { |
| if (PrintICVValues) |
| printICVs(); |
| if (PrintOpenMPKernels) |
| printKernels(); |
| |
| Changed |= runAttributor(IsModulePass); |
| |
| // Recollect uses, in case Attributor deleted any. |
| OMPInfoCache.recollectUses(); |
| |
| Changed |= deleteParallelRegions(); |
| |
| if (HideMemoryTransferLatency) |
| Changed |= hideMemTransfersLatency(); |
| Changed |= deduplicateRuntimeCalls(); |
| if (EnableParallelRegionMerging) { |
| if (mergeParallelRegions()) { |
| deduplicateRuntimeCalls(); |
| Changed = true; |
| } |
| } |
| } |
| |
| return Changed; |
| } |
| |
| /// Print initial ICV values for testing. |
| /// FIXME: This should be done from the Attributor once it is added. |
| void printICVs() const { |
| InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, |
| ICV_proc_bind}; |
| |
| for (Function *F : OMPInfoCache.ModuleSlice) { |
| for (auto ICV : ICVs) { |
| auto ICVInfo = OMPInfoCache.ICVs[ICV]; |
| auto Remark = [&](OptimizationRemarkAnalysis ORA) { |
| return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) |
| << " Value: " |
| << (ICVInfo.InitValue |
| ? toString(ICVInfo.InitValue->getValue(), 10, true) |
| : "IMPLEMENTATION_DEFINED"); |
| }; |
| |
| emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark); |
| } |
| } |
| } |
| |
| /// Print OpenMP GPU kernels for testing. |
| void printKernels() const { |
| for (Function *F : SCC) { |
| if (!OMPInfoCache.Kernels.count(F)) |
| continue; |
| |
| auto Remark = [&](OptimizationRemarkAnalysis ORA) { |
| return ORA << "OpenMP GPU kernel " |
| << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; |
| }; |
| |
| emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark); |
| } |
| } |
| |
| /// Return the call if \p U is a callee use in a regular call. If \p RFI is |
| /// given it has to be the callee or a nullptr is returned. |
| static CallInst *getCallIfRegularCall( |
| Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { |
| CallInst *CI = dyn_cast<CallInst>(U.getUser()); |
| if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && |
| (!RFI || |
| (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) |
| return CI; |
| return nullptr; |
| } |
| |
| /// Return the call if \p V is a regular call. If \p RFI is given it has to be |
| /// the callee or a nullptr is returned. |
| static CallInst *getCallIfRegularCall( |
| Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { |
| CallInst *CI = dyn_cast<CallInst>(&V); |
| if (CI && !CI->hasOperandBundles() && |
| (!RFI || |
| (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) |
| return CI; |
| return nullptr; |
| } |
| |
| private: |
| /// Merge parallel regions when it is safe. |
| bool mergeParallelRegions() { |
| const unsigned CallbackCalleeOperand = 2; |
| const unsigned CallbackFirstArgOperand = 3; |
| using InsertPointTy = OpenMPIRBuilder::InsertPointTy; |
| |
| // Check if there are any __kmpc_fork_call calls to merge. |
| OMPInformationCache::RuntimeFunctionInfo &RFI = |
| OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; |
| |
| if (!RFI.Declaration) |
| return false; |
| |
| // Unmergable calls that prevent merging a parallel region. |
| OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { |
| OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], |
| OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], |
| }; |
| |
| bool Changed = false; |
| LoopInfo *LI = nullptr; |
| DominatorTree *DT = nullptr; |
| |
| SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; |
| |
| BasicBlock *StartBB = nullptr, *EndBB = nullptr; |
| auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, |
| BasicBlock &ContinuationIP) { |
| BasicBlock *CGStartBB = CodeGenIP.getBlock(); |
| BasicBlock *CGEndBB = |
| SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); |
| assert(StartBB != nullptr && "StartBB should not be null"); |
| CGStartBB->getTerminator()->setSuccessor(0, StartBB); |
| assert(EndBB != nullptr && "EndBB should not be null"); |
| EndBB->getTerminator()->setSuccessor(0, CGEndBB); |
| }; |
| |
| auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, |
| Value &Inner, Value *&ReplacementValue) -> InsertPointTy { |
| ReplacementValue = &Inner; |
| return CodeGenIP; |
| }; |
| |
| auto FiniCB = [&](InsertPointTy CodeGenIP) {}; |
| |
| /// Create a sequential execution region within a merged parallel region, |
| /// encapsulated in a master construct with a barrier for synchronization. |
| auto CreateSequentialRegion = [&](Function *OuterFn, |
| BasicBlock *OuterPredBB, |
| Instruction *SeqStartI, |
| Instruction *SeqEndI) { |
| // Isolate the instructions of the sequential region to a separate |
| // block. |
| BasicBlock *ParentBB = SeqStartI->getParent(); |
| BasicBlock *SeqEndBB = |
| SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); |
| BasicBlock *SeqAfterBB = |
| SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); |
| BasicBlock *SeqStartBB = |
| SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); |
| |
| assert(ParentBB->getUniqueSuccessor() == SeqStartBB && |
| "Expected a different CFG"); |
| const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); |
| ParentBB->getTerminator()->eraseFromParent(); |
| |
| auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, |
| BasicBlock &ContinuationIP) { |
| BasicBlock *CGStartBB = CodeGenIP.getBlock(); |
| BasicBlock *CGEndBB = |
| SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); |
| assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); |
| CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); |
| assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); |
| SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); |
| }; |
| auto FiniCB = [&](InsertPointTy CodeGenIP) {}; |
| |
| // Find outputs from the sequential region to outside users and |
| // broadcast their values to them. |
| for (Instruction &I : *SeqStartBB) { |
| SmallPtrSet<Instruction *, 4> OutsideUsers; |
| for (User *Usr : I.users()) { |
| Instruction &UsrI = *cast<Instruction>(Usr); |
| // Ignore outputs to LT intrinsics, code extraction for the merged |
| // parallel region will fix them. |
| if (UsrI.isLifetimeStartOrEnd()) |
| continue; |
| |
| if (UsrI.getParent() != SeqStartBB) |
| OutsideUsers.insert(&UsrI); |
| } |
| |
| if (OutsideUsers.empty()) |
| continue; |
| |
| // Emit an alloca in the outer region to store the broadcasted |
| // value. |
| const DataLayout &DL = M.getDataLayout(); |
| AllocaInst *AllocaI = new AllocaInst( |
| I.getType(), DL.getAllocaAddrSpace(), nullptr, |
| I.getName() + ".seq.output.alloc", &OuterFn->front().front()); |
| |
| // Emit a store instruction in the sequential BB to update the |
| // value. |
| new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()); |
| |
| // Emit a load instruction and replace the use of the output value |
| // with it. |
| for (Instruction *UsrI : OutsideUsers) { |
| LoadInst *LoadI = new LoadInst( |
| I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI); |
| UsrI->replaceUsesOfWith(&I, LoadI); |
| } |
| } |
| |
| OpenMPIRBuilder::LocationDescription Loc( |
| InsertPointTy(ParentBB, ParentBB->end()), DL); |
| InsertPointTy SeqAfterIP = |
| OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); |
| |
| OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); |
| |
| BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); |
| |
| LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn |
| << "\n"); |
| }; |
| |
| // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all |
| // contained in BB and only separated by instructions that can be |
| // redundantly executed in parallel. The block BB is split before the first |
| // call (in MergableCIs) and after the last so the entire region we merge |
| // into a single parallel region is contained in a single basic block |
| // without any other instructions. We use the OpenMPIRBuilder to outline |
| // that block and call the resulting function via __kmpc_fork_call. |
| auto Merge = [&](SmallVectorImpl<CallInst *> &MergableCIs, BasicBlock *BB) { |
| // TODO: Change the interface to allow single CIs expanded, e.g, to |
| // include an outer loop. |
| assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); |
| |
| auto Remark = [&](OptimizationRemark OR) { |
| OR << "Parallel region merged with parallel region" |
| << (MergableCIs.size() > 2 ? "s" : "") << " at "; |
| for (auto *CI : llvm::drop_begin(MergableCIs)) { |
| OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); |
| if (CI != MergableCIs.back()) |
| OR << ", "; |
| } |
| return OR << "."; |
| }; |
| |
| emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark); |
| |
| Function *OriginalFn = BB->getParent(); |
| LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() |
| << " parallel regions in " << OriginalFn->getName() |
| << "\n"); |
| |
| // Isolate the calls to merge in a separate block. |
| EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); |
| BasicBlock *AfterBB = |
| SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); |
| StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, |
| "omp.par.merged"); |
| |
| assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); |
| const DebugLoc DL = BB->getTerminator()->getDebugLoc(); |
| BB->getTerminator()->eraseFromParent(); |
| |
| // Create sequential regions for sequential instructions that are |
| // in-between mergable parallel regions. |
| for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; |
| It != End; ++It) { |
| Instruction *ForkCI = *It; |
| Instruction *NextForkCI = *(It + 1); |
| |
| // Continue if there are not in-between instructions. |
| if (ForkCI->getNextNode() == NextForkCI) |
| continue; |
| |
| CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), |
| NextForkCI->getPrevNode()); |
| } |
| |
| OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), |
| DL); |
| IRBuilder<>::InsertPoint AllocaIP( |
| &OriginalFn->getEntryBlock(), |
| OriginalFn->getEntryBlock().getFirstInsertionPt()); |
| // Create the merged parallel region with default proc binding, to |
| // avoid overriding binding settings, and without explicit cancellation. |
| InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( |
| Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, |
| OMP_PROC_BIND_default, /* IsCancellable */ false); |
| BranchInst::Create(AfterBB, AfterIP.getBlock()); |
| |
| // Perform the actual outlining. |
| OMPInfoCache.OMPBuilder.finalize(OriginalFn, |
| /* AllowExtractorSinking */ true); |
| |
| Function *OutlinedFn = MergableCIs.front()->getCaller(); |
| |
| // Replace the __kmpc_fork_call calls with direct calls to the outlined |
| // callbacks. |
| SmallVector<Value *, 8> Args; |
| for (auto *CI : MergableCIs) { |
| Value *Callee = |
| CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts(); |
| FunctionType *FT = |
| cast<FunctionType>(Callee->getType()->getPointerElementType()); |
| Args.clear(); |
| Args.push_back(OutlinedFn->getArg(0)); |
| Args.push_back(OutlinedFn->getArg(1)); |
| for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; |
| ++U) |
| Args.push_back(CI->getArgOperand(U)); |
| |
| CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI); |
| if (CI->getDebugLoc()) |
| NewCI->setDebugLoc(CI->getDebugLoc()); |
| |
| // Forward parameter attributes from the callback to the callee. |
| for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; |
| ++U) |
| for (const Attribute &A : CI->getAttributes().getParamAttrs(U)) |
| NewCI->addParamAttr( |
| U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); |
| |
| // Emit an explicit barrier to replace the implicit fork-join barrier. |
| if (CI != MergableCIs.back()) { |
| // TODO: Remove barrier if the merged parallel region includes the |
| // 'nowait' clause. |
| OMPInfoCache.OMPBuilder.createBarrier( |
| InsertPointTy(NewCI->getParent(), |
| NewCI->getNextNode()->getIterator()), |
| OMPD_parallel); |
| } |
| |
| CI->eraseFromParent(); |
| } |
| |
| assert(OutlinedFn != OriginalFn && "Outlining failed"); |
| CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); |
| CGUpdater.reanalyzeFunction(*OriginalFn); |
| |
| NumOpenMPParallelRegionsMerged += MergableCIs.size(); |
| |
| return true; |
| }; |
| |
| // Helper function that identifes sequences of |
| // __kmpc_fork_call uses in a basic block. |
| auto DetectPRsCB = [&](Use &U, Function &F) { |
| CallInst *CI = getCallIfRegularCall(U, &RFI); |
| BB2PRMap[CI->getParent()].insert(CI); |
| |
| return false; |
| }; |
| |
| BB2PRMap.clear(); |
| RFI.foreachUse(SCC, DetectPRsCB); |
| SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; |
| // Find mergable parallel regions within a basic block that are |
| // safe to merge, that is any in-between instructions can safely |
| // execute in parallel after merging. |
| // TODO: support merging across basic-blocks. |
| for (auto &It : BB2PRMap) { |
| auto &CIs = It.getSecond(); |
| if (CIs.size() < 2) |
| continue; |
| |
| BasicBlock *BB = It.getFirst(); |
| SmallVector<CallInst *, 4> MergableCIs; |
| |
| /// Returns true if the instruction is mergable, false otherwise. |
| /// A terminator instruction is unmergable by definition since merging |
| /// works within a BB. Instructions before the mergable region are |
| /// mergable if they are not calls to OpenMP runtime functions that may |
| /// set different execution parameters for subsequent parallel regions. |
| /// Instructions in-between parallel regions are mergable if they are not |
| /// calls to any non-intrinsic function since that may call a non-mergable |
| /// OpenMP runtime function. |
| auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { |
| // We do not merge across BBs, hence return false (unmergable) if the |
| // instruction is a terminator. |
| if (I.isTerminator()) |
| return false; |
| |
| if (!isa<CallInst>(&I)) |
| return true; |
| |
| CallInst *CI = cast<CallInst>(&I); |
| if (IsBeforeMergableRegion) { |
| Function *CalledFunction = CI->getCalledFunction(); |
| if (!CalledFunction) |
| return false; |
| // Return false (unmergable) if the call before the parallel |
| // region calls an explicit affinity (proc_bind) or number of |
| // threads (num_threads) compiler-generated function. Those settings |
| // may be incompatible with following parallel regions. |
| // TODO: ICV tracking to detect compatibility. |
| for (const auto &RFI : UnmergableCallsInfo) { |
| if (CalledFunction == RFI.Declaration) |
| return false; |
| } |
| } else { |
| // Return false (unmergable) if there is a call instruction |
| // in-between parallel regions when it is not an intrinsic. It |
| // may call an unmergable OpenMP runtime function in its callpath. |
| // TODO: Keep track of possible OpenMP calls in the callpath. |
| if (!isa<IntrinsicInst>(CI)) |
| return false; |
| } |
| |
| return true; |
| }; |
| // Find maximal number of parallel region CIs that are safe to merge. |
| for (auto It = BB->begin(), End = BB->end(); It != End;) { |
| Instruction &I = *It; |
| ++It; |
| |
| if (CIs.count(&I)) { |
| MergableCIs.push_back(cast<CallInst>(&I)); |
| continue; |
| } |
| |
| // Continue expanding if the instruction is mergable. |
| if (IsMergable(I, MergableCIs.empty())) |
| continue; |
| |
| // Forward the instruction iterator to skip the next parallel region |
| // since there is an unmergable instruction which can affect it. |
| for (; It != End; ++It) { |
| Instruction &SkipI = *It; |
| if (CIs.count(&SkipI)) { |
| LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI |
| << " due to " << I << "\n"); |
| ++It; |
| break; |
| } |
| } |
| |
| // Store mergable regions found. |
| if (MergableCIs.size() > 1) { |
| MergableCIsVector.push_back(MergableCIs); |
| LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() |
| << " parallel regions in block " << BB->getName() |
| << " of function " << BB->getParent()->getName() |
| << "\n";); |
| } |
| |
| MergableCIs.clear(); |
| } |
| |
| if (!MergableCIsVector.empty()) { |
| Changed = true; |
| |
| for (auto &MergableCIs : MergableCIsVector) |
| Merge(MergableCIs, BB); |
| MergableCIsVector.clear(); |
| } |
| } |
| |
| if (Changed) { |
| /// Re-collect use for fork calls, emitted barrier calls, and |
| /// any emitted master/end_master calls. |
| OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); |
| OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); |
| OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); |
| OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); |
| } |
| |
| return Changed; |
| } |
| |
| /// Try to delete parallel regions if possible. |
| bool deleteParallelRegions() { |
| const unsigned CallbackCalleeOperand = 2; |
| |
| OMPInformationCache::RuntimeFunctionInfo &RFI = |
| OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; |
| |
| if (!RFI.Declaration) |
| return false; |
| |
| bool Changed = false; |
| auto DeleteCallCB = [&](Use &U, Function &) { |
| CallInst *CI = getCallIfRegularCall(U); |
| if (!CI) |
| return false; |
| auto *Fn = dyn_cast<Function>( |
| CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); |
| if (!Fn) |
| return false; |
| if (!Fn->onlyReadsMemory()) |
| return false; |
| if (!Fn->hasFnAttribute(Attribute::WillReturn)) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " |
| << CI->getCaller()->getName() << "\n"); |
| |
| auto Remark = [&](OptimizationRemark OR) { |
| return OR << "Removing parallel region with no side-effects."; |
| }; |
| emitRemark<OptimizationRemark>(CI, "OMP160", Remark); |
| |
| CGUpdater.removeCallSite(*CI); |
| CI->eraseFromParent(); |
| Changed = true; |
| ++NumOpenMPParallelRegionsDeleted; |
| return true; |
| }; |
| |
| RFI.foreachUse(SCC, DeleteCallCB); |
| |
| return Changed; |
| } |
| |
| /// Try to eliminate runtime calls by reusing existing ones. |
| bool deduplicateRuntimeCalls() { |
| bool Changed = false; |
| |
| RuntimeFunction DeduplicableRuntimeCallIDs[] = { |
| OMPRTL_omp_get_num_threads, |
| OMPRTL_omp_in_parallel, |
| OMPRTL_omp_get_cancellation, |
| OMPRTL_omp_get_thread_limit, |
| OMPRTL_omp_get_supported_active_levels, |
| OMPRTL_omp_get_level, |
| OMPRTL_omp_get_ancestor_thread_num, |
| OMPRTL_omp_get_team_size, |
| OMPRTL_omp_get_active_level, |
| OMPRTL_omp_in_final, |
| OMPRTL_omp_get_proc_bind, |
| OMPRTL_omp_get_num_places, |
| OMPRTL_omp_get_num_procs, |
| OMPRTL_omp_get_place_num, |
| OMPRTL_omp_get_partition_num_places, |
| OMPRTL_omp_get_partition_place_nums}; |
| |
| // Global-tid is handled separately. |
| SmallSetVector<Value *, 16> GTIdArgs; |
| collectGlobalThreadIdArguments(GTIdArgs); |
| LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() |
| << " global thread ID arguments\n"); |
| |
| for (Function *F : SCC) { |
| for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) |
| Changed |= deduplicateRuntimeCalls( |
| *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); |
| |
| // __kmpc_global_thread_num is special as we can replace it with an |
| // argument in enough cases to make it worth trying. |
| Value *GTIdArg = nullptr; |
| for (Argument &Arg : F->args()) |
| if (GTIdArgs.count(&Arg)) { |
| GTIdArg = &Arg; |
| break; |
| } |
| Changed |= deduplicateRuntimeCalls( |
| *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); |
| } |
| |
| return Changed; |
| } |
| |
| /// Tries to hide the latency of runtime calls that involve host to |
| /// device memory transfers by splitting them into their "issue" and "wait" |
| /// versions. The "issue" is moved upwards as much as possible. The "wait" is |
| /// moved downards as much as possible. The "issue" issues the memory transfer |
| /// asynchronously, returning a handle. The "wait" waits in the returned |
| /// handle for the memory transfer to finish. |
| bool hideMemTransfersLatency() { |
| auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; |
| bool Changed = false; |
| auto SplitMemTransfers = [&](Use &U, Function &Decl) { |
| auto *RTCall = getCallIfRegularCall(U, &RFI); |
| if (!RTCall) |
| return false; |
| |
| OffloadArray OffloadArrays[3]; |
| if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) |
| return false; |
| |
| LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); |
| |
| // TODO: Check if can be moved upwards. |
| bool WasSplit = false; |
| Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); |
| if (WaitMovementPoint) |
| WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); |
| |
| Changed |= WasSplit; |
| return WasSplit; |
| }; |
| RFI.foreachUse(SCC, SplitMemTransfers); |
| |
| return Changed; |
| } |
| |
| void analysisGlobalization() { |
| auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; |
| |
| auto CheckGlobalization = [&](Use &U, Function &Decl) { |
| if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { |
| auto Remark = [&](OptimizationRemarkMissed ORM) { |
| return ORM |
| << "Found thread data sharing on the GPU. " |
| << "Expect degraded performance due to data globalization."; |
| }; |
| emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark); |
| } |
| |
| return false; |
| }; |
| |
| RFI.foreachUse(SCC, CheckGlobalization); |
| } |
| |
| /// Maps the values stored in the offload arrays passed as arguments to |
| /// \p RuntimeCall into the offload arrays in \p OAs. |
| bool getValuesInOffloadArrays(CallInst &RuntimeCall, |
| MutableArrayRef<OffloadArray> OAs) { |
| assert(OAs.size() == 3 && "Need space for three offload arrays!"); |
| |
| // A runtime call that involves memory offloading looks something like: |
| // call void @__tgt_target_data_begin_mapper(arg0, arg1, |
| // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, |
| // ...) |
| // So, the idea is to access the allocas that allocate space for these |
| // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. |
| // Therefore: |
| // i8** %offload_baseptrs. |
| Value *BasePtrsArg = |
| RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); |
| // i8** %offload_ptrs. |
| Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); |
| // i8** %offload_sizes. |
| Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); |
| |
| // Get values stored in **offload_baseptrs. |
| auto *V = getUnderlyingObject(BasePtrsArg); |
| if (!isa<AllocaInst>(V)) |
| return false; |
| auto *BasePtrsArray = cast<AllocaInst>(V); |
| if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) |
| return false; |
| |
| // Get values stored in **offload_baseptrs. |
| V = getUnderlyingObject(PtrsArg); |
| if (!isa<AllocaInst>(V)) |
| return false; |
| auto *PtrsArray = cast<AllocaInst>(V); |
| if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) |
| return false; |
| |
| // Get values stored in **offload_sizes. |
| V = getUnderlyingObject(SizesArg); |
| // If it's a [constant] global array don't analyze it. |
| if (isa<GlobalValue>(V)) |
| return isa<Constant>(V); |
| if (!isa<AllocaInst>(V)) |
| return false; |
| |
| auto *SizesArray = cast<AllocaInst>(V); |
| if (!OAs[2].initialize(*SizesArray, RuntimeCall)) |
| return false; |
| |
| return true; |
| } |
| |
| /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. |
| /// For now this is a way to test that the function getValuesInOffloadArrays |
| /// is working properly. |
| /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. |
| void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { |
| assert(OAs.size() == 3 && "There are three offload arrays to debug!"); |
| |
| LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); |
| std::string ValuesStr; |
| raw_string_ostream Printer(ValuesStr); |
| std::string Separator = " --- "; |
| |
| for (auto *BP : OAs[0].StoredValues) { |
| BP->print(Printer); |
| Printer << Separator; |
| } |
| LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); |
| ValuesStr.clear(); |
| |
| for (auto *P : OAs[1].StoredValues) { |
| P->print(Printer); |
| Printer << Separator; |
| } |
| LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); |
| ValuesStr.clear(); |
| |
| for (auto *S : OAs[2].StoredValues) { |
| S->print(Printer); |
| Printer << Separator; |
| } |
| LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); |
| } |
| |
| /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be |
| /// moved. Returns nullptr if the movement is not possible, or not worth it. |
| Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { |
| // FIXME: This traverses only the BasicBlock where RuntimeCall is. |
| // Make it traverse the CFG. |
| |
| Instruction *CurrentI = &RuntimeCall; |
| bool IsWorthIt = false; |
| while ((CurrentI = CurrentI->getNextNode())) { |
| |
| // TODO: Once we detect the regions to be offloaded we should use the |
| // alias analysis manager to check if CurrentI may modify one of |
| // the offloaded regions. |
| if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { |
| if (IsWorthIt) |
| return CurrentI; |
| |
| return nullptr; |
| } |
| |
| // FIXME: For now if we move it over anything without side effect |
| // is worth it. |
| IsWorthIt = true; |
| } |
| |
| // Return end of BasicBlock. |
| return RuntimeCall.getParent()->getTerminator(); |
| } |
| |
| /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. |
| bool splitTargetDataBeginRTC(CallInst &RuntimeCall, |
| Instruction &WaitMovementPoint) { |
| // Create stack allocated handle (__tgt_async_info) at the beginning of the |
| // function. Used for storing information of the async transfer, allowing to |
| // wait on it later. |
| auto &IRBuilder = OMPInfoCache.OMPBuilder; |
| auto *F = RuntimeCall.getCaller(); |
| Instruction *FirstInst = &(F->getEntryBlock().front()); |
| AllocaInst *Handle = new AllocaInst( |
| IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); |
| |
| // Add "issue" runtime call declaration: |
| // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, |
| // i8**, i8**, i64*, i64*) |
| FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( |
| M, OMPRTL___tgt_target_data_begin_mapper_issue); |
| |
| // Change RuntimeCall call site for its asynchronous version. |
| SmallVector<Value *, 16> Args; |
| for (auto &Arg : RuntimeCall.args()) |
| Args.push_back(Arg.get()); |
| Args.push_back(Handle); |
| |
| CallInst *IssueCallsite = |
| CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); |
| RuntimeCall.eraseFromParent(); |
| |
| // Add "wait" runtime call declaration: |
| // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) |
| FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( |
| M, OMPRTL___tgt_target_data_begin_mapper_wait); |
| |
| Value *WaitParams[2] = { |
| IssueCallsite->getArgOperand( |
| OffloadArray::DeviceIDArgNum), // device_id. |
| Handle // handle to wait on. |
| }; |
| CallInst::Create(WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); |
| |
| return true; |
| } |
| |
| static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, |
| bool GlobalOnly, bool &SingleChoice) { |
| if (CurrentIdent == NextIdent) |
| return CurrentIdent; |
| |
| // TODO: Figure out how to actually combine multiple debug locations. For |
| // now we just keep an existing one if there is a single choice. |
| if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { |
| SingleChoice = !CurrentIdent; |
| return NextIdent; |
| } |
| return nullptr; |
| } |
| |
| /// Return an `struct ident_t*` value that represents the ones used in the |
| /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not |
| /// return a local `struct ident_t*`. For now, if we cannot find a suitable |
| /// return value we create one from scratch. We also do not yet combine |
| /// information, e.g., the source locations, see combinedIdentStruct. |
| Value * |
| getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, |
| Function &F, bool GlobalOnly) { |
| bool SingleChoice = true; |
| Value *Ident = nullptr; |
| auto CombineIdentStruct = [&](Use &U, Function &Caller) { |
| CallInst *CI = getCallIfRegularCall(U, &RFI); |
| if (!CI || &F != &Caller) |
| return false; |
| Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), |
| /* GlobalOnly */ true, SingleChoice); |
| return false; |
| }; |
| RFI.foreachUse(SCC, CombineIdentStruct); |
| |
| if (!Ident || !SingleChoice) { |
| // The IRBuilder uses the insertion block to get to the module, this is |
| // unfortunate but we work around it for now. |
| if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) |
| OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( |
| &F.getEntryBlock(), F.getEntryBlock().begin())); |
| // Create a fallback location if non was found. |
| // TODO: Use the debug locations of the calls instead. |
| Constant *Loc = OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(); |
| Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc); |
| } |
| return Ident; |
| } |
| |
| /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or |
| /// \p ReplVal if given. |
| bool deduplicateRuntimeCalls(Function &F, |
| OMPInformationCache::RuntimeFunctionInfo &RFI, |
| Value *ReplVal = nullptr) { |
| auto *UV = RFI.getUseVector(F); |
| if (!UV || UV->size() + (ReplVal != nullptr) < 2) |
| return false; |
| |
| LLVM_DEBUG( |
| dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name |
| << (ReplVal ? " with an existing value\n" : "\n") << "\n"); |
| |
| assert((!ReplVal || (isa<Argument>(ReplVal) && |
| cast<Argument>(ReplVal)->getParent() == &F)) && |
| "Unexpected replacement value!"); |
| |
| // TODO: Use dominance to find a good position instead. |
| auto CanBeMoved = [this](CallBase &CB) { |
| unsigned NumArgs = CB.arg_size(); |
| if (NumArgs == 0) |
| return true; |
| if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) |
| return false; |
| for (unsigned U = 1; U < NumArgs; ++U) |
| if (isa<Instruction>(CB.getArgOperand(U))) |
| return false; |
| return true; |
| }; |
| |
| if (!ReplVal) { |
| for (Use *U : *UV) |
| if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { |
| if (!CanBeMoved(*CI)) |
| continue; |
| |
| // If the function is a kernel, dedup will move |
| // the runtime call right after the kernel init callsite. Otherwise, |
| // it will move it to the beginning of the caller function. |
| if (isKernel(F)) { |
| auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; |
| auto *KernelInitUV = KernelInitRFI.getUseVector(F); |
| |
| if (KernelInitUV->empty()) |
| continue; |
| |
| assert(KernelInitUV->size() == 1 && |
| "Expected a single __kmpc_target_init in kernel\n"); |
| |
| CallInst *KernelInitCI = |
| getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI); |
| assert(KernelInitCI && |
| "Expected a call to __kmpc_target_init in kernel\n"); |
| |
| CI->moveAfter(KernelInitCI); |
| } else |
| CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); |
| ReplVal = CI; |
| break; |
| } |
| if (!ReplVal) |
| return false; |
| } |
| |
| // If we use a call as a replacement value we need to make sure the ident is |
| // valid at the new location. For now we just pick a global one, either |
| // existing and used by one of the calls, or created from scratch. |
| if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { |
| if (!CI->arg_empty() && |
| CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { |
| Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, |
| /* GlobalOnly */ true); |
| CI->setArgOperand(0, Ident); |
| } |
| } |
| |
| bool Changed = false; |
| auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { |
| CallInst *CI = getCallIfRegularCall(U, &RFI); |
| if (!CI || CI == ReplVal || &F != &Caller) |
| return false; |
| assert(CI->getCaller() == &F && "Unexpected call!"); |
| |
| auto Remark = [&](OptimizationRemark OR) { |
| return OR << "OpenMP runtime call " |
| << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated."; |
| }; |
| if (CI->getDebugLoc()) |
| emitRemark<OptimizationRemark>(CI, "OMP170", Remark); |
| else |
| emitRemark<OptimizationRemark>(&F, "OMP170", Remark); |
| |
| CGUpdater.removeCallSite(*CI); |
| CI->replaceAllUsesWith(ReplVal); |
| CI->eraseFromParent(); |
| ++NumOpenMPRuntimeCallsDeduplicated; |
| Changed = true; |
| return true; |
| }; |
| RFI.foreachUse(SCC, ReplaceAndDeleteCB); |
| |
| return Changed; |
| } |
| |
| /// Collect arguments that represent the global thread id in \p GTIdArgs. |
| void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { |
| // TODO: Below we basically perform a fixpoint iteration with a pessimistic |
| // initialization. We could define an AbstractAttribute instead and |
| // run the Attributor here once it can be run as an SCC pass. |
| |
| // Helper to check the argument \p ArgNo at all call sites of \p F for |
| // a GTId. |
| auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { |
| if (!F.hasLocalLinkage()) |
| return false; |
| for (Use &U : F.uses()) { |
| if (CallInst *CI = getCallIfRegularCall(U)) { |
| Value *ArgOp = CI->getArgOperand(ArgNo); |
| if (CI == &RefCI || GTIdArgs.count(ArgOp) || |
| getCallIfRegularCall( |
| *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) |
| continue; |
| } |
| return false; |
| } |
| return true; |
| }; |
| |
| // Helper to identify uses of a GTId as GTId arguments. |
| auto AddUserArgs = [&](Value >Id) { |
| for (Use &U : GTId.uses()) |
| if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) |
| if (CI->isArgOperand(&U)) |
| if (Function *Callee = CI->getCalledFunction()) |
| if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) |
| GTIdArgs.insert(Callee->getArg(U.getOperandNo())); |
| }; |
| |
| // The argument users of __kmpc_global_thread_num calls are GTIds. |
| OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = |
| OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; |
| |
| GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { |
| if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) |
| AddUserArgs(*CI); |
| return false; |
| }); |
| |
| // Transitively search for more arguments by looking at the users of the |
| // ones we know already. During the search the GTIdArgs vector is extended |
| // so we cannot cache the size nor can we use a range based for. |
| for (unsigned U = 0; U < GTIdArgs.size(); ++U) |
| AddUserArgs(*GTIdArgs[U]); |
| } |
| |
| /// Kernel (=GPU) optimizations and utility functions |
| /// |
| ///{{ |
| |
| /// Check if \p F is a kernel, hence entry point for target offloading. |
| bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } |
| |
| /// Cache to remember the unique kernel for a function. |
| DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; |
| |
| /// Find the unique kernel that will execute \p F, if any. |
| Kernel getUniqueKernelFor(Function &F); |
| |
| /// Find the unique kernel that will execute \p I, if any. |
| Kernel getUniqueKernelFor(Instruction &I) { |
| return getUniqueKernelFor(*I.getFunction()); |
| } |
| |
| /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in |
| /// the cases we can avoid taking the address of a function. |
| bool rewriteDeviceCodeStateMachine(); |
| |
| /// |
| ///}} |
| |
| /// Emit a remark generically |
| /// |
| /// This template function can be used to generically emit a remark. The |
| /// RemarkKind should be one of the following: |
| /// - OptimizationRemark to indicate a successful optimization attempt |
| /// - OptimizationRemarkMissed to report a failed optimization attempt |
| /// - OptimizationRemarkAnalysis to provide additional information about an |
| /// optimization attempt |
| /// |
| /// The remark is built using a callback function provided by the caller that |
| /// takes a RemarkKind as input and returns a RemarkKind. |
| template <typename RemarkKind, typename RemarkCallBack> |
| void emitRemark(Instruction *I, StringRef RemarkName, |
| RemarkCallBack &&RemarkCB) const { |
| Function *F = I->getParent()->getParent(); |
| auto &ORE = OREGetter(F); |
| |
| if (RemarkName.startswith("OMP")) |
| ORE.emit([&]() { |
| return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)) |
| << " [" << RemarkName << "]"; |
| }); |
| else |
| ORE.emit( |
| [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); |
| } |
| |
| /// Emit a remark on a function. |
| template <typename RemarkKind, typename RemarkCallBack> |
| void emitRemark(Function *F, StringRef RemarkName, |
| RemarkCallBack &&RemarkCB) const { |
| auto &ORE = OREGetter(F); |
| |
| if (RemarkName.startswith("OMP")) |
| ORE.emit([&]() { |
| return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)) |
| << " [" << RemarkName << "]"; |
| }); |
| else |
| ORE.emit( |
| [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); |
| } |
| |
| /// RAII struct to temporarily change an RTL function's linkage to external. |
| /// This prevents it from being mistakenly removed by other optimizations. |
| struct ExternalizationRAII { |
| ExternalizationRAII(OMPInformationCache &OMPInfoCache, |
| RuntimeFunction RFKind) |
| : Declaration(OMPInfoCache.RFIs[RFKind].Declaration) { |
| if (!Declaration) |
| return; |
| |
| LinkageType = Declaration->getLinkage(); |
| Declaration->setLinkage(GlobalValue::ExternalLinkage); |
| } |
| |
| ~ExternalizationRAII() { |
| if (!Declaration) |
| return; |
| |
| Declaration->setLinkage(LinkageType); |
| } |
| |
| Function *Declaration; |
| GlobalValue::LinkageTypes LinkageType; |
| }; |
| |
| /// The underlying module. |
| Module &M; |
| |
| /// The SCC we are operating on. |
| SmallVectorImpl<Function *> &SCC; |
| |
| /// Callback to update the call graph, the first argument is a removed call, |
| /// the second an optional replacement call. |
| CallGraphUpdater &CGUpdater; |
| |
| /// Callback to get an OptimizationRemarkEmitter from a Function * |
| OptimizationRemarkGetter OREGetter; |
| |
| /// OpenMP-specific information cache. Also Used for Attributor runs. |
| OMPInformationCache &OMPInfoCache; |
| |
| /// Attributor instance. |
| Attributor &A; |
| |
| /// Helper function to run Attributor on SCC. |
| bool runAttributor(bool IsModulePass) { |
| if (SCC.empty()) |
| return false; |
| |
| // Temporarily make these function have external linkage so the Attributor |
| // doesn't remove them when we try to look them up later. |
| ExternalizationRAII Parallel(OMPInfoCache, OMPRTL___kmpc_kernel_parallel); |
| ExternalizationRAII EndParallel(OMPInfoCache, |
| OMPRTL___kmpc_kernel_end_parallel); |
| ExternalizationRAII BarrierSPMD(OMPInfoCache, |
| OMPRTL___kmpc_barrier_simple_spmd); |
| ExternalizationRAII BarrierGeneric(OMPInfoCache, |
| OMPRTL___kmpc_barrier_simple_generic); |
| ExternalizationRAII ThreadId(OMPInfoCache, |
| OMPRTL___kmpc_get_hardware_thread_id_in_block); |
| ExternalizationRAII WarpSize(OMPInfoCache, OMPRTL___kmpc_get_warp_size); |
| |
| registerAAs(IsModulePass); |
| |
| ChangeStatus Changed = A.run(); |
| |
| LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() |
| << " functions, result: " << Changed << ".\n"); |
| |
| return Changed == ChangeStatus::CHANGED; |
| } |
| |
| void registerFoldRuntimeCall(RuntimeFunction RF); |
| |
| /// Populate the Attributor with abstract attribute opportunities in the |
| /// function. |
| void registerAAs(bool IsModulePass); |
| }; |
| |
| Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { |
| if (!OMPInfoCache.ModuleSlice.count(&F)) |
| return nullptr; |
| |
| // Use a scope to keep the lifetime of the CachedKernel short. |
| { |
| Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; |
| if (CachedKernel) |
| return *CachedKernel; |
| |
| // TODO: We should use an AA to create an (optimistic and callback |
| // call-aware) call graph. For now we stick to simple patterns that |
| // are less powerful, basically the worst fixpoint. |
| if (isKernel(F)) { |
| CachedKernel = Kernel(&F); |
| return *CachedKernel; |
| } |
| |
| CachedKernel = nullptr; |
| if (!F.hasLocalLinkage()) { |
| |
| // See https://openmp.llvm.org/remarks/OptimizationRemarks.html |
| auto Remark = [&](OptimizationRemarkAnalysis ORA) { |
| return ORA << "Potentially unknown OpenMP target region caller."; |
| }; |
| emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark); |
| |
| return nullptr; |
| } |
| } |
| |
| auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { |
| if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { |
| // Allow use in equality comparisons. |
| if (Cmp->isEquality()) |
| return getUniqueKernelFor(*Cmp); |
| return nullptr; |
| } |
| if (auto *CB = dyn_cast<CallBase>(U.getUser())) { |
| // Allow direct calls. |
| if (CB->isCallee(&U)) |
| return getUniqueKernelFor(*CB); |
| |
| OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = |
| OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; |
| // Allow the use in __kmpc_parallel_51 calls. |
| if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI)) |
| return getUniqueKernelFor(*CB); |
| return nullptr; |
| } |
| // Disallow every other use. |
| return nullptr; |
| }; |
| |
| // TODO: In the future we want to track more than just a unique kernel. |
| SmallPtrSet<Kernel, 2> PotentialKernels; |
| OMPInformationCache::foreachUse(F, [&](const Use &U) { |
| PotentialKernels.insert(GetUniqueKernelForUse(U)); |
| }); |
| |
| Kernel K = nullptr; |
| if (PotentialKernels.size() == 1) |
| K = *PotentialKernels.begin(); |
| |
| // Cache the result. |
| UniqueKernelMap[&F] = K; |
| |
| return K; |
| } |
| |
| bool OpenMPOpt::rewriteDeviceCodeStateMachine() { |
| OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = |
| OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; |
| |
| bool Changed = false; |
| if (!KernelParallelRFI) |
| return Changed; |
| |
| // If we have disabled state machine changes, exit |
| if (DisableOpenMPOptStateMachineRewrite) |
| return Changed; |
| |
| for (Function *F : SCC) { |
| |
| // Check if the function is a use in a __kmpc_parallel_51 call at |
| // all. |
| bool UnknownUse = false; |
| bool KernelParallelUse = false; |
| unsigned NumDirectCalls = 0; |
| |
| SmallVector<Use *, 2> ToBeReplacedStateMachineUses; |
| OMPInformationCache::foreachUse(*F, [&](Use &U) { |
| if (auto *CB = dyn_cast<CallBase>(U.getUser())) |
| if (CB->isCallee(&U)) { |
| ++NumDirectCalls; |
| return; |
| } |
| |
| if (isa<ICmpInst>(U.getUser())) { |
| ToBeReplacedStateMachineUses.push_back(&U); |
| return; |
| } |
| |
| // Find wrapper functions that represent parallel kernels. |
| CallInst *CI = |
| OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI); |
| const unsigned int WrapperFunctionArgNo = 6; |
| if (!KernelParallelUse && CI && |
| CI->getArgOperandNo(&U) == WrapperFunctionArgNo) { |
| KernelParallelUse = true; |
| ToBeReplacedStateMachineUses.push_back(&U); |
| return; |
| } |
| UnknownUse = true; |
| }); |
| |
| // Do not emit a remark if we haven't seen a __kmpc_parallel_51 |
| // use. |
| if (!KernelParallelUse) |
| continue; |
| |
| // If this ever hits, we should investigate. |
| // TODO: Checking the number of uses is not a necessary restriction and |
| // should be lifted. |
| if (UnknownUse || NumDirectCalls != 1 || |
| ToBeReplacedStateMachineUses.size() > 2) { |
| auto Remark = [&](OptimizationRemarkAnalysis ORA) { |
| return ORA << "Parallel region is used in " |
| << (UnknownUse ? "unknown" : "unexpected") |
| << " ways. Will not attempt to rewrite the state machine."; |
| }; |
| emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark); |
| continue; |
| } |
| |
| // Even if we have __kmpc_parallel_51 calls, we (for now) give |
| // up if the function is not called from a unique kernel. |
| Kernel K = getUniqueKernelFor(*F); |
| if (!K) { |
| auto Remark = [&](OptimizationRemarkAnalysis ORA) { |
| return ORA << "Parallel region is not called from a unique kernel. " |
| "Will not attempt to rewrite the state machine."; |
| }; |
| emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark); |
| continue; |
| } |
| |
| // We now know F is a parallel body function called only from the kernel K. |
| // We also identified the state machine uses in which we replace the |
| // function pointer by a new global symbol for identification purposes. This |
| // ensures only direct calls to the function are left. |
| |
| Module &M = *F->getParent(); |
| Type *Int8Ty = Type::getInt8Ty(M.getContext()); |
| |
| auto *ID = new GlobalVariable( |
| M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, |
| UndefValue::get(Int8Ty), F->getName() + ".ID"); |
| |
| for (Use *U : ToBeReplacedStateMachineUses) |
| U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast( |
| ID, U->get()->getType())); |
| |
| ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; |
| |
| Changed = true; |
| } |
| |
| return Changed; |
| } |
| |
| /// Abstract Attribute for tracking ICV values. |
| struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { |
| using Base = StateWrapper<BooleanState, AbstractAttribute>; |
| AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} |
| |
| void initialize(Attributor &A) override { |
| Function *F = getAnchorScope(); |
| if (!F || !A.isFunctionIPOAmendable(*F)) |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// Returns true if value is assumed to be tracked. |
| bool isAssumedTracked() const { return getAssumed(); } |
| |
| /// Returns true if value is known to be tracked. |
| bool isKnownTracked() const { return getAssumed(); } |
| |
| /// Create an abstract attribute biew for the position \p IRP. |
| static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); |
| |
| /// Return the value with which \p I can be replaced for specific \p ICV. |
| virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, |
| const Instruction *I, |
| Attributor &A) const { |
| return None; |
| } |
| |
| /// Return an assumed unique ICV value if a single candidate is found. If |
| /// there cannot be one, return a nullptr. If it is not clear yet, return the |
| /// Optional::NoneType. |
| virtual Optional<Value *> |
| getUniqueReplacementValue(InternalControlVar ICV) const = 0; |
| |
| // Currently only nthreads is being tracked. |
| // this array will only grow with time. |
| InternalControlVar TrackableICVs[1] = {ICV_nthreads}; |
| |
| /// See AbstractAttribute::getName() |
| const std::string getName() const override { return "AAICVTracker"; } |
| |
| /// See AbstractAttribute::getIdAddr() |
| const char *getIdAddr() const override { return &ID; } |
| |
| /// This function should return true if the type of the \p AA is AAICVTracker |
| static bool classof(const AbstractAttribute *AA) { |
| return (AA->getIdAddr() == &ID); |
| } |
| |
| static const char ID; |
| }; |
| |
| struct AAICVTrackerFunction : public AAICVTracker { |
| AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) |
| : AAICVTracker(IRP, A) {} |
| |
| // FIXME: come up with better string. |
| const std::string getAsStr() const override { return "ICVTrackerFunction"; } |
| |
| // FIXME: come up with some stats. |
| void trackStatistics() const override {} |
| |
| /// We don't manifest anything for this AA. |
| ChangeStatus manifest(Attributor &A) override { |
| return ChangeStatus::UNCHANGED; |
| } |
| |
| // Map of ICV to their values at specific program point. |
| EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, |
| InternalControlVar::ICV___last> |
| ICVReplacementValuesMap; |
| |
| ChangeStatus updateImpl(Attributor &A) override { |
| ChangeStatus HasChanged = ChangeStatus::UNCHANGED; |
| |
| Function *F = getAnchorScope(); |
| |
| auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
| |
| for (InternalControlVar ICV : TrackableICVs) { |
| auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; |
| |
| auto &ValuesMap = ICVReplacementValuesMap[ICV]; |
| auto TrackValues = [&](Use &U, Function &) { |
| CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); |
| if (!CI) |
| return false; |
| |
| // FIXME: handle setters with more that 1 arguments. |
| /// Track new value. |
| if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) |
| HasChanged = ChangeStatus::CHANGED; |
| |
| return false; |
| }; |
| |
| auto CallCheck = [&](Instruction &I) { |
| Optional<Value *> ReplVal = getValueForCall(A, &I, ICV); |
| if (ReplVal.hasValue() && |
| ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) |
| HasChanged = ChangeStatus::CHANGED; |
| |
| return true; |
| }; |
| |
| // Track all changes of an ICV. |
| SetterRFI.foreachUse(TrackValues, F); |
| |
| bool UsedAssumedInformation = false; |
| A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, |
| UsedAssumedInformation, |
| /* CheckBBLivenessOnly */ true); |
| |
| /// TODO: Figure out a way to avoid adding entry in |
| /// ICVReplacementValuesMap |
| Instruction *Entry = &F->getEntryBlock().front(); |
| if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) |
| ValuesMap.insert(std::make_pair(Entry, nullptr)); |
| } |
| |
| return HasChanged; |
| } |
| |
| /// Hepler to check if \p I is a call and get the value for it if it is |
| /// unique. |
| Optional<Value *> getValueForCall(Attributor &A, const Instruction *I, |
| InternalControlVar &ICV) const { |
| |
| const auto *CB = dyn_cast<CallBase>(I); |
| if (!CB || CB->hasFnAttr("no_openmp") || |
| CB->hasFnAttr("no_openmp_routines")) |
| return None; |
| |
| auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
| auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; |
| auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; |
| Function *CalledFunction = CB->getCalledFunction(); |
| |
| // Indirect call, assume ICV changes. |
| if (CalledFunction == nullptr) |
| return nullptr; |
| if (CalledFunction == GetterRFI.Declaration) |
| return None; |
| if (CalledFunction == SetterRFI.Declaration) { |
| if (ICVReplacementValuesMap[ICV].count(I)) |
| return ICVReplacementValuesMap[ICV].lookup(I); |
| |
| return nullptr; |
| } |
| |
| // Since we don't know, assume it changes the ICV. |
| if (CalledFunction->isDeclaration()) |
| return nullptr; |
| |
| const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( |
| *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED); |
| |
| if (ICVTrackingAA.isAssumedTracked()) |
| return ICVTrackingAA.getUniqueReplacementValue(ICV); |
| |
| // If we don't know, assume it changes. |
| return nullptr; |
| } |
| |
| // We don't check unique value for a function, so return None. |
| Optional<Value *> |
| getUniqueReplacementValue(InternalControlVar ICV) const override { |
| return None; |
| } |
| |
| /// Return the value with which \p I can be replaced for specific \p ICV. |
| Optional<Value *> getReplacementValue(InternalControlVar ICV, |
| const Instruction *I, |
| Attributor &A) const override { |
| const auto &ValuesMap = ICVReplacementValuesMap[ICV]; |
| if (ValuesMap.count(I)) |
| return ValuesMap.lookup(I); |
| |
| SmallVector<const Instruction *, 16> Worklist; |
| SmallPtrSet<const Instruction *, 16> Visited; |
| Worklist.push_back(I); |
| |
| Optional<Value *> ReplVal; |
| |
| while (!Worklist.empty()) { |
| const Instruction *CurrInst = Worklist.pop_back_val(); |
| if (!Visited.insert(CurrInst).second) |
| continue; |
| |
| const BasicBlock *CurrBB = CurrInst->getParent(); |
| |
| // Go up and look for all potential setters/calls that might change the |
| // ICV. |
| while ((CurrInst = CurrInst->getPrevNode())) { |
| if (ValuesMap.count(CurrInst)) { |
| Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); |
| // Unknown value, track new. |
| if (!ReplVal.hasValue()) { |
| ReplVal = NewReplVal; |
| break; |
| } |
| |
| // If we found a new value, we can't know the icv value anymore. |
| if (NewReplVal.hasValue()) |
| if (ReplVal != NewReplVal) |
| return nullptr; |
| |
| break; |
| } |
| |
| Optional<Value *> NewReplVal = getValueForCall(A, CurrInst, ICV); |
| if (!NewReplVal.hasValue()) |
| continue; |
| |
| // Unknown value, track new. |
| if (!ReplVal.hasValue()) { |
| ReplVal = NewReplVal; |
| break; |
| } |
| |
| // if (NewReplVal.hasValue()) |
| // We found a new value, we can't know the icv value anymore. |
| if (ReplVal != NewReplVal) |
| return nullptr; |
| } |
| |
| // If we are in the same BB and we have a value, we are done. |
| if (CurrBB == I->getParent() && ReplVal.hasValue()) |
| return ReplVal; |
| |
| // Go through all predecessors and add terminators for analysis. |
| for (const BasicBlock *Pred : predecessors(CurrBB)) |
| if (const Instruction *Terminator = Pred->getTerminator()) |
| Worklist.push_back(Terminator); |
| } |
| |
| return ReplVal; |
| } |
| }; |
| |
| struct AAICVTrackerFunctionReturned : AAICVTracker { |
| AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) |
| : AAICVTracker(IRP, A) {} |
| |
| // FIXME: come up with better string. |
| const std::string getAsStr() const override { |
| return "ICVTrackerFunctionReturned"; |
| } |
| |
| // FIXME: come up with some stats. |
| void trackStatistics() const override {} |
| |
| /// We don't manifest anything for this AA. |
| ChangeStatus manifest(Attributor &A) override { |
| return ChangeStatus::UNCHANGED; |
| } |
| |
| // Map of ICV to their values at specific program point. |
| EnumeratedArray<Optional<Value *>, InternalControlVar, |
| InternalControlVar::ICV___last> |
| ICVReplacementValuesMap; |
| |
| /// Return the value with which \p I can be replaced for specific \p ICV. |
| Optional<Value *> |
| getUniqueReplacementValue(InternalControlVar ICV) const override { |
| return ICVReplacementValuesMap[ICV]; |
| } |
| |
| ChangeStatus updateImpl(Attributor &A) override { |
| ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( |
| *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); |
| |
| if (!ICVTrackingAA.isAssumedTracked()) |
| return indicatePessimisticFixpoint(); |
| |
| for (InternalControlVar ICV : TrackableICVs) { |
| Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; |
| Optional<Value *> UniqueICVValue; |
| |
| auto CheckReturnInst = [&](Instruction &I) { |
| Optional<Value *> NewReplVal = |
| ICVTrackingAA.getReplacementValue(ICV, &I, A); |
| |
| // If we found a second ICV value there is no unique returned value. |
| if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) |
| return false; |
| |
| UniqueICVValue = NewReplVal; |
| |
| return true; |
| }; |
| |
| bool UsedAssumedInformation = false; |
| if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, |
| UsedAssumedInformation, |
| /* CheckBBLivenessOnly */ true)) |
| UniqueICVValue = nullptr; |
| |
| if (UniqueICVValue == ReplVal) |
| continue; |
| |
| ReplVal = UniqueICVValue; |
| Changed = ChangeStatus::CHANGED; |
| } |
| |
| return Changed; |
| } |
| }; |
| |
| struct AAICVTrackerCallSite : AAICVTracker { |
| AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) |
| : AAICVTracker(IRP, A) {} |
| |
| void initialize(Attributor &A) override { |
| Function *F = getAnchorScope(); |
| if (!F || !A.isFunctionIPOAmendable(*F)) |
| indicatePessimisticFixpoint(); |
| |
| // We only initialize this AA for getters, so we need to know which ICV it |
| // gets. |
| auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
| for (InternalControlVar ICV : TrackableICVs) { |
| auto ICVInfo = OMPInfoCache.ICVs[ICV]; |
| auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; |
| if (Getter.Declaration == getAssociatedFunction()) { |
| AssociatedICV = ICVInfo.Kind; |
| return; |
| } |
| } |
| |
| /// Unknown ICV. |
| indicatePessimisticFixpoint(); |
| } |
| |
| ChangeStatus manifest(Attributor &A) override { |
| if (!ReplVal.hasValue() || !ReplVal.getValue()) |
| return ChangeStatus::UNCHANGED; |
| |
| A.changeValueAfterManifest(*getCtxI(), **ReplVal); |
| A.deleteAfterManifest(*getCtxI()); |
| |
| return ChangeStatus::CHANGED; |
| } |
| |
| // FIXME: come up with better string. |
| const std::string getAsStr() const override { return "ICVTrackerCallSite"; } |
| |
| // FIXME: come up with some stats. |
| void trackStatistics() const override {} |
| |
| InternalControlVar AssociatedICV; |
| Optional<Value *> ReplVal; |
| |
| ChangeStatus updateImpl(Attributor &A) override { |
| const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( |
| *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); |
| |
| // We don't have any information, so we assume it changes the ICV. |
| if (!ICVTrackingAA.isAssumedTracked()) |
| return indicatePessimisticFixpoint(); |
| |
| Optional<Value *> NewReplVal = |
| ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); |
| |
| if (ReplVal == NewReplVal) |
| return ChangeStatus::UNCHANGED; |
| |
| ReplVal = NewReplVal; |
| return ChangeStatus::CHANGED; |
| } |
| |
| // Return the value with which associated value can be replaced for specific |
| // \p ICV. |
| Optional<Value *> |
| getUniqueReplacementValue(InternalControlVar ICV) const override { |
| return ReplVal; |
| } |
| }; |
| |
| struct AAICVTrackerCallSiteReturned : AAICVTracker { |
| AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| : AAICVTracker(IRP, A) {} |
| |
| // FIXME: come up with better string. |
| const std::string getAsStr() const override { |
| return "ICVTrackerCallSiteReturned"; |
| } |
| |
| // FIXME: come up with some stats. |
| void trackStatistics() const override {} |
| |
| /// We don't manifest anything for this AA. |
| ChangeStatus manifest(Attributor &A) override { |
| return ChangeStatus::UNCHANGED; |
| } |
| |
| // Map of ICV to their values at specific program point. |
| EnumeratedArray<Optional<Value *>, InternalControlVar, |
| InternalControlVar::ICV___last> |
| ICVReplacementValuesMap; |
| |
| /// Return the value with which associated value can be replaced for specific |
| /// \p ICV. |
| Optional<Value *> |
| getUniqueReplacementValue(InternalControlVar ICV) const override { |
| return ICVReplacementValuesMap[ICV]; |
| } |
| |
| ChangeStatus updateImpl(Attributor &A) override { |
| ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( |
| *this, IRPosition::returned(*getAssociatedFunction()), |
| DepClassTy::REQUIRED); |
| |
| // We don't have any information, so we assume it changes the ICV. |
| if (!ICVTrackingAA.isAssumedTracked()) |
| return indicatePessimisticFixpoint(); |
| |
| for (InternalControlVar ICV : TrackableICVs) { |
| Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; |
| Optional<Value *> NewReplVal = |
| ICVTrackingAA.getUniqueReplacementValue(ICV); |
| |
| if (ReplVal == NewReplVal) |
| continue; |
| |
| ReplVal = NewReplVal; |
| Changed = ChangeStatus::CHANGED; |
| } |
| return Changed; |
| } |
| }; |
| |
| struct AAExecutionDomainFunction : public AAExecutionDomain { |
| AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) |
| : AAExecutionDomain(IRP, A) {} |
| |
| const std::string getAsStr() const override { |
| return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) + |
| "/" + std::to_string(NumBBs) + " BBs thread 0 only."; |
| } |
| |
| /// See AbstractAttribute::trackStatistics(). |
| void trackStatistics() const override {} |
| |
| void initialize(Attributor &A) override { |
| Function *F = getAnchorScope(); |
| for (const auto &BB : *F) |
| SingleThreadedBBs.insert(&BB); |
| NumBBs = SingleThreadedBBs.size(); |
| } |
| |
| ChangeStatus manifest(Attributor &A) override { |
| LLVM_DEBUG({ |
| for (const BasicBlock *BB : SingleThreadedBBs) |
| dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " |
| << BB->getName() << " is executed by a single thread.\n"; |
| }); |
| return ChangeStatus::UNCHANGED; |
| } |
| |
| ChangeStatus updateImpl(Attributor &A) override; |
| |
| /// Check if an instruction is executed by a single thread. |
| bool isExecutedByInitialThreadOnly(const Instruction &I) const override { |
| return isExecutedByInitialThreadOnly(*I.getParent()); |
| } |
| |
| bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { |
| return isValidState() && SingleThreadedBBs.contains(&BB); |
| } |
| |
| /// Set of basic blocks that are executed by a single thread. |
| DenseSet<const BasicBlock *> SingleThreadedBBs; |
| |
| /// Total number of basic blocks in this function. |
| long unsigned NumBBs; |
| }; |
| |
| ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { |
| Function *F = getAnchorScope(); |
| ReversePostOrderTraversal<Function *> RPOT(F); |
| auto NumSingleThreadedBBs = SingleThreadedBBs.size(); |
| |
| bool AllCallSitesKnown; |
| auto PredForCallSite = [&](AbstractCallSite ACS) { |
| const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( |
| *this, IRPosition::function(*ACS.getInstruction()->getFunction()), |
| DepClassTy::REQUIRED); |
| return ACS.isDirectCall() && |
| ExecutionDomainAA.isExecutedByInitialThreadOnly( |
| *ACS.getInstruction()); |
| }; |
| |
| if (!A.checkForAllCallSites(PredForCallSite, *this, |
| /* RequiresAllCallSites */ true, |
| AllCallSitesKnown)) |
| SingleThreadedBBs.erase(&F->getEntryBlock()); |
| |
| auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
| auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; |
| |
| // Check if the edge into the successor block contains a condition that only |
| // lets the main thread execute it. |
| auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) { |
| if (!Edge || !Edge->isConditional()) |
| return false; |
| if (Edge->getSuccessor(0) != SuccessorBB) |
| return false; |
| |
| auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition()); |
| if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) |
| return false; |
| |
| ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1)); |
| if (!C) |
| return false; |
| |
| // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) |
| if (C->isAllOnesValue()) { |
| auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0)); |
| CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr; |
| if (!CB) |
| return false; |
| const int InitModeArgNo = 1; |
| auto *ModeCI = dyn_cast<ConstantInt>(CB->getOperand(InitModeArgNo)); |
| return ModeCI && (ModeCI->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC); |
| } |
| |
| if (C->isZero()) { |
| // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x() |
| if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) |
| if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x) |
| return true; |
| |
| // Match: 0 == llvm.amdgcn.workitem.id.x() |
| if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) |
| if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x) |
| return true; |
| } |
| |
| return false; |
| }; |
| |
| // Merge all the predecessor states into the current basic block. A basic |
| // block is executed by a single thread if all of its predecessors are. |
| auto MergePredecessorStates = [&](BasicBlock *BB) { |
| if (pred_empty(BB)) |
| return SingleThreadedBBs.contains(BB); |
| |
| bool IsInitialThread = true; |
| for (BasicBlock *PredBB : predecessors(BB)) { |
| if (!IsInitialThreadOnly(dyn_cast<BranchInst>(PredBB->getTerminator()), |
| BB)) |
| IsInitialThread &= SingleThreadedBBs.contains(PredBB); |
| } |
| |
| return IsInitialThread; |
| }; |
| |
| for (auto *BB : RPOT) { |
| if (!MergePredecessorStates(BB)) |
| SingleThreadedBBs.erase(BB); |
| } |
| |
| return (NumSingleThreadedBBs == SingleThreadedBBs.size()) |
| ? ChangeStatus::UNCHANGED |
| : ChangeStatus::CHANGED; |
| } |
| |
| /// Try to replace memory allocation calls called by a single thread with a |
| /// static buffer of shared memory. |
| struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { |
| using Base = StateWrapper<BooleanState, AbstractAttribute>; |
| AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} |
| |
| /// Create an abstract attribute view for the position \p IRP. |
| static AAHeapToShared &createForPosition(const IRPosition &IRP, |
| Attributor &A); |
| |
| /// Returns true if HeapToShared conversion is assumed to be possible. |
| virtual bool isAssumedHeapToShared(CallBase &CB) const = 0; |
| |
| /// Returns true if HeapToShared conversion is assumed and the CB is a |
| /// callsite to a free operation to be removed. |
| virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0; |
| |
| /// See AbstractAttribute::getName(). |
| const std::string getName() const override { return "AAHeapToShared"; } |
| |
| /// See AbstractAttribute::getIdAddr(). |
| const char *getIdAddr() const override { return &ID; } |
| |
| /// This function should return true if the type of the \p AA is |
| /// AAHeapToShared. |
| static bool classof(const AbstractAttribute *AA) { |
| return (AA->getIdAddr() == &ID); |
| } |
| |
| /// Unique ID (due to the unique address) |
| static const char ID; |
| }; |
| |
| struct AAHeapToSharedFunction : public AAHeapToShared { |
| AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) |
| : AAHeapToShared(IRP, A) {} |
| |
| const std::string getAsStr() const override { |
| return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) + |
| " malloc calls eligible."; |
| } |
| |
| /// See AbstractAttribute::trackStatistics(). |
| void trackStatistics() const override {} |
| |
| /// This functions finds free calls that will be removed by the |
| /// HeapToShared transformation. |
| void findPotentialRemovedFreeCalls(Attributor &A) { |
| auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
| auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; |
| |
| PotentialRemovedFreeCalls.clear(); |
| // Update free call users of found malloc calls. |
| for (CallBase *CB : MallocCalls) { |
| SmallVector<CallBase *, 4> FreeCalls; |
| for (auto *U : CB->users()) { |
| CallBase *C = dyn_cast<CallBase>(U); |
| if (C && C->getCalledFunction() == FreeRFI.Declaration) |
| FreeCalls.push_back(C); |
| } |
| |
| if (FreeCalls.size() != 1) |
| continue; |
| |
| PotentialRemovedFreeCalls.insert(FreeCalls.front()); |
| } |
| } |
| |
| void initialize(Attributor &A) override { |
| auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
| auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; |
| |
| for (User *U : RFI.Declaration->users()) |
| if (CallBase *CB = dyn_cast<CallBase>(U)) |
| MallocCalls.insert(CB); |
| |
| findPotentialRemovedFreeCalls(A); |
| } |
| |
| bool isAssumedHeapToShared(CallBase &CB) const override { |
| return isValidState() && MallocCalls.count(&CB); |
| } |
| |
| bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override { |
| return isValidState() && PotentialRemovedFreeCalls.count(&CB); |
| } |
| |
| ChangeStatus manifest(Attributor &A) override { |
| if (MallocCalls.empty()) |
| return ChangeStatus::UNCHANGED; |
| |
| auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
| auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; |
| |
| Function *F = getAnchorScope(); |
| auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this, |
| DepClassTy::OPTIONAL); |
| |
| ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| for (CallBase *CB : MallocCalls) { |
| // Skip replacing this if HeapToStack has already claimed it. |
| if (HS && HS->isAssumedHeapToStack(*CB)) |
| continue; |
| |
| // Find the unique free call to remove it. |
| SmallVector<CallBase *, 4> FreeCalls; |
| for (auto *U : CB->users()) { |
| CallBase *C = dyn_cast<CallBase>(U); |
| if (C && C->getCalledFunction() == FreeCall.Declaration) |
| FreeCalls.push_back(C); |
| } |
| if (FreeCalls.size() != 1) |
| continue; |
| |
| ConstantInt *AllocSize = dyn_cast<ConstantInt>(CB->getArgOperand(0)); |
| |
| LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB |
| << " with " << AllocSize->getZExtValue() |
| << " bytes of shared memory\n"); |
| |
| // Create a new shared memory buffer of the same size as the allocation |
| // and replace all the uses of the original allocation with it. |
| Module *M = CB->getModule(); |
| Type *Int8Ty = Type::getInt8Ty(M->getContext()); |
| Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue()); |
| auto *SharedMem = new GlobalVariable( |
| *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, |
| UndefValue::get(Int8ArrTy), CB->getName(), nullptr |