blob: 44b1bcf8e43008c632356f16ebc91abf545ee67d [file] [log] [blame] [edit]
//===- RemoveDeadValues.cpp - Remove Dead Values --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The goal of this pass is optimization (reducing runtime) by removing
// unnecessary instructions. Unlike other passes that rely on local information
// gathered from patterns to accomplish optimization, this pass uses a full
// analysis of the IR, specifically, liveness analysis, and is thus more
// powerful.
//
// Currently, this pass performs the following optimizations:
// (A) Removes function arguments that are not live,
// (B) Removes function return values that are not live across all callers of
// the function,
// (C) Removes unneccesary operands, results, region arguments, and region
// terminator operands of region branch ops, and,
// (D) Removes simple and region branch ops that have all non-live results and
// don't affect memory in any way,
//
// iff
//
// the IR doesn't have any non-function symbol ops, non-call symbol user ops and
// branch ops.
//
// Here, a "simple op" refers to an op that isn't a symbol op, symbol-user op,
// region branch op, branch op, region branch terminator op, or return-like.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/DataFlow/DeadCodeAnalysis.h"
#include "mlir/Analysis/DataFlow/LivenessAnalysis.h"
#include "mlir/Dialect/UB/IR/UBOps.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/OperationSupport.h"
#include "mlir/IR/SymbolTable.h"
#include "mlir/IR/Value.h"
#include "mlir/IR/ValueRange.h"
#include "mlir/IR/Visitors.h"
#include "mlir/Interfaces/CallInterfaces.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "mlir/Interfaces/FunctionInterfaces.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/FoldUtils.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugLog.h"
#include <cassert>
#include <cstddef>
#include <memory>
#include <optional>
#include <vector>
#define DEBUG_TYPE "remove-dead-values"
namespace mlir {
#define GEN_PASS_DEF_REMOVEDEADVALUES
#include "mlir/Transforms/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::dataflow;
//===----------------------------------------------------------------------===//
// RemoveDeadValues Pass
//===----------------------------------------------------------------------===//
namespace {
// Set of structures below to be filled with operations and arguments to erase.
// This is done to separate analysis and tree modification phases,
// otherwise analysis is operating on half-deleted tree which is incorrect.
struct FunctionToCleanUp {
FunctionOpInterface funcOp;
BitVector nonLiveArgs;
BitVector nonLiveRets;
};
struct ResultsToCleanup {
Operation *op;
BitVector nonLive;
};
struct OperandsToCleanup {
Operation *op;
BitVector nonLive;
// Optional: For CallOpInterface ops, stores the callee function.
Operation *callee = nullptr;
// Determines whether the operand should be replaced with a ub.poison result
// or erased entirely.
bool replaceWithPoison = false;
};
struct BlockArgsToCleanup {
Block *b;
BitVector nonLiveArgs;
};
struct SuccessorOperandsToCleanup {
BranchOpInterface branch;
unsigned successorIndex;
BitVector nonLiveOperands;
};
struct RDVFinalCleanupList {
SmallVector<Operation *> operations;
SmallVector<FunctionToCleanUp> functions;
SmallVector<OperandsToCleanup> operands;
SmallVector<ResultsToCleanup> results;
SmallVector<BlockArgsToCleanup> blocks;
SmallVector<SuccessorOperandsToCleanup> successorOperands;
};
// Some helper functions...
/// Return true iff at least one value in `values` is live, given the liveness
/// information in `la`.
static bool hasLive(ValueRange values, const DenseSet<Value> &nonLiveSet,
RunLivenessAnalysis &la) {
for (Value value : values) {
if (nonLiveSet.contains(value)) {
LDBG() << "Value " << value << " is already marked non-live (dead)";
continue;
}
const Liveness *liveness = la.getLiveness(value);
if (!liveness) {
LDBG() << "Value " << value
<< " has no liveness info, conservatively considered live";
return true;
}
if (liveness->isLive) {
LDBG() << "Value " << value << " is live according to liveness analysis";
return true;
} else {
LDBG() << "Value " << value << " is dead according to liveness analysis";
}
}
return false;
}
/// Return a BitVector of size `values.size()` where its i-th bit is 1 iff the
/// i-th value in `values` is live, given the liveness information in `la`.
static BitVector markLives(ValueRange values, const DenseSet<Value> &nonLiveSet,
RunLivenessAnalysis &la) {
BitVector lives(values.size(), true);
for (auto [index, value] : llvm::enumerate(values)) {
if (nonLiveSet.contains(value)) {
lives.reset(index);
LDBG() << "Value " << value
<< " is already marked non-live (dead) at index " << index;
continue;
}
const Liveness *liveness = la.getLiveness(value);
// It is important to note that when `liveness` is null, we can't tell if
// `value` is live or not. So, the safe option is to consider it live. Also,
// the execution of this pass might create new SSA values when erasing some
// of the results of an op and we know that these new values are live
// (because they weren't erased) and also their liveness is null because
// liveness analysis ran before their creation.
if (!liveness) {
LDBG() << "Value " << value << " at index " << index
<< " has no liveness info, conservatively considered live";
continue;
}
if (!liveness->isLive) {
lives.reset(index);
LDBG() << "Value " << value << " at index " << index
<< " is dead according to liveness analysis";
} else {
LDBG() << "Value " << value << " at index " << index
<< " is live according to liveness analysis";
}
}
return lives;
}
/// Collects values marked as "non-live" in the provided range and inserts them
/// into the nonLiveSet. A value is considered "non-live" if the corresponding
/// index in the `nonLive` bit vector is set.
static void collectNonLiveValues(DenseSet<Value> &nonLiveSet, ValueRange range,
const BitVector &nonLive) {
for (auto [index, result] : llvm::enumerate(range)) {
if (!nonLive[index])
continue;
nonLiveSet.insert(result);
LDBG() << "Marking value " << result << " as non-live (dead) at index "
<< index;
}
}
/// Drop the uses of the i-th result of `op` and then erase it iff toErase[i]
/// is 1.
static void dropUsesAndEraseResults(RewriterBase &rewriter, Operation *op,
BitVector toErase) {
assert(op->getNumResults() == toErase.size() &&
"expected the number of results in `op` and the size of `toErase` to "
"be the same");
for (auto idx : toErase.set_bits())
op->getResult(idx).dropAllUses();
rewriter.eraseOpResults(op, toErase);
}
/// Process a simple operation `op` using the liveness analysis `la`.
/// If the operation has no memory effects and none of its results are live:
/// 1. Add the operation to a list for future removal, and
/// 2. Mark all its results as non-live values
///
/// The operation `op` is assumed to be simple. A simple operation is one that
/// is NOT:
/// - Function-like
/// - Call-like
/// - A region branch operation
/// - A branch operation
/// - A region branch terminator
/// - Return-like
static void processSimpleOp(Operation *op, RunLivenessAnalysis &la,
DenseSet<Value> &nonLiveSet,
RDVFinalCleanupList &cl) {
// Operations that have dead operands can be erased regardless of their
// side effects. The liveness analysis would not have marked an SSA value as
// "dead" if it had a side-effecting user that is reachable.
bool hasDeadOperand =
markLives(op->getOperands(), nonLiveSet, la).flip().any();
if (hasDeadOperand) {
LDBG() << "Simple op has dead operands, so the op must be dead: "
<< OpWithFlags(op,
OpPrintingFlags().skipRegions().printGenericOpForm());
assert(!hasLive(op->getResults(), nonLiveSet, la) &&
"expected the op to have no live results");
cl.operations.push_back(op);
collectNonLiveValues(nonLiveSet, op->getResults(),
BitVector(op->getNumResults(), true));
return;
}
if (!isMemoryEffectFree(op) || hasLive(op->getResults(), nonLiveSet, la)) {
LDBG() << "Simple op is not memory effect free or has live results, "
"preserving it: "
<< OpWithFlags(op,
OpPrintingFlags().skipRegions().printGenericOpForm());
return;
}
LDBG()
<< "Simple op has all dead results and is memory effect free, scheduling "
"for removal: "
<< OpWithFlags(op, OpPrintingFlags().skipRegions().printGenericOpForm());
cl.operations.push_back(op);
collectNonLiveValues(nonLiveSet, op->getResults(),
BitVector(op->getNumResults(), true));
}
/// Process a function-like operation `funcOp` using the liveness analysis `la`
/// and the IR in `module`. If it is not public or external:
/// (1) Adding its non-live arguments to a list for future removal.
/// (2) Marking their corresponding operands in its callers for removal.
/// (3) Identifying and enqueueing unnecessary terminator operands
/// (return values that are non-live across all callers) for removal.
/// (4) Enqueueing the non-live arguments and return values for removal.
/// (5) Collecting the uses of these return values in its callers for future
/// removal.
/// (6) Marking all its results as non-live values.
static void processFuncOp(FunctionOpInterface funcOp, Operation *module,
RunLivenessAnalysis &la, DenseSet<Value> &nonLiveSet,
RDVFinalCleanupList &cl) {
LDBG() << "Processing function op: "
<< OpWithFlags(funcOp,
OpPrintingFlags().skipRegions().printGenericOpForm());
if (funcOp.isPublic() || funcOp.isExternal()) {
LDBG() << "Function is public or external, skipping: "
<< funcOp.getOperation()->getName();
return;
}
// Get the list of unnecessary (non-live) arguments in `nonLiveArgs`.
SmallVector<Value> arguments(funcOp.getArguments());
BitVector nonLiveArgs = markLives(arguments, nonLiveSet, la);
nonLiveArgs = nonLiveArgs.flip();
// Do (1).
for (auto [index, arg] : llvm::enumerate(arguments))
if (arg && nonLiveArgs[index])
nonLiveSet.insert(arg);
// Do (2). (Skip creating generic operand cleanup entries for call ops.
// Call arguments will be removed in the call-site specific segment-aware
// cleanup, avoiding generic eraseOperands bitvector mechanics.)
SymbolTable::UseRange uses = *funcOp.getSymbolUses(module);
for (SymbolTable::SymbolUse use : uses) {
Operation *callOp = use.getUser();
assert(isa<CallOpInterface>(callOp) && "expected a call-like user");
// Push an empty operand cleanup entry so that call-site specific logic in
// cleanUpDeadVals runs (it keys off CallOpInterface). The BitVector is
// intentionally all false to avoid generic erasure.
// Store the funcOp as the callee to avoid expensive symbol lookup later.
cl.operands.push_back({callOp, BitVector(callOp->getNumOperands(), false),
funcOp.getOperation()});
}
// Do (3).
// Get the list of unnecessary terminator operands (return values that are
// non-live across all callers) in `nonLiveRets`. There is a very important
// subtlety here. Unnecessary terminator operands are NOT the operands of the
// terminator that are non-live. Instead, these are the return values of the
// callers such that a given return value is non-live across all callers. Such
// corresponding operands in the terminator could be live. An example to
// demonstrate this:
// func.func private @f(%arg0: memref<i32>) -> (i32, i32) {
// %c0_i32 = arith.constant 0 : i32
// %0 = arith.addi %c0_i32, %c0_i32 : i32
// memref.store %0, %arg0[] : memref<i32>
// return %c0_i32, %0 : i32, i32
// }
// func.func @main(%arg0: i32, %arg1: memref<i32>) -> (i32) {
// %1:2 = call @f(%arg1) : (memref<i32>) -> i32
// return %1#0 : i32
// }
// Here, we can see that %1#1 is never used. It is non-live. Thus, @f doesn't
// need to return %0. But, %0 is live. And, still, we want to stop it from
// being returned, in order to optimize our IR. So, this demonstrates how we
// can make our optimization strong by even removing a live return value (%0),
// since it forwards only to non-live value(s) (%1#1).
size_t numReturns = funcOp.getNumResults();
BitVector nonLiveRets(numReturns, true);
for (SymbolTable::SymbolUse use : uses) {
Operation *callOp = use.getUser();
assert(isa<CallOpInterface>(callOp) && "expected a call-like user");
BitVector liveCallRets = markLives(callOp->getResults(), nonLiveSet, la);
nonLiveRets &= liveCallRets.flip();
}
// Note that in the absence of control flow ops forcing the control to go from
// the entry (first) block to the other blocks, the control never reaches any
// block other than the entry block, because every block has a terminator.
for (Block &block : funcOp.getBlocks()) {
Operation *returnOp = block.getTerminator();
if (!returnOp->hasTrait<OpTrait::ReturnLike>())
continue;
if (returnOp && returnOp->getNumOperands() == numReturns)
cl.operands.push_back({returnOp, nonLiveRets});
}
// Do (4).
cl.functions.push_back({funcOp, nonLiveArgs, nonLiveRets});
// Do (5) and (6).
if (numReturns == 0)
return;
for (SymbolTable::SymbolUse use : uses) {
Operation *callOp = use.getUser();
assert(isa<CallOpInterface>(callOp) && "expected a call-like user");
cl.results.push_back({callOp, nonLiveRets});
collectNonLiveValues(nonLiveSet, callOp->getResults(), nonLiveRets);
}
}
/// Process a region branch operation `regionBranchOp` using the liveness
/// information in `la`. The processing involves two scenarios:
///
/// Scenario 1: If the operation has no memory effects and none of its results
/// are live:
/// 1.1. Enqueue all its uses for deletion.
/// 1.2. Enqueue the branch itself for deletion.
///
/// Scenario 2: Otherwise:
/// 2.1. Find all operands that are forwarded to only dead region successor
/// inputs. I.e., forwarded to block arguments / op results that we do
/// not want to keep.
/// 2.2. Also find operands who's values are dead (i.e., are scheduled for
/// erasure) due to other operations.
/// 2.3. Enqueue all such operands for replacement with ub.poison.
///
/// Note: In scenario 2, block arguments and op results are not removed.
/// However, the IR is simplified such that canonicalization patterns can
/// remove them later.
static void processRegionBranchOp(RegionBranchOpInterface regionBranchOp,
RunLivenessAnalysis &la,
DenseSet<Value> &nonLiveSet,
RDVFinalCleanupList &cl) {
LDBG() << "Processing region branch op: "
<< OpWithFlags(regionBranchOp,
OpPrintingFlags().skipRegions().printGenericOpForm());
// Scenario 1. This is the only case where the entire `regionBranchOp`
// is removed. It will not happen in any other scenario. Note that in this
// case, a non-forwarded operand of `regionBranchOp` could be live/non-live.
// It could never be live because of this op but its liveness could have been
// attributed to something else.
if (isMemoryEffectFree(regionBranchOp.getOperation()) &&
!hasLive(regionBranchOp->getResults(), nonLiveSet, la)) {
cl.operations.push_back(regionBranchOp.getOperation());
return;
}
// Mapping from operands to forwarded successor inputs. An operand can be
// forwarded to multiple successors.
//
// Example:
//
// %0 = scf.while : () -> i32 {
// scf.condition(...) %forwarded_value : i32
// } do {
// ^bb0(%arg0: i32):
// scf.yield
// }
// // No uses of %0.
//
// In the above example, %forwarded_value is forwarded to %arg0 and %0. Both
// %arg0 and %0 are dead, so %forwarded_value can be replaced with a
// ub.poison result.
//
// operandToSuccessorInputs[%forwarded_value] = {%arg0, %0}
//
RegionBranchSuccessorMapping operandToSuccessorInputs;
regionBranchOp.getSuccessorOperandInputMapping(operandToSuccessorInputs);
DenseMap<Operation *, BitVector> deadOperandsPerOp;
for (auto [opOperand, successorInputs] : operandToSuccessorInputs) {
// Helper function to mark the operand as dead, to be replaced with a
// ub.poison result.
auto markOperandDead = [&opOperand = opOperand, &deadOperandsPerOp]() {
// Create an entry in `deadOperandsPerOp` (initialized to "false", i.e.,
// no "dead" op operands) if it's the first time that we are seeing an op
// operand for this op. Otherwise, just take the existing bit vector from
// the map.
BitVector &deadOperands =
deadOperandsPerOp
.try_emplace(opOperand->getOwner(),
opOperand->getOwner()->getNumOperands(), false)
.first->second;
deadOperands.set(opOperand->getOperandNumber());
};
// The operand value is scheduled for removal. Mark it as dead.
if (!hasLive(opOperand->get(), nonLiveSet, la)) {
markOperandDead();
continue;
}
// If one of the successor inputs is live, the respective operand must be
// kept. Otherwise, ub.poison can be passed as operand.
if (!hasLive(successorInputs, nonLiveSet, la))
markOperandDead();
}
for (auto [op, deadOperands] : deadOperandsPerOp) {
cl.operands.push_back(
{op, deadOperands, nullptr, /*replaceWithPoison=*/true});
}
}
/// Steps to process a `BranchOpInterface` operation:
///
/// When a non-forwarded operand is dead (e.g., the condition value of a
/// conditional branch op), the entire operation is dead.
///
/// Otherwise, iterate through each successor block of `branchOp`.
/// (1) For each successor block, gather all operands from all successors.
/// (2) Fetch their associated liveness analysis data and collect for future
/// removal.
/// (3) Identify and collect the dead operands from the successor block
/// as well as their corresponding arguments.
static void processBranchOp(BranchOpInterface branchOp, RunLivenessAnalysis &la,
DenseSet<Value> &nonLiveSet,
RDVFinalCleanupList &cl) {
LDBG() << "Processing branch op: " << *branchOp;
// Check for dead non-forwarded operands.
BitVector deadNonForwardedOperands =
markLives(branchOp->getOperands(), nonLiveSet, la).flip();
unsigned numSuccessors = branchOp->getNumSuccessors();
for (unsigned succIdx = 0; succIdx < numSuccessors; ++succIdx) {
SuccessorOperands successorOperands =
branchOp.getSuccessorOperands(succIdx);
// Remove all non-forwarded operands from the bit vector.
for (OpOperand &opOperand : successorOperands.getMutableForwardedOperands())
deadNonForwardedOperands[opOperand.getOperandNumber()] = false;
}
if (deadNonForwardedOperands.any()) {
cl.operations.push_back(branchOp.getOperation());
return;
}
for (unsigned succIdx = 0; succIdx < numSuccessors; ++succIdx) {
Block *successorBlock = branchOp->getSuccessor(succIdx);
// Do (1)
SuccessorOperands successorOperands =
branchOp.getSuccessorOperands(succIdx);
SmallVector<Value> operandValues;
for (unsigned operandIdx = 0; operandIdx < successorOperands.size();
++operandIdx) {
operandValues.push_back(successorOperands[operandIdx]);
}
// Do (2)
BitVector successorNonLive =
markLives(operandValues, nonLiveSet, la).flip();
collectNonLiveValues(nonLiveSet, successorBlock->getArguments(),
successorNonLive);
// Do (3)
cl.blocks.push_back({successorBlock, successorNonLive});
cl.successorOperands.push_back({branchOp, succIdx, successorNonLive});
}
}
/// Create ub.poison ops for the given values. If a value has no uses, return
/// an "empty" value.
static SmallVector<Value> createPoisonedValues(OpBuilder &b,
ValueRange values) {
return llvm::map_to_vector(values, [&](Value value) {
if (value.use_empty())
return Value();
return ub::PoisonOp::create(b, value.getLoc(), value.getType()).getResult();
});
}
namespace {
/// A listener that keeps track of ub.poison ops.
struct TrackingListener : public RewriterBase::Listener {
void notifyOperationErased(Operation *op) override {
if (auto poisonOp = dyn_cast<ub::PoisonOp>(op))
poisonOps.erase(poisonOp);
}
void notifyOperationInserted(Operation *op,
OpBuilder::InsertPoint previous) override {
if (auto poisonOp = dyn_cast<ub::PoisonOp>(op))
poisonOps.insert(poisonOp);
}
DenseSet<ub::PoisonOp> poisonOps;
};
} // namespace
/// Removes dead values collected in RDVFinalCleanupList.
/// To be run once when all dead values have been collected.
static void cleanUpDeadVals(MLIRContext *ctx, RDVFinalCleanupList &list) {
LDBG() << "Starting cleanup of dead values...";
// New ub.poison ops may be inserted during cleanup. Some of these ops may no
// longer be needed after the cleanup. A tracking listener keeps track of all
// new ub.poison ops, so that they can be removed again after the cleanup.
TrackingListener listener;
IRRewriter rewriter(ctx, &listener);
// 1. Blocks, We must remove the block arguments and successor operands before
// deleting the operation, as they may reside in the region operation.
LDBG() << "Cleaning up " << list.blocks.size() << " block argument lists";
for (auto &b : list.blocks) {
// blocks that are accessed via multiple codepaths processed once
if (b.b->getNumArguments() != b.nonLiveArgs.size())
continue;
LDBG_OS([&](raw_ostream &os) {
os << "Erasing non-live arguments [";
llvm::interleaveComma(b.nonLiveArgs.set_bits(), os);
os << "] from block #" << b.b->computeBlockNumber() << " in region #"
<< b.b->getParent()->getRegionNumber() << " of operation "
<< OpWithFlags(b.b->getParent()->getParentOp(),
OpPrintingFlags().skipRegions().printGenericOpForm());
});
// Note: Iterate from the end to make sure that that indices of not yet
// processes arguments do not change.
for (int i = b.nonLiveArgs.size() - 1; i >= 0; --i) {
if (!b.nonLiveArgs[i])
continue;
b.b->getArgument(i).dropAllUses();
b.b->eraseArgument(i);
}
}
// 2. Successor Operands
LDBG() << "Cleaning up " << list.successorOperands.size()
<< " successor operand lists";
for (auto &op : list.successorOperands) {
SuccessorOperands successorOperands =
op.branch.getSuccessorOperands(op.successorIndex);
// blocks that are accessed via multiple codepaths processed once
if (successorOperands.size() != op.nonLiveOperands.size())
continue;
LDBG_OS([&](raw_ostream &os) {
os << "Erasing non-live successor operands [";
llvm::interleaveComma(op.nonLiveOperands.set_bits(), os);
os << "] from successor " << op.successorIndex << " of branch: "
<< OpWithFlags(op.branch.getOperation(),
OpPrintingFlags().skipRegions().printGenericOpForm());
});
// it iterates backwards because erase invalidates all successor indexes
for (int i = successorOperands.size() - 1; i >= 0; --i) {
if (!op.nonLiveOperands[i])
continue;
successorOperands.erase(i);
}
}
// 3. Functions
LDBG() << "Cleaning up " << list.functions.size() << " functions";
// Record which function arguments were erased so we can shrink call-site
// argument segments for CallOpInterface operations (e.g. ops using
// AttrSizedOperandSegments) in the next phase.
DenseMap<Operation *, BitVector> erasedFuncArgs;
for (auto &f : list.functions) {
LDBG() << "Cleaning up function: " << f.funcOp.getOperation()->getName()
<< " (" << f.funcOp.getOperation() << ")";
LDBG_OS([&](raw_ostream &os) {
os << " Erasing non-live arguments [";
llvm::interleaveComma(f.nonLiveArgs.set_bits(), os);
os << "]\n";
os << " Erasing non-live return values [";
llvm::interleaveComma(f.nonLiveRets.set_bits(), os);
os << "]";
});
// Drop all uses of the dead arguments.
for (auto deadIdx : f.nonLiveArgs.set_bits())
f.funcOp.getArgument(deadIdx).dropAllUses();
// Some functions may not allow erasing arguments or results. These calls
// return failure in such cases without modifying the function, so it's okay
// to proceed.
if (succeeded(f.funcOp.eraseArguments(f.nonLiveArgs))) {
// Record only if we actually erased something.
if (f.nonLiveArgs.any())
erasedFuncArgs.try_emplace(f.funcOp.getOperation(), f.nonLiveArgs);
}
(void)f.funcOp.eraseResults(f.nonLiveRets);
}
// 4. Operands
LDBG() << "Cleaning up " << list.operands.size() << " operand lists";
for (OperandsToCleanup &o : list.operands) {
// Handle call-specific cleanup only when we have a cached callee reference.
// This avoids expensive symbol lookup and is defensive against future
// changes.
bool handledAsCall = false;
if (o.callee && isa<CallOpInterface>(o.op)) {
auto call = cast<CallOpInterface>(o.op);
auto it = erasedFuncArgs.find(o.callee);
if (it != erasedFuncArgs.end()) {
const BitVector &deadArgIdxs = it->second;
MutableOperandRange args = call.getArgOperandsMutable();
// First, erase the call arguments corresponding to erased callee
// args. We iterate backwards to preserve indices.
for (unsigned argIdx : llvm::reverse(deadArgIdxs.set_bits()))
args.erase(argIdx);
// If this operand cleanup entry also has a generic nonLive bitvector,
// clear bits for call arguments we already erased above to avoid
// double-erasing (which could impact other segments of ops with
// AttrSizedOperandSegments).
if (o.nonLive.any()) {
// Map the argument logical index to the operand number(s) recorded.
int operandOffset = call.getArgOperands().getBeginOperandIndex();
for (int argIdx : deadArgIdxs.set_bits()) {
int operandNumber = operandOffset + argIdx;
if (operandNumber < static_cast<int>(o.nonLive.size()))
o.nonLive.reset(operandNumber);
}
}
handledAsCall = true;
}
}
// Perform generic operand erasure for:
// - Non-call operations
// - Call operations without cached callee (where handledAsCall is false)
// But skip call operations that were already handled via segment-aware path
if (!handledAsCall && o.nonLive.any()) {
LDBG_OS([&](raw_ostream &os) {
os << "Erasing non-live operands [";
llvm::interleaveComma(o.nonLive.set_bits(), os);
os << "] from operation: "
<< OpWithFlags(o.op,
OpPrintingFlags().skipRegions().printGenericOpForm());
});
if (o.replaceWithPoison) {
rewriter.setInsertionPoint(o.op);
for (auto deadIdx : o.nonLive.set_bits()) {
o.op->setOperand(
deadIdx, createPoisonedValues(rewriter, o.op->getOperand(deadIdx))
.front());
}
} else {
o.op->eraseOperands(o.nonLive);
}
}
}
// 5. Results
LDBG() << "Cleaning up " << list.results.size() << " result lists";
for (auto &r : list.results) {
LDBG_OS([&](raw_ostream &os) {
os << "Erasing non-live results [";
llvm::interleaveComma(r.nonLive.set_bits(), os);
os << "] from operation: "
<< OpWithFlags(r.op,
OpPrintingFlags().skipRegions().printGenericOpForm());
});
dropUsesAndEraseResults(rewriter, r.op, r.nonLive);
}
// 6. Operations
LDBG() << "Cleaning up " << list.operations.size() << " operations";
for (Operation *op : list.operations) {
LDBG() << "Erasing operation: "
<< OpWithFlags(op,
OpPrintingFlags().skipRegions().printGenericOpForm());
rewriter.setInsertionPoint(op);
if (op->hasTrait<OpTrait::IsTerminator>()) {
// When erasing a terminator, insert an unreachable op in its place.
ub::UnreachableOp::create(rewriter, op->getLoc());
}
op->dropAllUses();
rewriter.eraseOp(op);
}
// 7. Remove all dead poison ops.
for (ub::PoisonOp poisonOp : listener.poisonOps) {
if (poisonOp.use_empty())
poisonOp.erase();
}
LDBG() << "Finished cleanup of dead values";
}
struct RemoveDeadValues : public impl::RemoveDeadValuesBase<RemoveDeadValues> {
void runOnOperation() override;
};
} // namespace
void RemoveDeadValues::runOnOperation() {
auto &la = getAnalysis<RunLivenessAnalysis>();
Operation *module = getOperation();
// Tracks values eligible for erasure - complements liveness analysis to
// identify "droppable" values.
DenseSet<Value> deadVals;
// Maintains a list of Ops, values, branches, etc., slated for cleanup at the
// end of this pass.
RDVFinalCleanupList finalCleanupList;
module->walk([&](Operation *op) {
if (auto funcOp = dyn_cast<FunctionOpInterface>(op)) {
processFuncOp(funcOp, module, la, deadVals, finalCleanupList);
} else if (auto regionBranchOp = dyn_cast<RegionBranchOpInterface>(op)) {
processRegionBranchOp(regionBranchOp, la, deadVals, finalCleanupList);
} else if (auto branchOp = dyn_cast<BranchOpInterface>(op)) {
processBranchOp(branchOp, la, deadVals, finalCleanupList);
} else if (op->hasTrait<::mlir::OpTrait::IsTerminator>()) {
// Nothing to do here because this is a terminator op and it should be
// honored with respect to its parent
} else if (isa<CallOpInterface>(op)) {
// Nothing to do because this op is associated with a function op and gets
// cleaned when the latter is cleaned.
} else {
processSimpleOp(op, la, deadVals, finalCleanupList);
}
});
MLIRContext *context = module->getContext();
cleanUpDeadVals(context, finalCleanupList);
if (!canonicalize)
return;
// Canonicalize all region branch ops.
SmallVector<Operation *> opsToCanonicalize;
module->walk([&](RegionBranchOpInterface regionBranchOp) {
opsToCanonicalize.push_back(regionBranchOp.getOperation());
});
// TODO: Apply only region branch op canonicalization patterns or find a
// better API to collect all canonicalization patterns.
RewritePatternSet owningPatterns(context);
for (auto *dialect : context->getLoadedDialects())
dialect->getCanonicalizationPatterns(owningPatterns);
for (RegisteredOperationName op : context->getRegisteredOperations())
op.getCanonicalizationPatterns(owningPatterns, context);
if (failed(applyOpPatternsGreedily(opsToCanonicalize,
std::move(owningPatterns)))) {
module->emitError("greedy pattern rewrite failed to converge");
signalPassFailure();
}
}
std::unique_ptr<Pass> mlir::createRemoveDeadValuesPass() {
return std::make_unique<RemoveDeadValues>();
}