| //===--- PPDirectives.cpp - Directive Handling for Preprocessor -----------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// Implements # directive processing for the Preprocessor. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Basic/CharInfo.h" |
| #include "clang/Basic/FileManager.h" |
| #include "clang/Basic/IdentifierTable.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "clang/Basic/Module.h" |
| #include "clang/Basic/SourceLocation.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TokenKinds.h" |
| #include "clang/Lex/CodeCompletionHandler.h" |
| #include "clang/Lex/HeaderSearch.h" |
| #include "clang/Lex/LexDiagnostic.h" |
| #include "clang/Lex/LiteralSupport.h" |
| #include "clang/Lex/MacroInfo.h" |
| #include "clang/Lex/ModuleLoader.h" |
| #include "clang/Lex/ModuleMap.h" |
| #include "clang/Lex/PPCallbacks.h" |
| #include "clang/Lex/Pragma.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Lex/PreprocessorOptions.h" |
| #include "clang/Lex/Token.h" |
| #include "clang/Lex/VariadicMacroSupport.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/ScopeExit.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Support/AlignOf.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/Path.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstring> |
| #include <new> |
| #include <string> |
| #include <utility> |
| |
| using namespace clang; |
| |
| //===----------------------------------------------------------------------===// |
| // Utility Methods for Preprocessor Directive Handling. |
| //===----------------------------------------------------------------------===// |
| |
| MacroInfo *Preprocessor::AllocateMacroInfo(SourceLocation L) { |
| auto *MIChain = new (BP) MacroInfoChain{L, MIChainHead}; |
| MIChainHead = MIChain; |
| return &MIChain->MI; |
| } |
| |
| DefMacroDirective *Preprocessor::AllocateDefMacroDirective(MacroInfo *MI, |
| SourceLocation Loc) { |
| return new (BP) DefMacroDirective(MI, Loc); |
| } |
| |
| UndefMacroDirective * |
| Preprocessor::AllocateUndefMacroDirective(SourceLocation UndefLoc) { |
| return new (BP) UndefMacroDirective(UndefLoc); |
| } |
| |
| VisibilityMacroDirective * |
| Preprocessor::AllocateVisibilityMacroDirective(SourceLocation Loc, |
| bool isPublic) { |
| return new (BP) VisibilityMacroDirective(Loc, isPublic); |
| } |
| |
| /// Read and discard all tokens remaining on the current line until |
| /// the tok::eod token is found. |
| SourceRange Preprocessor::DiscardUntilEndOfDirective() { |
| Token Tmp; |
| SourceRange Res; |
| |
| LexUnexpandedToken(Tmp); |
| Res.setBegin(Tmp.getLocation()); |
| while (Tmp.isNot(tok::eod)) { |
| assert(Tmp.isNot(tok::eof) && "EOF seen while discarding directive tokens"); |
| LexUnexpandedToken(Tmp); |
| } |
| Res.setEnd(Tmp.getLocation()); |
| return Res; |
| } |
| |
| /// Enumerates possible cases of #define/#undef a reserved identifier. |
| enum MacroDiag { |
| MD_NoWarn, //> Not a reserved identifier |
| MD_KeywordDef, //> Macro hides keyword, enabled by default |
| MD_ReservedMacro //> #define of #undef reserved id, disabled by default |
| }; |
| |
| /// Enumerates possible %select values for the pp_err_elif_after_else and |
| /// pp_err_elif_without_if diagnostics. |
| enum PPElifDiag { |
| PED_Elif, |
| PED_Elifdef, |
| PED_Elifndef |
| }; |
| |
| // The -fmodule-name option tells the compiler to textually include headers in |
| // the specified module, meaning clang won't build the specified module. This is |
| // useful in a number of situations, for instance, when building a library that |
| // vends a module map, one might want to avoid hitting intermediate build |
| // products containimg the module map or avoid finding the system installed |
| // modulemap for that library. |
| static bool isForModuleBuilding(Module *M, StringRef CurrentModule, |
| StringRef ModuleName) { |
| StringRef TopLevelName = M->getTopLevelModuleName(); |
| |
| // When building framework Foo, we wanna make sure that Foo *and* Foo_Private |
| // are textually included and no modules are built for both. |
| if (M->getTopLevelModule()->IsFramework && CurrentModule == ModuleName && |
| !CurrentModule.endswith("_Private") && TopLevelName.endswith("_Private")) |
| TopLevelName = TopLevelName.drop_back(8); |
| |
| return TopLevelName == CurrentModule; |
| } |
| |
| static MacroDiag shouldWarnOnMacroDef(Preprocessor &PP, IdentifierInfo *II) { |
| const LangOptions &Lang = PP.getLangOpts(); |
| if (isReservedInAllContexts(II->isReserved(Lang))) { |
| // list from: |
| // - https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_macros.html |
| // - https://docs.microsoft.com/en-us/cpp/c-runtime-library/security-features-in-the-crt?view=msvc-160 |
| // - man 7 feature_test_macros |
| // The list must be sorted for correct binary search. |
| static constexpr StringRef ReservedMacro[] = { |
| "_ATFILE_SOURCE", |
| "_BSD_SOURCE", |
| "_CRT_NONSTDC_NO_WARNINGS", |
| "_CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES", |
| "_CRT_SECURE_NO_WARNINGS", |
| "_FILE_OFFSET_BITS", |
| "_FORTIFY_SOURCE", |
| "_GLIBCXX_ASSERTIONS", |
| "_GLIBCXX_CONCEPT_CHECKS", |
| "_GLIBCXX_DEBUG", |
| "_GLIBCXX_DEBUG_PEDANTIC", |
| "_GLIBCXX_PARALLEL", |
| "_GLIBCXX_PARALLEL_ASSERTIONS", |
| "_GLIBCXX_SANITIZE_VECTOR", |
| "_GLIBCXX_USE_CXX11_ABI", |
| "_GLIBCXX_USE_DEPRECATED", |
| "_GNU_SOURCE", |
| "_ISOC11_SOURCE", |
| "_ISOC95_SOURCE", |
| "_ISOC99_SOURCE", |
| "_LARGEFILE64_SOURCE", |
| "_POSIX_C_SOURCE", |
| "_REENTRANT", |
| "_SVID_SOURCE", |
| "_THREAD_SAFE", |
| "_XOPEN_SOURCE", |
| "_XOPEN_SOURCE_EXTENDED", |
| "__STDCPP_WANT_MATH_SPEC_FUNCS__", |
| "__STDC_FORMAT_MACROS", |
| }; |
| if (std::binary_search(std::begin(ReservedMacro), std::end(ReservedMacro), |
| II->getName())) |
| return MD_NoWarn; |
| |
| return MD_ReservedMacro; |
| } |
| StringRef Text = II->getName(); |
| if (II->isKeyword(Lang)) |
| return MD_KeywordDef; |
| if (Lang.CPlusPlus11 && (Text.equals("override") || Text.equals("final"))) |
| return MD_KeywordDef; |
| return MD_NoWarn; |
| } |
| |
| static MacroDiag shouldWarnOnMacroUndef(Preprocessor &PP, IdentifierInfo *II) { |
| const LangOptions &Lang = PP.getLangOpts(); |
| // Do not warn on keyword undef. It is generally harmless and widely used. |
| if (isReservedInAllContexts(II->isReserved(Lang))) |
| return MD_ReservedMacro; |
| return MD_NoWarn; |
| } |
| |
| // Return true if we want to issue a diagnostic by default if we |
| // encounter this name in a #include with the wrong case. For now, |
| // this includes the standard C and C++ headers, Posix headers, |
| // and Boost headers. Improper case for these #includes is a |
| // potential portability issue. |
| static bool warnByDefaultOnWrongCase(StringRef Include) { |
| // If the first component of the path is "boost", treat this like a standard header |
| // for the purposes of diagnostics. |
| if (::llvm::sys::path::begin(Include)->equals_insensitive("boost")) |
| return true; |
| |
| // "condition_variable" is the longest standard header name at 18 characters. |
| // If the include file name is longer than that, it can't be a standard header. |
| static const size_t MaxStdHeaderNameLen = 18u; |
| if (Include.size() > MaxStdHeaderNameLen) |
| return false; |
| |
| // Lowercase and normalize the search string. |
| SmallString<32> LowerInclude{Include}; |
| for (char &Ch : LowerInclude) { |
| // In the ASCII range? |
| if (static_cast<unsigned char>(Ch) > 0x7f) |
| return false; // Can't be a standard header |
| // ASCII lowercase: |
| if (Ch >= 'A' && Ch <= 'Z') |
| Ch += 'a' - 'A'; |
| // Normalize path separators for comparison purposes. |
| else if (::llvm::sys::path::is_separator(Ch)) |
| Ch = '/'; |
| } |
| |
| // The standard C/C++ and Posix headers |
| return llvm::StringSwitch<bool>(LowerInclude) |
| // C library headers |
| .Cases("assert.h", "complex.h", "ctype.h", "errno.h", "fenv.h", true) |
| .Cases("float.h", "inttypes.h", "iso646.h", "limits.h", "locale.h", true) |
| .Cases("math.h", "setjmp.h", "signal.h", "stdalign.h", "stdarg.h", true) |
| .Cases("stdatomic.h", "stdbool.h", "stddef.h", "stdint.h", "stdio.h", true) |
| .Cases("stdlib.h", "stdnoreturn.h", "string.h", "tgmath.h", "threads.h", true) |
| .Cases("time.h", "uchar.h", "wchar.h", "wctype.h", true) |
| |
| // C++ headers for C library facilities |
| .Cases("cassert", "ccomplex", "cctype", "cerrno", "cfenv", true) |
| .Cases("cfloat", "cinttypes", "ciso646", "climits", "clocale", true) |
| .Cases("cmath", "csetjmp", "csignal", "cstdalign", "cstdarg", true) |
| .Cases("cstdbool", "cstddef", "cstdint", "cstdio", "cstdlib", true) |
| .Cases("cstring", "ctgmath", "ctime", "cuchar", "cwchar", true) |
| .Case("cwctype", true) |
| |
| // C++ library headers |
| .Cases("algorithm", "fstream", "list", "regex", "thread", true) |
| .Cases("array", "functional", "locale", "scoped_allocator", "tuple", true) |
| .Cases("atomic", "future", "map", "set", "type_traits", true) |
| .Cases("bitset", "initializer_list", "memory", "shared_mutex", "typeindex", true) |
| .Cases("chrono", "iomanip", "mutex", "sstream", "typeinfo", true) |
| .Cases("codecvt", "ios", "new", "stack", "unordered_map", true) |
| .Cases("complex", "iosfwd", "numeric", "stdexcept", "unordered_set", true) |
| .Cases("condition_variable", "iostream", "ostream", "streambuf", "utility", true) |
| .Cases("deque", "istream", "queue", "string", "valarray", true) |
| .Cases("exception", "iterator", "random", "strstream", "vector", true) |
| .Cases("forward_list", "limits", "ratio", "system_error", true) |
| |
| // POSIX headers (which aren't also C headers) |
| .Cases("aio.h", "arpa/inet.h", "cpio.h", "dirent.h", "dlfcn.h", true) |
| .Cases("fcntl.h", "fmtmsg.h", "fnmatch.h", "ftw.h", "glob.h", true) |
| .Cases("grp.h", "iconv.h", "langinfo.h", "libgen.h", "monetary.h", true) |
| .Cases("mqueue.h", "ndbm.h", "net/if.h", "netdb.h", "netinet/in.h", true) |
| .Cases("netinet/tcp.h", "nl_types.h", "poll.h", "pthread.h", "pwd.h", true) |
| .Cases("regex.h", "sched.h", "search.h", "semaphore.h", "spawn.h", true) |
| .Cases("strings.h", "stropts.h", "sys/ipc.h", "sys/mman.h", "sys/msg.h", true) |
| .Cases("sys/resource.h", "sys/select.h", "sys/sem.h", "sys/shm.h", "sys/socket.h", true) |
| .Cases("sys/stat.h", "sys/statvfs.h", "sys/time.h", "sys/times.h", "sys/types.h", true) |
| .Cases("sys/uio.h", "sys/un.h", "sys/utsname.h", "sys/wait.h", "syslog.h", true) |
| .Cases("tar.h", "termios.h", "trace.h", "ulimit.h", true) |
| .Cases("unistd.h", "utime.h", "utmpx.h", "wordexp.h", true) |
| .Default(false); |
| } |
| |
| bool Preprocessor::CheckMacroName(Token &MacroNameTok, MacroUse isDefineUndef, |
| bool *ShadowFlag) { |
| // Missing macro name? |
| if (MacroNameTok.is(tok::eod)) |
| return Diag(MacroNameTok, diag::err_pp_missing_macro_name); |
| |
| IdentifierInfo *II = MacroNameTok.getIdentifierInfo(); |
| if (!II) |
| return Diag(MacroNameTok, diag::err_pp_macro_not_identifier); |
| |
| if (II->isCPlusPlusOperatorKeyword()) { |
| // C++ 2.5p2: Alternative tokens behave the same as its primary token |
| // except for their spellings. |
| Diag(MacroNameTok, getLangOpts().MicrosoftExt |
| ? diag::ext_pp_operator_used_as_macro_name |
| : diag::err_pp_operator_used_as_macro_name) |
| << II << MacroNameTok.getKind(); |
| // Allow #defining |and| and friends for Microsoft compatibility or |
| // recovery when legacy C headers are included in C++. |
| } |
| |
| if ((isDefineUndef != MU_Other) && II->getPPKeywordID() == tok::pp_defined) { |
| // Error if defining "defined": C99 6.10.8/4, C++ [cpp.predefined]p4. |
| return Diag(MacroNameTok, diag::err_defined_macro_name); |
| } |
| |
| if (isDefineUndef == MU_Undef) { |
| auto *MI = getMacroInfo(II); |
| if (MI && MI->isBuiltinMacro()) { |
| // Warn if undefining "__LINE__" and other builtins, per C99 6.10.8/4 |
| // and C++ [cpp.predefined]p4], but allow it as an extension. |
| Diag(MacroNameTok, diag::ext_pp_undef_builtin_macro); |
| } |
| } |
| |
| // If defining/undefining reserved identifier or a keyword, we need to issue |
| // a warning. |
| SourceLocation MacroNameLoc = MacroNameTok.getLocation(); |
| if (ShadowFlag) |
| *ShadowFlag = false; |
| if (!SourceMgr.isInSystemHeader(MacroNameLoc) && |
| (SourceMgr.getBufferName(MacroNameLoc) != "<built-in>")) { |
| MacroDiag D = MD_NoWarn; |
| if (isDefineUndef == MU_Define) { |
| D = shouldWarnOnMacroDef(*this, II); |
| } |
| else if (isDefineUndef == MU_Undef) |
| D = shouldWarnOnMacroUndef(*this, II); |
| if (D == MD_KeywordDef) { |
| // We do not want to warn on some patterns widely used in configuration |
| // scripts. This requires analyzing next tokens, so do not issue warnings |
| // now, only inform caller. |
| if (ShadowFlag) |
| *ShadowFlag = true; |
| } |
| if (D == MD_ReservedMacro) |
| Diag(MacroNameTok, diag::warn_pp_macro_is_reserved_id); |
| } |
| |
| // Okay, we got a good identifier. |
| return false; |
| } |
| |
| /// Lex and validate a macro name, which occurs after a |
| /// \#define or \#undef. |
| /// |
| /// This sets the token kind to eod and discards the rest of the macro line if |
| /// the macro name is invalid. |
| /// |
| /// \param MacroNameTok Token that is expected to be a macro name. |
| /// \param isDefineUndef Context in which macro is used. |
| /// \param ShadowFlag Points to a flag that is set if macro shadows a keyword. |
| void Preprocessor::ReadMacroName(Token &MacroNameTok, MacroUse isDefineUndef, |
| bool *ShadowFlag) { |
| // Read the token, don't allow macro expansion on it. |
| LexUnexpandedToken(MacroNameTok); |
| |
| if (MacroNameTok.is(tok::code_completion)) { |
| if (CodeComplete) |
| CodeComplete->CodeCompleteMacroName(isDefineUndef == MU_Define); |
| setCodeCompletionReached(); |
| LexUnexpandedToken(MacroNameTok); |
| } |
| |
| if (!CheckMacroName(MacroNameTok, isDefineUndef, ShadowFlag)) |
| return; |
| |
| // Invalid macro name, read and discard the rest of the line and set the |
| // token kind to tok::eod if necessary. |
| if (MacroNameTok.isNot(tok::eod)) { |
| MacroNameTok.setKind(tok::eod); |
| DiscardUntilEndOfDirective(); |
| } |
| } |
| |
| /// Ensure that the next token is a tok::eod token. |
| /// |
| /// If not, emit a diagnostic and consume up until the eod. If EnableMacros is |
| /// true, then we consider macros that expand to zero tokens as being ok. |
| /// |
| /// Returns the location of the end of the directive. |
| SourceLocation Preprocessor::CheckEndOfDirective(const char *DirType, |
| bool EnableMacros) { |
| Token Tmp; |
| // Lex unexpanded tokens for most directives: macros might expand to zero |
| // tokens, causing us to miss diagnosing invalid lines. Some directives (like |
| // #line) allow empty macros. |
| if (EnableMacros) |
| Lex(Tmp); |
| else |
| LexUnexpandedToken(Tmp); |
| |
| // There should be no tokens after the directive, but we allow them as an |
| // extension. |
| while (Tmp.is(tok::comment)) // Skip comments in -C mode. |
| LexUnexpandedToken(Tmp); |
| |
| if (Tmp.is(tok::eod)) |
| return Tmp.getLocation(); |
| |
| // Add a fixit in GNU/C99/C++ mode. Don't offer a fixit for strict-C89, |
| // or if this is a macro-style preprocessing directive, because it is more |
| // trouble than it is worth to insert /**/ and check that there is no /**/ |
| // in the range also. |
| FixItHint Hint; |
| if ((LangOpts.GNUMode || LangOpts.C99 || LangOpts.CPlusPlus) && |
| !CurTokenLexer) |
| Hint = FixItHint::CreateInsertion(Tmp.getLocation(),"//"); |
| Diag(Tmp, diag::ext_pp_extra_tokens_at_eol) << DirType << Hint; |
| return DiscardUntilEndOfDirective().getEnd(); |
| } |
| |
| Optional<unsigned> Preprocessor::getSkippedRangeForExcludedConditionalBlock( |
| SourceLocation HashLoc) { |
| if (!ExcludedConditionalDirectiveSkipMappings) |
| return None; |
| if (!HashLoc.isFileID()) |
| return None; |
| |
| std::pair<FileID, unsigned> HashFileOffset = |
| SourceMgr.getDecomposedLoc(HashLoc); |
| Optional<llvm::MemoryBufferRef> Buf = |
| SourceMgr.getBufferOrNone(HashFileOffset.first); |
| if (!Buf) |
| return None; |
| auto It = |
| ExcludedConditionalDirectiveSkipMappings->find(Buf->getBufferStart()); |
| if (It == ExcludedConditionalDirectiveSkipMappings->end()) |
| return None; |
| |
| const PreprocessorSkippedRangeMapping &SkippedRanges = *It->getSecond(); |
| // Check if the offset of '#' is mapped in the skipped ranges. |
| auto MappingIt = SkippedRanges.find(HashFileOffset.second); |
| if (MappingIt == SkippedRanges.end()) |
| return None; |
| |
| unsigned BytesToSkip = MappingIt->getSecond(); |
| unsigned CurLexerBufferOffset = CurLexer->getCurrentBufferOffset(); |
| assert(CurLexerBufferOffset >= HashFileOffset.second && |
| "lexer is before the hash?"); |
| // Take into account the fact that the lexer has already advanced, so the |
| // number of bytes to skip must be adjusted. |
| unsigned LengthDiff = CurLexerBufferOffset - HashFileOffset.second; |
| assert(BytesToSkip >= LengthDiff && "lexer is after the skipped range?"); |
| return BytesToSkip - LengthDiff; |
| } |
| |
| /// SkipExcludedConditionalBlock - We just read a \#if or related directive and |
| /// decided that the subsequent tokens are in the \#if'd out portion of the |
| /// file. Lex the rest of the file, until we see an \#endif. If |
| /// FoundNonSkipPortion is true, then we have already emitted code for part of |
| /// this \#if directive, so \#else/\#elif blocks should never be entered. |
| /// If ElseOk is true, then \#else directives are ok, if not, then we have |
| /// already seen one so a \#else directive is a duplicate. When this returns, |
| /// the caller can lex the first valid token. |
| void Preprocessor::SkipExcludedConditionalBlock(SourceLocation HashTokenLoc, |
| SourceLocation IfTokenLoc, |
| bool FoundNonSkipPortion, |
| bool FoundElse, |
| SourceLocation ElseLoc) { |
| ++NumSkipped; |
| assert(!CurTokenLexer && CurPPLexer && "Lexing a macro, not a file?"); |
| |
| if (PreambleConditionalStack.reachedEOFWhileSkipping()) |
| PreambleConditionalStack.clearSkipInfo(); |
| else |
| CurPPLexer->pushConditionalLevel(IfTokenLoc, /*isSkipping*/ false, |
| FoundNonSkipPortion, FoundElse); |
| |
| // Enter raw mode to disable identifier lookup (and thus macro expansion), |
| // disabling warnings, etc. |
| CurPPLexer->LexingRawMode = true; |
| Token Tok; |
| if (auto SkipLength = |
| getSkippedRangeForExcludedConditionalBlock(HashTokenLoc)) { |
| // Skip to the next '#endif' / '#else' / '#elif'. |
| CurLexer->skipOver(*SkipLength); |
| } |
| SourceLocation endLoc; |
| while (true) { |
| CurLexer->Lex(Tok); |
| |
| if (Tok.is(tok::code_completion)) { |
| setCodeCompletionReached(); |
| if (CodeComplete) |
| CodeComplete->CodeCompleteInConditionalExclusion(); |
| continue; |
| } |
| |
| // If this is the end of the buffer, we have an error. |
| if (Tok.is(tok::eof)) { |
| // We don't emit errors for unterminated conditionals here, |
| // Lexer::LexEndOfFile can do that properly. |
| // Just return and let the caller lex after this #include. |
| if (PreambleConditionalStack.isRecording()) |
| PreambleConditionalStack.SkipInfo.emplace( |
| HashTokenLoc, IfTokenLoc, FoundNonSkipPortion, FoundElse, ElseLoc); |
| break; |
| } |
| |
| // If this token is not a preprocessor directive, just skip it. |
| if (Tok.isNot(tok::hash) || !Tok.isAtStartOfLine()) |
| continue; |
| |
| // We just parsed a # character at the start of a line, so we're in |
| // directive mode. Tell the lexer this so any newlines we see will be |
| // converted into an EOD token (this terminates the macro). |
| CurPPLexer->ParsingPreprocessorDirective = true; |
| if (CurLexer) CurLexer->SetKeepWhitespaceMode(false); |
| |
| |
| // Read the next token, the directive flavor. |
| LexUnexpandedToken(Tok); |
| |
| // If this isn't an identifier directive (e.g. is "# 1\n" or "#\n", or |
| // something bogus), skip it. |
| if (Tok.isNot(tok::raw_identifier)) { |
| CurPPLexer->ParsingPreprocessorDirective = false; |
| // Restore comment saving mode. |
| if (CurLexer) CurLexer->resetExtendedTokenMode(); |
| continue; |
| } |
| |
| // If the first letter isn't i or e, it isn't intesting to us. We know that |
| // this is safe in the face of spelling differences, because there is no way |
| // to spell an i/e in a strange way that is another letter. Skipping this |
| // allows us to avoid looking up the identifier info for #define/#undef and |
| // other common directives. |
| StringRef RI = Tok.getRawIdentifier(); |
| |
| char FirstChar = RI[0]; |
| if (FirstChar >= 'a' && FirstChar <= 'z' && |
| FirstChar != 'i' && FirstChar != 'e') { |
| CurPPLexer->ParsingPreprocessorDirective = false; |
| // Restore comment saving mode. |
| if (CurLexer) CurLexer->resetExtendedTokenMode(); |
| continue; |
| } |
| |
| // Get the identifier name without trigraphs or embedded newlines. Note |
| // that we can't use Tok.getIdentifierInfo() because its lookup is disabled |
| // when skipping. |
| char DirectiveBuf[20]; |
| StringRef Directive; |
| if (!Tok.needsCleaning() && RI.size() < 20) { |
| Directive = RI; |
| } else { |
| std::string DirectiveStr = getSpelling(Tok); |
| size_t IdLen = DirectiveStr.size(); |
| if (IdLen >= 20) { |
| CurPPLexer->ParsingPreprocessorDirective = false; |
| // Restore comment saving mode. |
| if (CurLexer) CurLexer->resetExtendedTokenMode(); |
| continue; |
| } |
| memcpy(DirectiveBuf, &DirectiveStr[0], IdLen); |
| Directive = StringRef(DirectiveBuf, IdLen); |
| } |
| |
| if (Directive.startswith("if")) { |
| StringRef Sub = Directive.substr(2); |
| if (Sub.empty() || // "if" |
| Sub == "def" || // "ifdef" |
| Sub == "ndef") { // "ifndef" |
| // We know the entire #if/#ifdef/#ifndef block will be skipped, don't |
| // bother parsing the condition. |
| DiscardUntilEndOfDirective(); |
| CurPPLexer->pushConditionalLevel(Tok.getLocation(), /*wasskipping*/true, |
| /*foundnonskip*/false, |
| /*foundelse*/false); |
| } |
| } else if (Directive[0] == 'e') { |
| StringRef Sub = Directive.substr(1); |
| if (Sub == "ndif") { // "endif" |
| PPConditionalInfo CondInfo; |
| CondInfo.WasSkipping = true; // Silence bogus warning. |
| bool InCond = CurPPLexer->popConditionalLevel(CondInfo); |
| (void)InCond; // Silence warning in no-asserts mode. |
| assert(!InCond && "Can't be skipping if not in a conditional!"); |
| |
| // If we popped the outermost skipping block, we're done skipping! |
| if (!CondInfo.WasSkipping) { |
| // Restore the value of LexingRawMode so that trailing comments |
| // are handled correctly, if we've reached the outermost block. |
| CurPPLexer->LexingRawMode = false; |
| endLoc = CheckEndOfDirective("endif"); |
| CurPPLexer->LexingRawMode = true; |
| if (Callbacks) |
| Callbacks->Endif(Tok.getLocation(), CondInfo.IfLoc); |
| break; |
| } else { |
| DiscardUntilEndOfDirective(); |
| } |
| } else if (Sub == "lse") { // "else". |
| // #else directive in a skipping conditional. If not in some other |
| // skipping conditional, and if #else hasn't already been seen, enter it |
| // as a non-skipping conditional. |
| PPConditionalInfo &CondInfo = CurPPLexer->peekConditionalLevel(); |
| |
| // If this is a #else with a #else before it, report the error. |
| if (CondInfo.FoundElse) |
| Diag(Tok, diag::pp_err_else_after_else); |
| |
| // Note that we've seen a #else in this conditional. |
| CondInfo.FoundElse = true; |
| |
| // If the conditional is at the top level, and the #if block wasn't |
| // entered, enter the #else block now. |
| if (!CondInfo.WasSkipping && !CondInfo.FoundNonSkip) { |
| CondInfo.FoundNonSkip = true; |
| // Restore the value of LexingRawMode so that trailing comments |
| // are handled correctly. |
| CurPPLexer->LexingRawMode = false; |
| endLoc = CheckEndOfDirective("else"); |
| CurPPLexer->LexingRawMode = true; |
| if (Callbacks) |
| Callbacks->Else(Tok.getLocation(), CondInfo.IfLoc); |
| break; |
| } else { |
| DiscardUntilEndOfDirective(); // C99 6.10p4. |
| } |
| } else if (Sub == "lif") { // "elif". |
| PPConditionalInfo &CondInfo = CurPPLexer->peekConditionalLevel(); |
| |
| // If this is a #elif with a #else before it, report the error. |
| if (CondInfo.FoundElse) |
| Diag(Tok, diag::pp_err_elif_after_else) << PED_Elif; |
| |
| // If this is in a skipping block or if we're already handled this #if |
| // block, don't bother parsing the condition. |
| if (CondInfo.WasSkipping || CondInfo.FoundNonSkip) { |
| // FIXME: We should probably do at least some minimal parsing of the |
| // condition to verify that it is well-formed. The current state |
| // allows #elif* directives with completely malformed (or missing) |
| // conditions. |
| DiscardUntilEndOfDirective(); |
| } else { |
| // Restore the value of LexingRawMode so that identifiers are |
| // looked up, etc, inside the #elif expression. |
| assert(CurPPLexer->LexingRawMode && "We have to be skipping here!"); |
| CurPPLexer->LexingRawMode = false; |
| IdentifierInfo *IfNDefMacro = nullptr; |
| DirectiveEvalResult DER = EvaluateDirectiveExpression(IfNDefMacro); |
| // Stop if Lexer became invalid after hitting code completion token. |
| if (!CurPPLexer) |
| return; |
| const bool CondValue = DER.Conditional; |
| CurPPLexer->LexingRawMode = true; |
| if (Callbacks) { |
| Callbacks->Elif( |
| Tok.getLocation(), DER.ExprRange, |
| (CondValue ? PPCallbacks::CVK_True : PPCallbacks::CVK_False), |
| CondInfo.IfLoc); |
| } |
| // If this condition is true, enter it! |
| if (CondValue) { |
| CondInfo.FoundNonSkip = true; |
| break; |
| } |
| } |
| } else if (Sub == "lifdef" || // "elifdef" |
| Sub == "lifndef") { // "elifndef" |
| bool IsElifDef = Sub == "lifdef"; |
| PPConditionalInfo &CondInfo = CurPPLexer->peekConditionalLevel(); |
| Token DirectiveToken = Tok; |
| |
| // If this is a #elif with a #else before it, report the error. |
| if (CondInfo.FoundElse) |
| Diag(Tok, diag::pp_err_elif_after_else) |
| << (IsElifDef ? PED_Elifdef : PED_Elifndef); |
| |
| // If this is in a skipping block or if we're already handled this #if |
| // block, don't bother parsing the condition. |
| if (CondInfo.WasSkipping || CondInfo.FoundNonSkip) { |
| // FIXME: We should probably do at least some minimal parsing of the |
| // condition to verify that it is well-formed. The current state |
| // allows #elif* directives with completely malformed (or missing) |
| // conditions. |
| DiscardUntilEndOfDirective(); |
| } else { |
| // Restore the value of LexingRawMode so that identifiers are |
| // looked up, etc, inside the #elif[n]def expression. |
| assert(CurPPLexer->LexingRawMode && "We have to be skipping here!"); |
| CurPPLexer->LexingRawMode = false; |
| Token MacroNameTok; |
| ReadMacroName(MacroNameTok); |
| CurPPLexer->LexingRawMode = true; |
| |
| // If the macro name token is tok::eod, there was an error that was |
| // already reported. |
| if (MacroNameTok.is(tok::eod)) { |
| // Skip code until we get to #endif. This helps with recovery by |
| // not emitting an error when the #endif is reached. |
| continue; |
| } |
| |
| emitMacroExpansionWarnings(MacroNameTok); |
| |
| CheckEndOfDirective(IsElifDef ? "elifdef" : "elifndef"); |
| |
| IdentifierInfo *MII = MacroNameTok.getIdentifierInfo(); |
| auto MD = getMacroDefinition(MII); |
| MacroInfo *MI = MD.getMacroInfo(); |
| |
| if (Callbacks) { |
| if (IsElifDef) { |
| Callbacks->Elifdef(DirectiveToken.getLocation(), MacroNameTok, |
| MD); |
| } else { |
| Callbacks->Elifndef(DirectiveToken.getLocation(), MacroNameTok, |
| MD); |
| } |
| } |
| // If this condition is true, enter it! |
| if (static_cast<bool>(MI) == IsElifDef) { |
| CondInfo.FoundNonSkip = true; |
| break; |
| } |
| } |
| } |
| } |
| |
| CurPPLexer->ParsingPreprocessorDirective = false; |
| // Restore comment saving mode. |
| if (CurLexer) CurLexer->resetExtendedTokenMode(); |
| } |
| |
| // Finally, if we are out of the conditional (saw an #endif or ran off the end |
| // of the file, just stop skipping and return to lexing whatever came after |
| // the #if block. |
| CurPPLexer->LexingRawMode = false; |
| |
| // The last skipped range isn't actually skipped yet if it's truncated |
| // by the end of the preamble; we'll resume parsing after the preamble. |
| if (Callbacks && (Tok.isNot(tok::eof) || !isRecordingPreamble())) |
| Callbacks->SourceRangeSkipped( |
| SourceRange(HashTokenLoc, endLoc.isValid() |
| ? endLoc |
| : CurPPLexer->getSourceLocation()), |
| Tok.getLocation()); |
| } |
| |
| Module *Preprocessor::getModuleForLocation(SourceLocation Loc) { |
| if (!SourceMgr.isInMainFile(Loc)) { |
| // Try to determine the module of the include directive. |
| // FIXME: Look into directly passing the FileEntry from LookupFile instead. |
| FileID IDOfIncl = SourceMgr.getFileID(SourceMgr.getExpansionLoc(Loc)); |
| if (const FileEntry *EntryOfIncl = SourceMgr.getFileEntryForID(IDOfIncl)) { |
| // The include comes from an included file. |
| return HeaderInfo.getModuleMap() |
| .findModuleForHeader(EntryOfIncl) |
| .getModule(); |
| } |
| } |
| |
| // This is either in the main file or not in a file at all. It belongs |
| // to the current module, if there is one. |
| return getLangOpts().CurrentModule.empty() |
| ? nullptr |
| : HeaderInfo.lookupModule(getLangOpts().CurrentModule, Loc); |
| } |
| |
| const FileEntry * |
| Preprocessor::getHeaderToIncludeForDiagnostics(SourceLocation IncLoc, |
| SourceLocation Loc) { |
| Module *IncM = getModuleForLocation(IncLoc); |
| |
| // Walk up through the include stack, looking through textual headers of M |
| // until we hit a non-textual header that we can #include. (We assume textual |
| // headers of a module with non-textual headers aren't meant to be used to |
| // import entities from the module.) |
| auto &SM = getSourceManager(); |
| while (!Loc.isInvalid() && !SM.isInMainFile(Loc)) { |
| auto ID = SM.getFileID(SM.getExpansionLoc(Loc)); |
| auto *FE = SM.getFileEntryForID(ID); |
| if (!FE) |
| break; |
| |
| // We want to find all possible modules that might contain this header, so |
| // search all enclosing directories for module maps and load them. |
| HeaderInfo.hasModuleMap(FE->getName(), /*Root*/ nullptr, |
| SourceMgr.isInSystemHeader(Loc)); |
| |
| bool InPrivateHeader = false; |
| for (auto Header : HeaderInfo.findAllModulesForHeader(FE)) { |
| if (!Header.isAccessibleFrom(IncM)) { |
| // It's in a private header; we can't #include it. |
| // FIXME: If there's a public header in some module that re-exports it, |
| // then we could suggest including that, but it's not clear that's the |
| // expected way to make this entity visible. |
| InPrivateHeader = true; |
| continue; |
| } |
| |
| // We'll suggest including textual headers below if they're |
| // include-guarded. |
| if (Header.getRole() & ModuleMap::TextualHeader) |
| continue; |
| |
| // If we have a module import syntax, we shouldn't include a header to |
| // make a particular module visible. Let the caller know they should |
| // suggest an import instead. |
| if (getLangOpts().ObjC || getLangOpts().CPlusPlusModules || |
| getLangOpts().ModulesTS) |
| return nullptr; |
| |
| // If this is an accessible, non-textual header of M's top-level module |
| // that transitively includes the given location and makes the |
| // corresponding module visible, this is the thing to #include. |
| return FE; |
| } |
| |
| // FIXME: If we're bailing out due to a private header, we shouldn't suggest |
| // an import either. |
| if (InPrivateHeader) |
| return nullptr; |
| |
| // If the header is includable and has an include guard, assume the |
| // intended way to expose its contents is by #include, not by importing a |
| // module that transitively includes it. |
| if (getHeaderSearchInfo().isFileMultipleIncludeGuarded(FE)) |
| return FE; |
| |
| Loc = SM.getIncludeLoc(ID); |
| } |
| |
| return nullptr; |
| } |
| |
| Optional<FileEntryRef> Preprocessor::LookupFile( |
| SourceLocation FilenameLoc, StringRef Filename, bool isAngled, |
| const DirectoryLookup *FromDir, const FileEntry *FromFile, |
| const DirectoryLookup *&CurDir, SmallVectorImpl<char> *SearchPath, |
| SmallVectorImpl<char> *RelativePath, |
| ModuleMap::KnownHeader *SuggestedModule, bool *IsMapped, |
| bool *IsFrameworkFound, bool SkipCache) { |
| Module *RequestingModule = getModuleForLocation(FilenameLoc); |
| bool RequestingModuleIsModuleInterface = !SourceMgr.isInMainFile(FilenameLoc); |
| |
| // If the header lookup mechanism may be relative to the current inclusion |
| // stack, record the parent #includes. |
| SmallVector<std::pair<const FileEntry *, const DirectoryEntry *>, 16> |
| Includers; |
| bool BuildSystemModule = false; |
| if (!FromDir && !FromFile) { |
| FileID FID = getCurrentFileLexer()->getFileID(); |
| const FileEntry *FileEnt = SourceMgr.getFileEntryForID(FID); |
| |
| // If there is no file entry associated with this file, it must be the |
| // predefines buffer or the module includes buffer. Any other file is not |
| // lexed with a normal lexer, so it won't be scanned for preprocessor |
| // directives. |
| // |
| // If we have the predefines buffer, resolve #include references (which come |
| // from the -include command line argument) from the current working |
| // directory instead of relative to the main file. |
| // |
| // If we have the module includes buffer, resolve #include references (which |
| // come from header declarations in the module map) relative to the module |
| // map file. |
| if (!FileEnt) { |
| if (FID == SourceMgr.getMainFileID() && MainFileDir) { |
| Includers.push_back(std::make_pair(nullptr, MainFileDir)); |
| BuildSystemModule = getCurrentModule()->IsSystem; |
| } else if ((FileEnt = |
| SourceMgr.getFileEntryForID(SourceMgr.getMainFileID()))) |
| Includers.push_back(std::make_pair(FileEnt, *FileMgr.getDirectory("."))); |
| } else { |
| Includers.push_back(std::make_pair(FileEnt, FileEnt->getDir())); |
| } |
| |
| // MSVC searches the current include stack from top to bottom for |
| // headers included by quoted include directives. |
| // See: http://msdn.microsoft.com/en-us/library/36k2cdd4.aspx |
| if (LangOpts.MSVCCompat && !isAngled) { |
| for (IncludeStackInfo &ISEntry : llvm::reverse(IncludeMacroStack)) { |
| if (IsFileLexer(ISEntry)) |
| if ((FileEnt = ISEntry.ThePPLexer->getFileEntry())) |
| Includers.push_back(std::make_pair(FileEnt, FileEnt->getDir())); |
| } |
| } |
| } |
| |
| CurDir = CurDirLookup; |
| |
| if (FromFile) { |
| // We're supposed to start looking from after a particular file. Search |
| // the include path until we find that file or run out of files. |
| const DirectoryLookup *TmpCurDir = CurDir; |
| const DirectoryLookup *TmpFromDir = nullptr; |
| while (Optional<FileEntryRef> FE = HeaderInfo.LookupFile( |
| Filename, FilenameLoc, isAngled, TmpFromDir, TmpCurDir, |
| Includers, SearchPath, RelativePath, RequestingModule, |
| SuggestedModule, /*IsMapped=*/nullptr, |
| /*IsFrameworkFound=*/nullptr, SkipCache)) { |
| // Keep looking as if this file did a #include_next. |
| TmpFromDir = TmpCurDir; |
| ++TmpFromDir; |
| if (&FE->getFileEntry() == FromFile) { |
| // Found it. |
| FromDir = TmpFromDir; |
| CurDir = TmpCurDir; |
| break; |
| } |
| } |
| } |
| |
| // Do a standard file entry lookup. |
| Optional<FileEntryRef> FE = HeaderInfo.LookupFile( |
| Filename, FilenameLoc, isAngled, FromDir, CurDir, Includers, SearchPath, |
| RelativePath, RequestingModule, SuggestedModule, IsMapped, |
| IsFrameworkFound, SkipCache, BuildSystemModule); |
| if (FE) { |
| if (SuggestedModule && !LangOpts.AsmPreprocessor) |
| HeaderInfo.getModuleMap().diagnoseHeaderInclusion( |
| RequestingModule, RequestingModuleIsModuleInterface, FilenameLoc, |
| Filename, &FE->getFileEntry()); |
| return FE; |
| } |
| |
| const FileEntry *CurFileEnt; |
| // Otherwise, see if this is a subframework header. If so, this is relative |
| // to one of the headers on the #include stack. Walk the list of the current |
| // headers on the #include stack and pass them to HeaderInfo. |
| if (IsFileLexer()) { |
| if ((CurFileEnt = CurPPLexer->getFileEntry())) { |
| if (Optional<FileEntryRef> FE = HeaderInfo.LookupSubframeworkHeader( |
| Filename, CurFileEnt, SearchPath, RelativePath, RequestingModule, |
| SuggestedModule)) { |
| if (SuggestedModule && !LangOpts.AsmPreprocessor) |
| HeaderInfo.getModuleMap().diagnoseHeaderInclusion( |
| RequestingModule, RequestingModuleIsModuleInterface, FilenameLoc, |
| Filename, &FE->getFileEntry()); |
| return FE; |
| } |
| } |
| } |
| |
| for (IncludeStackInfo &ISEntry : llvm::reverse(IncludeMacroStack)) { |
| if (IsFileLexer(ISEntry)) { |
| if ((CurFileEnt = ISEntry.ThePPLexer->getFileEntry())) { |
| if (Optional<FileEntryRef> FE = HeaderInfo.LookupSubframeworkHeader( |
| Filename, CurFileEnt, SearchPath, RelativePath, |
| RequestingModule, SuggestedModule)) { |
| if (SuggestedModule && !LangOpts.AsmPreprocessor) |
| HeaderInfo.getModuleMap().diagnoseHeaderInclusion( |
| RequestingModule, RequestingModuleIsModuleInterface, |
| FilenameLoc, Filename, &FE->getFileEntry()); |
| return FE; |
| } |
| } |
| } |
| } |
| |
| // Otherwise, we really couldn't find the file. |
| return None; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Preprocessor Directive Handling. |
| //===----------------------------------------------------------------------===// |
| |
| class Preprocessor::ResetMacroExpansionHelper { |
| public: |
| ResetMacroExpansionHelper(Preprocessor *pp) |
| : PP(pp), save(pp->DisableMacroExpansion) { |
| if (pp->MacroExpansionInDirectivesOverride) |
| pp->DisableMacroExpansion = false; |
| } |
| |
| ~ResetMacroExpansionHelper() { |
| PP->DisableMacroExpansion = save; |
| } |
| |
| private: |
| Preprocessor *PP; |
| bool save; |
| }; |
| |
| /// Process a directive while looking for the through header or a #pragma |
| /// hdrstop. The following directives are handled: |
| /// #include (to check if it is the through header) |
| /// #define (to warn about macros that don't match the PCH) |
| /// #pragma (to check for pragma hdrstop). |
| /// All other directives are completely discarded. |
| void Preprocessor::HandleSkippedDirectiveWhileUsingPCH(Token &Result, |
| SourceLocation HashLoc) { |
| if (const IdentifierInfo *II = Result.getIdentifierInfo()) { |
| if (II->getPPKeywordID() == tok::pp_define) { |
| return HandleDefineDirective(Result, |
| /*ImmediatelyAfterHeaderGuard=*/false); |
| } |
| if (SkippingUntilPCHThroughHeader && |
| II->getPPKeywordID() == tok::pp_include) { |
| return HandleIncludeDirective(HashLoc, Result); |
| } |
| if (SkippingUntilPragmaHdrStop && II->getPPKeywordID() == tok::pp_pragma) { |
| Lex(Result); |
| auto *II = Result.getIdentifierInfo(); |
| if (II && II->getName() == "hdrstop") |
| return HandlePragmaHdrstop(Result); |
| } |
| } |
| DiscardUntilEndOfDirective(); |
| } |
| |
| /// HandleDirective - This callback is invoked when the lexer sees a # token |
| /// at the start of a line. This consumes the directive, modifies the |
| /// lexer/preprocessor state, and advances the lexer(s) so that the next token |
| /// read is the correct one. |
| void Preprocessor::HandleDirective(Token &Result) { |
| // FIXME: Traditional: # with whitespace before it not recognized by K&R? |
| |
| // We just parsed a # character at the start of a line, so we're in directive |
| // mode. Tell the lexer this so any newlines we see will be converted into an |
| // EOD token (which terminates the directive). |
| CurPPLexer->ParsingPreprocessorDirective = true; |
| if (CurLexer) CurLexer->SetKeepWhitespaceMode(false); |
| |
| bool ImmediatelyAfterTopLevelIfndef = |
| CurPPLexer->MIOpt.getImmediatelyAfterTopLevelIfndef(); |
| CurPPLexer->MIOpt.resetImmediatelyAfterTopLevelIfndef(); |
| |
| ++NumDirectives; |
| |
| // We are about to read a token. For the multiple-include optimization FA to |
| // work, we have to remember if we had read any tokens *before* this |
| // pp-directive. |
| bool ReadAnyTokensBeforeDirective =CurPPLexer->MIOpt.getHasReadAnyTokensVal(); |
| |
| // Save the '#' token in case we need to return it later. |
| Token SavedHash = Result; |
| |
| // Read the next token, the directive flavor. This isn't expanded due to |
| // C99 6.10.3p8. |
| LexUnexpandedToken(Result); |
| |
| // C99 6.10.3p11: Is this preprocessor directive in macro invocation? e.g.: |
| // #define A(x) #x |
| // A(abc |
| // #warning blah |
| // def) |
| // If so, the user is relying on undefined behavior, emit a diagnostic. Do |
| // not support this for #include-like directives, since that can result in |
| // terrible diagnostics, and does not work in GCC. |
| if (InMacroArgs) { |
| if (IdentifierInfo *II = Result.getIdentifierInfo()) { |
| switch (II->getPPKeywordID()) { |
| case tok::pp_include: |
| case tok::pp_import: |
| case tok::pp_include_next: |
| case tok::pp___include_macros: |
| case tok::pp_pragma: |
| Diag(Result, diag::err_embedded_directive) << II->getName(); |
| Diag(*ArgMacro, diag::note_macro_expansion_here) |
| << ArgMacro->getIdentifierInfo(); |
| DiscardUntilEndOfDirective(); |
| return; |
| default: |
| break; |
| } |
| } |
| Diag(Result, diag::ext_embedded_directive); |
| } |
| |
| // Temporarily enable macro expansion if set so |
| // and reset to previous state when returning from this function. |
| ResetMacroExpansionHelper helper(this); |
| |
| if (SkippingUntilPCHThroughHeader || SkippingUntilPragmaHdrStop) |
| return HandleSkippedDirectiveWhileUsingPCH(Result, SavedHash.getLocation()); |
| |
| switch (Result.getKind()) { |
| case tok::eod: |
| return; // null directive. |
| case tok::code_completion: |
| setCodeCompletionReached(); |
| if (CodeComplete) |
| CodeComplete->CodeCompleteDirective( |
| CurPPLexer->getConditionalStackDepth() > 0); |
| return; |
| case tok::numeric_constant: // # 7 GNU line marker directive. |
| if (getLangOpts().AsmPreprocessor) |
| break; // # 4 is not a preprocessor directive in .S files. |
| return HandleDigitDirective(Result); |
| default: |
| IdentifierInfo *II = Result.getIdentifierInfo(); |
| if (!II) break; // Not an identifier. |
| |
| // Ask what the preprocessor keyword ID is. |
| switch (II->getPPKeywordID()) { |
| default: break; |
| // C99 6.10.1 - Conditional Inclusion. |
| case tok::pp_if: |
| return HandleIfDirective(Result, SavedHash, ReadAnyTokensBeforeDirective); |
| case tok::pp_ifdef: |
| return HandleIfdefDirective(Result, SavedHash, false, |
| true /*not valid for miopt*/); |
| case tok::pp_ifndef: |
| return HandleIfdefDirective(Result, SavedHash, true, |
| ReadAnyTokensBeforeDirective); |
| case tok::pp_elif: |
| case tok::pp_elifdef: |
| case tok::pp_elifndef: |
| return HandleElifFamilyDirective(Result, SavedHash, II->getPPKeywordID()); |
| |
| case tok::pp_else: |
| return HandleElseDirective(Result, SavedHash); |
| case tok::pp_endif: |
| return HandleEndifDirective(Result); |
| |
| // C99 6.10.2 - Source File Inclusion. |
| case tok::pp_include: |
| // Handle #include. |
| return HandleIncludeDirective(SavedHash.getLocation(), Result); |
| case tok::pp___include_macros: |
| // Handle -imacros. |
| return HandleIncludeMacrosDirective(SavedHash.getLocation(), Result); |
| |
| // C99 6.10.3 - Macro Replacement. |
| case tok::pp_define: |
| return HandleDefineDirective(Result, ImmediatelyAfterTopLevelIfndef); |
| case tok::pp_undef: |
| return HandleUndefDirective(); |
| |
| // C99 6.10.4 - Line Control. |
| case tok::pp_line: |
| return HandleLineDirective(); |
| |
| // C99 6.10.5 - Error Directive. |
| case tok::pp_error: |
| return HandleUserDiagnosticDirective(Result, false); |
| |
| // C99 6.10.6 - Pragma Directive. |
| case tok::pp_pragma: |
| return HandlePragmaDirective({PIK_HashPragma, SavedHash.getLocation()}); |
| |
| // GNU Extensions. |
| case tok::pp_import: |
| return HandleImportDirective(SavedHash.getLocation(), Result); |
| case tok::pp_include_next: |
| return HandleIncludeNextDirective(SavedHash.getLocation(), Result); |
| |
| case tok::pp_warning: |
| Diag(Result, diag::ext_pp_warning_directive); |
| return HandleUserDiagnosticDirective(Result, true); |
| case tok::pp_ident: |
| return HandleIdentSCCSDirective(Result); |
| case tok::pp_sccs: |
| return HandleIdentSCCSDirective(Result); |
| case tok::pp_assert: |
| //isExtension = true; // FIXME: implement #assert |
| break; |
| case tok::pp_unassert: |
| //isExtension = true; // FIXME: implement #unassert |
| break; |
| |
| case tok::pp___public_macro: |
| if (getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) |
| return HandleMacroPublicDirective(Result); |
| break; |
| |
| case tok::pp___private_macro: |
| if (getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) |
| return HandleMacroPrivateDirective(); |
| break; |
| } |
| break; |
| } |
| |
| // If this is a .S file, treat unknown # directives as non-preprocessor |
| // directives. This is important because # may be a comment or introduce |
| // various pseudo-ops. Just return the # token and push back the following |
| // token to be lexed next time. |
| if (getLangOpts().AsmPreprocessor) { |
| auto Toks = std::make_unique<Token[]>(2); |
| // Return the # and the token after it. |
| Toks[0] = SavedHash; |
| Toks[1] = Result; |
| |
| // If the second token is a hashhash token, then we need to translate it to |
| // unknown so the token lexer doesn't try to perform token pasting. |
| if (Result.is(tok::hashhash)) |
| Toks[1].setKind(tok::unknown); |
| |
| // Enter this token stream so that we re-lex the tokens. Make sure to |
| // enable macro expansion, in case the token after the # is an identifier |
| // that is expanded. |
| EnterTokenStream(std::move(Toks), 2, false, /*IsReinject*/false); |
| return; |
| } |
| |
| // If we reached here, the preprocessing token is not valid! |
| Diag(Result, diag::err_pp_invalid_directive); |
| |
| // Read the rest of the PP line. |
| DiscardUntilEndOfDirective(); |
| |
| // Okay, we're done parsing the directive. |
| } |
| |
| /// GetLineValue - Convert a numeric token into an unsigned value, emitting |
| /// Diagnostic DiagID if it is invalid, and returning the value in Val. |
| static bool GetLineValue(Token &DigitTok, unsigned &Val, |
| unsigned DiagID, Preprocessor &PP, |
| bool IsGNULineDirective=false) { |
| if (DigitTok.isNot(tok::numeric_constant)) { |
| PP.Diag(DigitTok, DiagID); |
| |
| if (DigitTok.isNot(tok::eod)) |
| PP.DiscardUntilEndOfDirective(); |
| return true; |
| } |
| |
| SmallString<64> IntegerBuffer; |
| IntegerBuffer.resize(DigitTok.getLength()); |
| const char *DigitTokBegin = &IntegerBuffer[0]; |
| bool Invalid = false; |
| unsigned ActualLength = PP.getSpelling(DigitTok, DigitTokBegin, &Invalid); |
| if (Invalid) |
| return true; |
| |
| // Verify that we have a simple digit-sequence, and compute the value. This |
| // is always a simple digit string computed in decimal, so we do this manually |
| // here. |
| Val = 0; |
| for (unsigned i = 0; i != ActualLength; ++i) { |
| // C++1y [lex.fcon]p1: |
| // Optional separating single quotes in a digit-sequence are ignored |
| if (DigitTokBegin[i] == '\'') |
| continue; |
| |
| if (!isDigit(DigitTokBegin[i])) { |
| PP.Diag(PP.AdvanceToTokenCharacter(DigitTok.getLocation(), i), |
| diag::err_pp_line_digit_sequence) << IsGNULineDirective; |
| PP.DiscardUntilEndOfDirective(); |
| return true; |
| } |
| |
| unsigned NextVal = Val*10+(DigitTokBegin[i]-'0'); |
| if (NextVal < Val) { // overflow. |
| PP.Diag(DigitTok, DiagID); |
| PP.DiscardUntilEndOfDirective(); |
| return true; |
| } |
| Val = NextVal; |
| } |
| |
| if (DigitTokBegin[0] == '0' && Val) |
| PP.Diag(DigitTok.getLocation(), diag::warn_pp_line_decimal) |
| << IsGNULineDirective; |
| |
| return false; |
| } |
| |
| /// Handle a \#line directive: C99 6.10.4. |
| /// |
| /// The two acceptable forms are: |
| /// \verbatim |
| /// # line digit-sequence |
| /// # line digit-sequence "s-char-sequence" |
| /// \endverbatim |
| void Preprocessor::HandleLineDirective() { |
| // Read the line # and string argument. Per C99 6.10.4p5, these tokens are |
| // expanded. |
| Token DigitTok; |
| Lex(DigitTok); |
| |
| // Validate the number and convert it to an unsigned. |
| unsigned LineNo; |
| if (GetLineValue(DigitTok, LineNo, diag::err_pp_line_requires_integer,*this)) |
| return; |
| |
| if (LineNo == 0) |
| Diag(DigitTok, diag::ext_pp_line_zero); |
| |
| // Enforce C99 6.10.4p3: "The digit sequence shall not specify ... a |
| // number greater than 2147483647". C90 requires that the line # be <= 32767. |
| unsigned LineLimit = 32768U; |
| if (LangOpts.C99 || LangOpts.CPlusPlus11) |
| LineLimit = 2147483648U; |
| if (LineNo >= LineLimit) |
| Diag(DigitTok, diag::ext_pp_line_too_big) << LineLimit; |
| else if (LangOpts.CPlusPlus11 && LineNo >= 32768U) |
| Diag(DigitTok, diag::warn_cxx98_compat_pp_line_too_big); |
| |
| int FilenameID = -1; |
| Token StrTok; |
| Lex(StrTok); |
| |
| // If the StrTok is "eod", then it wasn't present. Otherwise, it must be a |
| // string followed by eod. |
| if (StrTok.is(tok::eod)) |
| ; // ok |
| else if (StrTok.isNot(tok::string_literal)) { |
| Diag(StrTok, diag::err_pp_line_invalid_filename); |
| DiscardUntilEndOfDirective(); |
| return; |
| } else if (StrTok.hasUDSuffix()) { |
| Diag(StrTok, diag::err_invalid_string_udl); |
| DiscardUntilEndOfDirective(); |
| return; |
| } else { |
| // Parse and validate the string, converting it into a unique ID. |
| StringLiteralParser Literal(StrTok, *this); |
| assert(Literal.isAscii() && "Didn't allow wide strings in"); |
| if (Literal.hadError) { |
| DiscardUntilEndOfDirective(); |
| return; |
| } |
| if (Literal.Pascal) { |
| Diag(StrTok, diag::err_pp_linemarker_invalid_filename); |
| DiscardUntilEndOfDirective(); |
| return; |
| } |
| FilenameID = SourceMgr.getLineTableFilenameID(Literal.GetString()); |
| |
| // Verify that there is nothing after the string, other than EOD. Because |
| // of C99 6.10.4p5, macros that expand to empty tokens are ok. |
| CheckEndOfDirective("line", true); |
| } |
| |
| // Take the file kind of the file containing the #line directive. #line |
| // directives are often used for generated sources from the same codebase, so |
| // the new file should generally be classified the same way as the current |
| // file. This is visible in GCC's pre-processed output, which rewrites #line |
| // to GNU line markers. |
| SrcMgr::CharacteristicKind FileKind = |
| SourceMgr.getFileCharacteristic(DigitTok.getLocation()); |
| |
| SourceMgr.AddLineNote(DigitTok.getLocation(), LineNo, FilenameID, false, |
| false, FileKind); |
| |
| if (Callbacks) |
| Callbacks->FileChanged(CurPPLexer->getSourceLocation(), |
| PPCallbacks::RenameFile, FileKind); |
| } |
| |
| /// ReadLineMarkerFlags - Parse and validate any flags at the end of a GNU line |
| /// marker directive. |
| static bool ReadLineMarkerFlags(bool &IsFileEntry, bool &IsFileExit, |
| SrcMgr::CharacteristicKind &FileKind, |
| Preprocessor &PP) { |
| unsigned FlagVal; |
| Token FlagTok; |
| PP.Lex(FlagTok); |
| if (FlagTok.is(tok::eod)) return false; |
| if (GetLineValue(FlagTok, FlagVal, diag::err_pp_linemarker_invalid_flag, PP)) |
| return true; |
| |
| if (FlagVal == 1) { |
| IsFileEntry = true; |
| |
| PP.Lex(FlagTok); |
| if (FlagTok.is(tok::eod)) return false; |
| if (GetLineValue(FlagTok, FlagVal, diag::err_pp_linemarker_invalid_flag,PP)) |
| return true; |
| } else if (FlagVal == 2) { |
| IsFileExit = true; |
| |
| SourceManager &SM = PP.getSourceManager(); |
| // If we are leaving the current presumed file, check to make sure the |
| // presumed include stack isn't empty! |
| FileID CurFileID = |
| SM.getDecomposedExpansionLoc(FlagTok.getLocation()).first; |
| PresumedLoc PLoc = SM.getPresumedLoc(FlagTok.getLocation()); |
| if (PLoc.isInvalid()) |
| return true; |
| |
| // If there is no include loc (main file) or if the include loc is in a |
| // different physical file, then we aren't in a "1" line marker flag region. |
| SourceLocation IncLoc = PLoc.getIncludeLoc(); |
| if (IncLoc.isInvalid() || |
| SM.getDecomposedExpansionLoc(IncLoc).first != CurFileID) { |
| PP.Diag(FlagTok, diag::err_pp_linemarker_invalid_pop); |
| PP.DiscardUntilEndOfDirective(); |
| return true; |
| } |
| |
| PP.Lex(FlagTok); |
| if (FlagTok.is(tok::eod)) return false; |
| if (GetLineValue(FlagTok, FlagVal, diag::err_pp_linemarker_invalid_flag,PP)) |
| return true; |
| } |
| |
| // We must have 3 if there are still flags. |
| if (FlagVal != 3) { |
| PP.Diag(FlagTok, diag::err_pp_linemarker_invalid_flag); |
| PP.DiscardUntilEndOfDirective(); |
| return true; |
| } |
| |
| FileKind = SrcMgr::C_System; |
| |
| PP.Lex(FlagTok); |
| if (FlagTok.is(tok::eod)) return false; |
| if (GetLineValue(FlagTok, FlagVal, diag::err_pp_linemarker_invalid_flag, PP)) |
| return true; |
| |
| // We must have 4 if there is yet another flag. |
| if (FlagVal != 4) { |
| PP.Diag(FlagTok, diag::err_pp_linemarker_invalid_flag); |
| PP.DiscardUntilEndOfDirective(); |
| return true; |
| } |
| |
| FileKind = SrcMgr::C_ExternCSystem; |
| |
| PP.Lex(FlagTok); |
| if (FlagTok.is(tok::eod)) return false; |
| |
| // There are no more valid flags here. |
| PP.Diag(FlagTok, diag::err_pp_linemarker_invalid_flag); |
| PP.DiscardUntilEndOfDirective(); |
| return true; |
| } |
| |
| /// HandleDigitDirective - Handle a GNU line marker directive, whose syntax is |
| /// one of the following forms: |
| /// |
| /// # 42 |
| /// # 42 "file" ('1' | '2')? |
| /// # 42 "file" ('1' | '2')? '3' '4'? |
| /// |
| void Preprocessor::HandleDigitDirective(Token &DigitTok) { |
| // Validate the number and convert it to an unsigned. GNU does not have a |
| // line # limit other than it fit in 32-bits. |
| unsigned LineNo; |
| if (GetLineValue(DigitTok, LineNo, diag::err_pp_linemarker_requires_integer, |
| *this, true)) |
| return; |
| |
| Token StrTok; |
| Lex(StrTok); |
| |
| bool IsFileEntry = false, IsFileExit = false; |
| int FilenameID = -1; |
| SrcMgr::CharacteristicKind FileKind = SrcMgr::C_User; |
| |
| // If the StrTok is "eod", then it wasn't present. Otherwise, it must be a |
| // string followed by eod. |
| if (StrTok.is(tok::eod)) { |
| // Treat this like "#line NN", which doesn't change file characteristics. |
| FileKind = SourceMgr.getFileCharacteristic(DigitTok.getLocation()); |
| } else if (StrTok.isNot(tok::string_literal)) { |
| Diag(StrTok, diag::err_pp_linemarker_invalid_filename); |
| DiscardUntilEndOfDirective(); |
| return; |
| } else if (StrTok.hasUDSuffix()) { |
| Diag(StrTok, diag::err_invalid_string_udl); |
| DiscardUntilEndOfDirective(); |
| return; |
| } else { |
| // Parse and validate the string, converting it into a unique ID. |
| StringLiteralParser Literal(StrTok, *this); |
| assert(Literal.isAscii() && "Didn't allow wide strings in"); |
| if (Literal.hadError) { |
| DiscardUntilEndOfDirective(); |
| return; |
| } |
| if (Literal.Pascal) { |
| Diag(StrTok, diag::err_pp_linemarker_invalid_filename); |
| DiscardUntilEndOfDirective(); |
| return; |
| } |
| |
| // If a filename was present, read any flags that are present. |
| if (ReadLineMarkerFlags(IsFileEntry, IsFileExit, FileKind, *this)) |
| return; |
| |
| // Exiting to an empty string means pop to the including file, so leave |
| // FilenameID as -1 in that case. |
| if (!(IsFileExit && Literal.GetString().empty())) |
| FilenameID = SourceMgr.getLineTableFilenameID(Literal.GetString()); |
| } |
| |
| // Create a line note with this information. |
| SourceMgr.AddLineNote(DigitTok.getLocation(), LineNo, FilenameID, IsFileEntry, |
| IsFileExit, FileKind); |
| |
| // If the preprocessor has callbacks installed, notify them of the #line |
| // change. This is used so that the line marker comes out in -E mode for |
| // example. |
| if (Callbacks) { |
| PPCallbacks::FileChangeReason Reason = PPCallbacks::RenameFile; |
| if (IsFileEntry) |
| Reason = PPCallbacks::EnterFile; |
| else if (IsFileExit) |
| Reason = PPCallbacks::ExitFile; |
| |
| Callbacks->FileChanged(CurPPLexer->getSourceLocation(), Reason, FileKind); |
| } |
| } |
| |
| /// HandleUserDiagnosticDirective - Handle a #warning or #error directive. |
| /// |
| void Preprocessor::HandleUserDiagnosticDirective(Token &Tok, |
| bool isWarning) { |
| // Read the rest of the line raw. We do this because we don't want macros |
| // to be expanded and we don't require that the tokens be valid preprocessing |
| // tokens. For example, this is allowed: "#warning ` 'foo". GCC does |
| // collapse multiple consecutive white space between tokens, but this isn't |
| // specified by the standard. |
| SmallString<128> Message; |
| CurLexer->ReadToEndOfLine(&Message); |
| |
| // Find the first non-whitespace character, so that we can make the |
| // diagnostic more succinct. |
| StringRef Msg = Message.str().ltrim(' '); |
| |
| if (isWarning) |
| Diag(Tok, diag::pp_hash_warning) << Msg; |
| else |
| Diag(Tok, diag::err_pp_hash_error) << Msg; |
| } |
| |
| /// HandleIdentSCCSDirective - Handle a #ident/#sccs directive. |
| /// |
| void Preprocessor::HandleIdentSCCSDirective(Token &Tok) { |
| // Yes, this directive is an extension. |
| Diag(Tok, diag::ext_pp_ident_directive); |
| |
| // Read the string argument. |
| Token StrTok; |
| Lex(StrTok); |
| |
| // If the token kind isn't a string, it's a malformed directive. |
| if (StrTok.isNot(tok::string_literal) && |
| StrTok.isNot(tok::wide_string_literal)) { |
| Diag(StrTok, diag::err_pp_malformed_ident); |
| if (StrTok.isNot(tok::eod)) |
| DiscardUntilEndOfDirective(); |
| return; |
| } |
| |
| if (StrTok.hasUDSuffix()) { |
| Diag(StrTok, diag::err_invalid_string_udl); |
| DiscardUntilEndOfDirective(); |
| return; |
| } |
| |
| // Verify that there is nothing after the string, other than EOD. |
| CheckEndOfDirective("ident"); |
| |
| if (Callbacks) { |
| bool Invalid = false; |
| std::string Str = getSpelling(StrTok, &Invalid); |
| if (!Invalid) |
| Callbacks->Ident(Tok.getLocation(), Str); |
| } |
| } |
| |
| /// Handle a #public directive. |
| void Preprocessor::HandleMacroPublicDirective(Token &Tok) { |
| Token MacroNameTok; |
| ReadMacroName(MacroNameTok, MU_Undef); |
| |
| // Error reading macro name? If so, diagnostic already issued. |
| if (MacroNameTok.is(tok::eod)) |
| return; |
| |
| // Check to see if this is the last token on the #__public_macro line. |
| CheckEndOfDirective("__public_macro"); |
| |
| IdentifierInfo *II = MacroNameTok.getIdentifierInfo(); |
| // Okay, we finally have a valid identifier to undef. |
| MacroDirective *MD = getLocalMacroDirective(II); |
| |
| // If the macro is not defined, this is an error. |
| if (!MD) { |
| Diag(MacroNameTok, diag::err_pp_visibility_non_macro) << II; |
| return; |
| } |
| |
| // Note that this macro has now been exported. |
| appendMacroDirective(II, AllocateVisibilityMacroDirective( |
| MacroNameTok.getLocation(), /*isPublic=*/true)); |
| } |
| |
| /// Handle a #private directive. |
| void Preprocessor::HandleMacroPrivateDirective() { |
| Token MacroNameTok; |
| ReadMacroName(MacroNameTok, MU_Undef); |
| |
| // Error reading macro name? If so, diagnostic already issued. |
| if (MacroNameTok.is(tok::eod)) |
| return; |
| |
| // Check to see if this is the last token on the #__private_macro line. |
| CheckEndOfDirective("__private_macro"); |
| |
| IdentifierInfo *II = MacroNameTok.getIdentifierInfo(); |
| // Okay, we finally have a valid identifier to undef. |
| MacroDirective *MD = getLocalMacroDirective(II); |
| |
| // If the macro is not defined, this is an error. |
| if (!MD) { |
| Diag(MacroNameTok, diag::err_pp_visibility_non_macro) << II; |
| return; |
| } |
| |
| // Note that this macro has now been marked private. |
| appendMacroDirective(II, AllocateVisibilityMacroDirective( |
| MacroNameTok.getLocation(), /*isPublic=*/false)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Preprocessor Include Directive Handling. |
| //===----------------------------------------------------------------------===// |
| |
| /// GetIncludeFilenameSpelling - Turn the specified lexer token into a fully |
| /// checked and spelled filename, e.g. as an operand of \#include. This returns |
| /// true if the input filename was in <>'s or false if it were in ""'s. The |
| /// caller is expected to provide a buffer that is large enough to hold the |
| /// spelling of the filename, but is also expected to handle the case when |
| /// this method decides to use a different buffer. |
| bool Preprocessor::GetIncludeFilenameSpelling(SourceLocation Loc, |
| StringRef &Buffer) { |
| // Get the text form of the filename. |
| assert(!Buffer.empty() && "Can't have tokens with empty spellings!"); |
| |
| // FIXME: Consider warning on some of the cases described in C11 6.4.7/3 and |
| // C++20 [lex.header]/2: |
| // |
| // If `"`, `'`, `\`, `/*`, or `//` appears in a header-name, then |
| // in C: behavior is undefined |
| // in C++: program is conditionally-supported with implementation-defined |
| // semantics |
| |
| // Make sure the filename is <x> or "x". |
| bool isAngled; |
| if (Buffer[0] == '<') { |
| if (Buffer.back() != '>') { |
| Diag(Loc, diag::err_pp_expects_filename); |
| Buffer = StringRef(); |
| return true; |
| } |
| isAngled = true; |
| } else if (Buffer[0] == '"') { |
| if (Buffer.back() != '"') { |
| Diag(Loc, diag::err_pp_expects_filename); |
| Buffer = StringRef(); |
| return true; |
| } |
| isAngled = false; |
| } else { |
| Diag(Loc, diag::err_pp_expects_filename); |
| Buffer = StringRef(); |
| return true; |
| } |
| |
| // Diagnose #include "" as invalid. |
| if (Buffer.size() <= 2) { |
| Diag(Loc, diag::err_pp_empty_filename); |
| Buffer = StringRef(); |
| return true; |
| } |
| |
| // Skip the brackets. |
| Buffer = Buffer.substr(1, Buffer.size()-2); |
| return isAngled; |
| } |
| |
| /// Push a token onto the token stream containing an annotation. |
| void Preprocessor::EnterAnnotationToken(SourceRange Range, |
| tok::TokenKind Kind, |
| void *AnnotationVal) { |
| // FIXME: Produce this as the current token directly, rather than |
| // allocating a new token for it. |
| auto Tok = std::make_unique<Token[]>(1); |
| Tok[0].startToken(); |
| Tok[0].setKind(Kind); |
| Tok[0].setLocation(Range.getBegin()); |
| Tok[0].setAnnotationEndLoc(Range.getEnd()); |
| Tok[0].setAnnotationValue(AnnotationVal); |
| EnterTokenStream(std::move(Tok), 1, true, /*IsReinject*/ false); |
| } |
| |
| /// Produce a diagnostic informing the user that a #include or similar |
| /// was implicitly treated as a module import. |
| static void diagnoseAutoModuleImport( |
| Preprocessor &PP, SourceLocation HashLoc, Token &IncludeTok, |
| ArrayRef<std::pair<IdentifierInfo *, SourceLocation>> Path, |
| SourceLocation PathEnd) { |
| StringRef ImportKeyword; |
| if (PP.getLangOpts().ObjC) |
| ImportKeyword = "@import"; |
| else if (PP.getLangOpts().ModulesTS || PP.getLangOpts().CPlusPlusModules) |
| ImportKeyword = "import"; |
| else |
| return; // no import syntax available |
| |
| SmallString<128> PathString; |
| for (size_t I = 0, N = Path.size(); I != N; ++I) { |
| if (I) |
| PathString += '.'; |
| PathString += Path[I].first->getName(); |
| } |
| int IncludeKind = 0; |
| |
| switch (IncludeTok.getIdentifierInfo()->getPPKeywordID()) { |
| case tok::pp_include: |
| IncludeKind = 0; |
| break; |
| |
| case tok::pp_import: |
| IncludeKind = 1; |
| break; |
| |
| case tok::pp_include_next: |
| IncludeKind = 2; |
| break; |
| |
| case tok::pp___include_macros: |
| IncludeKind = 3; |
| break; |
| |
| default: |
| llvm_unreachable("unknown include directive kind"); |
| } |
| |
| CharSourceRange ReplaceRange(SourceRange(HashLoc, PathEnd), |
| /*IsTokenRange=*/false); |
| PP.Diag(HashLoc, diag::warn_auto_module_import) |
| << IncludeKind << PathString |
| << FixItHint::CreateReplacement( |
| ReplaceRange, (ImportKeyword + " " + PathString + ";").str()); |
| } |
| |
| // Given a vector of path components and a string containing the real |
| // path to the file, build a properly-cased replacement in the vector, |
| // and return true if the replacement should be suggested. |
| static bool trySimplifyPath(SmallVectorImpl<StringRef> &Components, |
| StringRef RealPathName) { |
| auto RealPathComponentIter = llvm::sys::path::rbegin(RealPathName); |
| auto RealPathComponentEnd = llvm::sys::path::rend(RealPathName); |
| int Cnt = 0; |
| bool SuggestReplacement = false; |
| // Below is a best-effort to handle ".." in paths. It is admittedly |
| // not 100% correct in the presence of symlinks. |
| for (auto &Component : llvm::reverse(Components)) { |
| if ("." == Component) { |
| } else if (".." == Component) { |
| ++Cnt; |
| } else if (Cnt) { |
| --Cnt; |
| } else if (RealPathComponentIter != RealPathComponentEnd) { |
| if (Component != *RealPathComponentIter) { |
| // If these path components differ by more than just case, then we |
| // may be looking at symlinked paths. Bail on this diagnostic to avoid |
| // noisy false positives. |
| SuggestReplacement = |
| RealPathComponentIter->equals_insensitive(Component); |
| if (!SuggestReplacement) |
| break; |
| Component = *RealPathComponentIter; |
| } |
| ++RealPathComponentIter; |
| } |
| } |
| return SuggestReplacement; |
| } |
| |
| bool Preprocessor::checkModuleIsAvailable(const LangOptions &LangOpts, |
| const TargetInfo &TargetInfo, |
| DiagnosticsEngine &Diags, Module *M) { |
| Module::Requirement Requirement; |
| Module::UnresolvedHeaderDirective MissingHeader; |
| Module *ShadowingModule = nullptr; |
| if (M->isAvailable(LangOpts, TargetInfo, Requirement, MissingHeader, |
| ShadowingModule)) |
| return false; |
| |
| if (MissingHeader.FileNameLoc.isValid()) { |
| Diags.Report(MissingHeader.FileNameLoc, diag::err_module_header_missing) |
| << MissingHeader.IsUmbrella << MissingHeader.FileName; |
| } else if (ShadowingModule) { |
| Diags.Report(M->DefinitionLoc, diag::err_module_shadowed) << M->Name; |
| Diags.Report(ShadowingModule->DefinitionLoc, |
| diag::note_previous_definition); |
| } else { |
| // FIXME: Track the location at which the requirement was specified, and |
| // use it here. |
| Diags.Report(M->DefinitionLoc, diag::err_module_unavailable) |
| << M->getFullModuleName() << Requirement.second << Requirement.first; |
| } |
| return true; |
| } |
| |
| /// HandleIncludeDirective - The "\#include" tokens have just been read, read |
| /// the file to be included from the lexer, then include it! This is a common |
| /// routine with functionality shared between \#include, \#include_next and |
| /// \#import. LookupFrom is set when this is a \#include_next directive, it |
| /// specifies the file to start searching from. |
| void Preprocessor::HandleIncludeDirective(SourceLocation HashLoc, |
| Token &IncludeTok, |
| const DirectoryLookup *LookupFrom, |
| const FileEntry *LookupFromFile) { |
| Token FilenameTok; |
| if (LexHeaderName(FilenameTok)) |
| return; |
| |
| if (FilenameTok.isNot(tok::header_name)) { |
| Diag(FilenameTok.getLocation(), diag::err_pp_expects_filename); |
| if (FilenameTok.isNot(tok::eod)) |
| DiscardUntilEndOfDirective(); |
| return; |
| } |
| |
| // Verify that there is nothing after the filename, other than EOD. Note |
| // that we allow macros that expand to nothing after the filename, because |
| // this falls into the category of "#include pp-tokens new-line" specified |
| // in C99 6.10.2p4. |
| SourceLocation EndLoc = |
| CheckEndOfDirective(IncludeTok.getIdentifierInfo()->getNameStart(), true); |
| |
| auto Action = HandleHeaderIncludeOrImport(HashLoc, IncludeTok, FilenameTok, |
| EndLoc, LookupFrom, LookupFromFile); |
| switch (Action.Kind) { |
| case ImportAction::None: |
| case ImportAction::SkippedModuleImport: |
| break; |
| case ImportAction::ModuleBegin: |
| EnterAnnotationToken(SourceRange(HashLoc, EndLoc), |
| tok::annot_module_begin, Action.ModuleForHeader); |
| break; |
| case ImportAction::ModuleImport: |
| EnterAnnotationToken(SourceRange(HashLoc, EndLoc), |
| tok::annot_module_include, Action.ModuleForHeader); |
| break; |
| case ImportAction::Failure: |
| assert(TheModuleLoader.HadFatalFailure && |
| "This should be an early exit only to a fatal error"); |
| TheModuleLoader.HadFatalFailure = true; |
| IncludeTok.setKind(tok::eof); |
| CurLexer->cutOffLexing(); |
| return; |
| } |
| } |
| |
| Optional<FileEntryRef> Preprocessor::LookupHeaderIncludeOrImport( |
| const DirectoryLookup *&CurDir, StringRef& Filename, |
| SourceLocation FilenameLoc, CharSourceRange FilenameRange, |
| const Token &FilenameTok, bool &IsFrameworkFound, bool IsImportDecl, |
| bool &IsMapped, const DirectoryLookup *LookupFrom, |
| const FileEntry *LookupFromFile, StringRef& LookupFilename, |
| SmallVectorImpl<char> &RelativePath, SmallVectorImpl<char> &SearchPath, |
| ModuleMap::KnownHeader &SuggestedModule, bool isAngled) { |
| Optional<FileEntryRef> File = LookupFile( |
| FilenameLoc, LookupFilename, |
| isAngled, LookupFrom, LookupFromFile, CurDir, |
| Callbacks ? &SearchPath : nullptr, Callbacks ? &RelativePath : nullptr, |
| &SuggestedModule, &IsMapped, &IsFrameworkFound); |
| if (File) |
| return File; |
| |
| if (Callbacks) { |
| // Give the clients a chance to recover. |
| SmallString<128> RecoveryPath; |
| if (Callbacks->FileNotFound(Filename, RecoveryPath)) { |
| if (auto DE = FileMgr.getOptionalDirectoryRef(RecoveryPath)) { |
| // Add the recovery path to the list of search paths. |
| DirectoryLookup DL(*DE, SrcMgr::C_User, false); |
| HeaderInfo.AddSearchPath(DL, isAngled); |
| |
| // Try the lookup again, skipping the cache. |
| Optional<FileEntryRef> File = LookupFile( |
| FilenameLoc, |
| LookupFilename, isAngled, |
| LookupFrom, LookupFromFile, CurDir, nullptr, nullptr, |
| &SuggestedModule, &IsMapped, /*IsFrameworkFound=*/nullptr, |
| /*SkipCache*/ true); |
| if (File) |
| return File; |
| } |
| } |
| } |
| |
| if (SuppressIncludeNotFoundError) |
| return None; |
| |
| // If the file could not be located and it was included via angle |
| // brackets, we can attempt a lookup as though it were a quoted path to |
| // provide the user with a possible fixit. |
| if (isAngled) { |
| Optional<FileEntryRef> File = LookupFile( |
| FilenameLoc, LookupFilename, |
| false, LookupFrom, LookupFromFile, CurDir, |
| Callbacks ? &SearchPath : nullptr, Callbacks ? &RelativePath : nullptr, |
| &SuggestedModule, &IsMapped, |
| /*IsFrameworkFound=*/nullptr); |
| if (File) { |
| Diag(FilenameTok, diag::err_pp_file_not_found_angled_include_not_fatal) |
| << Filename << IsImportDecl |
| << FixItHint::CreateReplacement(FilenameRange, |
| "\"" + Filename.str() + "\""); |
| return File; |
| } |
| } |
| |
| // Check for likely typos due to leading or trailing non-isAlphanumeric |
| // characters |
| StringRef OriginalFilename = Filename; |
| if (LangOpts.SpellChecking) { |
| // A heuristic to correct a typo file name by removing leading and |
| // trailing non-isAlphanumeric characters. |
| auto CorrectTypoFilename = [](llvm::StringRef Filename) { |
| Filename = Filename.drop_until(isAlphanumeric); |
| while (!Filename.empty() && !isAlphanumeric(Filename.back())) { |
| Filename = Filename.drop_back(); |
| } |
| return Filename; |
| }; |
| StringRef TypoCorrectionName = CorrectTypoFilename(Filename); |
| StringRef TypoCorrectionLookupName = CorrectTypoFilename(LookupFilename); |
| |
| Optional<FileEntryRef> File = LookupFile( |
| FilenameLoc, TypoCorrectionLookupName, isAngled, LookupFrom, LookupFromFile, |
| CurDir, Callbacks ? &SearchPath : nullptr, |
| Callbacks ? &RelativePath : nullptr, &SuggestedModule, &IsMapped, |
| /*IsFrameworkFound=*/nullptr); |
| if (File) { |
| auto Hint = |
| isAngled ? FixItHint::CreateReplacement( |
| FilenameRange, "<" + TypoCorrectionName.str() + ">") |
| : FixItHint::CreateReplacement( |
| FilenameRange, "\"" + TypoCorrectionName.str() + "\""); |
| Diag(FilenameTok, diag::err_pp_file_not_found_typo_not_fatal) |
| << OriginalFilename << TypoCorrectionName << Hint; |
| // We found the file, so set the Filename to the name after typo |
| // correction. |
| Filename = TypoCorrectionName; |
| LookupFilename = TypoCorrectionLookupName; |
| return File; |
| } |
| } |
| |
| // If the file is still not found, just go with the vanilla diagnostic |
| assert(!File.hasValue() && "expected missing file"); |
| Diag(FilenameTok, diag::err_pp_file_not_found) |
| << OriginalFilename << FilenameRange; |
| if (IsFrameworkFound) { |
| size_t SlashPos = OriginalFilename.find('/'); |
| assert(SlashPos != StringRef::npos && |
| "Include with framework name should have '/' in the filename"); |
| StringRef FrameworkName = OriginalFilename.substr(0, SlashPos); |
| FrameworkCacheEntry &CacheEntry = |
| HeaderInfo.LookupFrameworkCache(FrameworkName); |
| assert(CacheEntry.Directory && "Found framework should be in cache"); |
| Diag(FilenameTok, diag::note_pp_framework_without_header) |
| << OriginalFilename.substr(SlashPos + 1) << FrameworkName |
| << CacheEntry.Directory->getName(); |
| } |
| |
| return None; |
| } |
| |
| /// Handle either a #include-like directive or an import declaration that names |
| /// a header file. |
| /// |
| /// \param HashLoc The location of the '#' token for an include, or |
| /// SourceLocation() for an import declaration. |
| /// \param IncludeTok The include / include_next / import token. |
| /// \param FilenameTok The header-name token. |
| /// \param EndLoc The location at which any imported macros become visible. |
| /// \param LookupFrom For #include_next, the starting directory for the |
| /// directory lookup. |
| /// \param LookupFromFile For #include_next, the starting file for the directory |
| /// lookup. |
| Preprocessor::ImportAction Preprocessor::HandleHeaderIncludeOrImport( |
| SourceLocation HashLoc, Token &IncludeTok, Token &FilenameTok, |
| SourceLocation EndLoc, const DirectoryLookup *LookupFrom, |
| const FileEntry *LookupFromFile) { |
| SmallString<128> FilenameBuffer; |
| StringRef Filename = getSpelling(FilenameTok, FilenameBuffer); |
| SourceLocation CharEnd = FilenameTok.getEndLoc(); |
| |
| CharSourceRange FilenameRange |
| = CharSourceRange::getCharRange(FilenameTok.getLocation(), CharEnd); |
| StringRef OriginalFilename = Filename; |
| bool isAngled = |
| GetIncludeFilenameSpelling(FilenameTok.getLocation(), Filename); |
| |
| // If GetIncludeFilenameSpelling set the start ptr to null, there was an |
| // error. |
| if (Filename.empty()) |
| return {ImportAction::None}; |
| |
| bool IsImportDecl = HashLoc.isInvalid(); |
| SourceLocation StartLoc = IsImportDecl ? IncludeTok.getLocation() : HashLoc; |
| |
| // Complain about attempts to #include files in an audit pragma. |
| if (PragmaARCCFCodeAuditedInfo.second.isValid()) { |
| Diag(StartLoc, diag::err_pp_include_in_arc_cf_code_audited) << IsImportDecl; |
| Diag(PragmaARCCFCodeAuditedInfo.second, diag::note_pragma_entered_here); |
| |
| // Immediately leave the pragma. |
| PragmaARCCFCodeAuditedInfo = {nullptr, SourceLocation()}; |
| } |
| |
| // Complain about attempts to #include files in an assume-nonnull pragma. |
| if (PragmaAssumeNonNullLoc.isValid()) { |
| Diag(StartLoc, diag::err_pp_include_in_assume_nonnull) << IsImportDecl; |
| Diag(PragmaAssumeNonNullLoc, diag::note_pragma_entered_here); |
| |
| // Immediately leave the pragma. |
| PragmaAssumeNonNullLoc = SourceLocation(); |
| } |
| |
| if (HeaderInfo.HasIncludeAliasMap()) { |
| // Map the filename with the brackets still attached. If the name doesn't |
| // map to anything, fall back on the filename we've already gotten the |
| // spelling for. |
| StringRef NewName = HeaderInfo.MapHeaderToIncludeAlias(OriginalFilename); |
| if (!NewName.empty()) |
| Filename = NewName; |
| } |
| |
| // Search include directories. |
| bool IsMapped = false; |
| bool IsFrameworkFound = false; |
| const DirectoryLookup *CurDir; |
| SmallString<1024> SearchPath; |
| SmallString<1024> RelativePath; |
| // We get the raw path only if we have 'Callbacks' to which we later pass |
| // the path. |
| ModuleMap::KnownHeader SuggestedModule; |
| SourceLocation FilenameLoc = FilenameTok.getLocation(); |
| StringRef LookupFilename = Filename; |
| |
| // Normalize slashes when compiling with -fms-extensions on non-Windows. This |
| // is unnecessary on Windows since the filesystem there handles backslashes. |
| SmallString<128> NormalizedPath; |
| llvm::sys::path::Style BackslashStyle = llvm::sys::path::Style::native; |
| if (is_style_posix(BackslashStyle) && LangOpts.MicrosoftExt) { |
| NormalizedPath = Filename.str(); |
| llvm::sys::path::native(NormalizedPath); |
| LookupFilename = NormalizedPath; |
| BackslashStyle = llvm::sys::path::Style::windows; |
| } |
| |
| Optional<FileEntryRef> File = LookupHeaderIncludeOrImport( |
| CurDir, Filename, FilenameLoc, FilenameRange, FilenameTok, |
| IsFrameworkFound, IsImportDecl, IsMapped, LookupFrom, LookupFromFile, |
| LookupFilename, RelativePath, SearchPath, SuggestedModule, isAngled); |
| |
| // Record the header's filename for later use. |
| if (File) |
| CurLexer->addInclude(OriginalFilename, File->getFileEntry(), FilenameLoc); |
| |
| if (usingPCHWithThroughHeader() && SkippingUntilPCHThroughHeader) { |
| if (File && isPCHThroughHeader(&File->getFileEntry())) |
| SkippingUntilPCHThroughHeader = false; |
| return {ImportAction::None}; |
| } |
| |
| // Should we enter the source file? Set to Skip if either the source file is |
| // known to have no effect beyond its effect on module visibility -- that is, |
| // if it's got an include guard that is already defined, set to Import if it |
| // is a modular header we've already built and should import. |
| enum { Enter, Import, Skip, IncludeLimitReached } Action = Enter; |
| |
| if (PPOpts->SingleFileParseMode) |
| Action = IncludeLimitReached; |
| |
| // If we've reached the max allowed include depth, it is usually due to an |
| // include cycle. Don't enter already processed files again as it can lead to |
| // reaching the max allowed include depth again. |
| if (Action == Enter && HasReachedMaxIncludeDepth && File && |
| HeaderInfo.getFileInfo(&File->getFileEntry()).NumIncludes) |
| Action = IncludeLimitReached; |
| |
| // Determine whether we should try to import the module for this #include, if |
| // there is one. Don't do so if precompiled module support is disabled or we |
| // are processing this module textually (because we're building the module). |
| if (Action == Enter && File && SuggestedModule && getLangOpts().Modules && |
| !isForModuleBuilding(SuggestedModule.getModule(), |
| getLangOpts().CurrentModule, |
| getLangOpts().ModuleName)) { |
| // If this include corresponds to a module but that module is |
| // unavailable, diagnose the situation and bail out. |
| // FIXME: Remove this; loadModule does the same check (but produces |
| // slightly worse diagnostics). |
| if (checkModuleIsAvailable(getLangOpts(), getTargetInfo(), getDiagnostics(), |
| SuggestedModule.getModule())) { |
| Diag(FilenameTok.getLocation(), |
| diag::note_implicit_top_level_module_import_here) |
| << SuggestedModule.getModule()->getTopLevelModuleName(); |
| return {ImportAction::None}; |
| } |
| |
| // Compute the module access path corresponding to this module. |
| // FIXME: Should we have a second loadModule() overload to avoid this |
| // extra lookup step? |
| SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path; |
| for (Module *Mod = SuggestedModule.getModule(); Mod; Mod = Mod->Parent) |
| Path.push_back(std::make_pair(getIdentifierInfo(Mod->Name), |
| FilenameTok.getLocation())); |
| std::reverse(Path.begin(), Path.end()); |
| |
| // Warn that we're replacing the include/import with a module import. |
| if (!IsImportDecl) |
| diagnoseAutoModuleImport(*this, StartLoc, IncludeTok, Path, CharEnd); |
| |
| // Load the module to import its macros. We'll make the declarations |
| // visible when the parser gets here. |
| // FIXME: Pass SuggestedModule in here rather than converting it to a path |
| // and making the module loader convert it back again. |
| ModuleLoadResult Imported = TheModuleLoader.loadModule( |
| IncludeTok.getLocation(), Path, Module::Hidden, |
| /*IsInclusionDirective=*/true); |
| assert((Imported == nullptr || Imported == SuggestedModule.getModule()) && |
| "the imported module is different than the suggested one"); |
| |
| if (Imported) { |
| Action = Import; |
| } else if (Imported.isMissingExpected()) { |
| // We failed to find a submodule that we assumed would exist (because it |
| // was in the directory of an umbrella header, for instance), but no |
| // actual module containing it exists (because the umbrella header is |
| // incomplete). Treat this as a textual inclusion. |
| SuggestedModule = ModuleMap::KnownHeader(); |
| } else if (Imported.isConfigMismatch()) { |
| // On a configuration mismatch, enter the header textually. We still know |
| // that it's part of the corresponding module. |
| } else { |
| // We hit an error processing the import. Bail out. |
| if (hadModuleLoaderFatalFailure()) { |
| // With a fatal failure in the module loader, we abort parsing. |
| Token &Result = IncludeTok; |
| assert(CurLexer && "#include but no current lexer set!"); |
| Result.startToken(); |
| CurLexer->FormTokenWithChars(Result, CurLexer->BufferEnd, tok::eof); |
| CurLexer->cutOffLexing(); |
| } |
| return {ImportAction::None}; |
| } |
| } |
| |
| // The #included file will be considered to be a system header if either it is |
| // in a system include directory, or if the #includer is a system include |
| // header. |
| SrcMgr::CharacteristicKind FileCharacter = |
| SourceMgr.getFileCharacteristic(FilenameTok.getLocation()); |
| if (File) |
| FileCharacter = std::max(HeaderInfo.getFileDirFlavor(&File->getFileEntry()), |
| FileCharacter); |
| |
| // If this is a '#import' or an import-declaration, don't re-enter the file. |
| // |
| // FIXME: If we have a suggested module for a '#include', and we've already |
| // visited this file, don't bother entering it again. We know it has no |
| // further effect. |
| bool EnterOnce = |
| IsImportDecl || |
| IncludeTok.getIdentifierInfo()->getPPKeywordID() == tok::pp_import; |
| |
| bool IsFirstIncludeOfFile = false; |
| |
| // Ask HeaderInfo if we should enter this #include file. If not, #including |
| // this file will have no effect. |
| if (Action == Enter && File && |
| !HeaderInfo.ShouldEnterIncludeFile( |
| *this, &File->getFileEntry(), EnterOnce, getLangOpts().Modules, |
| SuggestedModule.getModule(), IsFirstIncludeOfFile)) { |
| // Even if we've already preprocessed this header once and know that we |
| // don't need to see its contents again, we still need to import it if it's |
| // modular because we might not have imported it from this submodule before. |
| // |
| // FIXME: We don't do this when compiling a PCH because the AST |
| // serialization layer can't cope with it. This means we get local |
| // submodule visibility semantics wrong in that case. |
| Action = (SuggestedModule && !getLangOpts().CompilingPCH) ? Import : Skip; |
| } |
| |
| // Check for circular inclusion of the main file. |
| // We can't generate a consistent preamble with regard to the conditional |
| // stack if the main file is included again as due to the preamble bounds |
| // some directives (e.g. #endif of a header guard) will never be seen. |
| // Since this will lead to confusing errors, avoid the inclusion. |
| if (Action == Enter && File && PreambleConditionalStack.isRecording() && |
| SourceMgr.isMainFile(File->getFileEntry())) { |
| Diag(FilenameTok.getLocation(), |
| diag::err_pp_including_mainfile_in_preamble); |
| return {ImportAction::None}; |
| } |
| |
| if (Callbacks && !IsImportDecl) { |
| // Notify the callback object that we've seen an inclusion directive. |
| // FIXME: Use a different callback for a pp-import? |
| Callbacks->InclusionDirective( |
| HashLoc, IncludeTok, LookupFilename, isAngled, FilenameRange, |
| File ? &File->getFileEntry() : nullptr, SearchPath, RelativePath, |
| Action == Import ? SuggestedModule.getModule() : nullptr, |
| FileCharacter); |
| if (Action == Skip && File) |
| Callbacks->FileSkipped(*File, FilenameTok, FileCharacter); |
| } |
| |
| if (!File) |
| return {ImportAction::None}; |
| |
| // If this is a C++20 pp-import declaration, diagnose if we didn't find any |
| // module corresponding to the named header. |
| if (IsImportDecl && !SuggestedModule) { |
| Diag(FilenameTok, diag::err_header_import_not_header_unit) |
| << OriginalFilename << File->getName(); |
| return {ImportAction::None}; |
| } |
| |
| // Issue a diagnostic if the name of the file on disk has a different case |
| // than the one we're about to open. |
| const bool CheckIncludePathPortability = |
| !IsMapped && !File->getFileEntry().tryGetRealPathName().empty(); |
| |
| if (CheckIncludePathPortability) { |
| StringRef Name = LookupFilename; |
| StringRef NameWithoriginalSlashes = Filename; |
| #if defined(_WIN32) |
| // Skip UNC prefix if present. (tryGetRealPathName() always |
| // returns a path with the prefix skipped.) |
| bool NameWasUNC = Name.consume_front("\\\\?\\"); |
| NameWithoriginalSlashes.consume_front("\\\\?\\"); |
| #endif |
| StringRef RealPathName = File->getFileEntry().tryGetRealPathName(); |
| SmallVector<StringRef, 16> Components(llvm::sys::path::begin(Name), |
| llvm::sys::path::end(Name)); |
| #if defined(_WIN32) |
| // -Wnonportable-include-path is designed to diagnose includes using |
| // case even on systems with a case-insensitive file system. |
| // On Windows, RealPathName always starts with an upper-case drive |
| // letter for absolute paths, but Name might start with either |
| // case depending on if `cd c:\foo` or `cd C:\foo` was used in the shell. |
| // ("foo" will always have on-disk case, no matter which case was |
| // used in the cd command). To not emit this warning solely for |
| // the drive letter, whose case is dependent on if `cd` is used |
| // with upper- or lower-case drive letters, always consider the |
| // given drive letter case as correct for the purpose of this warning. |
| SmallString<128> FixedDriveRealPath; |
| if (llvm::sys::path::is_absolute(Name) && |
| llvm::sys::path::is_absolute(RealPathName) && |
| toLowercase(Name[0]) == toLowercase(RealPathName[0]) && |
| isLowercase(Name[0]) != isLowercase(RealPathName[0])) { |
| assert(Components.size() >= 3 && "should have drive, backslash, name"); |
| assert(Components[0].size() == 2 && "should start with drive"); |
| assert(Components[0][1] == ':' && "should have colon"); |
| FixedDriveRealPath = (Name.substr(0, 1) + RealPathName.substr(1)).str(); |
| RealPathName = FixedDriveRealPath; |
| } |
| #endif |
| |
| if (trySimplifyPath(Components, RealPathName)) { |
| SmallString<128> Path; |
| Path.reserve(Name.size()+2); |
| Path.push_back(isAngled ? '<' : '"'); |
| |
| const auto IsSep = [BackslashStyle](char c) { |
| return llvm::sys::path::is_separator(c, BackslashStyle); |
| }; |
| |
| for (auto Component : Components) { |
| // On POSIX, Components will contain a single '/' as first element |
| // exactly if Name is an absolute path. |
| // On Windows, it will contain "C:" followed by '\' for absolute paths. |
| // The drive letter is optional for absolute paths on Windows, but |
| // clang currently cannot process absolute paths in #include lines that |
| // don't have a drive. |
| // If the first entry in Components is a directory separator, |
| // then the code at the bottom of this loop that keeps the original |
| // directory separator style copies it. If the second entry is |
| // a directory separator (the C:\ case), then that separator already |
| // got copied when the C: was processed and we want to skip that entry. |
| if (!(Component.size() == 1 && IsSep(Component[0]))) |
| Path.append(Component); |
| else if (!Path.empty()) |
| continue; |
| |
| // Append the separator(s) the user used, or the close quote |
| if (Path.size() > NameWithoriginalSlashes.size()) { |
| Path.push_back(isAngled ? '>' : '"'); |
| continue; |
| } |
| assert(IsSep(NameWithoriginalSlashes[Path.size()-1])); |
| do |
| Path.push_back(NameWithoriginalSlashes[Path.size()-1]); |
| while (Path.size() <= NameWithoriginalSlashes.size() && |
| IsSep(NameWithoriginalSlashes[Path.size()-1])); |
| } |
| |
| #if defined(_WIN32) |
| // Restore UNC prefix if it was there. |
| if (NameWasUNC) |
| Path = (Path.substr(0, 1) + "\\\\?\\" + Path.substr(1)).str(); |
| #endif |
| |
| // For user files and known standard headers, issue a diagnostic. |
| // For other system headers, don't. They can be controlled separately. |
| auto DiagId = |
| (FileCharacter == SrcMgr::C_User || warnByDefaultOnWrongCase(Name)) |
| ? diag::pp_nonportable_path |
| : diag::pp_nonportable_system_path; |
| Diag(FilenameTok, DiagId) << Path << |
| FixItHint::CreateReplacement(FilenameRange, Path); |
| } |
| } |
| |
| switch (Action) { |
| case Skip: |
| // If we don't need to enter the file, stop now. |
| if (Module *M = SuggestedModule.getModule()) |
| return {ImportAction::SkippedModuleImport, M}; |
| return {ImportAction::None}; |
| |
| case IncludeLimitReached: |
| // If we reached our include limit and don't want to enter any more files, |
| // don't go any further. |
| return {ImportAction::None}; |
| |
| case Import: { |
| // If this is a module import, make it visible if needed. |
| Module *M = SuggestedModule.getModule(); |
| assert(M && "no module to import"); |
| |
| makeModuleVisible(M, EndLoc); |
| |
| if (IncludeTok.getIdentifierInfo()->getPPKeywordID() == |
| tok::pp___include_macros) |
| return {ImportAction::None}; |
| |
| return {ImportAction::ModuleImport, M}; |
| } |
| |
| case Enter: |
| break; |
| } |
| |
| // Check that we don't have infinite #include recursion. |
| if (IncludeMacroStack.size() == MaxAllowedIncludeStackDepth-1) { |
| Diag(FilenameTok, diag::err_pp_include_too_deep); |
| HasReachedMaxIncludeDepth = true; |
| return {ImportAction::None}; |
| } |
| |
| // Look up the file, create a File ID for it. |
| SourceLocation IncludePos = FilenameTok.getLocation(); |
| // If the filename string was the result of macro expansions, set the include |
| // position on the file where it will be included and after the expansions. |
| if (IncludePos.isMacroID()) |
| IncludePos = SourceMgr.getExpansionRange(IncludePos).getEnd(); |
| FileID FID = SourceMgr.createFileID(*File, IncludePos, FileCharacter); |
| if (!FID.isValid()) { |
| TheModuleLoader.HadFatalFailure = true; |
| return ImportAction::Failure; |
| } |
| |
| // If all is good, enter the new file! |
| if (EnterSourceFile(FID, CurDir, FilenameTok.getLocation(), |
| IsFirstIncludeOfFile)) |
| return {ImportAction::None}; |
| |
| // Determine if we're switching to building a new submodule, and which one. |
| if (auto *M = SuggestedModule.getModule()) { |
| if (M->getTopLevelModule()->ShadowingModule) { |
| // We are building a submodule that belongs to a shadowed module. This |
| // means we find header files in the shadowed module. |
| Diag(M->DefinitionLoc, diag::err_module_build_shadowed_submodule) |
| << M->getFullModuleName(); |
| Diag(M->getTopLevelModule()->ShadowingModule->DefinitionLoc, |
| diag::note_previous_definition); |
| return {ImportAction::None}; |
| } |
| // When building a pch, -fmodule-name tells the compiler to textually |
| // include headers in the specified module. We are not building the |
| // specified module. |
| // |
| // FIXME: This is the wrong way to handle this. We should produce a PCH |
| // that behaves the same as the header would behave in a compilation using |
| // that PCH, which means we should enter the submodule. We need to teach |
| // the AST serialization layer to deal with the resulting AST. |
| if (getLangOpts().CompilingPCH && |
| isForModuleBuilding(M, getLangOpts().CurrentModule, |
| getLangOpts().ModuleName)) |
| return {ImportAction::None}; |
| |
| assert(!CurLexerSubmodule && "should not have marked this as a module yet"); |
| CurLexerSubmodule = M; |
| |
| // Let the macro handling code know that any future macros are within |
| // the new submodule. |
| EnterSubmodule(M, EndLoc, /*ForPragma*/false); |
| |
| // Let the parser know that any future declarations are within the new |
| // submodule. |
| // FIXME: There's no point doing this if we're handling a #__include_macros |
| // directive. |
| return {ImportAction::ModuleBegin, M}; |
| } |
| |
| assert(!IsImportDecl && "failed to diagnose missing module for import decl"); |
| return {ImportAction::None}; |
| } |
| |
| /// HandleIncludeNextDirective - Implements \#include_next. |
| /// |
| void Preprocessor::HandleIncludeNextDirective(SourceLocation HashLoc, |
| Token &IncludeNextTok) { |
| Diag(IncludeNextTok, diag::ext_pp_include_next_directive); |
| |
| // #include_next is like #include, except that we start searching after |
| // the current found directory. If we can't do this, issue a |
| // diagnostic. |
| const DirectoryLookup *Lookup = CurDirLookup; |
| const FileEntry *LookupFromFile = nullptr; |
| if (isInPrimaryFile() && LangOpts.IsHeaderFile) { |
| // If the main file is a header, then it's either for PCH/AST generation, |
| // or libclang opened it. Either way, handle it as a normal include below |
| // and do not complain about include_next. |
| } else if (isInPrimaryFile()) { |
| Lookup = nullptr; |
| Diag(IncludeNextTok, diag::pp_include_next_in_primary); |
| } else if (CurLexerSubmodule) { |
| // Start looking up in the directory *after* the one in which the current |
| // file would be found, if any. |
| assert(CurPPLexer && "#include_next directive in macro?"); |
| LookupFromFile = CurPPLexer->getFileEntry(); |
| Lookup = nullptr; |
| } else if (!Lookup) { |
| // The current file was not found by walking the include path. Either it |
| // is the primary file (handled above), or it was found by absolute path, |
| // or it was found relative to such a file. |
| // FIXME: Track enough information so we know which case we're in. |
| Diag(IncludeNextTok, diag::pp_include_next_absolute_path); |
| } else { |
| // Start looking up in the next directory. |
| ++Lookup; |
| } |
| |
| return HandleIncludeDirective(HashLoc, IncludeNextTok, Lookup, |
| LookupFromFile); |
| } |
| |
| /// HandleMicrosoftImportDirective - Implements \#import for Microsoft Mode |
| void Preprocessor::HandleMicrosoftImportDirective(Token &Tok) { |
| // The Microsoft #import directive takes a type library and generates header |
| // files from it, and includes those. This is beyond the scope of what clang |
| // does, so we ignore it and error out. However, #import can optionally have |
| // trailing attributes that span multiple lines. We're going to eat those |
| // so we can continue processing from there. |
| Diag(Tok, diag::err_pp_import_directive_ms ); |
| |
| // Read tokens until we get to the end of the directive. Note that the |
| // directive can be split over multiple lines using the backslash character. |
| DiscardUntilEndOfDirective(); |
| } |
| |
| /// HandleImportDirective - Implements \#import. |
| /// |
| void Preprocessor::HandleImportDirective(SourceLocation HashLoc, |
| Token &ImportTok) { |
| if (!LangOpts.ObjC) { // #import is standard for ObjC. |
| if (LangOpts.MSVCCompat) |
| return HandleMicrosoftImportDirective(ImportTok); |
| Diag(ImportTok, diag::ext_pp_import_directive); |
| } |
| return HandleIncludeDirective(HashLoc, ImportTok); |
| } |
| |
| /// HandleIncludeMacrosDirective - The -imacros command line option turns into a |
| /// pseudo directive in the predefines buffer. This handles it by sucking all |
| /// tokens through the preprocessor and discarding them (only keeping the side |
| /// effects on the preprocessor). |
| void Preprocessor::HandleIncludeMacrosDirective(SourceLocation HashLoc, |
| Token &IncludeMacrosTok) { |
| // This directive should only occur in the predefines buffer. If not, emit an |
| // error and reject it. |
| SourceLocation Loc = IncludeMacrosTok.getLocation(); |
| if (SourceMgr.getBufferName(Loc) != "<built-in>") { |
| Diag(IncludeMacrosTok.getLocation(), |
| diag::pp_include_macros_out_of_predefines); |
| DiscardUntilEndOfDirective(); |
| return; |
| } |
| |
| // Treat this as a normal #include for checking purposes. If this is |
| // successful, it will push a new lexer onto the include stack. |
| HandleIncludeDirective(HashLoc, IncludeMacrosTok); |
| |
| Token TmpTok; |
| do { |
| Lex(TmpTok); |
| assert(TmpTok.isNot(tok::eof) && "Didn't find end of -imacros!"); |
| } while (TmpTok.isNot(tok::hashhash)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Preprocessor Macro Directive Handling. |
| //===----------------------------------------------------------------------===// |
| |
| /// ReadMacroParameterList - The ( starting a parameter list of a macro |
| /// definition has just been read. Lex the rest of the parameters and the |
| /// closing ), updating MI with what we learn. Return true if an error occurs |
| /// parsing the param list. |
| bool Preprocessor::ReadMacroParameterList(MacroInfo *MI, Token &Tok) { |
| SmallVector<IdentifierInfo*, 32> Parameters; |
| |
| while (true) { |
| LexUnexpandedToken(Tok); |
| switch (Tok.getKind()) { |
| case tok::r_paren: |
| // Found the end of the parameter list. |
| if (Parameters.empty()) // #define FOO() |
| return false; |
| // Otherwise we have #define FOO(A,) |
| Diag(Tok, diag::err_pp_expected_ident_in_arg_list); |
| return true; |
| case tok::ellipsis: // #define X(... -> C99 varargs |
| if (!LangOpts.C99) |
| Diag(Tok, LangOpts.CPlusPlus11 ? |
| diag::warn_cxx98_compat_variadic_macro : |
| diag::ext_variadic_macro); |
| |
| // OpenCL v1.2 s6.9.e: variadic macros are not supported. |
| if (LangOpts.OpenCL && !LangOpts.OpenCLCPlusPlus) { |
| Diag(Tok, diag::ext_pp_opencl_variadic_macros); |
| } |
| |
| // Lex the token after the identifier. |
| LexUnexpandedToken(Tok); |
| if (Tok.isNot(tok::r_paren)) { |
| Diag(Tok, diag::err_pp_missing_rparen_in_macro_def); |
| return true; |
| } |
| // Add the __VA_ARGS__ identifier as a parameter. |
| Parameters.push_back(Ident__VA_ARGS__); |
| MI->setIsC99Varargs(); |
| MI->setParameterList(Parameters, BP); |
| return false; |
| case tok::eod: // #define X( |
| Diag(Tok, diag::err_pp_missing_rparen_in_macro_def); |
| return true; |
| default: |
| // Handle keywords and identifiers here to accept things like |
| // #define Foo(for) for. |
| IdentifierInfo *II = Tok.getIdentifierInfo(); |
| if (!II) { |
| // #define X(1 |
| Diag(Tok, diag::err_pp_invalid_tok_in_arg_list); |
| return true; |
| } |
| |
| // If this is already used as a parameter, it is used multiple times (e.g. |
| // #define X(A,A. |
| if (llvm::is_contained(Parameters, II)) { // C99 6.10.3p6 |
| Diag(Tok, diag::err_pp_duplicate_name_in_arg_list) << II; |
| return true; |
| } |
| |
| // Add the parameter to the macro info. |
| Parameters.push_back(II); |
| |
| // Lex the token after the identifier. |
| LexUnexpandedToken(Tok); |
| |
| switch (Tok.getKind()) { |
| default: // #define X(A B |
| Diag(Tok, diag::err_pp_expected_comma_in_arg_list); |
| return true; |
| case tok::r_paren: // #define X(A) |
| MI->setParameterList(Parameters, BP); |
| return false; |
| case tok::comma: // #define X(A, |
| break; |
| case tok::ellipsis: // #define X(A... -> GCC extension |
| // Diagnose extension. |
| Diag(Tok, diag::ext_named_variadic_macro); |
| |
| // Lex the token after the identifier. |
| LexUnexpandedToken(Tok); |
| if (Tok.isNot(tok::r_paren)) { |
| Diag(Tok, diag::err_pp_missing_rparen_in_macro_def); |
| return true; |
| } |
| |
| MI->setIsGNUVarargs(); |
| MI->setParameterList(Parameters, BP); |
| return false; |
| } |
| } |
| } |
| } |
| |
| static bool isConfigurationPattern(Token &MacroName, MacroInfo *MI, |
| const LangOptions &LOptions) { |
| if (MI->getNumTokens() == 1) { |
| const Token &Value = MI->getReplacementToken(0); |
| |
| // Macro that is identity, like '#define inline inline' is a valid pattern. |
| if (MacroName.getKind() == Value.getKind()) |
| return true; |
| |
| // Macro that maps a keyword to the same keyword decorated with leading/ |
| // trailing underscores is a valid pattern: |
| // #define inline __inline |
| // #define inline __inline__ |
| // #define inline _inline (in MS compatibility mode) |
| StringRef MacroText = MacroName.getIdentifierInfo()->getName(); |
| if (IdentifierInfo *II = Value.getIdentifierInfo()) { |
| if (!II->isKeyword(LOptions)) |
| return false; |
| StringRef ValueText = II->getName(); |
| StringRef TrimmedValue = ValueText; |
| if (!ValueText.startswith("__")) { |
| if (ValueText.startswith("_")) |
| TrimmedValue = TrimmedValue.drop_front(1); |
| else |
| return false; |
| } else { |
| TrimmedValue = TrimmedValue.drop_front(2); |
| if (TrimmedValue.endswith("__")) |
| TrimmedValue = TrimmedValue.drop_back(2); |
| } |
| return TrimmedValue.equals(MacroText); |
| } else { |
| return false; |
| } |
| } |
| |
| // #define inline |
| return MacroName.isOneOf(tok::kw_extern, tok::kw_inline, tok::kw_static, |
| tok::kw_const) && |
| MI->getNumTokens() == 0; |
| } |
| |
| // ReadOptionalMacroParameterListAndBody - This consumes all (i.e. the |
| // entire line) of the macro's tokens and adds them to MacroInfo, and while |
| // doing so performs certain validity checks including (but not limited to): |
| // - # (stringization) is followed by a macro parameter |
| // |
| // Returns a nullptr if an invalid sequence of tokens is encountered or returns |
| // a pointer to a MacroInfo object. |
| |
| MacroInfo *Preprocessor::ReadOptionalMacroParameterListAndBody( |
| const Token &MacroNameTok, const bool ImmediatelyAfterHeaderGuard) { |
| |
| Token LastTok = MacroNameTok; |
| // Create the new macro. |
| MacroInfo *const MI = AllocateMacroInfo(MacroNameTok.getLocation()); |
| |
| Token Tok; |
| LexUnexpandedToken(Tok); |
| |
| // Ensure we consume the rest of the macro body if errors occur. |
| auto _ = llvm::make_scope_exit([&]() { |
| // The flag indicates if we are still waiting for 'eod'. |
| if (CurLexer->ParsingPreprocessorDirective) |
| DiscardUntilEndOfDirective(); |
| }); |
| |
| // Used to un-poison and then re-poison identifiers of the __VA_ARGS__ ilk |
| // within their appropriate context. |
| VariadicMacroScopeGuard VariadicMacroScopeGuard(*this); |
| |
| // If this is a function-like macro definition, parse the argument list, |
| // marking each of the identifiers as being used as macro arguments. Also, |
| // check other constraints on the first token of the macro body. |
| if (Tok.is(tok::eod)) { |
| if (ImmediatelyAfterHeaderGuard) { |
| // Save this macro information since it may part of a header guard. |
| CurPPLexer->MIOpt.SetDefinedMacro(MacroNameTok.getIdentifierInfo(), |
| MacroNameTok.getLocation()); |
| } |
| // If there is no body to this macro, we have no special handling here. |
| } else if (Tok.hasLeadingSpace()) { |
| // This is a normal token with leading space. Clear the leading space |
| // marker on the first token to get proper expansion. |
| Tok.clearFlag(Token::LeadingSpace); |
| } else if (Tok.is(tok::l_paren)) { |
| // This is a function-like macro definition. Read the argument list. |
| MI->setIsFunctionLike(); |
| if (ReadMacroParameterList(MI, LastTok)) |
| return nullptr; |
| |
| // If this is a definition of an ISO C/C++ variadic function-like macro (not |
| // using the GNU named varargs extension) inform our variadic scope guard |
| // which un-poisons and re-poisons certain identifiers (e.g. __VA_ARGS__) |
| // allowed only within the definition of a variadic macro. |
| |
| if (MI->isC99Varargs()) { |
| VariadicMacroScopeGuard.enterScope(); |
| } |
| |
| // Read the first token after the arg list for down below. |
| LexUnexpandedToken(Tok); |
| } else if (LangOpts.C99 || LangOpts.CPlusPlus11) { |
| // C99 requires whitespace between the macro definition and the body. Emit |
| // a diagnostic for something like "#define X+". |
| Diag(Tok, diag::ext_c99_whitespace_required_after_macro_name); |
| } else { |
| // C90 6.8 TC1 says: "In the definition of an object-like macro, if the |
| // first character of a replacement list is not a character required by |
| // subclause 5.2.1, then there shall be white-space separation between the |
| // identifier and the replacement list.". 5.2.1 lists this set: |
| // "A-Za-z0-9!"#%&'()*+,_./:;<=>?[\]^_{|}~" as well as whitespace, which |
| // is irrelevant here. |
| bool isInvalid = false; |
| if (Tok.is(tok::at)) // @ is not in the list above. |
| isInvalid = true; |
| else if (Tok.is(tok::unknown)) { |
| // If we have an unknown token, it is something strange like "`". Since |
| // all of valid characters would have lexed into a single character |
| // token of some sort, we know this is not a valid case. |
| isInvalid = true; |
| } |
| if (isInvalid) |
| Diag(Tok, diag::ext_missing_whitespace_after_macro_name); |
| else |
| Diag(Tok, diag::warn_missing_whitespace_after_macro_name); |
| } |
| |
| if (!Tok.is(tok::eod)) |
| LastTok = Tok; |
| |
| // Read the rest of the macro body. |
| if (MI->isObjectLike()) { |
| // Object-like macros are very simple, just read their body. |
| while (Tok.isNot(tok::eod)) { |
| LastTok = Tok; |
| MI->AddTokenToBody(Tok); |
| // Get the next token of the macro. |
| LexUnexpandedToken(Tok); |
| } |
| } else { |
| // Otherwise, read the body of a function-like macro. While we are at it, |
| // check C99 6.10.3.2p1: ensure that # operators are followed by macro |
| // parameters in function-like macro expansions. |
| |
| VAOptDefinitionContext VAOCtx(*this); |
| |
| while (Tok.isNot(tok::eod)) { |
| LastTok = Tok; |
| |
| if (!Tok.isOneOf(tok::hash, tok::hashat, tok::hashhash)) { |
| MI->AddTokenToBody(Tok); |
| |
| if (VAOCtx.isVAOptToken(Tok)) { |
| // If we're already within a VAOPT, emit an error. |
| if (VAOCtx.isInVAOpt()) { |
| Diag(Tok, diag::err_pp_vaopt_nested_use); |
| return nullptr; |
| } |
| // Ensure VAOPT is followed by a '(' . |
| LexUnexpandedToken(Tok); |
| if (Tok.isNot(tok::l_paren)) { |
| Diag(Tok, diag::err_pp_missing_lparen_in_vaopt_use); |
| return nullptr; |
| } |
| MI->AddTokenToBody(Tok); |
| VAOCtx.sawVAOptFollowedByOpeningParens(Tok.getLocation()); |
| LexUnexpandedToken(Tok); |
| if (Tok.is(tok::hashhash)) { |
| Diag(Tok, diag::err_vaopt_paste_at_start); |
| return nullptr; |
| } |
| continue; |
| } else if (VAOCtx.isInVAOpt()) { |
| if (Tok.is(tok::r_paren)) { |
| if (VAOCtx.sawClosingParen()) { |
| const unsigned NumTokens = MI->getNumTokens(); |
| assert(NumTokens >= 3 && "Must have seen at least __VA_OPT__( " |
| "and a subsequent tok::r_paren"); |
| if (MI->getReplacementToken(NumTokens - 2).is(tok::hashhash)) { |
| Diag(Tok, diag::err_vaopt_paste_at_end); |
| return nullptr; |
| } |
| } |
| } else if (Tok.is(tok::l_paren)) { |
| VAOCtx.sawOpeningParen(Tok.getLocation()); |
| } |
| } |
| // Get the next token of the macro. |
| LexUnexpandedToken(Tok); |
| continue; |
| } |
| |
| // If we're in -traditional mode, then we should ignore stringification |
| // and token pasting. Mark the tokens as unknown so as not to confuse |
| // things. |
| if (getLangOpts().TraditionalCPP) { |
| Tok.setKind(tok::unknown); |
| MI->AddTokenToBody(Tok); |
| |
| // Get the next token of the macro. |
| LexUnexpandedToken(Tok); |
| continue; |
| } |
| |
| if (Tok.is(tok::hashhash)) { |
| // If we see token pasting, check if it looks like the gcc comma |
| // pasting extension. We'll use this information to suppress |
| // diagnostics later on. |
| |
| // Get the next token of the macro. |
| LexUnexpandedToken(Tok); |
| |
| if (Tok.is(tok::eod)) { |
| MI->AddTokenToBody(LastTok); |
| break; |
| } |
| |
| unsigned NumTokens = MI->getNumTokens(); |
| if (NumTokens && Tok.getIdentifierInfo() == Ident__VA_ARGS__ && |
| MI->getReplacementToken(NumTokens-1).is(tok::comma)) |
| MI->setHasCommaPasting(); |
| |
| // Things look ok, add the '##' token to the macro. |
| MI->AddTokenToBody(LastTok); |
| continue; |
| } |
| |
| // Our Token is a stringization operator. |
| // Get the next token of the macro. |
| LexUnexpandedToken(Tok); |
| |
| // Check for a valid macro arg identifier or __VA_OPT__. |
| if (!VAOCtx.isVAOptToken(Tok) && |
| (Tok.getIdentifierInfo() == nullptr || |
| MI->getParameterNum(Tok.getIdentifierInfo()) == -1)) { |
| |
| // If this is assembler-with-cpp mode, we accept random gibberish after |
| // the '#' because '#' is often a comment character. However, change |
| // the kind of the token to tok::unknown so that the preprocessor isn't |
| // confused. |
| if (getLangOpts().AsmPreprocessor && Tok.isNot(tok::eod)) { |
| LastTok.setKind(tok::unknown); |
| MI->AddTokenToBody(LastTok); |
| continue; |
| } else { |
| Diag(Tok, diag::err_pp_stringize_not_parameter) |
| << LastTok.is(tok::hashat); |
| return nullptr; |
| } |
| } |
| |
| // Things look ok, add the '#' and param name tokens to the macro. |
| MI->AddTokenToBody(LastTok); |
| |
| // If the token following '#' is VAOPT, let the next iteration handle it |
| // and check it for correctness, otherwise add the token and prime the |
| // loop with the next one. |
| if (!VAOCtx.isVAOptToken(Tok)) { |
| MI->AddTokenToBody(Tok); |
| LastTok = Tok; |
| |
| // Get the next token of the macro. |
| LexUnexpandedToken(Tok); |
| } |
| } |
| if (VAOCtx.isInVAOpt()) { |
| assert(Tok.is(tok::eod) && "Must be at End Of preprocessing Directive"); |
| Diag(Tok, diag::err_pp_expected_after) |
| << LastTok.getKind() << tok::r_paren; |
| Diag(VAOCtx.getUnmatchedOpeningParenLoc(), diag::note_matching) << tok::l_paren; |
| return nullptr; |
| } |
| } |
| MI->setDefinitionEndLoc(LastTok.getLocation()); |
| return MI; |
| } |
| /// HandleDefineDirective - Implements \#define. This consumes the entire macro |
| /// line then lets the caller lex the next real token. |
| void Preprocessor::HandleDefineDirective( |
| Token &DefineTok, const bool ImmediatelyAfterHeaderGuard) { |
| ++NumDefined; |
| |
| Token MacroNameTok; |
| bool MacroShadowsKeyword; |
| ReadMacroName(MacroNameTok, MU_Define, &MacroShadowsKeyword); |
| |
| // Error reading macro name? If so, diagnostic already issued. |
| if (MacroNameTok.is(tok::eod)) |
| return; |
| |
| IdentifierInfo *II = MacroNameTok.getIdentifierInfo(); |
| // Issue a final pragma warning if we're defining a macro that was has been |
| // undefined and is being redefined. |
| if (!II->hasMacroDefinition() && II->hadMacroDefinition() && II->isFinal()) |
| emitFinalMacroWarning(MacroNameTok, /*IsUndef=*/false); |
| |
| // If we are supposed to keep comments in #defines, reenable comment saving |
| // mode. |
| if (CurLexer) CurLexer->SetCommentRetentionState(KeepMacroComments); |
| |
| MacroInfo *const MI = ReadOptionalMacroParameterListAndBody( |
| MacroNameTok, ImmediatelyAfterHeaderGuard); |
| |
| if (!MI) return; |
| |
| if (MacroShadowsKeyword && |
| !isConfigurationPattern(MacroNameTok, MI, getLangOpts())) { |
| Diag(MacroNameTok, diag::warn_pp_macro_hides_keyword); |
| } |
| // Check that there is no paste (##) operator at the beginning or end of the |
| // replacement list. |
| unsigned NumTokens = MI->getNumTokens(); |
| if (NumTokens != 0) { |
| if (MI->getReplacementToken(0).is(tok::hashhash)) { |
| Diag(MI->getReplacementToken(0), diag::err_paste_at_start); |
| return; |
| } |
| if (MI->getReplacementToken(NumTokens-1).is(tok::hashhash)) { |
| Diag(MI->getReplacementToken(NumTokens-1), diag::err_paste_at_end); |
| return; |
| } |
| } |
| |
| // When skipping just warn about macros that do not match. |
| if (SkippingUntilPCHThroughHeader) { |
| const MacroInfo *OtherMI = getMacroInfo(MacroNameTok.getIdentifierInfo()); |
| if (!OtherMI || !MI->isIdenticalTo(*OtherMI, *this, |
| /*Syntactic=*/LangOpts.MicrosoftExt)) |
| Diag(MI->getDefinitionLoc(), diag::warn_pp_macro_def_mismatch_with_pch) |
| << MacroNameTok.getIdentifierInfo(); |
| // Issue the diagnostic but allow the change if msvc extensions are enabled |
| if (!LangOpts.MicrosoftExt) |
| return; |
| } |
| |
| // Finally, if this identifier already had a macro defined for it, verify that |
| // the macro bodies are identical, and issue diagnostics if they are not. |
| if (const MacroInfo *OtherMI=getMacroInfo(MacroNameTok.getIdentifierInfo())) { |
| // Final macros are hard-mode: they always warn. Even if the bodies are |
| // identical. Even if they are in system headers. Even if they are things we |
| // would silently allow in the past. |
| if (MacroNameTok.getIdentifierInfo()->isFinal()) |
| emitFinalMacroWarning(MacroNameTok, /*IsUndef=*/false); |
| |
| // In Objective-C, ignore attempts to directly redefine the builtin |
| // definitions of the ownership qualifiers. It's still possible to |
| // #undef them. |
| auto isObjCProtectedMacro = [](const IdentifierInfo *II) -> bool { |
| return II->isStr("__strong") || |
| II->isStr("__weak") || |
| II->isStr("__unsafe_unretained") || |
| II->isStr("__autoreleasing"); |
| }; |
| if (getLangOpts().ObjC && |
| SourceMgr.getFileID(OtherMI->getDefinitionLoc()) |
| == getPredefinesFileID() && |
| isObjCProtectedMacro(MacroNameTok.getIdentifierInfo())) { |
| // Warn if it changes the tokens. |
| if ((!getDiagnostics().getSuppressSystemWarnings() || |
| !SourceMgr.isInSystemHeader(DefineTok.getLocation())) && |
| !MI->isIdenticalTo(*OtherMI, *this, |
| /*Syntactic=*/LangOpts.MicrosoftExt)) { |
| Diag(MI->getDefinitionLoc(), diag::warn_pp_objc_macro_redef_ignored); |
| } |
| assert(!OtherMI->isWarnIfUnused()); |
| return; |
| } |
| |
| // It is very common for system headers to have tons of macro redefinitions |
| // and for warnings to be disabled in system headers. If this is the case, |
| // then don't bother calling MacroInfo::isIdenticalTo. |
| if (!getDiagnostics().getSuppressSystemWarnings() || |
| !SourceMgr.isInSystemHeader(DefineTok.getLocation())) { |
| |
| if (!OtherMI->isUsed() && OtherMI->isWarnIfUnused()) |
| Diag(OtherMI->getDefinitionLoc(), diag::pp_macro_not_used); |
| |
| // Warn if defining "__LINE__" and other builtins, per C99 6.10.8/4 and |
| // C++ [cpp.predefined]p4, but allow it as an extension. |
| if (OtherMI->isBuiltinMacro()) |
| Diag(MacroNameTok, diag::ext_pp_redef_builtin_macro); |
| // Macros must be identical. This means all tokens and whitespace |
| // separation must be the same. C99 6.10.3p2. |
| else if (!OtherMI->isAllowRedefinitionsWithoutWarning() && |
| !MI->isIdenticalTo(*OtherMI, *this, /*Syntactic=*/LangOpts.MicrosoftExt)) { |
| Diag(MI->getDefinitionLoc(), diag::ext_pp_macro_redef) |
| << MacroNameTok.getIdentifierInfo(); |
| Diag(OtherMI->getDefinitionLoc(), diag::note_previous_definition); |
| } |
| } |
| if (OtherMI->isWarnIfUnused()) |
| WarnUnusedMacroLocs.erase(OtherMI->getDefinitionLoc()); |
| } |
| |
| DefMacroDirective *MD = |
| appendDefMacroDirective(MacroNameTok.getIdentifierInfo(), MI); |
| |
| assert(!MI->isUsed()); |
| // If we need warning for not using the macro, add its location in the |
| // warn-because-unused-macro set. If it gets used it will be removed from set. |
| if (getSourceManager().isInMainFile(MI->getDefinitionLoc()) && |
| !Diags->isIgnored(diag::pp_macro_not_used, MI->getDefinitionLoc()) && |
| !MacroExpansionInDirectivesOverride && |
| getSourceManager().getFileID(MI->getDefinitionLoc()) != |
| getPredefinesFileID()) { |
| MI->setIsWarnIfUnused(true); |
| WarnUnusedMacroLocs.insert(MI->getDefinitionLoc()); |
| } |
| |
| // If the callbacks want to know, tell them about the macro definition. |
| if (Callbacks) |
| Callbacks->MacroDefined(MacroNameTok, MD); |
| |
| // If we're in MS compatibility mode and the macro being defined is the |
| // assert macro, implicitly add a macro definition for static_assert to work |
| // around their broken assert.h header file in C. Only do so if there isn't |
| // already a static_assert macro defined. |
| if (!getLangOpts().CPlusPlus && getLangOpts().MSVCCompat && |
| MacroNameTok.getIdentifierInfo()->isStr("assert") && |
| !isMacroDefined("static_assert")) { |
| MacroInfo *MI = AllocateMacroInfo(SourceLocation()); |
| |
| Token Tok; |
| Tok.startToken(); |
| Tok.setKind(tok::kw__Static_assert); |
| Tok.setIdentifierInfo(getIdentifierInfo("_Static_assert")); |
| MI->AddTokenToBody(Tok); |
| (void)appendDefMacroDirective(getIdentifierInfo("static_assert"), MI); |
| } |
| } |
| |
| /// HandleUndefDirective - Implements \#undef. |
| /// |
| void Preprocessor::HandleUndefDirective() { |
| ++NumUndefined; |
| |
| Token MacroNameTok; |
| ReadMacroName(MacroNameTok, MU_Undef); |
| |
| // Error reading macro name? If so, diagnostic already issued. |
| if (MacroNameTok.is(tok::eod)) |
| return; |
| |
| // Check to see if this is the last token on the #undef line. |
| CheckEndOfDirective("undef"); |
| |
| // Okay, we have a valid identifier to undef. |
| auto *II = MacroNameTok.getIdentifierInfo(); |
| auto MD = getMacroDefinition(II); |
| UndefMacroDirective *Undef = nullptr; |
| |
| if (II->isFinal()) |
| emitFinalMacroWarning(MacroNameTok, /*IsUndef=*/true); |
| |
| // If the macro is not defined, this is a noop undef. |
| if (const MacroInfo *MI = MD.getMacroInfo()) { |
| if (!MI->isUsed() && MI->isWarnIfUnused()) |
| Diag(MI->getDefinitionLoc(), diag::pp_macro_not_used); |
| |
| if (MI->isWarnIfUnused()) |
| WarnUnusedMacroLocs.erase(MI->getDefinitionLoc()); |
| |
| Undef = AllocateUndefMacroDirective(MacroNameTok.getLocation()); |
| } |
| |
| // If the callbacks want to know, tell them about the macro #undef. |
| // Note: no matter if the macro was defined or not. |
| if (Callbacks) |
| Callbacks->MacroUndefined(MacroNameTok, MD, Undef); |
| |
| if (Undef) |
| appendMacroDirective(II, Undef); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Preprocessor Conditional Directive Handling. |
| //===----------------------------------------------------------------------===// |
| |
| /// HandleIfdefDirective - Implements the \#ifdef/\#ifndef directive. isIfndef |
| /// is true when this is a \#ifndef directive. ReadAnyTokensBeforeDirective is |
| /// true if any tokens have been returned or pp-directives activated before this |
| /// \#ifndef has been lexed. |
| /// |
| void Preprocessor::HandleIfdefDirective(Token &Result, |
| const Token &HashToken, |
| bool isIfndef, |
| bool ReadAnyTokensBeforeDirective) { |
| ++NumIf; |
| Token DirectiveTok = Result; |
| |
| Token MacroNameTok; |
| ReadMacroName(MacroNameTok); |
| |
| // Error reading macro name? If so, diagnostic already issued. |
| if (MacroNameTok.is(tok::eod)) { |
| // Skip code until we get to #endif. This helps with recovery by not |
| // emitting an error when the #endif is reached. |
| SkipExcludedConditionalBlock(HashToken.getLocation(), |
| DirectiveTok.getLocation(), |
| /*Foundnonskip*/ false, /*FoundElse*/ false); |
| return; |
| } |
| |
| emitMacroExpansionWarnings(MacroNameTok); |
| |
| // Check to see if this is the last token on the #if[n]def line. |
| CheckEndOfDirective(isIfndef ? "ifndef" : "ifdef"); |
| |
| IdentifierInfo *MII = MacroNameTok.getIdentifierInfo(); |
| auto MD = getMacroDefinition(MII); |
| MacroInfo *MI = MD.getMacroInfo(); |
| |
| if (CurPPLexer->getConditionalStackDepth() == 0) { |
| // If the start of a top-level #ifdef and if the macro is not defined, |
| // inform MIOpt that this might be the start of a proper include guard. |
| // Otherwise it is some other form of unknown conditional which we can't |
| // handle. |
| if (!ReadAnyTokensBeforeDirective && !MI) { |
| assert(isIfndef && "#ifdef shouldn't reach here"); |
| CurPPLexer->MIOpt.EnterTopLevelIfndef(MII, MacroNameTok.getLocation()); |
| } else |
| CurPPLexer->MIOpt.EnterTopLevelConditional(); |
| } |
| |
| // If there is a macro, process it. |
| if (MI) // Mark it used. |
| markMacroAsUsed(MI); |
| |
| if (Callbacks) { |
| if (isIfndef) |
| Callbacks->Ifndef(DirectiveTok.getLocation(), MacroNameTok, MD); |
| else |
| Callbacks->Ifdef(DirectiveTok.getLocation(), MacroNameTok, MD); |
| } |
| |
| bool RetainExcludedCB = PPOpts->RetainExcludedConditionalBlocks && |
| getSourceManager().isInMainFile(DirectiveTok.getLocation()); |
| |
| // Should we include the stuff contained by this directive? |
| if (PPOpts->SingleFileParseMode && !MI) { |
| // In 'single-file-parse mode' undefined identifiers trigger parsing of all |
| // the directive blocks. |
| CurPPLexer->pushConditionalLevel(DirectiveTok.getLocation(), |
| /*wasskip*/false, /*foundnonskip*/false, |
| /*foundelse*/false); |
| } else if (!MI == isIfndef || RetainExcludedCB) { |
| // Yes, remember that we are inside a conditional, then lex the next token. |
| CurPPLexer->pushConditionalLevel(DirectiveTok.getLocation(), |
| /*wasskip*/false, /*foundnonskip*/true, |
| /*foundelse*/false); |
| } else { |
| // No, skip the contents of this block. |
| SkipExcludedConditionalBlock(HashToken.getLocation(), |
| DirectiveTok.getLocation(), |
| /*Foundnonskip*/ false, |
| /*FoundElse*/ false); |
| } |
| } |
| |
| /// HandleIfDirective - Implements the \#if directive. |
| /// |
| void Preprocessor::HandleIfDirective(Token &IfToken, |
| const Token &HashToken, |
| bool ReadAnyTokensBeforeDirective) { |
| ++NumIf; |
| |
| // Parse and evaluate the conditional expression. |
| IdentifierInfo *IfNDefMacro = nullptr; |
| const DirectiveEvalResult DER = EvaluateDirectiveExpression(IfNDefMacro); |
| const bool ConditionalTrue = DER.Conditional; |
| // Lexer might become invalid if we hit code completion point while evaluating |
| // expression. |
| if (!CurPPLexer) |
| return; |
| |
| // If this condition is equivalent to #ifndef X, and if this is the first |
| // directive seen, handle it for the multiple-include optimization. |
| if (CurPPLexer->getConditionalStackDepth() == 0) { |
| if (!ReadAnyTokensBeforeDirective && IfNDefMacro && ConditionalTrue) |
| // FIXME: Pass in the location of the macro name, not the 'if' token. |
| CurPPLexer->MIOpt.EnterTopLevelIfndef(IfNDefMacro, IfToken.getLocation()); |
| else |
| CurPPLexer->MIOpt.EnterTopLevelConditional(); |
| } |
| |
| if (Callbacks) |
| Callbacks->If( |
| IfToken.getLocation(), DER.ExprRange, |
| (ConditionalTrue ? PPCallbacks::CVK_True : PPCallbacks::CVK_False)); |
| |
| bool RetainExcludedCB = PPOpts->RetainExcludedConditionalBlocks && |
| getSourceManager().isInMainFile(IfToken.getLocation()); |
| |
| // Should we include the stuff contained by this directive? |
| if (PPOpts->SingleFileParseMode && DER.IncludedUndefinedIds) { |
| // In 'single-file-parse mode' undefined identifiers trigger parsing of all |
| // the directive blocks. |
| CurPPLexer->pushConditionalLevel(IfToken.getLocation(), /*wasskip*/false, |
| /*foundnonskip*/false, /*foundelse*/false); |
| } else if (ConditionalTrue || RetainExcludedCB) { |
| // Yes, remember that we are inside a conditional, then lex the next token. |
| CurPPLexer->pushConditionalLevel(IfToken.getLocation(), /*wasskip*/false, |
| /*foundnonskip*/true, /*foundelse*/false); |
| } else { |
| // No, skip the contents of this block. |
| SkipExcludedConditionalBlock(HashToken.getLocation(), IfToken.getLocation(), |
| /*Foundnonskip*/ false, |
| /*FoundElse*/ false); |
| } |
| } |
| |
| /// HandleEndifDirective - Implements the \#endif directive. |
| /// |
| void Preprocessor::HandleEndifDirective(Token &EndifToken) { |
| ++NumEndif; |
| |
| // Check that this is the whole directive. |
| CheckEndOfDirective("endif"); |
| |
| PPConditionalInfo CondInfo; |
| if (CurPPLexer->popConditionalLevel(CondInfo)) { |
| // No conditionals on the stack: this is an #endif without an #if. |
| Diag(EndifToken, diag::err_pp_endif_without_if); |
| return; |
| } |
| |
| // If this the end of a top-level #endif, inform MIOpt. |
| if (CurPPLexer->getConditionalStackDepth() == 0) |
| CurPPLexer->MIOpt.ExitTopLevelConditional(); |
| |
| assert(!CondInfo.WasSkipping && !CurPPLexer->LexingRawMode && |
| "This code should only be reachable in the non-skipping case!"); |
| |
| if (Callbacks) |
| Callbacks->Endif(EndifToken.getLocation(), CondInfo.IfLoc); |
| } |
| |
| /// HandleElseDirective - Implements the \#else directive. |
| /// |
| void Preprocessor::HandleElseDirective(Token &Result, const Token &HashToken) { |
| ++NumElse; |
| |
| // #else directive in a non-skipping conditional... start skipping. |
| CheckEndOfDirective("else"); |
| |
| PPConditionalInfo CI; |
| if (CurPPLexer->popConditionalLevel(CI)) { |
| Diag(Result, diag::pp_err_else_without_if); |
| return; |
| } |
| |
| // If this is a top-level #else, inform the MIOpt. |
| if (CurPPLexer->getConditionalStackDepth() == 0) |
| CurPPLexer->MIOpt.EnterTopLevelConditional(); |
| |
| // If this is a #else with a #else before it, report the error. |
| if (CI.FoundElse) Diag(Result, diag::pp_err_else_after_else); |
| |
| if (Callbacks) |
| Callbacks->Else(Result.getLocation(), CI.IfLoc); |
| |
| bool RetainExcludedCB = PPOpts->RetainExcludedConditionalBlocks && |
| getSourceManager().isInMainFile(Result.getLocation()); |
| |
| if ((PPOpts->SingleFileParseMode && !CI.FoundNonSkip) || RetainExcludedCB) { |
| // In 'single-file-parse mode' undefined identifiers trigger parsing of all |
| // the directive blocks. |
| CurPPLexer->pushConditionalLevel(CI.IfLoc, /*wasskip*/false, |
| /*foundnonskip*/false, /*foundelse*/true); |
| return; |
| } |
| |
| // Finally, skip the rest of the contents of this block. |
| SkipExcludedConditionalBlock(HashToken.getLocation(), CI.IfLoc, |
| /*Foundnonskip*/ true, |
| /*FoundElse*/ true, Result.getLocation()); |
| } |
| |
| /// Implements the \#elif, \#elifdef, and \#elifndef directives. |
| void Preprocessor::HandleElifFamilyDirective(Token &ElifToken, |
| const Token &HashToken, |
| tok::PPKeywordKind Kind) { |
| PPElifDiag DirKind = Kind == tok::pp_elif ? PED_Elif |
| : Kind == tok::pp_elifdef ? PED_Elifdef |
| : PED_Elifndef; |
| ++NumElse; |
| |
| // #elif directive in a non-skipping conditional... start skipping. |
| // We don't care what the condition is, because we will always skip it (since |
| // the block immediately before it was included). |
| SourceRange ConditionRange = DiscardUntilEndOfDirective(); |
| |
| PPConditionalInfo CI; |
| if (CurPPLexer->popConditionalLevel(CI)) { |
| Diag(ElifToken, diag::pp_err_elif_without_if) << DirKind; |
| return; |
| } |
| |
| // If this is a top-level #elif, inform the MIOpt. |
| if (CurPPLexer->getConditionalStackDepth() == 0) |
| CurPPLexer->MIOpt.EnterTopLevelConditional(); |
| |
| // If this is a #elif with a #else before it, report the error. |
| if (CI.FoundElse) |
| Diag(ElifToken, diag::pp_err_elif_after_else) << DirKind; |
| |
| if (Callbacks) { |
| switch (Kind) { |
| case tok::pp_elif: |
| Callbacks->Elif(ElifToken.getLocation(), ConditionRange, |
| PPCallbacks::CVK_NotEvaluated, CI.IfLoc); |
| break; |
| case tok::pp_elifdef: |
| Callbacks->Elifdef(ElifToken.getLocation(), ConditionRange, CI.IfLoc); |
| break; |
| case tok::pp_elifndef: |
| Callbacks->Elifndef(ElifToken.getLocation(), ConditionRange, CI.IfLoc); |
| break; |
| default: |
| assert(false && "unexpected directive kind"); |
| break; |
| } |
| } |
| |
| bool RetainExcludedCB = PPOpts->RetainExcludedConditionalBlocks && |
| getSourceManager().isInMainFile(ElifToken.getLocation()); |
| |
| if ((PPOpts->SingleFileParseMode && !CI.FoundNonSkip) || RetainExcludedCB) { |
| // In 'single-file-parse mode' undefined identifiers trigger parsing of all |
| // the directive blocks. |
| CurPPLexer->pushConditionalLevel(ElifToken.getLocation(), /*wasskip*/false, |
| /*foundnonskip*/false, /*foundelse*/false); |
| return; |
| } |
| |
| // Finally, skip the rest of the contents of this block. |
| SkipExcludedConditionalBlock( |
| HashToken.getLocation(), CI.IfLoc, /*Foundnonskip*/ true, |
| /*FoundElse*/ CI.FoundElse, ElifToken.getLocation()); |
| } |