blob: b282a9079c996678782c3a39d6570b26c899c64e [file] [log] [blame] [edit]
; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py UTC_ARGS: --version 6
; REQUIRES: asserts
; RUN: opt -passes=loop-vectorize -debug-only=loop-vectorize -force-vector-interleave=1 -force-vector-width=4 -prefer-inloop-reductions -disable-output %s 2>&1 | FileCheck %s
; Tests for printing VPlans with reductions.
define float @print_reduction(i64 %n, ptr noalias %y) {
; CHECK-LABEL: 'print_reduction'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VP0:%[0-9]+]]> = VF
; CHECK-NEXT: Live-in vp<[[VP1:%[0-9]+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VP2:%[0-9]+]]> = vector-trip-count
; CHECK-NEXT: Live-in ir<%n> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: Successor(s): scalar.ph, vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: EMIT vp<[[VP3:%[0-9]+]]> = reduction-start-vector fast ir<0.000000e+00>, ir<0.000000e+00>, ir<1>
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[VP4:%[0-9]+]]> = CANONICAL-INDUCTION ir<0>, vp<%index.next>
; CHECK-NEXT: WIDEN-REDUCTION-PHI ir<%red> = phi vp<[[VP3]]>, ir<%red.next>
; CHECK-NEXT: vp<[[VP5:%[0-9]+]]> = SCALAR-STEPS vp<[[VP4]]>, ir<1>, vp<[[VP0]]>
; CHECK-NEXT: CLONE ir<%arrayidx> = getelementptr inbounds ir<%y>, vp<[[VP5]]>
; CHECK-NEXT: vp<[[VP6:%[0-9]+]]> = vector-pointer inbounds ir<%arrayidx>
; CHECK-NEXT: WIDEN ir<%lv> = load vp<[[VP6]]>
; CHECK-NEXT: REDUCE ir<%red.next> = ir<%red> + fast reduce.fadd (ir<%lv>)
; CHECK-NEXT: EMIT vp<%index.next> = add nuw vp<[[VP4]]>, vp<[[VP1]]>
; CHECK-NEXT: EMIT branch-on-count vp<%index.next>, vp<[[VP2]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[VP8:%[0-9]+]]> = compute-reduction-result (fadd, in-loop) fast ir<%red.next>
; CHECK-NEXT: EMIT vp<%cmp.n> = icmp eq ir<%n>, vp<[[VP2]]>
; CHECK-NEXT: EMIT branch-on-cond vp<%cmp.n>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>:
; CHECK-NEXT: IR %red.next.lcssa = phi float [ %red.next, %loop ] (extra operand: vp<[[VP8]]> from middle.block)
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: EMIT-SCALAR vp<%bc.resume.val> = phi [ vp<[[VP2]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: EMIT-SCALAR vp<%bc.merge.rdx> = phi [ vp<[[VP8]]>, middle.block ], [ ir<0.000000e+00>, ir-bb<entry> ]
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %iv = phi i64 [ %iv.next, %loop ], [ 0, %entry ] (extra operand: vp<%bc.resume.val> from scalar.ph)
; CHECK-NEXT: IR %red = phi float [ %red.next, %loop ], [ 0.000000e+00, %entry ] (extra operand: vp<%bc.merge.rdx> from scalar.ph)
; CHECK-NEXT: IR %arrayidx = getelementptr inbounds float, ptr %y, i64 %iv
; CHECK-NEXT: IR %lv = load float, ptr %arrayidx, align 4
; CHECK-NEXT: IR %red.next = fadd fast float %lv, %red
; CHECK-NEXT: IR %iv.next = add i64 %iv, 1
; CHECK-NEXT: IR %exitcond = icmp eq i64 %iv.next, %n
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop: ; preds = %entry, %loop
%iv = phi i64 [ %iv.next, %loop ], [ 0, %entry ]
%red = phi float [ %red.next, %loop ], [ 0.0, %entry ]
%arrayidx = getelementptr inbounds float, ptr %y, i64 %iv
%lv = load float, ptr %arrayidx, align 4
%red.next = fadd fast float %lv, %red
%iv.next = add i64 %iv, 1
%exitcond = icmp eq i64 %iv.next, %n
br i1 %exitcond, label %exit, label %loop
exit: ; preds = %loop, %entry
ret float %red.next
}
define void @print_reduction_with_invariant_store(i64 %n, ptr noalias %y, ptr noalias %dst) {
; CHECK-LABEL: 'print_reduction_with_invariant_store'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VP0:%[0-9]+]]> = VF
; CHECK-NEXT: Live-in vp<[[VP1:%[0-9]+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VP2:%[0-9]+]]> = vector-trip-count
; CHECK-NEXT: Live-in ir<%n> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: Successor(s): scalar.ph, vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: EMIT vp<[[VP3:%[0-9]+]]> = reduction-start-vector fast ir<0.000000e+00>, ir<0.000000e+00>, ir<1>
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[VP4:%[0-9]+]]> = CANONICAL-INDUCTION ir<0>, vp<%index.next>
; CHECK-NEXT: WIDEN-REDUCTION-PHI ir<%red> = phi vp<[[VP3]]>, ir<%red.next>
; CHECK-NEXT: vp<[[VP5:%[0-9]+]]> = SCALAR-STEPS vp<[[VP4]]>, ir<1>, vp<[[VP0]]>
; CHECK-NEXT: CLONE ir<%arrayidx> = getelementptr inbounds ir<%y>, vp<[[VP5]]>
; CHECK-NEXT: vp<[[VP6:%[0-9]+]]> = vector-pointer inbounds ir<%arrayidx>
; CHECK-NEXT: WIDEN ir<%lv> = load vp<[[VP6]]>
; CHECK-NEXT: REDUCE ir<%red.next> = ir<%red> + fast reduce.fadd (ir<%lv>)
; CHECK-NEXT: EMIT vp<%index.next> = add nuw vp<[[VP4]]>, vp<[[VP1]]>
; CHECK-NEXT: EMIT branch-on-count vp<%index.next>, vp<[[VP2]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[VP8:%[0-9]+]]> = compute-reduction-result (fadd, in-loop) fast ir<%red.next>
; CHECK-NEXT: CLONE store vp<[[VP8]]>, ir<%dst>
; CHECK-NEXT: EMIT vp<%cmp.n> = icmp eq ir<%n>, vp<[[VP2]]>
; CHECK-NEXT: EMIT branch-on-cond vp<%cmp.n>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>:
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: EMIT-SCALAR vp<%bc.resume.val> = phi [ vp<[[VP2]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: EMIT-SCALAR vp<%bc.merge.rdx> = phi [ vp<[[VP8]]>, middle.block ], [ ir<0.000000e+00>, ir-bb<entry> ]
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %iv = phi i64 [ %iv.next, %loop ], [ 0, %entry ] (extra operand: vp<%bc.resume.val> from scalar.ph)
; CHECK-NEXT: IR %red = phi float [ %red.next, %loop ], [ 0.000000e+00, %entry ] (extra operand: vp<%bc.merge.rdx> from scalar.ph)
; CHECK-NEXT: IR %arrayidx = getelementptr inbounds float, ptr %y, i64 %iv
; CHECK-NEXT: IR %lv = load float, ptr %arrayidx, align 4
; CHECK-NEXT: IR %red.next = fadd fast float %lv, %red
; CHECK-NEXT: IR store float %red.next, ptr %dst, align 4
; CHECK-NEXT: IR %iv.next = add i64 %iv, 1
; CHECK-NEXT: IR %exitcond = icmp eq i64 %iv.next, %n
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop: ; preds = %entry, %loop
%iv = phi i64 [ %iv.next, %loop ], [ 0, %entry ]
%red = phi float [ %red.next, %loop ], [ 0.0, %entry ]
%arrayidx = getelementptr inbounds float, ptr %y, i64 %iv
%lv = load float, ptr %arrayidx, align 4
%red.next = fadd fast float %lv, %red
store float %red.next, ptr %dst, align 4
%iv.next = add i64 %iv, 1
%exitcond = icmp eq i64 %iv.next, %n
br i1 %exitcond, label %exit, label %loop
exit: ; preds = %loop, %entry
ret void
}
define float @print_fmuladd_strict(ptr %a, ptr %b, i64 %n) {
; CHECK-LABEL: 'print_fmuladd_strict'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VP0:%[0-9]+]]> = VF
; CHECK-NEXT: Live-in vp<[[VP1:%[0-9]+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VP2:%[0-9]+]]> = vector-trip-count
; CHECK-NEXT: Live-in ir<%n> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: Successor(s): scalar.ph, vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: EMIT vp<[[VP3:%[0-9]+]]> = reduction-start-vector nnan ninf nsz ir<0.000000e+00>, ir<0.000000e+00>, ir<1>
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[VP4:%[0-9]+]]> = CANONICAL-INDUCTION ir<0>, vp<%index.next>
; CHECK-NEXT: WIDEN-REDUCTION-PHI ir<%sum.07> = phi vp<[[VP3]]>, ir<%muladd>
; CHECK-NEXT: vp<[[VP5:%[0-9]+]]> = SCALAR-STEPS vp<[[VP4]]>, ir<1>, vp<[[VP0]]>
; CHECK-NEXT: CLONE ir<%arrayidx> = getelementptr inbounds ir<%a>, vp<[[VP5]]>
; CHECK-NEXT: vp<[[VP6:%[0-9]+]]> = vector-pointer inbounds ir<%arrayidx>
; CHECK-NEXT: WIDEN ir<%l.a> = load vp<[[VP6]]>
; CHECK-NEXT: CLONE ir<%arrayidx2> = getelementptr inbounds ir<%b>, vp<[[VP5]]>
; CHECK-NEXT: vp<[[VP7:%[0-9]+]]> = vector-pointer inbounds ir<%arrayidx2>
; CHECK-NEXT: WIDEN ir<%l.b> = load vp<[[VP7]]>
; CHECK-NEXT: EMIT vp<[[VP8:%[0-9]+]]> = fmul nnan ninf nsz ir<%l.a>, ir<%l.b>
; CHECK-NEXT: REDUCE ir<%muladd> = ir<%sum.07> + nnan ninf nsz reduce.fadd (vp<[[VP8]]>)
; CHECK-NEXT: EMIT vp<%index.next> = add nuw vp<[[VP4]]>, vp<[[VP1]]>
; CHECK-NEXT: EMIT branch-on-count vp<%index.next>, vp<[[VP2]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[VP10:%[0-9]+]]> = compute-reduction-result (fadd, in-loop) nnan ninf nsz ir<%muladd>
; CHECK-NEXT: EMIT vp<%cmp.n> = icmp eq ir<%n>, vp<[[VP2]]>
; CHECK-NEXT: EMIT branch-on-cond vp<%cmp.n>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>:
; CHECK-NEXT: IR %muladd.lcssa = phi float [ %muladd, %loop ] (extra operand: vp<[[VP10]]> from middle.block)
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: EMIT-SCALAR vp<%bc.resume.val> = phi [ vp<[[VP2]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: EMIT-SCALAR vp<%bc.merge.rdx> = phi [ vp<[[VP10]]>, middle.block ], [ ir<0.000000e+00>, ir-bb<entry> ]
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ] (extra operand: vp<%bc.resume.val> from scalar.ph)
; CHECK-NEXT: IR %sum.07 = phi float [ 0.000000e+00, %entry ], [ %muladd, %loop ] (extra operand: vp<%bc.merge.rdx> from scalar.ph)
; CHECK-NEXT: IR %arrayidx = getelementptr inbounds float, ptr %a, i64 %iv
; CHECK-NEXT: IR %l.a = load float, ptr %arrayidx, align 4
; CHECK-NEXT: IR %arrayidx2 = getelementptr inbounds float, ptr %b, i64 %iv
; CHECK-NEXT: IR %l.b = load float, ptr %arrayidx2, align 4
; CHECK-NEXT: IR %muladd = tail call nnan ninf nsz float @llvm.fmuladd.f32(float %l.a, float %l.b, float %sum.07)
; CHECK-NEXT: IR %iv.next = add nuw nsw i64 %iv, 1
; CHECK-NEXT: IR %exitcond.not = icmp eq i64 %iv.next, %n
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ]
%sum.07 = phi float [ 0.000000e+00, %entry ], [ %muladd, %loop ]
%arrayidx = getelementptr inbounds float, ptr %a, i64 %iv
%l.a = load float, ptr %arrayidx, align 4
%arrayidx2 = getelementptr inbounds float, ptr %b, i64 %iv
%l.b = load float, ptr %arrayidx2, align 4
%muladd = tail call nnan ninf nsz float @llvm.fmuladd.f32(float %l.a, float %l.b, float %sum.07)
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %exit, label %loop
exit:
ret float %muladd
}
define i64 @find_last_iv(ptr %a, i64 %n, i64 %start) {
; CHECK-LABEL: 'find_last_iv'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VP0:%[0-9]+]]> = VF
; CHECK-NEXT: Live-in vp<[[VP1:%[0-9]+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VP2:%[0-9]+]]> = vector-trip-count
; CHECK-NEXT: Live-in ir<%n> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: Successor(s): scalar.ph, vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[VP3:%[0-9]+]]> = CANONICAL-INDUCTION ir<0>, vp<%index.next>
; CHECK-NEXT: ir<%iv> = WIDEN-INDUCTION nuw nsw ir<0>, ir<1>, vp<[[VP0]]>
; CHECK-NEXT: WIDEN-REDUCTION-PHI ir<%rdx> = phi ir<-9223372036854775808>, ir<%cond>
; CHECK-NEXT: vp<[[VP4:%[0-9]+]]> = SCALAR-STEPS vp<[[VP3]]>, ir<1>, vp<[[VP0]]>
; CHECK-NEXT: CLONE ir<%gep.a> = getelementptr inbounds ir<%a>, vp<[[VP4]]>
; CHECK-NEXT: vp<[[VP5:%[0-9]+]]> = vector-pointer inbounds ir<%gep.a>
; CHECK-NEXT: WIDEN ir<%l.a> = load vp<[[VP5]]>
; CHECK-NEXT: WIDEN ir<%cmp2> = icmp eq ir<%l.a>, ir<%start>
; CHECK-NEXT: WIDEN ir<%cond> = select ir<%cmp2>, ir<%iv>, ir<%rdx>
; CHECK-NEXT: EMIT vp<%index.next> = add nuw vp<[[VP3]]>, vp<[[VP1]]>
; CHECK-NEXT: EMIT branch-on-count vp<%index.next>, vp<[[VP2]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[VP7:%[0-9]+]]> = compute-reduction-result (smax) ir<%cond>
; CHECK-NEXT: EMIT vp<[[VP8:%[0-9]+]]> = icmp ne vp<[[VP7]]>, ir<-9223372036854775808>
; CHECK-NEXT: EMIT vp<[[VP9:%[0-9]+]]> = select vp<[[VP8]]>, vp<[[VP7]]>, ir<%start>
; CHECK-NEXT: EMIT vp<%cmp.n> = icmp eq ir<%n>, vp<[[VP2]]>
; CHECK-NEXT: EMIT branch-on-cond vp<%cmp.n>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>:
; CHECK-NEXT: IR %cond.lcssa = phi i64 [ %cond, %loop ] (extra operand: vp<[[VP9]]> from middle.block)
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: EMIT-SCALAR vp<%bc.resume.val> = phi [ vp<[[VP2]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: EMIT-SCALAR vp<%bc.merge.rdx> = phi [ vp<[[VP9]]>, middle.block ], [ ir<%start>, ir-bb<entry> ]
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %iv = phi i64 [ 0, %entry ], [ %inc, %loop ] (extra operand: vp<%bc.resume.val> from scalar.ph)
; CHECK-NEXT: IR %rdx = phi i64 [ %start, %entry ], [ %cond, %loop ] (extra operand: vp<%bc.merge.rdx> from scalar.ph)
; CHECK-NEXT: IR %gep.a = getelementptr inbounds i64, ptr %a, i64 %iv
; CHECK-NEXT: IR %l.a = load i64, ptr %gep.a, align 8
; CHECK-NEXT: IR %cmp2 = icmp eq i64 %l.a, %start
; CHECK-NEXT: IR %cond = select i1 %cmp2, i64 %iv, i64 %rdx
; CHECK-NEXT: IR %inc = add nuw nsw i64 %iv, 1
; CHECK-NEXT: IR %exitcond.not = icmp eq i64 %inc, %n
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%iv = phi i64 [ 0, %entry ], [ %inc, %loop ]
%rdx = phi i64 [ %start, %entry ], [ %cond, %loop ]
%gep.a = getelementptr inbounds i64, ptr %a, i64 %iv
%l.a = load i64, ptr %gep.a, align 8
%cmp2 = icmp eq i64 %l.a, %start
%cond = select i1 %cmp2, i64 %iv, i64 %rdx
%inc = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %inc, %n
br i1 %exitcond.not, label %exit, label %loop
exit:
ret i64 %cond
}
define i64 @print_extended_reduction(ptr nocapture readonly %x, ptr nocapture readonly %y, i32 %n) {
; CHECK-LABEL: 'print_extended_reduction'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VP0:%[0-9]+]]> = VF
; CHECK-NEXT: Live-in vp<[[VP1:%[0-9]+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VP2:%[0-9]+]]> = vector-trip-count
; CHECK-NEXT: Live-in ir<%n> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: Successor(s): scalar.ph, vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: EMIT vp<[[VP3:%[0-9]+]]> = reduction-start-vector ir<0>, ir<0>, ir<1>
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[VP4:%[0-9]+]]> = CANONICAL-INDUCTION ir<0>, vp<%index.next>
; CHECK-NEXT: WIDEN-REDUCTION-PHI ir<%rdx> = phi vp<[[VP3]]>, vp<[[VP7:%[0-9]+]]>
; CHECK-NEXT: vp<[[VP5:%[0-9]+]]> = SCALAR-STEPS vp<[[VP4]]>, ir<1>, vp<[[VP0]]>
; CHECK-NEXT: CLONE ir<%arrayidx> = getelementptr inbounds ir<%x>, vp<[[VP5]]>
; CHECK-NEXT: vp<[[VP6:%[0-9]+]]> = vector-pointer inbounds ir<%arrayidx>
; CHECK-NEXT: WIDEN ir<%load0> = load vp<[[VP6]]>
; CHECK-NEXT: EXPRESSION vp<[[VP7]]> = ir<%rdx> + reduce.add (ir<%load0> zext to i64)
; CHECK-NEXT: EMIT vp<%index.next> = add nuw vp<[[VP4]]>, vp<[[VP1]]>
; CHECK-NEXT: EMIT branch-on-count vp<%index.next>, vp<[[VP2]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[VP9:%[0-9]+]]> = compute-reduction-result (add, in-loop) vp<[[VP7]]>
; CHECK-NEXT: EMIT vp<%cmp.n> = icmp eq ir<%n>, vp<[[VP2]]>
; CHECK-NEXT: EMIT branch-on-cond vp<%cmp.n>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>:
; CHECK-NEXT: IR %r.0.lcssa = phi i64 [ %rdx.next, %loop ] (extra operand: vp<[[VP9]]> from middle.block)
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: EMIT-SCALAR vp<%bc.resume.val> = phi [ vp<[[VP2]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: EMIT-SCALAR vp<%bc.merge.rdx> = phi [ vp<[[VP9]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %iv = phi i32 [ %iv.next, %loop ], [ 0, %entry ] (extra operand: vp<%bc.resume.val> from scalar.ph)
; CHECK-NEXT: IR %rdx = phi i64 [ %rdx.next, %loop ], [ 0, %entry ] (extra operand: vp<%bc.merge.rdx> from scalar.ph)
; CHECK-NEXT: IR %arrayidx = getelementptr inbounds i32, ptr %x, i32 %iv
; CHECK-NEXT: IR %load0 = load i32, ptr %arrayidx, align 4
; CHECK-NEXT: IR %conv0 = zext i32 %load0 to i64
; CHECK-NEXT: IR %rdx.next = add nsw i64 %rdx, %conv0
; CHECK-NEXT: IR %iv.next = add nuw nsw i32 %iv, 1
; CHECK-NEXT: IR %exitcond = icmp eq i32 %iv.next, %n
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%iv = phi i32 [ %iv.next, %loop ], [ 0, %entry ]
%rdx = phi i64 [ %rdx.next, %loop ], [ 0, %entry ]
%arrayidx = getelementptr inbounds i32, ptr %x, i32 %iv
%load0 = load i32, ptr %arrayidx, align 4
%conv0 = zext i32 %load0 to i64
%rdx.next = add nsw i64 %rdx, %conv0
%iv.next = add nuw nsw i32 %iv, 1
%exitcond = icmp eq i32 %iv.next, %n
br i1 %exitcond, label %exit, label %loop
exit:
%r.0.lcssa = phi i64 [ %rdx.next, %loop ]
ret i64 %r.0.lcssa
}
define i64 @print_mulacc(ptr nocapture readonly %x, ptr nocapture readonly %y, i32 %n) {
; CHECK-LABEL: 'print_mulacc'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VP0:%[0-9]+]]> = VF
; CHECK-NEXT: Live-in vp<[[VP1:%[0-9]+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VP2:%[0-9]+]]> = vector-trip-count
; CHECK-NEXT: Live-in ir<%n> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: Successor(s): scalar.ph, vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: EMIT vp<[[VP3:%[0-9]+]]> = reduction-start-vector ir<0>, ir<0>, ir<1>
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[VP4:%[0-9]+]]> = CANONICAL-INDUCTION ir<0>, vp<%index.next>
; CHECK-NEXT: WIDEN-REDUCTION-PHI ir<%rdx> = phi vp<[[VP3]]>, vp<[[VP8:%[0-9]+]]>
; CHECK-NEXT: vp<[[VP5:%[0-9]+]]> = SCALAR-STEPS vp<[[VP4]]>, ir<1>, vp<[[VP0]]>
; CHECK-NEXT: CLONE ir<%arrayidx> = getelementptr inbounds ir<%x>, vp<[[VP5]]>
; CHECK-NEXT: vp<[[VP6:%[0-9]+]]> = vector-pointer inbounds ir<%arrayidx>
; CHECK-NEXT: WIDEN ir<%load0> = load vp<[[VP6]]>
; CHECK-NEXT: CLONE ir<%arrayidx1> = getelementptr inbounds ir<%y>, vp<[[VP5]]>
; CHECK-NEXT: vp<[[VP7:%[0-9]+]]> = vector-pointer inbounds ir<%arrayidx1>
; CHECK-NEXT: WIDEN ir<%load1> = load vp<[[VP7]]>
; CHECK-NEXT: EXPRESSION vp<[[VP8]]> = ir<%rdx> + reduce.add (mul nsw ir<%load0>, ir<%load1>)
; CHECK-NEXT: EMIT vp<%index.next> = add nuw vp<[[VP4]]>, vp<[[VP1]]>
; CHECK-NEXT: EMIT branch-on-count vp<%index.next>, vp<[[VP2]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[VP10:%[0-9]+]]> = compute-reduction-result (add, in-loop) vp<[[VP8]]>
; CHECK-NEXT: EMIT vp<%cmp.n> = icmp eq ir<%n>, vp<[[VP2]]>
; CHECK-NEXT: EMIT branch-on-cond vp<%cmp.n>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>:
; CHECK-NEXT: IR %r.0.lcssa = phi i64 [ %rdx.next, %loop ] (extra operand: vp<[[VP10]]> from middle.block)
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: EMIT-SCALAR vp<%bc.resume.val> = phi [ vp<[[VP2]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: EMIT-SCALAR vp<%bc.merge.rdx> = phi [ vp<[[VP10]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %iv = phi i32 [ %iv.next, %loop ], [ 0, %entry ] (extra operand: vp<%bc.resume.val> from scalar.ph)
; CHECK-NEXT: IR %rdx = phi i64 [ %rdx.next, %loop ], [ 0, %entry ] (extra operand: vp<%bc.merge.rdx> from scalar.ph)
; CHECK-NEXT: IR %arrayidx = getelementptr inbounds i64, ptr %x, i32 %iv
; CHECK-NEXT: IR %load0 = load i64, ptr %arrayidx, align 4
; CHECK-NEXT: IR %arrayidx1 = getelementptr inbounds i64, ptr %y, i32 %iv
; CHECK-NEXT: IR %load1 = load i64, ptr %arrayidx1, align 4
; CHECK-NEXT: IR %mul = mul nsw i64 %load0, %load1
; CHECK-NEXT: IR %rdx.next = add nsw i64 %rdx, %mul
; CHECK-NEXT: IR %iv.next = add nuw nsw i32 %iv, 1
; CHECK-NEXT: IR %exitcond = icmp eq i32 %iv.next, %n
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%iv = phi i32 [ %iv.next, %loop ], [ 0, %entry ]
%rdx = phi i64 [ %rdx.next, %loop ], [ 0, %entry ]
%arrayidx = getelementptr inbounds i64, ptr %x, i32 %iv
%load0 = load i64, ptr %arrayidx, align 4
%arrayidx1 = getelementptr inbounds i64, ptr %y, i32 %iv
%load1 = load i64, ptr %arrayidx1, align 4
%mul = mul nsw i64 %load0, %load1
%rdx.next = add nsw i64 %rdx, %mul
%iv.next = add nuw nsw i32 %iv, 1
%exitcond = icmp eq i32 %iv.next, %n
br i1 %exitcond, label %exit, label %loop
exit:
%r.0.lcssa = phi i64 [ %rdx.next, %loop ]
ret i64 %r.0.lcssa
}
define i64 @print_mulacc_extended(ptr nocapture readonly %x, ptr nocapture readonly %y, i32 %n) {
; CHECK-LABEL: 'print_mulacc_extended'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VP0:%[0-9]+]]> = VF
; CHECK-NEXT: Live-in vp<[[VP1:%[0-9]+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VP2:%[0-9]+]]> = vector-trip-count
; CHECK-NEXT: Live-in ir<%n> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: Successor(s): scalar.ph, vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: EMIT vp<[[VP3:%[0-9]+]]> = reduction-start-vector ir<0>, ir<0>, ir<1>
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[VP4:%[0-9]+]]> = CANONICAL-INDUCTION ir<0>, vp<%index.next>
; CHECK-NEXT: WIDEN-REDUCTION-PHI ir<%rdx> = phi vp<[[VP3]]>, vp<[[VP8:%[0-9]+]]>
; CHECK-NEXT: vp<[[VP5:%[0-9]+]]> = SCALAR-STEPS vp<[[VP4]]>, ir<1>, vp<[[VP0]]>
; CHECK-NEXT: CLONE ir<%arrayidx> = getelementptr inbounds ir<%x>, vp<[[VP5]]>
; CHECK-NEXT: vp<[[VP6:%[0-9]+]]> = vector-pointer inbounds ir<%arrayidx>
; CHECK-NEXT: WIDEN ir<%load0> = load vp<[[VP6]]>
; CHECK-NEXT: CLONE ir<%arrayidx1> = getelementptr inbounds ir<%y>, vp<[[VP5]]>
; CHECK-NEXT: vp<[[VP7:%[0-9]+]]> = vector-pointer inbounds ir<%arrayidx1>
; CHECK-NEXT: WIDEN ir<%load1> = load vp<[[VP7]]>
; CHECK-NEXT: EXPRESSION vp<[[VP8]]> = ir<%rdx> + reduce.add (mul nsw (ir<%load0> sext to i64), (ir<%load1> sext to i64))
; CHECK-NEXT: EMIT vp<%index.next> = add nuw vp<[[VP4]]>, vp<[[VP1]]>
; CHECK-NEXT: EMIT branch-on-count vp<%index.next>, vp<[[VP2]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[VP10:%[0-9]+]]> = compute-reduction-result (add, in-loop) vp<[[VP8]]>
; CHECK-NEXT: EMIT vp<%cmp.n> = icmp eq ir<%n>, vp<[[VP2]]>
; CHECK-NEXT: EMIT branch-on-cond vp<%cmp.n>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>:
; CHECK-NEXT: IR %r.0.lcssa = phi i64 [ %rdx.next, %loop ] (extra operand: vp<[[VP10]]> from middle.block)
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: EMIT-SCALAR vp<%bc.resume.val> = phi [ vp<[[VP2]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: EMIT-SCALAR vp<%bc.merge.rdx> = phi [ vp<[[VP10]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %iv = phi i32 [ %iv.next, %loop ], [ 0, %entry ] (extra operand: vp<%bc.resume.val> from scalar.ph)
; CHECK-NEXT: IR %rdx = phi i64 [ %rdx.next, %loop ], [ 0, %entry ] (extra operand: vp<%bc.merge.rdx> from scalar.ph)
; CHECK-NEXT: IR %arrayidx = getelementptr inbounds i16, ptr %x, i32 %iv
; CHECK-NEXT: IR %load0 = load i16, ptr %arrayidx, align 4
; CHECK-NEXT: IR %arrayidx1 = getelementptr inbounds i16, ptr %y, i32 %iv
; CHECK-NEXT: IR %load1 = load i16, ptr %arrayidx1, align 4
; CHECK-NEXT: IR %conv0 = sext i16 %load0 to i32
; CHECK-NEXT: IR %conv1 = sext i16 %load1 to i32
; CHECK-NEXT: IR %mul = mul nsw i32 %conv0, %conv1
; CHECK-NEXT: IR %conv = sext i32 %mul to i64
; CHECK-NEXT: IR %rdx.next = add nsw i64 %rdx, %conv
; CHECK-NEXT: IR %iv.next = add nuw nsw i32 %iv, 1
; CHECK-NEXT: IR %exitcond = icmp eq i32 %iv.next, %n
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%iv = phi i32 [ %iv.next, %loop ], [ 0, %entry ]
%rdx = phi i64 [ %rdx.next, %loop ], [ 0, %entry ]
%arrayidx = getelementptr inbounds i16, ptr %x, i32 %iv
%load0 = load i16, ptr %arrayidx, align 4
%arrayidx1 = getelementptr inbounds i16, ptr %y, i32 %iv
%load1 = load i16, ptr %arrayidx1, align 4
%conv0 = sext i16 %load0 to i32
%conv1 = sext i16 %load1 to i32
%mul = mul nsw i32 %conv0, %conv1
%conv = sext i32 %mul to i64
%rdx.next = add nsw i64 %rdx, %conv
%iv.next = add nuw nsw i32 %iv, 1
%exitcond = icmp eq i32 %iv.next, %n
br i1 %exitcond, label %exit, label %loop
exit:
%r.0.lcssa = phi i64 [ %rdx.next, %loop ]
ret i64 %r.0.lcssa
}
define i64 @print_extended_sub_reduction(ptr nocapture readonly %x, ptr nocapture readonly %y, i32 %n) {
; CHECK-LABEL: 'print_extended_sub_reduction'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VP0:%[0-9]+]]> = VF
; CHECK-NEXT: Live-in vp<[[VP1:%[0-9]+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VP2:%[0-9]+]]> = vector-trip-count
; CHECK-NEXT: Live-in ir<%n> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: Successor(s): scalar.ph, vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: EMIT vp<[[VP3:%[0-9]+]]> = reduction-start-vector ir<0>, ir<0>, ir<1>
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[VP4:%[0-9]+]]> = CANONICAL-INDUCTION ir<0>, vp<%index.next>
; CHECK-NEXT: WIDEN-REDUCTION-PHI ir<%rdx> = phi vp<[[VP3]]>, vp<[[VP7:%[0-9]+]]>
; CHECK-NEXT: vp<[[VP5:%[0-9]+]]> = SCALAR-STEPS vp<[[VP4]]>, ir<1>, vp<[[VP0]]>
; CHECK-NEXT: CLONE ir<%arrayidx> = getelementptr inbounds ir<%x>, vp<[[VP5]]>
; CHECK-NEXT: vp<[[VP6:%[0-9]+]]> = vector-pointer inbounds ir<%arrayidx>
; CHECK-NEXT: WIDEN ir<%load0> = load vp<[[VP6]]>
; CHECK-NEXT: EXPRESSION vp<[[VP7]]> = ir<%rdx> + reduce.sub (ir<%load0> zext to i64)
; CHECK-NEXT: EMIT vp<%index.next> = add nuw vp<[[VP4]]>, vp<[[VP1]]>
; CHECK-NEXT: EMIT branch-on-count vp<%index.next>, vp<[[VP2]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[VP9:%[0-9]+]]> = compute-reduction-result (sub, in-loop) vp<[[VP7]]>
; CHECK-NEXT: EMIT vp<%cmp.n> = icmp eq ir<%n>, vp<[[VP2]]>
; CHECK-NEXT: EMIT branch-on-cond vp<%cmp.n>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>:
; CHECK-NEXT: IR %r.0.lcssa = phi i64 [ %rdx.next, %loop ] (extra operand: vp<[[VP9]]> from middle.block)
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: EMIT-SCALAR vp<%bc.resume.val> = phi [ vp<[[VP2]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: EMIT-SCALAR vp<%bc.merge.rdx> = phi [ vp<[[VP9]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %iv = phi i32 [ %iv.next, %loop ], [ 0, %entry ] (extra operand: vp<%bc.resume.val> from scalar.ph)
; CHECK-NEXT: IR %rdx = phi i64 [ %rdx.next, %loop ], [ 0, %entry ] (extra operand: vp<%bc.merge.rdx> from scalar.ph)
; CHECK-NEXT: IR %arrayidx = getelementptr inbounds i32, ptr %x, i32 %iv
; CHECK-NEXT: IR %load0 = load i32, ptr %arrayidx, align 4
; CHECK-NEXT: IR %conv0 = zext i32 %load0 to i64
; CHECK-NEXT: IR %rdx.next = sub nsw i64 %rdx, %conv0
; CHECK-NEXT: IR %iv.next = add nuw nsw i32 %iv, 1
; CHECK-NEXT: IR %exitcond = icmp eq i32 %iv.next, %n
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%iv = phi i32 [ %iv.next, %loop ], [ 0, %entry ]
%rdx = phi i64 [ %rdx.next, %loop ], [ 0, %entry ]
%arrayidx = getelementptr inbounds i32, ptr %x, i32 %iv
%load0 = load i32, ptr %arrayidx, align 4
%conv0 = zext i32 %load0 to i64
%rdx.next = sub nsw i64 %rdx, %conv0
%iv.next = add nuw nsw i32 %iv, 1
%exitcond = icmp eq i32 %iv.next, %n
br i1 %exitcond, label %exit, label %loop
exit:
%r.0.lcssa = phi i64 [ %rdx.next, %loop ]
ret i64 %r.0.lcssa
}
define i32 @print_mulacc_sub(ptr %a, ptr %b) {
; CHECK-LABEL: 'print_mulacc_sub'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VP0:%[0-9]+]]> = VF
; CHECK-NEXT: Live-in vp<[[VP1:%[0-9]+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VP2:%[0-9]+]]> = vector-trip-count
; CHECK-NEXT: Live-in ir<1024> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: Successor(s): scalar.ph, vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: EMIT vp<[[VP3:%[0-9]+]]> = reduction-start-vector ir<0>, ir<0>, ir<1>
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[VP4:%[0-9]+]]> = CANONICAL-INDUCTION ir<0>, vp<%index.next>
; CHECK-NEXT: WIDEN-REDUCTION-PHI ir<%accum> = phi vp<[[VP3]]>, vp<[[VP8:%[0-9]+]]>
; CHECK-NEXT: vp<[[VP5:%[0-9]+]]> = SCALAR-STEPS vp<[[VP4]]>, ir<1>, vp<[[VP0]]>
; CHECK-NEXT: CLONE ir<%gep.a> = getelementptr ir<%a>, vp<[[VP5]]>
; CHECK-NEXT: vp<[[VP6:%[0-9]+]]> = vector-pointer ir<%gep.a>
; CHECK-NEXT: WIDEN ir<%load.a> = load vp<[[VP6]]>
; CHECK-NEXT: CLONE ir<%gep.b> = getelementptr ir<%b>, vp<[[VP5]]>
; CHECK-NEXT: vp<[[VP7:%[0-9]+]]> = vector-pointer ir<%gep.b>
; CHECK-NEXT: WIDEN ir<%load.b> = load vp<[[VP7]]>
; CHECK-NEXT: EXPRESSION vp<[[VP8]]> = ir<%accum> + reduce.sub (mul (ir<%load.b> zext to i32), (ir<%load.a> zext to i32))
; CHECK-NEXT: EMIT vp<%index.next> = add nuw vp<[[VP4]]>, vp<[[VP1]]>
; CHECK-NEXT: EMIT branch-on-count vp<%index.next>, vp<[[VP2]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[VP10:%[0-9]+]]> = compute-reduction-result (sub, in-loop) vp<[[VP8]]>
; CHECK-NEXT: EMIT vp<%cmp.n> = icmp eq ir<1024>, vp<[[VP2]]>
; CHECK-NEXT: EMIT branch-on-cond vp<%cmp.n>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>:
; CHECK-NEXT: IR %add.lcssa = phi i32 [ %add, %loop ] (extra operand: vp<[[VP10]]> from middle.block)
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: EMIT-SCALAR vp<%bc.resume.val> = phi [ vp<[[VP2]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: EMIT-SCALAR vp<%bc.merge.rdx> = phi [ vp<[[VP10]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ] (extra operand: vp<%bc.resume.val> from scalar.ph)
; CHECK-NEXT: IR %accum = phi i32 [ 0, %entry ], [ %add, %loop ] (extra operand: vp<%bc.merge.rdx> from scalar.ph)
; CHECK-NEXT: IR %gep.a = getelementptr i8, ptr %a, i64 %iv
; CHECK-NEXT: IR %load.a = load i8, ptr %gep.a, align 1
; CHECK-NEXT: IR %ext.a = zext i8 %load.a to i32
; CHECK-NEXT: IR %gep.b = getelementptr i8, ptr %b, i64 %iv
; CHECK-NEXT: IR %load.b = load i8, ptr %gep.b, align 1
; CHECK-NEXT: IR %ext.b = zext i8 %load.b to i32
; CHECK-NEXT: IR %mul = mul i32 %ext.b, %ext.a
; CHECK-NEXT: IR %add = sub i32 %accum, %mul
; CHECK-NEXT: IR %iv.next = add i64 %iv, 1
; CHECK-NEXT: IR %exitcond.not = icmp eq i64 %iv.next, 1024
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ]
%accum = phi i32 [ 0, %entry ], [ %add, %loop ]
%gep.a = getelementptr i8, ptr %a, i64 %iv
%load.a = load i8, ptr %gep.a, align 1
%ext.a = zext i8 %load.a to i32
%gep.b = getelementptr i8, ptr %b, i64 %iv
%load.b = load i8, ptr %gep.b, align 1
%ext.b = zext i8 %load.b to i32
%mul = mul i32 %ext.b, %ext.a
%add = sub i32 %accum, %mul
%iv.next = add i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, 1024
br i1 %exitcond.not, label %exit, label %loop
exit:
ret i32 %add
}
define i32 @print_mulacc_negated(ptr %a, ptr %b) {
; CHECK-LABEL: 'print_mulacc_negated'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VP0:%[0-9]+]]> = VF
; CHECK-NEXT: Live-in vp<[[VP1:%[0-9]+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VP2:%[0-9]+]]> = vector-trip-count
; CHECK-NEXT: Live-in ir<1024> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: Successor(s): scalar.ph, vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: EMIT vp<[[VP3:%[0-9]+]]> = reduction-start-vector ir<0>, ir<0>, ir<1>
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[VP4:%[0-9]+]]> = CANONICAL-INDUCTION ir<0>, vp<%index.next>
; CHECK-NEXT: WIDEN-REDUCTION-PHI ir<%accum> = phi vp<[[VP3]]>, vp<[[VP8:%[0-9]+]]>
; CHECK-NEXT: vp<[[VP5:%[0-9]+]]> = SCALAR-STEPS vp<[[VP4]]>, ir<1>, vp<[[VP0]]>
; CHECK-NEXT: CLONE ir<%gep.a> = getelementptr ir<%a>, vp<[[VP5]]>
; CHECK-NEXT: vp<[[VP6:%[0-9]+]]> = vector-pointer ir<%gep.a>
; CHECK-NEXT: WIDEN ir<%load.a> = load vp<[[VP6]]>
; CHECK-NEXT: CLONE ir<%gep.b> = getelementptr ir<%b>, vp<[[VP5]]>
; CHECK-NEXT: vp<[[VP7:%[0-9]+]]> = vector-pointer ir<%gep.b>
; CHECK-NEXT: WIDEN ir<%load.b> = load vp<[[VP7]]>
; CHECK-NEXT: EXPRESSION vp<[[VP8]]> = ir<%accum> + reduce.add (sub (0, mul (ir<%load.b> zext to i32), (ir<%load.a> zext to i32)))
; CHECK-NEXT: EMIT vp<%index.next> = add nuw vp<[[VP4]]>, vp<[[VP1]]>
; CHECK-NEXT: EMIT branch-on-count vp<%index.next>, vp<[[VP2]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[VP10:%[0-9]+]]> = compute-reduction-result (add, in-loop) vp<[[VP8]]>
; CHECK-NEXT: EMIT vp<%cmp.n> = icmp eq ir<1024>, vp<[[VP2]]>
; CHECK-NEXT: EMIT branch-on-cond vp<%cmp.n>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>:
; CHECK-NEXT: IR %add.lcssa = phi i32 [ %add, %loop ] (extra operand: vp<[[VP10]]> from middle.block)
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: EMIT-SCALAR vp<%bc.resume.val> = phi [ vp<[[VP2]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: EMIT-SCALAR vp<%bc.merge.rdx> = phi [ vp<[[VP10]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ] (extra operand: vp<%bc.resume.val> from scalar.ph)
; CHECK-NEXT: IR %accum = phi i32 [ 0, %entry ], [ %add, %loop ] (extra operand: vp<%bc.merge.rdx> from scalar.ph)
; CHECK-NEXT: IR %gep.a = getelementptr i8, ptr %a, i64 %iv
; CHECK-NEXT: IR %load.a = load i8, ptr %gep.a, align 1
; CHECK-NEXT: IR %ext.a = zext i8 %load.a to i32
; CHECK-NEXT: IR %gep.b = getelementptr i8, ptr %b, i64 %iv
; CHECK-NEXT: IR %load.b = load i8, ptr %gep.b, align 1
; CHECK-NEXT: IR %ext.b = zext i8 %load.b to i32
; CHECK-NEXT: IR %mul = mul i32 %ext.b, %ext.a
; CHECK-NEXT: IR %sub = sub i32 0, %mul
; CHECK-NEXT: IR %add = add i32 %accum, %sub
; CHECK-NEXT: IR %iv.next = add i64 %iv, 1
; CHECK-NEXT: IR %exitcond.not = icmp eq i64 %iv.next, 1024
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ]
%accum = phi i32 [ 0, %entry ], [ %add, %loop ]
%gep.a = getelementptr i8, ptr %a, i64 %iv
%load.a = load i8, ptr %gep.a, align 1
%ext.a = zext i8 %load.a to i32
%gep.b = getelementptr i8, ptr %b, i64 %iv
%load.b = load i8, ptr %gep.b, align 1
%ext.b = zext i8 %load.b to i32
%mul = mul i32 %ext.b, %ext.a
%sub = sub i32 0, %mul
%add = add i32 %accum, %sub
%iv.next = add i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, 1024
br i1 %exitcond.not, label %exit, label %loop
exit:
ret i32 %add
}
define i64 @print_mulacc_sub_extended(ptr nocapture readonly %x, ptr nocapture readonly %y, i32 %n) {
; CHECK-LABEL: 'print_mulacc_sub_extended'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VP0:%[0-9]+]]> = VF
; CHECK-NEXT: Live-in vp<[[VP1:%[0-9]+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VP2:%[0-9]+]]> = vector-trip-count
; CHECK-NEXT: Live-in ir<%n> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: Successor(s): scalar.ph, vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: EMIT vp<[[VP3:%[0-9]+]]> = reduction-start-vector ir<0>, ir<0>, ir<1>
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[VP4:%[0-9]+]]> = CANONICAL-INDUCTION ir<0>, vp<%index.next>
; CHECK-NEXT: WIDEN-REDUCTION-PHI ir<%rdx> = phi vp<[[VP3]]>, vp<[[VP8:%[0-9]+]]>
; CHECK-NEXT: vp<[[VP5:%[0-9]+]]> = SCALAR-STEPS vp<[[VP4]]>, ir<1>, vp<[[VP0]]>
; CHECK-NEXT: CLONE ir<%arrayidx> = getelementptr inbounds ir<%x>, vp<[[VP5]]>
; CHECK-NEXT: vp<[[VP6:%[0-9]+]]> = vector-pointer inbounds ir<%arrayidx>
; CHECK-NEXT: WIDEN ir<%load0> = load vp<[[VP6]]>
; CHECK-NEXT: CLONE ir<%arrayidx1> = getelementptr inbounds ir<%y>, vp<[[VP5]]>
; CHECK-NEXT: vp<[[VP7:%[0-9]+]]> = vector-pointer inbounds ir<%arrayidx1>
; CHECK-NEXT: WIDEN ir<%load1> = load vp<[[VP7]]>
; CHECK-NEXT: EXPRESSION vp<[[VP8]]> = ir<%rdx> + reduce.sub (mul nsw (ir<%load0> sext to i64), (ir<%load1> sext to i64))
; CHECK-NEXT: EMIT vp<%index.next> = add nuw vp<[[VP4]]>, vp<[[VP1]]>
; CHECK-NEXT: EMIT branch-on-count vp<%index.next>, vp<[[VP2]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[VP10:%[0-9]+]]> = compute-reduction-result (sub, in-loop) vp<[[VP8]]>
; CHECK-NEXT: EMIT vp<%cmp.n> = icmp eq ir<%n>, vp<[[VP2]]>
; CHECK-NEXT: EMIT branch-on-cond vp<%cmp.n>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>:
; CHECK-NEXT: IR %r.0.lcssa = phi i64 [ %rdx.next, %loop ] (extra operand: vp<[[VP10]]> from middle.block)
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: EMIT-SCALAR vp<%bc.resume.val> = phi [ vp<[[VP2]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: EMIT-SCALAR vp<%bc.merge.rdx> = phi [ vp<[[VP10]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %iv = phi i32 [ %iv.next, %loop ], [ 0, %entry ] (extra operand: vp<%bc.resume.val> from scalar.ph)
; CHECK-NEXT: IR %rdx = phi i64 [ %rdx.next, %loop ], [ 0, %entry ] (extra operand: vp<%bc.merge.rdx> from scalar.ph)
; CHECK-NEXT: IR %arrayidx = getelementptr inbounds i16, ptr %x, i32 %iv
; CHECK-NEXT: IR %load0 = load i16, ptr %arrayidx, align 4
; CHECK-NEXT: IR %arrayidx1 = getelementptr inbounds i16, ptr %y, i32 %iv
; CHECK-NEXT: IR %load1 = load i16, ptr %arrayidx1, align 4
; CHECK-NEXT: IR %conv0 = sext i16 %load0 to i32
; CHECK-NEXT: IR %conv1 = sext i16 %load1 to i32
; CHECK-NEXT: IR %mul = mul nsw i32 %conv0, %conv1
; CHECK-NEXT: IR %conv = sext i32 %mul to i64
; CHECK-NEXT: IR %rdx.next = sub nsw i64 %rdx, %conv
; CHECK-NEXT: IR %iv.next = add nuw nsw i32 %iv, 1
; CHECK-NEXT: IR %exitcond = icmp eq i32 %iv.next, %n
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%iv = phi i32 [ %iv.next, %loop ], [ 0, %entry ]
%rdx = phi i64 [ %rdx.next, %loop ], [ 0, %entry ]
%arrayidx = getelementptr inbounds i16, ptr %x, i32 %iv
%load0 = load i16, ptr %arrayidx, align 4
%arrayidx1 = getelementptr inbounds i16, ptr %y, i32 %iv
%load1 = load i16, ptr %arrayidx1, align 4
%conv0 = sext i16 %load0 to i32
%conv1 = sext i16 %load1 to i32
%mul = mul nsw i32 %conv0, %conv1
%conv = sext i32 %mul to i64
%rdx.next = sub nsw i64 %rdx, %conv
%iv.next = add nuw nsw i32 %iv, 1
%exitcond = icmp eq i32 %iv.next, %n
br i1 %exitcond, label %exit, label %loop
exit:
%r.0.lcssa = phi i64 [ %rdx.next, %loop ]
ret i64 %r.0.lcssa
}
define i64 @print_mulacc_duplicate_extends(ptr nocapture readonly %x, ptr nocapture readonly %y, i32 %n) {
; CHECK-LABEL: 'print_mulacc_duplicate_extends'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VP0:%[0-9]+]]> = VF
; CHECK-NEXT: Live-in vp<[[VP1:%[0-9]+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VP2:%[0-9]+]]> = vector-trip-count
; CHECK-NEXT: Live-in ir<%n> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: Successor(s): scalar.ph, vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: EMIT vp<[[VP3:%[0-9]+]]> = reduction-start-vector ir<0>, ir<0>, ir<1>
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[VP4:%[0-9]+]]> = CANONICAL-INDUCTION ir<0>, vp<%index.next>
; CHECK-NEXT: WIDEN-REDUCTION-PHI ir<%rdx> = phi vp<[[VP3]]>, vp<[[VP7:%[0-9]+]]>
; CHECK-NEXT: vp<[[VP5:%[0-9]+]]> = SCALAR-STEPS vp<[[VP4]]>, ir<1>, vp<[[VP0]]>
; CHECK-NEXT: CLONE ir<%arrayidx> = getelementptr inbounds ir<%x>, vp<[[VP5]]>
; CHECK-NEXT: vp<[[VP6:%[0-9]+]]> = vector-pointer inbounds ir<%arrayidx>
; CHECK-NEXT: WIDEN ir<%load0> = load vp<[[VP6]]>
; CHECK-NEXT: EXPRESSION vp<[[VP7]]> = ir<%rdx> + reduce.sub (mul nsw (ir<%load0> sext to i64), (ir<%load0> sext to i64))
; CHECK-NEXT: EMIT vp<%index.next> = add nuw vp<[[VP4]]>, vp<[[VP1]]>
; CHECK-NEXT: EMIT branch-on-count vp<%index.next>, vp<[[VP2]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[VP9:%[0-9]+]]> = compute-reduction-result (sub, in-loop) vp<[[VP7]]>
; CHECK-NEXT: EMIT vp<%cmp.n> = icmp eq ir<%n>, vp<[[VP2]]>
; CHECK-NEXT: EMIT branch-on-cond vp<%cmp.n>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>:
; CHECK-NEXT: IR %r.0.lcssa = phi i64 [ %rdx.next, %loop ] (extra operand: vp<[[VP9]]> from middle.block)
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: EMIT-SCALAR vp<%bc.resume.val> = phi [ vp<[[VP2]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: EMIT-SCALAR vp<%bc.merge.rdx> = phi [ vp<[[VP9]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %iv = phi i32 [ %iv.next, %loop ], [ 0, %entry ] (extra operand: vp<%bc.resume.val> from scalar.ph)
; CHECK-NEXT: IR %rdx = phi i64 [ %rdx.next, %loop ], [ 0, %entry ] (extra operand: vp<%bc.merge.rdx> from scalar.ph)
; CHECK-NEXT: IR %arrayidx = getelementptr inbounds i16, ptr %x, i32 %iv
; CHECK-NEXT: IR %load0 = load i16, ptr %arrayidx, align 4
; CHECK-NEXT: IR %conv0 = sext i16 %load0 to i32
; CHECK-NEXT: IR %mul = mul nsw i32 %conv0, %conv0
; CHECK-NEXT: IR %conv = sext i32 %mul to i64
; CHECK-NEXT: IR %rdx.next = sub nsw i64 %rdx, %conv
; CHECK-NEXT: IR %iv.next = add nuw nsw i32 %iv, 1
; CHECK-NEXT: IR %exitcond = icmp eq i32 %iv.next, %n
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%iv = phi i32 [ %iv.next, %loop ], [ 0, %entry ]
%rdx = phi i64 [ %rdx.next, %loop ], [ 0, %entry ]
%arrayidx = getelementptr inbounds i16, ptr %x, i32 %iv
%load0 = load i16, ptr %arrayidx, align 4
%conv0 = sext i16 %load0 to i32
%mul = mul nsw i32 %conv0, %conv0
%conv = sext i32 %mul to i64
%rdx.next = sub nsw i64 %rdx, %conv
%iv.next = add nuw nsw i32 %iv, 1
%exitcond = icmp eq i32 %iv.next, %n
br i1 %exitcond, label %exit, label %loop
exit:
%r.0.lcssa = phi i64 [ %rdx.next, %loop ]
ret i64 %r.0.lcssa
}
define i32 @print_mulacc_extended_const(ptr %start, ptr %end) {
; CHECK-LABEL: 'print_mulacc_extended_const'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VP0:%[0-9]+]]> = VF
; CHECK-NEXT: Live-in vp<[[VP1:%[0-9]+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VP2:%[0-9]+]]> = vector-trip-count
; CHECK-NEXT: vp<[[VP3:%[0-9]+]]> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: EMIT vp<[[VP3]]> = EXPAND SCEV (1 + (-1 * (ptrtoint ptr %start to i64)) + (ptrtoint ptr %end to i64))
; CHECK-NEXT: Successor(s): scalar.ph, vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: vp<[[VP4:%[0-9]+]]> = DERIVED-IV ir<%start> + vp<[[VP2]]> * ir<1>
; CHECK-NEXT: EMIT vp<[[VP5:%[0-9]+]]> = reduction-start-vector ir<0>, ir<0>, ir<1>
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[VP6:%[0-9]+]]> = CANONICAL-INDUCTION ir<0>, vp<%index.next>
; CHECK-NEXT: WIDEN-REDUCTION-PHI ir<%red> = phi vp<[[VP5]]>, vp<[[VP9:%[0-9]+]]>
; CHECK-NEXT: vp<[[VP7:%[0-9]+]]> = SCALAR-STEPS vp<[[VP6]]>, ir<1>, vp<[[VP0]]>
; CHECK-NEXT: EMIT vp<%next.gep> = ptradd ir<%start>, vp<[[VP7]]>
; CHECK-NEXT: vp<[[VP8:%[0-9]+]]> = vector-pointer vp<%next.gep>
; CHECK-NEXT: WIDEN ir<%l> = load vp<[[VP8]]>
; CHECK-NEXT: EXPRESSION vp<[[VP9]]> = ir<%red> + reduce.add (mul (ir<%l> zext to i32), (ir<63> zext to i32))
; CHECK-NEXT: EMIT vp<%index.next> = add nuw vp<[[VP6]]>, vp<[[VP1]]>
; CHECK-NEXT: EMIT branch-on-count vp<%index.next>, vp<[[VP2]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[VP11:%[0-9]+]]> = compute-reduction-result (add, in-loop) vp<[[VP9]]>
; CHECK-NEXT: EMIT vp<%cmp.n> = icmp eq vp<[[VP3]]>, vp<[[VP2]]>
; CHECK-NEXT: EMIT branch-on-cond vp<%cmp.n>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>:
; CHECK-NEXT: IR %red.next.lcssa = phi i32 [ %red.next, %loop ] (extra operand: vp<[[VP11]]> from middle.block)
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: EMIT-SCALAR vp<%bc.resume.val> = phi [ vp<[[VP4]]>, middle.block ], [ ir<%start>, ir-bb<entry> ]
; CHECK-NEXT: EMIT-SCALAR vp<%bc.merge.rdx> = phi [ vp<[[VP11]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %ptr.iv = phi ptr [ %start, %entry ], [ %gep.iv.next, %loop ] (extra operand: vp<%bc.resume.val> from scalar.ph)
; CHECK-NEXT: IR %red = phi i32 [ 0, %entry ], [ %red.next, %loop ] (extra operand: vp<%bc.merge.rdx> from scalar.ph)
; CHECK-NEXT: IR %l = load i8, ptr %ptr.iv, align 1
; CHECK-NEXT: IR %l.ext = zext i8 %l to i32
; CHECK-NEXT: IR %mul = mul i32 %l.ext, 63
; CHECK-NEXT: IR %red.next = add i32 %red, %mul
; CHECK-NEXT: IR %gep.iv.next = getelementptr i8, ptr %ptr.iv, i64 1
; CHECK-NEXT: IR %ec = icmp eq ptr %ptr.iv, %end
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%ptr.iv = phi ptr [ %start, %entry ], [ %gep.iv.next, %loop ]
%red = phi i32 [ 0, %entry ], [ %red.next, %loop ]
%l = load i8, ptr %ptr.iv, align 1
%l.ext = zext i8 %l to i32
%mul = mul i32 %l.ext, 63
%red.next = add i32 %red, %mul
%gep.iv.next = getelementptr i8, ptr %ptr.iv, i64 1
%ec = icmp eq ptr %ptr.iv, %end
br i1 %ec, label %exit, label %loop
exit:
ret i32 %red.next
}
define i32 @print_mulacc_extended_const_lhs(ptr %start, ptr %end) {
; CHECK-LABEL: 'print_mulacc_extended_const_lhs'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VP0:%[0-9]+]]> = VF
; CHECK-NEXT: Live-in vp<[[VP1:%[0-9]+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VP2:%[0-9]+]]> = vector-trip-count
; CHECK-NEXT: vp<[[VP3:%[0-9]+]]> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: EMIT vp<[[VP3]]> = EXPAND SCEV (1 + (-1 * (ptrtoint ptr %start to i64)) + (ptrtoint ptr %end to i64))
; CHECK-NEXT: Successor(s): scalar.ph, vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: vp<[[VP4:%[0-9]+]]> = DERIVED-IV ir<%start> + vp<[[VP2]]> * ir<1>
; CHECK-NEXT: EMIT vp<[[VP5:%[0-9]+]]> = reduction-start-vector ir<0>, ir<0>, ir<1>
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[VP6:%[0-9]+]]> = CANONICAL-INDUCTION ir<0>, vp<%index.next>
; CHECK-NEXT: WIDEN-REDUCTION-PHI ir<%red> = phi vp<[[VP5]]>, vp<[[VP9:%[0-9]+]]>
; CHECK-NEXT: vp<[[VP7:%[0-9]+]]> = SCALAR-STEPS vp<[[VP6]]>, ir<1>, vp<[[VP0]]>
; CHECK-NEXT: EMIT vp<%next.gep> = ptradd ir<%start>, vp<[[VP7]]>
; CHECK-NEXT: vp<[[VP8:%[0-9]+]]> = vector-pointer vp<%next.gep>
; CHECK-NEXT: WIDEN ir<%l> = load vp<[[VP8]]>
; CHECK-NEXT: WIDEN-CAST ir<%l.ext> = zext ir<%l> to i32
; CHECK-NEXT: EXPRESSION vp<[[VP9]]> = ir<%red> + reduce.add (mul ir<63>, ir<%l.ext>)
; CHECK-NEXT: EMIT vp<%index.next> = add nuw vp<[[VP6]]>, vp<[[VP1]]>
; CHECK-NEXT: EMIT branch-on-count vp<%index.next>, vp<[[VP2]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[VP11:%[0-9]+]]> = compute-reduction-result (add, in-loop) vp<[[VP9]]>
; CHECK-NEXT: EMIT vp<%cmp.n> = icmp eq vp<[[VP3]]>, vp<[[VP2]]>
; CHECK-NEXT: EMIT branch-on-cond vp<%cmp.n>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>:
; CHECK-NEXT: IR %red.next.lcssa = phi i32 [ %red.next, %loop ] (extra operand: vp<[[VP11]]> from middle.block)
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: EMIT-SCALAR vp<%bc.resume.val> = phi [ vp<[[VP4]]>, middle.block ], [ ir<%start>, ir-bb<entry> ]
; CHECK-NEXT: EMIT-SCALAR vp<%bc.merge.rdx> = phi [ vp<[[VP11]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %ptr.iv = phi ptr [ %start, %entry ], [ %gep.iv.next, %loop ] (extra operand: vp<%bc.resume.val> from scalar.ph)
; CHECK-NEXT: IR %red = phi i32 [ 0, %entry ], [ %red.next, %loop ] (extra operand: vp<%bc.merge.rdx> from scalar.ph)
; CHECK-NEXT: IR %l = load i8, ptr %ptr.iv, align 1
; CHECK-NEXT: IR %l.ext = zext i8 %l to i32
; CHECK-NEXT: IR %mul = mul i32 63, %l.ext
; CHECK-NEXT: IR %red.next = add i32 %red, %mul
; CHECK-NEXT: IR %gep.iv.next = getelementptr i8, ptr %ptr.iv, i64 1
; CHECK-NEXT: IR %ec = icmp eq ptr %ptr.iv, %end
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%ptr.iv = phi ptr [ %start, %entry ], [ %gep.iv.next, %loop ]
%red = phi i32 [ 0, %entry ], [ %red.next, %loop ]
%l = load i8, ptr %ptr.iv, align 1
%l.ext = zext i8 %l to i32
%mul = mul i32 63, %l.ext
%red.next = add i32 %red, %mul
%gep.iv.next = getelementptr i8, ptr %ptr.iv, i64 1
%ec = icmp eq ptr %ptr.iv, %end
br i1 %ec, label %exit, label %loop
exit:
ret i32 %red.next
}
; Constants >= 128 cannot be treated as sign-extended, so the expression shouldn't extend 128
define i32 @print_mulacc_not_extended_const(ptr %start, ptr %end) {
; CHECK-LABEL: 'print_mulacc_not_extended_const'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VP0:%[0-9]+]]> = VF
; CHECK-NEXT: Live-in vp<[[VP1:%[0-9]+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VP2:%[0-9]+]]> = vector-trip-count
; CHECK-NEXT: vp<[[VP3:%[0-9]+]]> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: EMIT vp<[[VP3]]> = EXPAND SCEV (1 + (-1 * (ptrtoint ptr %start to i64)) + (ptrtoint ptr %end to i64))
; CHECK-NEXT: Successor(s): scalar.ph, vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: vp<[[VP4:%[0-9]+]]> = DERIVED-IV ir<%start> + vp<[[VP2]]> * ir<1>
; CHECK-NEXT: EMIT vp<[[VP5:%[0-9]+]]> = reduction-start-vector ir<0>, ir<0>, ir<1>
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[VP6:%[0-9]+]]> = CANONICAL-INDUCTION ir<0>, vp<%index.next>
; CHECK-NEXT: WIDEN-REDUCTION-PHI ir<%red> = phi vp<[[VP5]]>, vp<[[VP9:%[0-9]+]]>
; CHECK-NEXT: vp<[[VP7:%[0-9]+]]> = SCALAR-STEPS vp<[[VP6]]>, ir<1>, vp<[[VP0]]>
; CHECK-NEXT: EMIT vp<%next.gep> = ptradd ir<%start>, vp<[[VP7]]>
; CHECK-NEXT: vp<[[VP8:%[0-9]+]]> = vector-pointer vp<%next.gep>
; CHECK-NEXT: WIDEN ir<%l> = load vp<[[VP8]]>
; CHECK-NEXT: WIDEN-CAST ir<%l.ext> = sext ir<%l> to i32
; CHECK-NEXT: EXPRESSION vp<[[VP9]]> = ir<%red> + reduce.add (mul ir<%l.ext>, ir<128>)
; CHECK-NEXT: EMIT vp<%index.next> = add nuw vp<[[VP6]]>, vp<[[VP1]]>
; CHECK-NEXT: EMIT branch-on-count vp<%index.next>, vp<[[VP2]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[VP11:%[0-9]+]]> = compute-reduction-result (add, in-loop) vp<[[VP9]]>
; CHECK-NEXT: EMIT vp<%cmp.n> = icmp eq vp<[[VP3]]>, vp<[[VP2]]>
; CHECK-NEXT: EMIT branch-on-cond vp<%cmp.n>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>:
; CHECK-NEXT: IR %red.next.lcssa = phi i32 [ %red.next, %loop ] (extra operand: vp<[[VP11]]> from middle.block)
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: EMIT-SCALAR vp<%bc.resume.val> = phi [ vp<[[VP4]]>, middle.block ], [ ir<%start>, ir-bb<entry> ]
; CHECK-NEXT: EMIT-SCALAR vp<%bc.merge.rdx> = phi [ vp<[[VP11]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %ptr.iv = phi ptr [ %start, %entry ], [ %gep.iv.next, %loop ] (extra operand: vp<%bc.resume.val> from scalar.ph)
; CHECK-NEXT: IR %red = phi i32 [ 0, %entry ], [ %red.next, %loop ] (extra operand: vp<%bc.merge.rdx> from scalar.ph)
; CHECK-NEXT: IR %l = load i8, ptr %ptr.iv, align 1
; CHECK-NEXT: IR %l.ext = sext i8 %l to i32
; CHECK-NEXT: IR %mul = mul i32 %l.ext, 128
; CHECK-NEXT: IR %red.next = add i32 %red, %mul
; CHECK-NEXT: IR %gep.iv.next = getelementptr i8, ptr %ptr.iv, i64 1
; CHECK-NEXT: IR %ec = icmp eq ptr %ptr.iv, %end
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%ptr.iv = phi ptr [ %start, %entry ], [ %gep.iv.next, %loop ]
%red = phi i32 [ 0, %entry ], [ %red.next, %loop ]
%l = load i8, ptr %ptr.iv, align 1
%l.ext = sext i8 %l to i32
%mul = mul i32 %l.ext, 128
%red.next = add i32 %red, %mul
%gep.iv.next = getelementptr i8, ptr %ptr.iv, i64 1
%ec = icmp eq ptr %ptr.iv, %end
br i1 %ec, label %exit, label %loop
exit:
%red.next.lcssa = phi i32 [ %red.next, %loop ]
ret i32 %red.next.lcssa
}
define i64 @print_ext_mulacc_extended_const(ptr %start, ptr %end) {
; CHECK-LABEL: 'print_ext_mulacc_extended_const'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VP0:%[0-9]+]]> = VF
; CHECK-NEXT: Live-in vp<[[VP1:%[0-9]+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VP2:%[0-9]+]]> = vector-trip-count
; CHECK-NEXT: vp<[[VP3:%[0-9]+]]> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: EMIT vp<[[VP3]]> = EXPAND SCEV (1 + (-1 * (ptrtoint ptr %start to i64)) + (ptrtoint ptr %end to i64))
; CHECK-NEXT: Successor(s): scalar.ph, vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: vp<[[VP4:%[0-9]+]]> = DERIVED-IV ir<%start> + vp<[[VP2]]> * ir<1>
; CHECK-NEXT: EMIT vp<[[VP5:%[0-9]+]]> = reduction-start-vector ir<0>, ir<0>, ir<1>
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[VP6:%[0-9]+]]> = CANONICAL-INDUCTION ir<0>, vp<%index.next>
; CHECK-NEXT: WIDEN-REDUCTION-PHI ir<%red> = phi vp<[[VP5]]>, vp<[[VP9:%[0-9]+]]>
; CHECK-NEXT: vp<[[VP7:%[0-9]+]]> = SCALAR-STEPS vp<[[VP6]]>, ir<1>, vp<[[VP0]]>
; CHECK-NEXT: EMIT vp<%next.gep> = ptradd ir<%start>, vp<[[VP7]]>
; CHECK-NEXT: vp<[[VP8:%[0-9]+]]> = vector-pointer vp<%next.gep>
; CHECK-NEXT: WIDEN ir<%l> = load vp<[[VP8]]>
; CHECK-NEXT: EXPRESSION vp<[[VP9]]> = ir<%red> + reduce.add (mul (ir<%l> zext to i64), (ir<63> zext to i64))
; CHECK-NEXT: EMIT vp<%index.next> = add nuw vp<[[VP6]]>, vp<[[VP1]]>
; CHECK-NEXT: EMIT branch-on-count vp<%index.next>, vp<[[VP2]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[VP11:%[0-9]+]]> = compute-reduction-result (add, in-loop) vp<[[VP9]]>
; CHECK-NEXT: EMIT vp<%cmp.n> = icmp eq vp<[[VP3]]>, vp<[[VP2]]>
; CHECK-NEXT: EMIT branch-on-cond vp<%cmp.n>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>:
; CHECK-NEXT: IR %red.next.lcssa = phi i64 [ %red.next, %loop ] (extra operand: vp<[[VP11]]> from middle.block)
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: EMIT-SCALAR vp<%bc.resume.val> = phi [ vp<[[VP4]]>, middle.block ], [ ir<%start>, ir-bb<entry> ]
; CHECK-NEXT: EMIT-SCALAR vp<%bc.merge.rdx> = phi [ vp<[[VP11]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %ptr.iv = phi ptr [ %start, %entry ], [ %gep.iv.next, %loop ] (extra operand: vp<%bc.resume.val> from scalar.ph)
; CHECK-NEXT: IR %red = phi i64 [ 0, %entry ], [ %red.next, %loop ] (extra operand: vp<%bc.merge.rdx> from scalar.ph)
; CHECK-NEXT: IR %l = load i8, ptr %ptr.iv, align 1
; CHECK-NEXT: IR %l.ext = zext i8 %l to i32
; CHECK-NEXT: IR %mul = mul i32 %l.ext, 63
; CHECK-NEXT: IR %mul.ext = zext i32 %mul to i64
; CHECK-NEXT: IR %red.next = add i64 %red, %mul.ext
; CHECK-NEXT: IR %gep.iv.next = getelementptr i8, ptr %ptr.iv, i64 1
; CHECK-NEXT: IR %ec = icmp eq ptr %ptr.iv, %end
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%ptr.iv = phi ptr [ %start, %entry ], [ %gep.iv.next, %loop ]
%red = phi i64 [ 0, %entry ], [ %red.next, %loop ]
%l = load i8, ptr %ptr.iv, align 1
%l.ext = zext i8 %l to i32
%mul = mul i32 %l.ext, 63
%mul.ext = zext i32 %mul to i64
%red.next = add i64 %red, %mul.ext
%gep.iv.next = getelementptr i8, ptr %ptr.iv, i64 1
%ec = icmp eq ptr %ptr.iv, %end
br i1 %ec, label %exit, label %loop
exit:
ret i64 %red.next
}
; Constants >= 128 cannot be treated as sign-extended, so the expression shouldn't extend 128
define i64 @print_ext_mulacc_not_extended_const(ptr %start, ptr %end) {
; CHECK-LABEL: 'print_ext_mulacc_not_extended_const'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VP0:%[0-9]+]]> = VF
; CHECK-NEXT: Live-in vp<[[VP1:%[0-9]+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VP2:%[0-9]+]]> = vector-trip-count
; CHECK-NEXT: vp<[[VP3:%[0-9]+]]> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: EMIT vp<[[VP3]]> = EXPAND SCEV (1 + (-1 * (ptrtoint ptr %start to i64)) + (ptrtoint ptr %end to i64))
; CHECK-NEXT: Successor(s): scalar.ph, vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: vp<[[VP4:%[0-9]+]]> = DERIVED-IV ir<%start> + vp<[[VP2]]> * ir<1>
; CHECK-NEXT: EMIT vp<[[VP5:%[0-9]+]]> = reduction-start-vector ir<0>, ir<0>, ir<1>
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[VP6:%[0-9]+]]> = CANONICAL-INDUCTION ir<0>, vp<%index.next>
; CHECK-NEXT: WIDEN-REDUCTION-PHI ir<%red> = phi vp<[[VP5]]>, vp<[[VP10:%[0-9]+]]>
; CHECK-NEXT: vp<[[VP7:%[0-9]+]]> = SCALAR-STEPS vp<[[VP6]]>, ir<1>, vp<[[VP0]]>
; CHECK-NEXT: EMIT vp<%next.gep> = ptradd ir<%start>, vp<[[VP7]]>
; CHECK-NEXT: vp<[[VP8:%[0-9]+]]> = vector-pointer vp<%next.gep>
; CHECK-NEXT: WIDEN ir<%l> = load vp<[[VP8]]>
; CHECK-NEXT: WIDEN-CAST ir<%l.ext> = sext ir<%l> to i32
; CHECK-NEXT: EMIT vp<[[VP9:%[0-9]+]]> = shl ir<%l.ext>, ir<7>
; CHECK-NEXT: EXPRESSION vp<[[VP10]]> = ir<%red> + reduce.add (vp<[[VP9]]> sext to i64)
; CHECK-NEXT: EMIT vp<%index.next> = add nuw vp<[[VP6]]>, vp<[[VP1]]>
; CHECK-NEXT: EMIT branch-on-count vp<%index.next>, vp<[[VP2]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[VP12:%[0-9]+]]> = compute-reduction-result (add, in-loop) vp<[[VP10]]>
; CHECK-NEXT: EMIT vp<%cmp.n> = icmp eq vp<[[VP3]]>, vp<[[VP2]]>
; CHECK-NEXT: EMIT branch-on-cond vp<%cmp.n>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>:
; CHECK-NEXT: IR %red.next.lcssa = phi i64 [ %red.next, %loop ] (extra operand: vp<[[VP12]]> from middle.block)
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: EMIT-SCALAR vp<%bc.resume.val> = phi [ vp<[[VP4]]>, middle.block ], [ ir<%start>, ir-bb<entry> ]
; CHECK-NEXT: EMIT-SCALAR vp<%bc.merge.rdx> = phi [ vp<[[VP12]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %ptr.iv = phi ptr [ %start, %entry ], [ %gep.iv.next, %loop ] (extra operand: vp<%bc.resume.val> from scalar.ph)
; CHECK-NEXT: IR %red = phi i64 [ 0, %entry ], [ %red.next, %loop ] (extra operand: vp<%bc.merge.rdx> from scalar.ph)
; CHECK-NEXT: IR %l = load i8, ptr %ptr.iv, align 1
; CHECK-NEXT: IR %l.ext = sext i8 %l to i32
; CHECK-NEXT: IR %mul = mul i32 %l.ext, 128
; CHECK-NEXT: IR %mul.ext = sext i32 %mul to i64
; CHECK-NEXT: IR %red.next = add i64 %red, %mul.ext
; CHECK-NEXT: IR %gep.iv.next = getelementptr i8, ptr %ptr.iv, i64 1
; CHECK-NEXT: IR %ec = icmp eq ptr %ptr.iv, %end
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%ptr.iv = phi ptr [ %start, %entry ], [ %gep.iv.next, %loop ]
%red = phi i64 [ 0, %entry ], [ %red.next, %loop ]
%l = load i8, ptr %ptr.iv, align 1
%l.ext = sext i8 %l to i32
%mul = mul i32 %l.ext, 128
%mul.ext = sext i32 %mul to i64
%red.next = add i64 %red, %mul.ext
%gep.iv.next = getelementptr i8, ptr %ptr.iv, i64 1
%ec = icmp eq ptr %ptr.iv, %end
br i1 %ec, label %exit, label %loop
exit:
%red.next.lcssa = phi i64 [ %red.next, %loop ]
ret i64 %red.next.lcssa
}
; This reduce.add(ext(mul(ext(A), ext(B)))) can't be turned into an
; ExtMulAccReduction VPExpressionRecipe since the mul has two users.
; It can however be turned into an ExtendedReduction since that one doesn't
; modify the mul's operands.
define i64 @print_ext_mul_two_uses(i64 %n, ptr %a, i16 %b, i32 %c) {
; CHECK-LABEL: 'print_ext_mul_two_uses'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VP0:%[0-9]+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VP1:%[0-9]+]]> = vector-trip-count
; CHECK-NEXT: vp<[[VP2:%[0-9]+]]> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: EMIT vp<[[VP2]]> = EXPAND SCEV (1 + %n)
; CHECK-NEXT: Successor(s): scalar.ph, vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: EMIT vp<[[VP3:%[0-9]+]]> = reduction-start-vector ir<0>, ir<0>, ir<1>
; CHECK-NEXT: WIDEN-CAST ir<%conv> = sext ir<%b> to i32
; CHECK-NEXT: WIDEN ir<%mul> = mul ir<%conv>, ir<%conv>
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[VP4:%[0-9]+]]> = CANONICAL-INDUCTION ir<0>, vp<%index.next>
; CHECK-NEXT: WIDEN-REDUCTION-PHI ir<%res2> = phi vp<[[VP3]]>, vp<[[VP5:%[0-9]+]]>
; CHECK-NEXT: CLONE ir<%load> = load ir<%a>
; CHECK-NEXT: EXPRESSION vp<[[VP5]]> = ir<%res2> + reduce.add (ir<%mul> zext to i64)
; CHECK-NEXT: EMIT vp<%index.next> = add nuw vp<[[VP4]]>, vp<[[VP0]]>
; CHECK-NEXT: EMIT branch-on-count vp<%index.next>, vp<[[VP1]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: WIDEN-CAST ir<%load.ext> = sext ir<%load> to i32
; CHECK-NEXT: WIDEN-CAST ir<%load.ext.ext> = sext ir<%load.ext> to i64
; CHECK-NEXT: EMIT vp<[[VP7:%[0-9]+]]> = compute-reduction-result (add, in-loop) vp<[[VP5]]>
; CHECK-NEXT: EMIT vp<[[VP8:%[0-9]+]]> = extract-last-part ir<%load.ext.ext>
; CHECK-NEXT: EMIT vp<%vector.recur.extract> = extract-last-lane vp<[[VP8]]>
; CHECK-NEXT: EMIT vp<%cmp.n> = icmp eq vp<[[VP2]]>, vp<[[VP1]]>
; CHECK-NEXT: EMIT branch-on-cond vp<%cmp.n>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>:
; CHECK-NEXT: IR %add.lcssa = phi i64 [ %add, %loop ] (extra operand: vp<[[VP7]]> from middle.block)
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: EMIT-SCALAR vp<%bc.resume.val> = phi [ vp<[[VP1]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: EMIT-SCALAR vp<%scalar.recur.init> = phi [ vp<%vector.recur.extract>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: EMIT-SCALAR vp<%bc.merge.rdx> = phi [ vp<[[VP7]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ] (extra operand: vp<%bc.resume.val> from scalar.ph)
; CHECK-NEXT: IR %res1 = phi i64 [ 0, %entry ], [ %load.ext.ext, %loop ] (extra operand: vp<%scalar.recur.init> from scalar.ph)
; CHECK-NEXT: IR %res2 = phi i64 [ 0, %entry ], [ %add, %loop ] (extra operand: vp<%bc.merge.rdx> from scalar.ph)
; CHECK-NEXT: IR %load = load i16, ptr %a, align 2
; CHECK-NEXT: IR %iv.next = add i64 %iv, 1
; CHECK-NEXT: IR %conv = sext i16 %b to i32
; CHECK-NEXT: IR %mul = mul i32 %conv, %conv
; CHECK-NEXT: IR %mul.ext = zext i32 %mul to i64
; CHECK-NEXT: IR %add = add i64 %res2, %mul.ext
; CHECK-NEXT: IR %second_use = or i32 %mul, %c
; CHECK-NEXT: IR %load.ext = sext i16 %load to i32
; CHECK-NEXT: IR %load.ext.ext = sext i32 %load.ext to i64
; CHECK-NEXT: IR %exitcond740.not = icmp eq i64 %iv, %n
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ]
%res1 = phi i64 [ 0, %entry ], [ %load.ext.ext, %loop ]
%res2 = phi i64 [ 0, %entry ], [ %add, %loop ]
%load = load i16, ptr %a, align 2
%iv.next = add i64 %iv, 1
%conv = sext i16 %b to i32
%mul = mul i32 %conv, %conv
%mul.ext = zext i32 %mul to i64
%add = add i64 %res2, %mul.ext
%second_use = or i32 %mul, %c ; this value is otherwise unused, but that's sufficient for the test
%load.ext = sext i16 %load to i32
%load.ext.ext = sext i32 %load.ext to i64
%exitcond740.not = icmp eq i64 %iv, %n
br i1 %exitcond740.not, label %exit, label %loop
exit:
ret i64 %add
}
define i32 @print_umax_reduction(ptr %y) {
; CHECK-LABEL: 'print_umax_reduction'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VP0:%[0-9]+]]> = VF
; CHECK-NEXT: Live-in vp<[[VP1:%[0-9]+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VP2:%[0-9]+]]> = vector-trip-count
; CHECK-NEXT: Live-in ir<100> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: Successor(s): scalar.ph, vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[VP3:%[0-9]+]]> = CANONICAL-INDUCTION ir<0>, vp<%index.next>
; CHECK-NEXT: WIDEN-REDUCTION-PHI ir<%red> = phi ir<0>, ir<%red.next>
; CHECK-NEXT: vp<[[VP4:%[0-9]+]]> = SCALAR-STEPS vp<[[VP3]]>, ir<1>, vp<[[VP0]]>
; CHECK-NEXT: CLONE ir<%gep> = getelementptr inbounds ir<%y>, vp<[[VP4]]>
; CHECK-NEXT: vp<[[VP5:%[0-9]+]]> = vector-pointer inbounds ir<%gep>
; CHECK-NEXT: WIDEN ir<%lv> = load vp<[[VP5]]>
; CHECK-NEXT: WIDEN-INTRINSIC ir<%red.next> = call llvm.umax(ir<%lv>, ir<%red>)
; CHECK-NEXT: EMIT vp<%index.next> = add nuw vp<[[VP3]]>, vp<[[VP1]]>
; CHECK-NEXT: EMIT branch-on-count vp<%index.next>, vp<[[VP2]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[VP7:%[0-9]+]]> = compute-reduction-result (umax) ir<%red.next>
; CHECK-NEXT: EMIT vp<%cmp.n> = icmp eq ir<100>, vp<[[VP2]]>
; CHECK-NEXT: EMIT branch-on-cond vp<%cmp.n>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>:
; CHECK-NEXT: IR %red.next.lcssa = phi i32 [ %red.next, %loop ] (extra operand: vp<[[VP7]]> from middle.block)
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: EMIT-SCALAR vp<%bc.resume.val> = phi [ vp<[[VP2]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: EMIT-SCALAR vp<%bc.merge.rdx> = phi [ vp<[[VP7]]>, middle.block ], [ ir<0>, ir-bb<entry> ]
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ] (extra operand: vp<%bc.resume.val> from scalar.ph)
; CHECK-NEXT: IR %red = phi i32 [ 0, %entry ], [ %red.next, %loop ] (extra operand: vp<%bc.merge.rdx> from scalar.ph)
; CHECK-NEXT: IR %gep = getelementptr inbounds i32, ptr %y, i64 %iv
; CHECK-NEXT: IR %lv = load i32, ptr %gep, align 4
; CHECK-NEXT: IR %red.next = call i32 @llvm.umax.i32(i32 %lv, i32 %red)
; CHECK-NEXT: IR %iv.next = add i64 %iv, 1
; CHECK-NEXT: IR %ec = icmp eq i64 %iv.next, 100
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ]
%red = phi i32 [ 0, %entry ], [ %red.next, %loop ]
%gep = getelementptr inbounds i32, ptr %y, i64 %iv
%lv = load i32, ptr %gep, align 4
%red.next = call i32 @llvm.umax(i32 %lv, i32 %red)
%iv.next = add i64 %iv, 1
%ec = icmp eq i64 %iv.next, 100
br i1 %ec, label %exit, label %loop
exit:
ret i32 %red.next
}