| //===- RemoveDeadValues.cpp - Remove Dead Values --------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // The goal of this pass is optimization (reducing runtime) by removing |
| // unnecessary instructions. Unlike other passes that rely on local information |
| // gathered from patterns to accomplish optimization, this pass uses a full |
| // analysis of the IR, specifically, liveness analysis, and is thus more |
| // powerful. |
| // |
| // Currently, this pass performs the following optimizations: |
| // (A) Removes function arguments that are not live, |
| // (B) Removes function return values that are not live across all callers of |
| // the function, |
| // (C) Removes unneccesary operands, results, region arguments, and region |
| // terminator operands of region branch ops, and, |
| // (D) Removes simple and region branch ops that have all non-live results and |
| // don't affect memory in any way, |
| // |
| // iff |
| // |
| // the IR doesn't have any non-function symbol ops, non-call symbol user ops and |
| // branch ops. |
| // |
| // Here, a "simple op" refers to an op that isn't a symbol op, symbol-user op, |
| // region branch op, branch op, region branch terminator op, or return-like. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Analysis/DataFlow/DeadCodeAnalysis.h" |
| #include "mlir/Analysis/DataFlow/LivenessAnalysis.h" |
| #include "mlir/Dialect/UB/IR/UBOps.h" |
| #include "mlir/IR/Builders.h" |
| #include "mlir/IR/BuiltinAttributes.h" |
| #include "mlir/IR/Dialect.h" |
| #include "mlir/IR/Operation.h" |
| #include "mlir/IR/OperationSupport.h" |
| #include "mlir/IR/SymbolTable.h" |
| #include "mlir/IR/Value.h" |
| #include "mlir/IR/ValueRange.h" |
| #include "mlir/IR/Visitors.h" |
| #include "mlir/Interfaces/CallInterfaces.h" |
| #include "mlir/Interfaces/ControlFlowInterfaces.h" |
| #include "mlir/Interfaces/FunctionInterfaces.h" |
| #include "mlir/Interfaces/SideEffectInterfaces.h" |
| #include "mlir/Pass/Pass.h" |
| #include "mlir/Support/LLVM.h" |
| #include "mlir/Transforms/FoldUtils.h" |
| #include "mlir/Transforms/Passes.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/DebugLog.h" |
| #include <cassert> |
| #include <cstddef> |
| #include <memory> |
| #include <optional> |
| #include <vector> |
| |
| #define DEBUG_TYPE "remove-dead-values" |
| |
| namespace mlir { |
| #define GEN_PASS_DEF_REMOVEDEADVALUES |
| #include "mlir/Transforms/Passes.h.inc" |
| } // namespace mlir |
| |
| using namespace mlir; |
| using namespace mlir::dataflow; |
| |
| //===----------------------------------------------------------------------===// |
| // RemoveDeadValues Pass |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| // Set of structures below to be filled with operations and arguments to erase. |
| // This is done to separate analysis and tree modification phases, |
| // otherwise analysis is operating on half-deleted tree which is incorrect. |
| |
| struct FunctionToCleanUp { |
| FunctionOpInterface funcOp; |
| BitVector nonLiveArgs; |
| BitVector nonLiveRets; |
| }; |
| |
| struct ResultsToCleanup { |
| Operation *op; |
| BitVector nonLive; |
| }; |
| |
| struct OperandsToCleanup { |
| Operation *op; |
| BitVector nonLive; |
| // Optional: For CallOpInterface ops, stores the callee function. |
| Operation *callee = nullptr; |
| // Determines whether the operand should be replaced with a ub.poison result |
| // or erased entirely. |
| bool replaceWithPoison = false; |
| }; |
| |
| struct BlockArgsToCleanup { |
| Block *b; |
| BitVector nonLiveArgs; |
| }; |
| |
| struct SuccessorOperandsToCleanup { |
| BranchOpInterface branch; |
| unsigned successorIndex; |
| BitVector nonLiveOperands; |
| }; |
| |
| struct RDVFinalCleanupList { |
| SmallVector<Operation *> operations; |
| SmallVector<FunctionToCleanUp> functions; |
| SmallVector<OperandsToCleanup> operands; |
| SmallVector<ResultsToCleanup> results; |
| SmallVector<BlockArgsToCleanup> blocks; |
| SmallVector<SuccessorOperandsToCleanup> successorOperands; |
| }; |
| |
| // Some helper functions... |
| |
| /// Return true iff at least one value in `values` is live, given the liveness |
| /// information in `la`. |
| static bool hasLive(ValueRange values, const DenseSet<Value> &nonLiveSet, |
| RunLivenessAnalysis &la) { |
| for (Value value : values) { |
| if (nonLiveSet.contains(value)) { |
| LDBG() << "Value " << value << " is already marked non-live (dead)"; |
| continue; |
| } |
| |
| const Liveness *liveness = la.getLiveness(value); |
| if (!liveness) { |
| LDBG() << "Value " << value |
| << " has no liveness info, conservatively considered live"; |
| return true; |
| } |
| if (liveness->isLive) { |
| LDBG() << "Value " << value << " is live according to liveness analysis"; |
| return true; |
| } else { |
| LDBG() << "Value " << value << " is dead according to liveness analysis"; |
| } |
| } |
| return false; |
| } |
| |
| /// Return a BitVector of size `values.size()` where its i-th bit is 1 iff the |
| /// i-th value in `values` is live, given the liveness information in `la`. |
| static BitVector markLives(ValueRange values, const DenseSet<Value> &nonLiveSet, |
| RunLivenessAnalysis &la) { |
| BitVector lives(values.size(), true); |
| |
| for (auto [index, value] : llvm::enumerate(values)) { |
| if (nonLiveSet.contains(value)) { |
| lives.reset(index); |
| LDBG() << "Value " << value |
| << " is already marked non-live (dead) at index " << index; |
| continue; |
| } |
| |
| const Liveness *liveness = la.getLiveness(value); |
| // It is important to note that when `liveness` is null, we can't tell if |
| // `value` is live or not. So, the safe option is to consider it live. Also, |
| // the execution of this pass might create new SSA values when erasing some |
| // of the results of an op and we know that these new values are live |
| // (because they weren't erased) and also their liveness is null because |
| // liveness analysis ran before their creation. |
| if (!liveness) { |
| LDBG() << "Value " << value << " at index " << index |
| << " has no liveness info, conservatively considered live"; |
| continue; |
| } |
| if (!liveness->isLive) { |
| lives.reset(index); |
| LDBG() << "Value " << value << " at index " << index |
| << " is dead according to liveness analysis"; |
| } else { |
| LDBG() << "Value " << value << " at index " << index |
| << " is live according to liveness analysis"; |
| } |
| } |
| |
| return lives; |
| } |
| |
| /// Collects values marked as "non-live" in the provided range and inserts them |
| /// into the nonLiveSet. A value is considered "non-live" if the corresponding |
| /// index in the `nonLive` bit vector is set. |
| static void collectNonLiveValues(DenseSet<Value> &nonLiveSet, ValueRange range, |
| const BitVector &nonLive) { |
| for (auto [index, result] : llvm::enumerate(range)) { |
| if (!nonLive[index]) |
| continue; |
| nonLiveSet.insert(result); |
| LDBG() << "Marking value " << result << " as non-live (dead) at index " |
| << index; |
| } |
| } |
| |
| /// Drop the uses of the i-th result of `op` and then erase it iff toErase[i] |
| /// is 1. |
| static void dropUsesAndEraseResults(RewriterBase &rewriter, Operation *op, |
| BitVector toErase) { |
| assert(op->getNumResults() == toErase.size() && |
| "expected the number of results in `op` and the size of `toErase` to " |
| "be the same"); |
| for (auto idx : toErase.set_bits()) |
| op->getResult(idx).dropAllUses(); |
| rewriter.eraseOpResults(op, toErase); |
| } |
| |
| /// Process a simple operation `op` using the liveness analysis `la`. |
| /// If the operation has no memory effects and none of its results are live: |
| /// 1. Add the operation to a list for future removal, and |
| /// 2. Mark all its results as non-live values |
| /// |
| /// The operation `op` is assumed to be simple. A simple operation is one that |
| /// is NOT: |
| /// - Function-like |
| /// - Call-like |
| /// - A region branch operation |
| /// - A branch operation |
| /// - A region branch terminator |
| /// - Return-like |
| static void processSimpleOp(Operation *op, RunLivenessAnalysis &la, |
| DenseSet<Value> &nonLiveSet, |
| RDVFinalCleanupList &cl) { |
| // Operations that have dead operands can be erased regardless of their |
| // side effects. The liveness analysis would not have marked an SSA value as |
| // "dead" if it had a side-effecting user that is reachable. |
| bool hasDeadOperand = |
| markLives(op->getOperands(), nonLiveSet, la).flip().any(); |
| if (hasDeadOperand) { |
| LDBG() << "Simple op has dead operands, so the op must be dead: " |
| << OpWithFlags(op, |
| OpPrintingFlags().skipRegions().printGenericOpForm()); |
| assert(!hasLive(op->getResults(), nonLiveSet, la) && |
| "expected the op to have no live results"); |
| cl.operations.push_back(op); |
| collectNonLiveValues(nonLiveSet, op->getResults(), |
| BitVector(op->getNumResults(), true)); |
| return; |
| } |
| |
| if (!isMemoryEffectFree(op) || hasLive(op->getResults(), nonLiveSet, la)) { |
| LDBG() << "Simple op is not memory effect free or has live results, " |
| "preserving it: " |
| << OpWithFlags(op, |
| OpPrintingFlags().skipRegions().printGenericOpForm()); |
| return; |
| } |
| |
| LDBG() |
| << "Simple op has all dead results and is memory effect free, scheduling " |
| "for removal: " |
| << OpWithFlags(op, OpPrintingFlags().skipRegions().printGenericOpForm()); |
| cl.operations.push_back(op); |
| collectNonLiveValues(nonLiveSet, op->getResults(), |
| BitVector(op->getNumResults(), true)); |
| } |
| |
| /// Process a function-like operation `funcOp` using the liveness analysis `la` |
| /// and the IR in `module`. If it is not public or external: |
| /// (1) Adding its non-live arguments to a list for future removal. |
| /// (2) Marking their corresponding operands in its callers for removal. |
| /// (3) Identifying and enqueueing unnecessary terminator operands |
| /// (return values that are non-live across all callers) for removal. |
| /// (4) Enqueueing the non-live arguments and return values for removal. |
| /// (5) Collecting the uses of these return values in its callers for future |
| /// removal. |
| /// (6) Marking all its results as non-live values. |
| static void processFuncOp(FunctionOpInterface funcOp, Operation *module, |
| RunLivenessAnalysis &la, DenseSet<Value> &nonLiveSet, |
| RDVFinalCleanupList &cl) { |
| LDBG() << "Processing function op: " |
| << OpWithFlags(funcOp, |
| OpPrintingFlags().skipRegions().printGenericOpForm()); |
| if (funcOp.isPublic() || funcOp.isExternal()) { |
| LDBG() << "Function is public or external, skipping: " |
| << funcOp.getOperation()->getName(); |
| return; |
| } |
| |
| // Get the list of unnecessary (non-live) arguments in `nonLiveArgs`. |
| SmallVector<Value> arguments(funcOp.getArguments()); |
| BitVector nonLiveArgs = markLives(arguments, nonLiveSet, la); |
| nonLiveArgs = nonLiveArgs.flip(); |
| |
| // Do (1). |
| for (auto [index, arg] : llvm::enumerate(arguments)) |
| if (arg && nonLiveArgs[index]) |
| nonLiveSet.insert(arg); |
| |
| // Do (2). (Skip creating generic operand cleanup entries for call ops. |
| // Call arguments will be removed in the call-site specific segment-aware |
| // cleanup, avoiding generic eraseOperands bitvector mechanics.) |
| SymbolTable::UseRange uses = *funcOp.getSymbolUses(module); |
| for (SymbolTable::SymbolUse use : uses) { |
| Operation *callOp = use.getUser(); |
| assert(isa<CallOpInterface>(callOp) && "expected a call-like user"); |
| // Push an empty operand cleanup entry so that call-site specific logic in |
| // cleanUpDeadVals runs (it keys off CallOpInterface). The BitVector is |
| // intentionally all false to avoid generic erasure. |
| // Store the funcOp as the callee to avoid expensive symbol lookup later. |
| cl.operands.push_back({callOp, BitVector(callOp->getNumOperands(), false), |
| funcOp.getOperation()}); |
| } |
| |
| // Do (3). |
| // Get the list of unnecessary terminator operands (return values that are |
| // non-live across all callers) in `nonLiveRets`. There is a very important |
| // subtlety here. Unnecessary terminator operands are NOT the operands of the |
| // terminator that are non-live. Instead, these are the return values of the |
| // callers such that a given return value is non-live across all callers. Such |
| // corresponding operands in the terminator could be live. An example to |
| // demonstrate this: |
| // func.func private @f(%arg0: memref<i32>) -> (i32, i32) { |
| // %c0_i32 = arith.constant 0 : i32 |
| // %0 = arith.addi %c0_i32, %c0_i32 : i32 |
| // memref.store %0, %arg0[] : memref<i32> |
| // return %c0_i32, %0 : i32, i32 |
| // } |
| // func.func @main(%arg0: i32, %arg1: memref<i32>) -> (i32) { |
| // %1:2 = call @f(%arg1) : (memref<i32>) -> i32 |
| // return %1#0 : i32 |
| // } |
| // Here, we can see that %1#1 is never used. It is non-live. Thus, @f doesn't |
| // need to return %0. But, %0 is live. And, still, we want to stop it from |
| // being returned, in order to optimize our IR. So, this demonstrates how we |
| // can make our optimization strong by even removing a live return value (%0), |
| // since it forwards only to non-live value(s) (%1#1). |
| size_t numReturns = funcOp.getNumResults(); |
| BitVector nonLiveRets(numReturns, true); |
| for (SymbolTable::SymbolUse use : uses) { |
| Operation *callOp = use.getUser(); |
| assert(isa<CallOpInterface>(callOp) && "expected a call-like user"); |
| BitVector liveCallRets = markLives(callOp->getResults(), nonLiveSet, la); |
| nonLiveRets &= liveCallRets.flip(); |
| } |
| |
| // Note that in the absence of control flow ops forcing the control to go from |
| // the entry (first) block to the other blocks, the control never reaches any |
| // block other than the entry block, because every block has a terminator. |
| for (Block &block : funcOp.getBlocks()) { |
| Operation *returnOp = block.getTerminator(); |
| if (!returnOp->hasTrait<OpTrait::ReturnLike>()) |
| continue; |
| if (returnOp && returnOp->getNumOperands() == numReturns) |
| cl.operands.push_back({returnOp, nonLiveRets}); |
| } |
| |
| // Do (4). |
| cl.functions.push_back({funcOp, nonLiveArgs, nonLiveRets}); |
| |
| // Do (5) and (6). |
| if (numReturns == 0) |
| return; |
| for (SymbolTable::SymbolUse use : uses) { |
| Operation *callOp = use.getUser(); |
| assert(isa<CallOpInterface>(callOp) && "expected a call-like user"); |
| cl.results.push_back({callOp, nonLiveRets}); |
| collectNonLiveValues(nonLiveSet, callOp->getResults(), nonLiveRets); |
| } |
| } |
| |
| /// Process a region branch operation `regionBranchOp` using the liveness |
| /// information in `la`. The processing involves two scenarios: |
| /// |
| /// Scenario 1: If the operation has no memory effects and none of its results |
| /// are live: |
| /// 1.1. Enqueue all its uses for deletion. |
| /// 1.2. Enqueue the branch itself for deletion. |
| /// |
| /// Scenario 2: Otherwise: |
| /// 2.1. Find all operands that are forwarded to only dead region successor |
| /// inputs. I.e., forwarded to block arguments / op results that we do |
| /// not want to keep. |
| /// 2.2. Also find operands who's values are dead (i.e., are scheduled for |
| /// erasure) due to other operations. |
| /// 2.3. Enqueue all such operands for replacement with ub.poison. |
| /// |
| /// Note: In scenario 2, block arguments and op results are not removed. |
| /// However, the IR is simplified such that canonicalization patterns can |
| /// remove them later. |
| static void processRegionBranchOp(RegionBranchOpInterface regionBranchOp, |
| RunLivenessAnalysis &la, |
| DenseSet<Value> &nonLiveSet, |
| RDVFinalCleanupList &cl) { |
| LDBG() << "Processing region branch op: " |
| << OpWithFlags(regionBranchOp, |
| OpPrintingFlags().skipRegions().printGenericOpForm()); |
| |
| // Scenario 1. This is the only case where the entire `regionBranchOp` |
| // is removed. It will not happen in any other scenario. Note that in this |
| // case, a non-forwarded operand of `regionBranchOp` could be live/non-live. |
| // It could never be live because of this op but its liveness could have been |
| // attributed to something else. |
| if (isMemoryEffectFree(regionBranchOp.getOperation()) && |
| !hasLive(regionBranchOp->getResults(), nonLiveSet, la)) { |
| cl.operations.push_back(regionBranchOp.getOperation()); |
| return; |
| } |
| |
| // Mapping from operands to forwarded successor inputs. An operand can be |
| // forwarded to multiple successors. |
| // |
| // Example: |
| // |
| // %0 = scf.while : () -> i32 { |
| // scf.condition(...) %forwarded_value : i32 |
| // } do { |
| // ^bb0(%arg0: i32): |
| // scf.yield |
| // } |
| // // No uses of %0. |
| // |
| // In the above example, %forwarded_value is forwarded to %arg0 and %0. Both |
| // %arg0 and %0 are dead, so %forwarded_value can be replaced with a |
| // ub.poison result. |
| // |
| // operandToSuccessorInputs[%forwarded_value] = {%arg0, %0} |
| // |
| RegionBranchSuccessorMapping operandToSuccessorInputs; |
| regionBranchOp.getSuccessorOperandInputMapping(operandToSuccessorInputs); |
| |
| DenseMap<Operation *, BitVector> deadOperandsPerOp; |
| for (auto [opOperand, successorInputs] : operandToSuccessorInputs) { |
| // Helper function to mark the operand as dead, to be replaced with a |
| // ub.poison result. |
| auto markOperandDead = [&opOperand = opOperand, &deadOperandsPerOp]() { |
| // Create an entry in `deadOperandsPerOp` (initialized to "false", i.e., |
| // no "dead" op operands) if it's the first time that we are seeing an op |
| // operand for this op. Otherwise, just take the existing bit vector from |
| // the map. |
| BitVector &deadOperands = |
| deadOperandsPerOp |
| .try_emplace(opOperand->getOwner(), |
| opOperand->getOwner()->getNumOperands(), false) |
| .first->second; |
| deadOperands.set(opOperand->getOperandNumber()); |
| }; |
| |
| // The operand value is scheduled for removal. Mark it as dead. |
| if (!hasLive(opOperand->get(), nonLiveSet, la)) { |
| markOperandDead(); |
| continue; |
| } |
| |
| // If one of the successor inputs is live, the respective operand must be |
| // kept. Otherwise, ub.poison can be passed as operand. |
| if (!hasLive(successorInputs, nonLiveSet, la)) |
| markOperandDead(); |
| } |
| |
| for (auto [op, deadOperands] : deadOperandsPerOp) { |
| cl.operands.push_back( |
| {op, deadOperands, nullptr, /*replaceWithPoison=*/true}); |
| } |
| } |
| |
| /// Steps to process a `BranchOpInterface` operation: |
| /// |
| /// When a non-forwarded operand is dead (e.g., the condition value of a |
| /// conditional branch op), the entire operation is dead. |
| /// |
| /// Otherwise, iterate through each successor block of `branchOp`. |
| /// (1) For each successor block, gather all operands from all successors. |
| /// (2) Fetch their associated liveness analysis data and collect for future |
| /// removal. |
| /// (3) Identify and collect the dead operands from the successor block |
| /// as well as their corresponding arguments. |
| |
| static void processBranchOp(BranchOpInterface branchOp, RunLivenessAnalysis &la, |
| DenseSet<Value> &nonLiveSet, |
| RDVFinalCleanupList &cl) { |
| LDBG() << "Processing branch op: " << *branchOp; |
| |
| // Check for dead non-forwarded operands. |
| BitVector deadNonForwardedOperands = |
| markLives(branchOp->getOperands(), nonLiveSet, la).flip(); |
| unsigned numSuccessors = branchOp->getNumSuccessors(); |
| for (unsigned succIdx = 0; succIdx < numSuccessors; ++succIdx) { |
| SuccessorOperands successorOperands = |
| branchOp.getSuccessorOperands(succIdx); |
| // Remove all non-forwarded operands from the bit vector. |
| for (OpOperand &opOperand : successorOperands.getMutableForwardedOperands()) |
| deadNonForwardedOperands[opOperand.getOperandNumber()] = false; |
| } |
| if (deadNonForwardedOperands.any()) { |
| cl.operations.push_back(branchOp.getOperation()); |
| return; |
| } |
| |
| for (unsigned succIdx = 0; succIdx < numSuccessors; ++succIdx) { |
| Block *successorBlock = branchOp->getSuccessor(succIdx); |
| |
| // Do (1) |
| SuccessorOperands successorOperands = |
| branchOp.getSuccessorOperands(succIdx); |
| SmallVector<Value> operandValues; |
| for (unsigned operandIdx = 0; operandIdx < successorOperands.size(); |
| ++operandIdx) { |
| operandValues.push_back(successorOperands[operandIdx]); |
| } |
| |
| // Do (2) |
| BitVector successorNonLive = |
| markLives(operandValues, nonLiveSet, la).flip(); |
| collectNonLiveValues(nonLiveSet, successorBlock->getArguments(), |
| successorNonLive); |
| |
| // Do (3) |
| cl.blocks.push_back({successorBlock, successorNonLive}); |
| cl.successorOperands.push_back({branchOp, succIdx, successorNonLive}); |
| } |
| } |
| |
| /// Create ub.poison ops for the given values. If a value has no uses, return |
| /// an "empty" value. |
| static SmallVector<Value> createPoisonedValues(OpBuilder &b, |
| ValueRange values) { |
| return llvm::map_to_vector(values, [&](Value value) { |
| if (value.use_empty()) |
| return Value(); |
| return ub::PoisonOp::create(b, value.getLoc(), value.getType()).getResult(); |
| }); |
| } |
| |
| namespace { |
| /// A listener that keeps track of ub.poison ops. |
| struct TrackingListener : public RewriterBase::Listener { |
| void notifyOperationErased(Operation *op) override { |
| if (auto poisonOp = dyn_cast<ub::PoisonOp>(op)) |
| poisonOps.erase(poisonOp); |
| } |
| void notifyOperationInserted(Operation *op, |
| OpBuilder::InsertPoint previous) override { |
| if (auto poisonOp = dyn_cast<ub::PoisonOp>(op)) |
| poisonOps.insert(poisonOp); |
| } |
| DenseSet<ub::PoisonOp> poisonOps; |
| }; |
| } // namespace |
| |
| /// Removes dead values collected in RDVFinalCleanupList. |
| /// To be run once when all dead values have been collected. |
| static void cleanUpDeadVals(MLIRContext *ctx, RDVFinalCleanupList &list) { |
| LDBG() << "Starting cleanup of dead values..."; |
| |
| // New ub.poison ops may be inserted during cleanup. Some of these ops may no |
| // longer be needed after the cleanup. A tracking listener keeps track of all |
| // new ub.poison ops, so that they can be removed again after the cleanup. |
| TrackingListener listener; |
| IRRewriter rewriter(ctx, &listener); |
| |
| // 1. Blocks, We must remove the block arguments and successor operands before |
| // deleting the operation, as they may reside in the region operation. |
| LDBG() << "Cleaning up " << list.blocks.size() << " block argument lists"; |
| for (auto &b : list.blocks) { |
| // blocks that are accessed via multiple codepaths processed once |
| if (b.b->getNumArguments() != b.nonLiveArgs.size()) |
| continue; |
| LDBG_OS([&](raw_ostream &os) { |
| os << "Erasing non-live arguments ["; |
| llvm::interleaveComma(b.nonLiveArgs.set_bits(), os); |
| os << "] from block #" << b.b->computeBlockNumber() << " in region #" |
| << b.b->getParent()->getRegionNumber() << " of operation " |
| << OpWithFlags(b.b->getParent()->getParentOp(), |
| OpPrintingFlags().skipRegions().printGenericOpForm()); |
| }); |
| // Note: Iterate from the end to make sure that that indices of not yet |
| // processes arguments do not change. |
| for (int i = b.nonLiveArgs.size() - 1; i >= 0; --i) { |
| if (!b.nonLiveArgs[i]) |
| continue; |
| b.b->getArgument(i).dropAllUses(); |
| b.b->eraseArgument(i); |
| } |
| } |
| |
| // 2. Successor Operands |
| LDBG() << "Cleaning up " << list.successorOperands.size() |
| << " successor operand lists"; |
| for (auto &op : list.successorOperands) { |
| SuccessorOperands successorOperands = |
| op.branch.getSuccessorOperands(op.successorIndex); |
| // blocks that are accessed via multiple codepaths processed once |
| if (successorOperands.size() != op.nonLiveOperands.size()) |
| continue; |
| LDBG_OS([&](raw_ostream &os) { |
| os << "Erasing non-live successor operands ["; |
| llvm::interleaveComma(op.nonLiveOperands.set_bits(), os); |
| os << "] from successor " << op.successorIndex << " of branch: " |
| << OpWithFlags(op.branch.getOperation(), |
| OpPrintingFlags().skipRegions().printGenericOpForm()); |
| }); |
| // it iterates backwards because erase invalidates all successor indexes |
| for (int i = successorOperands.size() - 1; i >= 0; --i) { |
| if (!op.nonLiveOperands[i]) |
| continue; |
| successorOperands.erase(i); |
| } |
| } |
| |
| // 3. Functions |
| LDBG() << "Cleaning up " << list.functions.size() << " functions"; |
| // Record which function arguments were erased so we can shrink call-site |
| // argument segments for CallOpInterface operations (e.g. ops using |
| // AttrSizedOperandSegments) in the next phase. |
| DenseMap<Operation *, BitVector> erasedFuncArgs; |
| for (auto &f : list.functions) { |
| LDBG() << "Cleaning up function: " << f.funcOp.getOperation()->getName() |
| << " (" << f.funcOp.getOperation() << ")"; |
| LDBG_OS([&](raw_ostream &os) { |
| os << " Erasing non-live arguments ["; |
| llvm::interleaveComma(f.nonLiveArgs.set_bits(), os); |
| os << "]\n"; |
| os << " Erasing non-live return values ["; |
| llvm::interleaveComma(f.nonLiveRets.set_bits(), os); |
| os << "]"; |
| }); |
| // Drop all uses of the dead arguments. |
| for (auto deadIdx : f.nonLiveArgs.set_bits()) |
| f.funcOp.getArgument(deadIdx).dropAllUses(); |
| // Some functions may not allow erasing arguments or results. These calls |
| // return failure in such cases without modifying the function, so it's okay |
| // to proceed. |
| if (succeeded(f.funcOp.eraseArguments(f.nonLiveArgs))) { |
| // Record only if we actually erased something. |
| if (f.nonLiveArgs.any()) |
| erasedFuncArgs.try_emplace(f.funcOp.getOperation(), f.nonLiveArgs); |
| } |
| (void)f.funcOp.eraseResults(f.nonLiveRets); |
| } |
| |
| // 4. Operands |
| LDBG() << "Cleaning up " << list.operands.size() << " operand lists"; |
| for (OperandsToCleanup &o : list.operands) { |
| // Handle call-specific cleanup only when we have a cached callee reference. |
| // This avoids expensive symbol lookup and is defensive against future |
| // changes. |
| bool handledAsCall = false; |
| if (o.callee && isa<CallOpInterface>(o.op)) { |
| auto call = cast<CallOpInterface>(o.op); |
| auto it = erasedFuncArgs.find(o.callee); |
| if (it != erasedFuncArgs.end()) { |
| const BitVector &deadArgIdxs = it->second; |
| MutableOperandRange args = call.getArgOperandsMutable(); |
| // First, erase the call arguments corresponding to erased callee |
| // args. We iterate backwards to preserve indices. |
| for (unsigned argIdx : llvm::reverse(deadArgIdxs.set_bits())) |
| args.erase(argIdx); |
| // If this operand cleanup entry also has a generic nonLive bitvector, |
| // clear bits for call arguments we already erased above to avoid |
| // double-erasing (which could impact other segments of ops with |
| // AttrSizedOperandSegments). |
| if (o.nonLive.any()) { |
| // Map the argument logical index to the operand number(s) recorded. |
| int operandOffset = call.getArgOperands().getBeginOperandIndex(); |
| for (int argIdx : deadArgIdxs.set_bits()) { |
| int operandNumber = operandOffset + argIdx; |
| if (operandNumber < static_cast<int>(o.nonLive.size())) |
| o.nonLive.reset(operandNumber); |
| } |
| } |
| handledAsCall = true; |
| } |
| } |
| // Perform generic operand erasure for: |
| // - Non-call operations |
| // - Call operations without cached callee (where handledAsCall is false) |
| // But skip call operations that were already handled via segment-aware path |
| if (!handledAsCall && o.nonLive.any()) { |
| LDBG_OS([&](raw_ostream &os) { |
| os << "Erasing non-live operands ["; |
| llvm::interleaveComma(o.nonLive.set_bits(), os); |
| os << "] from operation: " |
| << OpWithFlags(o.op, |
| OpPrintingFlags().skipRegions().printGenericOpForm()); |
| }); |
| if (o.replaceWithPoison) { |
| rewriter.setInsertionPoint(o.op); |
| for (auto deadIdx : o.nonLive.set_bits()) { |
| o.op->setOperand( |
| deadIdx, createPoisonedValues(rewriter, o.op->getOperand(deadIdx)) |
| .front()); |
| } |
| } else { |
| o.op->eraseOperands(o.nonLive); |
| } |
| } |
| } |
| |
| // 5. Results |
| LDBG() << "Cleaning up " << list.results.size() << " result lists"; |
| for (auto &r : list.results) { |
| LDBG_OS([&](raw_ostream &os) { |
| os << "Erasing non-live results ["; |
| llvm::interleaveComma(r.nonLive.set_bits(), os); |
| os << "] from operation: " |
| << OpWithFlags(r.op, |
| OpPrintingFlags().skipRegions().printGenericOpForm()); |
| }); |
| dropUsesAndEraseResults(rewriter, r.op, r.nonLive); |
| } |
| |
| // 6. Operations |
| LDBG() << "Cleaning up " << list.operations.size() << " operations"; |
| for (Operation *op : list.operations) { |
| LDBG() << "Erasing operation: " |
| << OpWithFlags(op, |
| OpPrintingFlags().skipRegions().printGenericOpForm()); |
| rewriter.setInsertionPoint(op); |
| if (op->hasTrait<OpTrait::IsTerminator>()) { |
| // When erasing a terminator, insert an unreachable op in its place. |
| ub::UnreachableOp::create(rewriter, op->getLoc()); |
| } |
| op->dropAllUses(); |
| rewriter.eraseOp(op); |
| } |
| |
| // 7. Remove all dead poison ops. |
| for (ub::PoisonOp poisonOp : listener.poisonOps) { |
| if (poisonOp.use_empty()) |
| poisonOp.erase(); |
| } |
| |
| LDBG() << "Finished cleanup of dead values"; |
| } |
| |
| struct RemoveDeadValues : public impl::RemoveDeadValuesBase<RemoveDeadValues> { |
| void runOnOperation() override; |
| }; |
| } // namespace |
| |
| void RemoveDeadValues::runOnOperation() { |
| auto &la = getAnalysis<RunLivenessAnalysis>(); |
| Operation *module = getOperation(); |
| |
| // Tracks values eligible for erasure - complements liveness analysis to |
| // identify "droppable" values. |
| DenseSet<Value> deadVals; |
| |
| // Maintains a list of Ops, values, branches, etc., slated for cleanup at the |
| // end of this pass. |
| RDVFinalCleanupList finalCleanupList; |
| |
| module->walk([&](Operation *op) { |
| if (auto funcOp = dyn_cast<FunctionOpInterface>(op)) { |
| processFuncOp(funcOp, module, la, deadVals, finalCleanupList); |
| } else if (auto regionBranchOp = dyn_cast<RegionBranchOpInterface>(op)) { |
| processRegionBranchOp(regionBranchOp, la, deadVals, finalCleanupList); |
| } else if (auto branchOp = dyn_cast<BranchOpInterface>(op)) { |
| processBranchOp(branchOp, la, deadVals, finalCleanupList); |
| } else if (op->hasTrait<::mlir::OpTrait::IsTerminator>()) { |
| // Nothing to do here because this is a terminator op and it should be |
| // honored with respect to its parent |
| } else if (isa<CallOpInterface>(op)) { |
| // Nothing to do because this op is associated with a function op and gets |
| // cleaned when the latter is cleaned. |
| } else { |
| processSimpleOp(op, la, deadVals, finalCleanupList); |
| } |
| }); |
| |
| MLIRContext *context = module->getContext(); |
| cleanUpDeadVals(context, finalCleanupList); |
| |
| if (!canonicalize) |
| return; |
| |
| // Canonicalize all region branch ops. |
| SmallVector<Operation *> opsToCanonicalize; |
| module->walk([&](RegionBranchOpInterface regionBranchOp) { |
| opsToCanonicalize.push_back(regionBranchOp.getOperation()); |
| }); |
| // TODO: Apply only region branch op canonicalization patterns or find a |
| // better API to collect all canonicalization patterns. |
| RewritePatternSet owningPatterns(context); |
| for (auto *dialect : context->getLoadedDialects()) |
| dialect->getCanonicalizationPatterns(owningPatterns); |
| for (RegisteredOperationName op : context->getRegisteredOperations()) |
| op.getCanonicalizationPatterns(owningPatterns, context); |
| if (failed(applyOpPatternsGreedily(opsToCanonicalize, |
| std::move(owningPatterns)))) { |
| module->emitError("greedy pattern rewrite failed to converge"); |
| signalPassFailure(); |
| } |
| } |
| |
| std::unique_ptr<Pass> mlir::createRemoveDeadValuesPass() { |
| return std::make_unique<RemoveDeadValues>(); |
| } |