| //===- X86AvoidStoreForwardingBlocks.cpp - Avoid HW Store Forward Block ---===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // If a load follows a store and reloads data that the store has written to |
| // memory, Intel microarchitectures can in many cases forward the data directly |
| // from the store to the load, This "store forwarding" saves cycles by enabling |
| // the load to directly obtain the data instead of accessing the data from |
| // cache or memory. |
| // A "store forward block" occurs in cases that a store cannot be forwarded to |
| // the load. The most typical case of store forward block on Intel Core |
| // microarchitecture that a small store cannot be forwarded to a large load. |
| // The estimated penalty for a store forward block is ~13 cycles. |
| // |
| // This pass tries to recognize and handle cases where "store forward block" |
| // is created by the compiler when lowering memcpy calls to a sequence |
| // of a load and a store. |
| // |
| // The pass currently only handles cases where memcpy is lowered to |
| // XMM/YMM registers, it tries to break the memcpy into smaller copies. |
| // breaking the memcpy should be possible since there is no atomicity |
| // guarantee for loads and stores to XMM/YMM. |
| // |
| // It could be better for performance to solve the problem by loading |
| // to XMM/YMM then inserting the partial store before storing back from XMM/YMM |
| // to memory, but this will result in a more conservative optimization since it |
| // requires we prove that all memory accesses between the blocking store and the |
| // load must alias/don't alias before we can move the store, whereas the |
| // transformation done here is correct regardless to other memory accesses. |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "X86InstrInfo.h" |
| #include "X86Subtarget.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "x86-avoid-SFB" |
| |
| static cl::opt<bool> DisableX86AvoidStoreForwardBlocks( |
| "x86-disable-avoid-SFB", cl::Hidden, |
| cl::desc("X86: Disable Store Forwarding Blocks fixup."), cl::init(false)); |
| |
| static cl::opt<unsigned> X86AvoidSFBInspectionLimit( |
| "x86-sfb-inspection-limit", |
| cl::desc("X86: Number of instructions backward to " |
| "inspect for store forwarding blocks."), |
| cl::init(20), cl::Hidden); |
| |
| namespace { |
| |
| using DisplacementSizeMap = std::map<int64_t, unsigned>; |
| |
| class X86AvoidSFBPass : public MachineFunctionPass { |
| public: |
| static char ID; |
| X86AvoidSFBPass() : MachineFunctionPass(ID) { } |
| |
| StringRef getPassName() const override { |
| return "X86 Avoid Store Forwarding Blocks"; |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| MachineFunctionPass::getAnalysisUsage(AU); |
| AU.addRequired<AAResultsWrapperPass>(); |
| } |
| |
| private: |
| MachineRegisterInfo *MRI = nullptr; |
| const X86InstrInfo *TII = nullptr; |
| const X86RegisterInfo *TRI = nullptr; |
| SmallVector<std::pair<MachineInstr *, MachineInstr *>, 2> |
| BlockedLoadsStoresPairs; |
| SmallVector<MachineInstr *, 2> ForRemoval; |
| AliasAnalysis *AA = nullptr; |
| |
| /// Returns couples of Load then Store to memory which look |
| /// like a memcpy. |
| void findPotentiallylBlockedCopies(MachineFunction &MF); |
| /// Break the memcpy's load and store into smaller copies |
| /// such that each memory load that was blocked by a smaller store |
| /// would now be copied separately. |
| void breakBlockedCopies(MachineInstr *LoadInst, MachineInstr *StoreInst, |
| const DisplacementSizeMap &BlockingStoresDispSizeMap); |
| /// Break a copy of size Size to smaller copies. |
| void buildCopies(int Size, MachineInstr *LoadInst, int64_t LdDispImm, |
| MachineInstr *StoreInst, int64_t StDispImm, |
| int64_t LMMOffset, int64_t SMMOffset); |
| |
| void buildCopy(MachineInstr *LoadInst, unsigned NLoadOpcode, int64_t LoadDisp, |
| MachineInstr *StoreInst, unsigned NStoreOpcode, |
| int64_t StoreDisp, unsigned Size, int64_t LMMOffset, |
| int64_t SMMOffset); |
| |
| bool alias(const MachineMemOperand &Op1, const MachineMemOperand &Op2) const; |
| |
| unsigned getRegSizeInBytes(MachineInstr *Inst); |
| }; |
| |
| } // end anonymous namespace |
| |
| char X86AvoidSFBPass::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(X86AvoidSFBPass, DEBUG_TYPE, "Machine code sinking", |
| false, false) |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| INITIALIZE_PASS_END(X86AvoidSFBPass, DEBUG_TYPE, "Machine code sinking", false, |
| false) |
| |
| FunctionPass *llvm::createX86AvoidStoreForwardingBlocks() { |
| return new X86AvoidSFBPass(); |
| } |
| |
| static bool isXMMLoadOpcode(unsigned Opcode) { |
| return Opcode == X86::MOVUPSrm || Opcode == X86::MOVAPSrm || |
| Opcode == X86::VMOVUPSrm || Opcode == X86::VMOVAPSrm || |
| Opcode == X86::VMOVUPDrm || Opcode == X86::VMOVAPDrm || |
| Opcode == X86::VMOVDQUrm || Opcode == X86::VMOVDQArm || |
| Opcode == X86::VMOVUPSZ128rm || Opcode == X86::VMOVAPSZ128rm || |
| Opcode == X86::VMOVUPDZ128rm || Opcode == X86::VMOVAPDZ128rm || |
| Opcode == X86::VMOVDQU64Z128rm || Opcode == X86::VMOVDQA64Z128rm || |
| Opcode == X86::VMOVDQU32Z128rm || Opcode == X86::VMOVDQA32Z128rm; |
| } |
| static bool isYMMLoadOpcode(unsigned Opcode) { |
| return Opcode == X86::VMOVUPSYrm || Opcode == X86::VMOVAPSYrm || |
| Opcode == X86::VMOVUPDYrm || Opcode == X86::VMOVAPDYrm || |
| Opcode == X86::VMOVDQUYrm || Opcode == X86::VMOVDQAYrm || |
| Opcode == X86::VMOVUPSZ256rm || Opcode == X86::VMOVAPSZ256rm || |
| Opcode == X86::VMOVUPDZ256rm || Opcode == X86::VMOVAPDZ256rm || |
| Opcode == X86::VMOVDQU64Z256rm || Opcode == X86::VMOVDQA64Z256rm || |
| Opcode == X86::VMOVDQU32Z256rm || Opcode == X86::VMOVDQA32Z256rm; |
| } |
| |
| static bool isPotentialBlockedMemCpyLd(unsigned Opcode) { |
| return isXMMLoadOpcode(Opcode) || isYMMLoadOpcode(Opcode); |
| } |
| |
| static bool isPotentialBlockedMemCpyPair(unsigned LdOpcode, unsigned StOpcode) { |
| switch (LdOpcode) { |
| case X86::MOVUPSrm: |
| case X86::MOVAPSrm: |
| return StOpcode == X86::MOVUPSmr || StOpcode == X86::MOVAPSmr; |
| case X86::VMOVUPSrm: |
| case X86::VMOVAPSrm: |
| return StOpcode == X86::VMOVUPSmr || StOpcode == X86::VMOVAPSmr; |
| case X86::VMOVUPDrm: |
| case X86::VMOVAPDrm: |
| return StOpcode == X86::VMOVUPDmr || StOpcode == X86::VMOVAPDmr; |
| case X86::VMOVDQUrm: |
| case X86::VMOVDQArm: |
| return StOpcode == X86::VMOVDQUmr || StOpcode == X86::VMOVDQAmr; |
| case X86::VMOVUPSZ128rm: |
| case X86::VMOVAPSZ128rm: |
| return StOpcode == X86::VMOVUPSZ128mr || StOpcode == X86::VMOVAPSZ128mr; |
| case X86::VMOVUPDZ128rm: |
| case X86::VMOVAPDZ128rm: |
| return StOpcode == X86::VMOVUPDZ128mr || StOpcode == X86::VMOVAPDZ128mr; |
| case X86::VMOVUPSYrm: |
| case X86::VMOVAPSYrm: |
| return StOpcode == X86::VMOVUPSYmr || StOpcode == X86::VMOVAPSYmr; |
| case X86::VMOVUPDYrm: |
| case X86::VMOVAPDYrm: |
| return StOpcode == X86::VMOVUPDYmr || StOpcode == X86::VMOVAPDYmr; |
| case X86::VMOVDQUYrm: |
| case X86::VMOVDQAYrm: |
| return StOpcode == X86::VMOVDQUYmr || StOpcode == X86::VMOVDQAYmr; |
| case X86::VMOVUPSZ256rm: |
| case X86::VMOVAPSZ256rm: |
| return StOpcode == X86::VMOVUPSZ256mr || StOpcode == X86::VMOVAPSZ256mr; |
| case X86::VMOVUPDZ256rm: |
| case X86::VMOVAPDZ256rm: |
| return StOpcode == X86::VMOVUPDZ256mr || StOpcode == X86::VMOVAPDZ256mr; |
| case X86::VMOVDQU64Z128rm: |
| case X86::VMOVDQA64Z128rm: |
| return StOpcode == X86::VMOVDQU64Z128mr || StOpcode == X86::VMOVDQA64Z128mr; |
| case X86::VMOVDQU32Z128rm: |
| case X86::VMOVDQA32Z128rm: |
| return StOpcode == X86::VMOVDQU32Z128mr || StOpcode == X86::VMOVDQA32Z128mr; |
| case X86::VMOVDQU64Z256rm: |
| case X86::VMOVDQA64Z256rm: |
| return StOpcode == X86::VMOVDQU64Z256mr || StOpcode == X86::VMOVDQA64Z256mr; |
| case X86::VMOVDQU32Z256rm: |
| case X86::VMOVDQA32Z256rm: |
| return StOpcode == X86::VMOVDQU32Z256mr || StOpcode == X86::VMOVDQA32Z256mr; |
| default: |
| return false; |
| } |
| } |
| |
| static bool isPotentialBlockingStoreInst(unsigned Opcode, unsigned LoadOpcode) { |
| bool PBlock = false; |
| PBlock |= Opcode == X86::MOV64mr || Opcode == X86::MOV64mi32 || |
| Opcode == X86::MOV32mr || Opcode == X86::MOV32mi || |
| Opcode == X86::MOV16mr || Opcode == X86::MOV16mi || |
| Opcode == X86::MOV8mr || Opcode == X86::MOV8mi; |
| if (isYMMLoadOpcode(LoadOpcode)) |
| PBlock |= Opcode == X86::VMOVUPSmr || Opcode == X86::VMOVAPSmr || |
| Opcode == X86::VMOVUPDmr || Opcode == X86::VMOVAPDmr || |
| Opcode == X86::VMOVDQUmr || Opcode == X86::VMOVDQAmr || |
| Opcode == X86::VMOVUPSZ128mr || Opcode == X86::VMOVAPSZ128mr || |
| Opcode == X86::VMOVUPDZ128mr || Opcode == X86::VMOVAPDZ128mr || |
| Opcode == X86::VMOVDQU64Z128mr || |
| Opcode == X86::VMOVDQA64Z128mr || |
| Opcode == X86::VMOVDQU32Z128mr || Opcode == X86::VMOVDQA32Z128mr; |
| return PBlock; |
| } |
| |
| static const int MOV128SZ = 16; |
| static const int MOV64SZ = 8; |
| static const int MOV32SZ = 4; |
| static const int MOV16SZ = 2; |
| static const int MOV8SZ = 1; |
| |
| static unsigned getYMMtoXMMLoadOpcode(unsigned LoadOpcode) { |
| switch (LoadOpcode) { |
| case X86::VMOVUPSYrm: |
| case X86::VMOVAPSYrm: |
| return X86::VMOVUPSrm; |
| case X86::VMOVUPDYrm: |
| case X86::VMOVAPDYrm: |
| return X86::VMOVUPDrm; |
| case X86::VMOVDQUYrm: |
| case X86::VMOVDQAYrm: |
| return X86::VMOVDQUrm; |
| case X86::VMOVUPSZ256rm: |
| case X86::VMOVAPSZ256rm: |
| return X86::VMOVUPSZ128rm; |
| case X86::VMOVUPDZ256rm: |
| case X86::VMOVAPDZ256rm: |
| return X86::VMOVUPDZ128rm; |
| case X86::VMOVDQU64Z256rm: |
| case X86::VMOVDQA64Z256rm: |
| return X86::VMOVDQU64Z128rm; |
| case X86::VMOVDQU32Z256rm: |
| case X86::VMOVDQA32Z256rm: |
| return X86::VMOVDQU32Z128rm; |
| default: |
| llvm_unreachable("Unexpected Load Instruction Opcode"); |
| } |
| return 0; |
| } |
| |
| static unsigned getYMMtoXMMStoreOpcode(unsigned StoreOpcode) { |
| switch (StoreOpcode) { |
| case X86::VMOVUPSYmr: |
| case X86::VMOVAPSYmr: |
| return X86::VMOVUPSmr; |
| case X86::VMOVUPDYmr: |
| case X86::VMOVAPDYmr: |
| return X86::VMOVUPDmr; |
| case X86::VMOVDQUYmr: |
| case X86::VMOVDQAYmr: |
| return X86::VMOVDQUmr; |
| case X86::VMOVUPSZ256mr: |
| case X86::VMOVAPSZ256mr: |
| return X86::VMOVUPSZ128mr; |
| case X86::VMOVUPDZ256mr: |
| case X86::VMOVAPDZ256mr: |
| return X86::VMOVUPDZ128mr; |
| case X86::VMOVDQU64Z256mr: |
| case X86::VMOVDQA64Z256mr: |
| return X86::VMOVDQU64Z128mr; |
| case X86::VMOVDQU32Z256mr: |
| case X86::VMOVDQA32Z256mr: |
| return X86::VMOVDQU32Z128mr; |
| default: |
| llvm_unreachable("Unexpected Load Instruction Opcode"); |
| } |
| return 0; |
| } |
| |
| static int getAddrOffset(const MachineInstr *MI) { |
| const MCInstrDesc &Descl = MI->getDesc(); |
| int AddrOffset = X86II::getMemoryOperandNo(Descl.TSFlags); |
| assert(AddrOffset != -1 && "Expected Memory Operand"); |
| AddrOffset += X86II::getOperandBias(Descl); |
| return AddrOffset; |
| } |
| |
| static MachineOperand &getBaseOperand(MachineInstr *MI) { |
| int AddrOffset = getAddrOffset(MI); |
| return MI->getOperand(AddrOffset + X86::AddrBaseReg); |
| } |
| |
| static MachineOperand &getDispOperand(MachineInstr *MI) { |
| int AddrOffset = getAddrOffset(MI); |
| return MI->getOperand(AddrOffset + X86::AddrDisp); |
| } |
| |
| // Relevant addressing modes contain only base register and immediate |
| // displacement or frameindex and immediate displacement. |
| // TODO: Consider expanding to other addressing modes in the future |
| static bool isRelevantAddressingMode(MachineInstr *MI) { |
| int AddrOffset = getAddrOffset(MI); |
| const MachineOperand &Base = getBaseOperand(MI); |
| const MachineOperand &Disp = getDispOperand(MI); |
| const MachineOperand &Scale = MI->getOperand(AddrOffset + X86::AddrScaleAmt); |
| const MachineOperand &Index = MI->getOperand(AddrOffset + X86::AddrIndexReg); |
| const MachineOperand &Segment = MI->getOperand(AddrOffset + X86::AddrSegmentReg); |
| |
| if (!((Base.isReg() && Base.getReg() != X86::NoRegister) || Base.isFI())) |
| return false; |
| if (!Disp.isImm()) |
| return false; |
| if (Scale.getImm() != 1) |
| return false; |
| if (!(Index.isReg() && Index.getReg() == X86::NoRegister)) |
| return false; |
| if (!(Segment.isReg() && Segment.getReg() == X86::NoRegister)) |
| return false; |
| return true; |
| } |
| |
| // Collect potentially blocking stores. |
| // Limit the number of instructions backwards we want to inspect |
| // since the effect of store block won't be visible if the store |
| // and load instructions have enough instructions in between to |
| // keep the core busy. |
| static SmallVector<MachineInstr *, 2> |
| findPotentialBlockers(MachineInstr *LoadInst) { |
| SmallVector<MachineInstr *, 2> PotentialBlockers; |
| unsigned BlockCount = 0; |
| const unsigned InspectionLimit = X86AvoidSFBInspectionLimit; |
| for (auto PBInst = std::next(MachineBasicBlock::reverse_iterator(LoadInst)), |
| E = LoadInst->getParent()->rend(); |
| PBInst != E; ++PBInst) { |
| if (PBInst->isMetaInstruction()) |
| continue; |
| BlockCount++; |
| if (BlockCount >= InspectionLimit) |
| break; |
| MachineInstr &MI = *PBInst; |
| if (MI.getDesc().isCall()) |
| return PotentialBlockers; |
| PotentialBlockers.push_back(&MI); |
| } |
| // If we didn't get to the instructions limit try predecessing blocks. |
| // Ideally we should traverse the predecessor blocks in depth with some |
| // coloring algorithm, but for now let's just look at the first order |
| // predecessors. |
| if (BlockCount < InspectionLimit) { |
| MachineBasicBlock *MBB = LoadInst->getParent(); |
| int LimitLeft = InspectionLimit - BlockCount; |
| for (MachineBasicBlock *PMBB : MBB->predecessors()) { |
| int PredCount = 0; |
| for (MachineInstr &PBInst : llvm::reverse(*PMBB)) { |
| if (PBInst.isMetaInstruction()) |
| continue; |
| PredCount++; |
| if (PredCount >= LimitLeft) |
| break; |
| if (PBInst.getDesc().isCall()) |
| break; |
| PotentialBlockers.push_back(&PBInst); |
| } |
| } |
| } |
| return PotentialBlockers; |
| } |
| |
| void X86AvoidSFBPass::buildCopy(MachineInstr *LoadInst, unsigned NLoadOpcode, |
| int64_t LoadDisp, MachineInstr *StoreInst, |
| unsigned NStoreOpcode, int64_t StoreDisp, |
| unsigned Size, int64_t LMMOffset, |
| int64_t SMMOffset) { |
| MachineOperand &LoadBase = getBaseOperand(LoadInst); |
| MachineOperand &StoreBase = getBaseOperand(StoreInst); |
| MachineBasicBlock *MBB = LoadInst->getParent(); |
| MachineMemOperand *LMMO = *LoadInst->memoperands_begin(); |
| MachineMemOperand *SMMO = *StoreInst->memoperands_begin(); |
| |
| Register Reg1 = MRI->createVirtualRegister( |
| TII->getRegClass(TII->get(NLoadOpcode), 0, TRI, *(MBB->getParent()))); |
| MachineInstr *NewLoad = |
| BuildMI(*MBB, LoadInst, LoadInst->getDebugLoc(), TII->get(NLoadOpcode), |
| Reg1) |
| .add(LoadBase) |
| .addImm(1) |
| .addReg(X86::NoRegister) |
| .addImm(LoadDisp) |
| .addReg(X86::NoRegister) |
| .addMemOperand( |
| MBB->getParent()->getMachineMemOperand(LMMO, LMMOffset, Size)); |
| if (LoadBase.isReg()) |
| getBaseOperand(NewLoad).setIsKill(false); |
| LLVM_DEBUG(NewLoad->dump()); |
| // If the load and store are consecutive, use the loadInst location to |
| // reduce register pressure. |
| MachineInstr *StInst = StoreInst; |
| auto PrevInstrIt = prev_nodbg(MachineBasicBlock::instr_iterator(StoreInst), |
| MBB->instr_begin()); |
| if (PrevInstrIt.getNodePtr() == LoadInst) |
| StInst = LoadInst; |
| MachineInstr *NewStore = |
| BuildMI(*MBB, StInst, StInst->getDebugLoc(), TII->get(NStoreOpcode)) |
| .add(StoreBase) |
| .addImm(1) |
| .addReg(X86::NoRegister) |
| .addImm(StoreDisp) |
| .addReg(X86::NoRegister) |
| .addReg(Reg1) |
| .addMemOperand( |
| MBB->getParent()->getMachineMemOperand(SMMO, SMMOffset, Size)); |
| if (StoreBase.isReg()) |
| getBaseOperand(NewStore).setIsKill(false); |
| MachineOperand &StoreSrcVReg = StoreInst->getOperand(X86::AddrNumOperands); |
| assert(StoreSrcVReg.isReg() && "Expected virtual register"); |
| NewStore->getOperand(X86::AddrNumOperands).setIsKill(StoreSrcVReg.isKill()); |
| LLVM_DEBUG(NewStore->dump()); |
| } |
| |
| void X86AvoidSFBPass::buildCopies(int Size, MachineInstr *LoadInst, |
| int64_t LdDispImm, MachineInstr *StoreInst, |
| int64_t StDispImm, int64_t LMMOffset, |
| int64_t SMMOffset) { |
| int LdDisp = LdDispImm; |
| int StDisp = StDispImm; |
| while (Size > 0) { |
| if ((Size - MOV128SZ >= 0) && isYMMLoadOpcode(LoadInst->getOpcode())) { |
| Size = Size - MOV128SZ; |
| buildCopy(LoadInst, getYMMtoXMMLoadOpcode(LoadInst->getOpcode()), LdDisp, |
| StoreInst, getYMMtoXMMStoreOpcode(StoreInst->getOpcode()), |
| StDisp, MOV128SZ, LMMOffset, SMMOffset); |
| LdDisp += MOV128SZ; |
| StDisp += MOV128SZ; |
| LMMOffset += MOV128SZ; |
| SMMOffset += MOV128SZ; |
| continue; |
| } |
| if (Size - MOV64SZ >= 0) { |
| Size = Size - MOV64SZ; |
| buildCopy(LoadInst, X86::MOV64rm, LdDisp, StoreInst, X86::MOV64mr, StDisp, |
| MOV64SZ, LMMOffset, SMMOffset); |
| LdDisp += MOV64SZ; |
| StDisp += MOV64SZ; |
| LMMOffset += MOV64SZ; |
| SMMOffset += MOV64SZ; |
| continue; |
| } |
| if (Size - MOV32SZ >= 0) { |
| Size = Size - MOV32SZ; |
| buildCopy(LoadInst, X86::MOV32rm, LdDisp, StoreInst, X86::MOV32mr, StDisp, |
| MOV32SZ, LMMOffset, SMMOffset); |
| LdDisp += MOV32SZ; |
| StDisp += MOV32SZ; |
| LMMOffset += MOV32SZ; |
| SMMOffset += MOV32SZ; |
| continue; |
| } |
| if (Size - MOV16SZ >= 0) { |
| Size = Size - MOV16SZ; |
| buildCopy(LoadInst, X86::MOV16rm, LdDisp, StoreInst, X86::MOV16mr, StDisp, |
| MOV16SZ, LMMOffset, SMMOffset); |
| LdDisp += MOV16SZ; |
| StDisp += MOV16SZ; |
| LMMOffset += MOV16SZ; |
| SMMOffset += MOV16SZ; |
| continue; |
| } |
| if (Size - MOV8SZ >= 0) { |
| Size = Size - MOV8SZ; |
| buildCopy(LoadInst, X86::MOV8rm, LdDisp, StoreInst, X86::MOV8mr, StDisp, |
| MOV8SZ, LMMOffset, SMMOffset); |
| LdDisp += MOV8SZ; |
| StDisp += MOV8SZ; |
| LMMOffset += MOV8SZ; |
| SMMOffset += MOV8SZ; |
| continue; |
| } |
| } |
| assert(Size == 0 && "Wrong size division"); |
| } |
| |
| static void updateKillStatus(MachineInstr *LoadInst, MachineInstr *StoreInst) { |
| MachineOperand &LoadBase = getBaseOperand(LoadInst); |
| MachineOperand &StoreBase = getBaseOperand(StoreInst); |
| auto *StorePrevNonDbgInstr = |
| prev_nodbg(MachineBasicBlock::instr_iterator(StoreInst), |
| LoadInst->getParent()->instr_begin()) |
| .getNodePtr(); |
| if (LoadBase.isReg()) { |
| MachineInstr *LastLoad = LoadInst->getPrevNode(); |
| // If the original load and store to xmm/ymm were consecutive |
| // then the partial copies were also created in |
| // a consecutive order to reduce register pressure, |
| // and the location of the last load is before the last store. |
| if (StorePrevNonDbgInstr == LoadInst) |
| LastLoad = LoadInst->getPrevNode()->getPrevNode(); |
| getBaseOperand(LastLoad).setIsKill(LoadBase.isKill()); |
| } |
| if (StoreBase.isReg()) { |
| MachineInstr *StInst = StoreInst; |
| if (StorePrevNonDbgInstr == LoadInst) |
| StInst = LoadInst; |
| getBaseOperand(StInst->getPrevNode()).setIsKill(StoreBase.isKill()); |
| } |
| } |
| |
| bool X86AvoidSFBPass::alias(const MachineMemOperand &Op1, |
| const MachineMemOperand &Op2) const { |
| if (!Op1.getValue() || !Op2.getValue()) |
| return true; |
| |
| int64_t MinOffset = std::min(Op1.getOffset(), Op2.getOffset()); |
| int64_t Overlapa = Op1.getSize() + Op1.getOffset() - MinOffset; |
| int64_t Overlapb = Op2.getSize() + Op2.getOffset() - MinOffset; |
| |
| return !AA->isNoAlias( |
| MemoryLocation(Op1.getValue(), Overlapa, Op1.getAAInfo()), |
| MemoryLocation(Op2.getValue(), Overlapb, Op2.getAAInfo())); |
| } |
| |
| void X86AvoidSFBPass::findPotentiallylBlockedCopies(MachineFunction &MF) { |
| for (auto &MBB : MF) |
| for (auto &MI : MBB) { |
| if (!isPotentialBlockedMemCpyLd(MI.getOpcode())) |
| continue; |
| int DefVR = MI.getOperand(0).getReg(); |
| if (!MRI->hasOneNonDBGUse(DefVR)) |
| continue; |
| for (MachineOperand &StoreMO : |
| llvm::make_early_inc_range(MRI->use_nodbg_operands(DefVR))) { |
| MachineInstr &StoreMI = *StoreMO.getParent(); |
| // Skip cases where the memcpy may overlap. |
| if (StoreMI.getParent() == MI.getParent() && |
| isPotentialBlockedMemCpyPair(MI.getOpcode(), StoreMI.getOpcode()) && |
| isRelevantAddressingMode(&MI) && |
| isRelevantAddressingMode(&StoreMI) && |
| MI.hasOneMemOperand() && StoreMI.hasOneMemOperand()) { |
| if (!alias(**MI.memoperands_begin(), **StoreMI.memoperands_begin())) |
| BlockedLoadsStoresPairs.push_back(std::make_pair(&MI, &StoreMI)); |
| } |
| } |
| } |
| } |
| |
| unsigned X86AvoidSFBPass::getRegSizeInBytes(MachineInstr *LoadInst) { |
| const auto *TRC = TII->getRegClass(TII->get(LoadInst->getOpcode()), 0, TRI, |
| *LoadInst->getParent()->getParent()); |
| return TRI->getRegSizeInBits(*TRC) / 8; |
| } |
| |
| void X86AvoidSFBPass::breakBlockedCopies( |
| MachineInstr *LoadInst, MachineInstr *StoreInst, |
| const DisplacementSizeMap &BlockingStoresDispSizeMap) { |
| int64_t LdDispImm = getDispOperand(LoadInst).getImm(); |
| int64_t StDispImm = getDispOperand(StoreInst).getImm(); |
| int64_t LMMOffset = 0; |
| int64_t SMMOffset = 0; |
| |
| int64_t LdDisp1 = LdDispImm; |
| int64_t LdDisp2 = 0; |
| int64_t StDisp1 = StDispImm; |
| int64_t StDisp2 = 0; |
| unsigned Size1 = 0; |
| unsigned Size2 = 0; |
| int64_t LdStDelta = StDispImm - LdDispImm; |
| |
| for (auto DispSizePair : BlockingStoresDispSizeMap) { |
| LdDisp2 = DispSizePair.first; |
| StDisp2 = DispSizePair.first + LdStDelta; |
| Size2 = DispSizePair.second; |
| // Avoid copying overlapping areas. |
| if (LdDisp2 < LdDisp1) { |
| int OverlapDelta = LdDisp1 - LdDisp2; |
| LdDisp2 += OverlapDelta; |
| StDisp2 += OverlapDelta; |
| Size2 -= OverlapDelta; |
| } |
| Size1 = LdDisp2 - LdDisp1; |
| |
| // Build a copy for the point until the current blocking store's |
| // displacement. |
| buildCopies(Size1, LoadInst, LdDisp1, StoreInst, StDisp1, LMMOffset, |
| SMMOffset); |
| // Build a copy for the current blocking store. |
| buildCopies(Size2, LoadInst, LdDisp2, StoreInst, StDisp2, LMMOffset + Size1, |
| SMMOffset + Size1); |
| LdDisp1 = LdDisp2 + Size2; |
| StDisp1 = StDisp2 + Size2; |
| LMMOffset += Size1 + Size2; |
| SMMOffset += Size1 + Size2; |
| } |
| unsigned Size3 = (LdDispImm + getRegSizeInBytes(LoadInst)) - LdDisp1; |
| buildCopies(Size3, LoadInst, LdDisp1, StoreInst, StDisp1, LMMOffset, |
| LMMOffset); |
| } |
| |
| static bool hasSameBaseOpValue(MachineInstr *LoadInst, |
| MachineInstr *StoreInst) { |
| const MachineOperand &LoadBase = getBaseOperand(LoadInst); |
| const MachineOperand &StoreBase = getBaseOperand(StoreInst); |
| if (LoadBase.isReg() != StoreBase.isReg()) |
| return false; |
| if (LoadBase.isReg()) |
| return LoadBase.getReg() == StoreBase.getReg(); |
| return LoadBase.getIndex() == StoreBase.getIndex(); |
| } |
| |
| static bool isBlockingStore(int64_t LoadDispImm, unsigned LoadSize, |
| int64_t StoreDispImm, unsigned StoreSize) { |
| return ((StoreDispImm >= LoadDispImm) && |
| (StoreDispImm <= LoadDispImm + (LoadSize - StoreSize))); |
| } |
| |
| // Keep track of all stores blocking a load |
| static void |
| updateBlockingStoresDispSizeMap(DisplacementSizeMap &BlockingStoresDispSizeMap, |
| int64_t DispImm, unsigned Size) { |
| if (BlockingStoresDispSizeMap.count(DispImm)) { |
| // Choose the smallest blocking store starting at this displacement. |
| if (BlockingStoresDispSizeMap[DispImm] > Size) |
| BlockingStoresDispSizeMap[DispImm] = Size; |
| |
| } else |
| BlockingStoresDispSizeMap[DispImm] = Size; |
| } |
| |
| // Remove blocking stores contained in each other. |
| static void |
| removeRedundantBlockingStores(DisplacementSizeMap &BlockingStoresDispSizeMap) { |
| if (BlockingStoresDispSizeMap.size() <= 1) |
| return; |
| |
| SmallVector<std::pair<int64_t, unsigned>, 0> DispSizeStack; |
| for (auto DispSizePair : BlockingStoresDispSizeMap) { |
| int64_t CurrDisp = DispSizePair.first; |
| unsigned CurrSize = DispSizePair.second; |
| while (DispSizeStack.size()) { |
| int64_t PrevDisp = DispSizeStack.back().first; |
| unsigned PrevSize = DispSizeStack.back().second; |
| if (CurrDisp + CurrSize > PrevDisp + PrevSize) |
| break; |
| DispSizeStack.pop_back(); |
| } |
| DispSizeStack.push_back(DispSizePair); |
| } |
| BlockingStoresDispSizeMap.clear(); |
| for (auto Disp : DispSizeStack) |
| BlockingStoresDispSizeMap.insert(Disp); |
| } |
| |
| bool X86AvoidSFBPass::runOnMachineFunction(MachineFunction &MF) { |
| bool Changed = false; |
| |
| if (DisableX86AvoidStoreForwardBlocks || skipFunction(MF.getFunction()) || |
| !MF.getSubtarget<X86Subtarget>().is64Bit()) |
| return false; |
| |
| MRI = &MF.getRegInfo(); |
| assert(MRI->isSSA() && "Expected MIR to be in SSA form"); |
| TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); |
| TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo(); |
| AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| LLVM_DEBUG(dbgs() << "Start X86AvoidStoreForwardBlocks\n";); |
| // Look for a load then a store to XMM/YMM which look like a memcpy |
| findPotentiallylBlockedCopies(MF); |
| |
| for (auto LoadStoreInstPair : BlockedLoadsStoresPairs) { |
| MachineInstr *LoadInst = LoadStoreInstPair.first; |
| int64_t LdDispImm = getDispOperand(LoadInst).getImm(); |
| DisplacementSizeMap BlockingStoresDispSizeMap; |
| |
| SmallVector<MachineInstr *, 2> PotentialBlockers = |
| findPotentialBlockers(LoadInst); |
| for (auto *PBInst : PotentialBlockers) { |
| if (!isPotentialBlockingStoreInst(PBInst->getOpcode(), |
| LoadInst->getOpcode()) || |
| !isRelevantAddressingMode(PBInst) || !PBInst->hasOneMemOperand()) |
| continue; |
| int64_t PBstDispImm = getDispOperand(PBInst).getImm(); |
| unsigned PBstSize = (*PBInst->memoperands_begin())->getSize(); |
| // This check doesn't cover all cases, but it will suffice for now. |
| // TODO: take branch probability into consideration, if the blocking |
| // store is in an unreached block, breaking the memcopy could lose |
| // performance. |
| if (hasSameBaseOpValue(LoadInst, PBInst) && |
| isBlockingStore(LdDispImm, getRegSizeInBytes(LoadInst), PBstDispImm, |
| PBstSize)) |
| updateBlockingStoresDispSizeMap(BlockingStoresDispSizeMap, PBstDispImm, |
| PBstSize); |
| } |
| |
| if (BlockingStoresDispSizeMap.empty()) |
| continue; |
| |
| // We found a store forward block, break the memcpy's load and store |
| // into smaller copies such that each smaller store that was causing |
| // a store block would now be copied separately. |
| MachineInstr *StoreInst = LoadStoreInstPair.second; |
| LLVM_DEBUG(dbgs() << "Blocked load and store instructions: \n"); |
| LLVM_DEBUG(LoadInst->dump()); |
| LLVM_DEBUG(StoreInst->dump()); |
| LLVM_DEBUG(dbgs() << "Replaced with:\n"); |
| removeRedundantBlockingStores(BlockingStoresDispSizeMap); |
| breakBlockedCopies(LoadInst, StoreInst, BlockingStoresDispSizeMap); |
| updateKillStatus(LoadInst, StoreInst); |
| ForRemoval.push_back(LoadInst); |
| ForRemoval.push_back(StoreInst); |
| } |
| for (auto *RemovedInst : ForRemoval) { |
| RemovedInst->eraseFromParent(); |
| } |
| ForRemoval.clear(); |
| BlockedLoadsStoresPairs.clear(); |
| LLVM_DEBUG(dbgs() << "End X86AvoidStoreForwardBlocks\n";); |
| |
| return Changed; |
| } |