| //===- SSAUpdaterBulk.cpp - Unstructured SSA Update Tool ------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the SSAUpdaterBulk class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/SSAUpdaterBulk.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/IteratedDominanceFrontier.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/Value.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "ssaupdaterbulk" |
| |
| /// Helper function for finding a block which should have a value for the given |
| /// user. For PHI-nodes this block is the corresponding predecessor, for other |
| /// instructions it's their parent block. |
| static BasicBlock *getUserBB(Use *U) { |
| auto *User = cast<Instruction>(U->getUser()); |
| |
| if (auto *UserPN = dyn_cast<PHINode>(User)) |
| return UserPN->getIncomingBlock(*U); |
| else |
| return User->getParent(); |
| } |
| |
| /// Add a new variable to the SSA rewriter. This needs to be called before |
| /// AddAvailableValue or AddUse calls. |
| unsigned SSAUpdaterBulk::AddVariable(StringRef Name, Type *Ty) { |
| unsigned Var = Rewrites.size(); |
| LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var << ": initialized with Ty = " |
| << *Ty << ", Name = " << Name << "\n"); |
| RewriteInfo RI(Name, Ty); |
| Rewrites.push_back(RI); |
| return Var; |
| } |
| |
| /// Indicate that a rewritten value is available in the specified block with the |
| /// specified value. |
| void SSAUpdaterBulk::AddAvailableValue(unsigned Var, BasicBlock *BB, Value *V) { |
| assert(Var < Rewrites.size() && "Variable not found!"); |
| LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var |
| << ": added new available value " << *V << " in " |
| << BB->getName() << "\n"); |
| Rewrites[Var].Defines.emplace_back(BB, V); |
| } |
| |
| /// Record a use of the symbolic value. This use will be updated with a |
| /// rewritten value when RewriteAllUses is called. |
| void SSAUpdaterBulk::AddUse(unsigned Var, Use *U) { |
| assert(Var < Rewrites.size() && "Variable not found!"); |
| LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var << ": added a use" << *U->get() |
| << " in " << getUserBB(U)->getName() << "\n"); |
| Rewrites[Var].Uses.push_back(U); |
| } |
| |
| /// Given sets of UsingBlocks and DefBlocks, compute the set of LiveInBlocks. |
| /// This is basically a subgraph limited by DefBlocks and UsingBlocks. |
| static void |
| ComputeLiveInBlocks(const SmallPtrSetImpl<BasicBlock *> &UsingBlocks, |
| const SmallPtrSetImpl<BasicBlock *> &DefBlocks, |
| SmallPtrSetImpl<BasicBlock *> &LiveInBlocks, |
| PredIteratorCache &PredCache) { |
| // To determine liveness, we must iterate through the predecessors of blocks |
| // where the def is live. Blocks are added to the worklist if we need to |
| // check their predecessors. Start with all the using blocks. |
| SmallVector<BasicBlock *, 64> LiveInBlockWorklist(UsingBlocks.begin(), |
| UsingBlocks.end()); |
| |
| // Now that we have a set of blocks where the phi is live-in, recursively add |
| // their predecessors until we find the full region the value is live. |
| while (!LiveInBlockWorklist.empty()) { |
| BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); |
| |
| // The block really is live in here, insert it into the set. If already in |
| // the set, then it has already been processed. |
| if (!LiveInBlocks.insert(BB).second) |
| continue; |
| |
| // Since the value is live into BB, it is either defined in a predecessor or |
| // live into it to. Add the preds to the worklist unless they are a |
| // defining block. |
| for (BasicBlock *P : PredCache.get(BB)) { |
| // The value is not live into a predecessor if it defines the value. |
| if (DefBlocks.count(P)) |
| continue; |
| |
| // Otherwise it is, add to the worklist. |
| LiveInBlockWorklist.push_back(P); |
| } |
| } |
| } |
| |
| struct BBValueInfo { |
| Value *LiveInValue = nullptr; |
| Value *LiveOutValue = nullptr; |
| }; |
| |
| /// Perform all the necessary updates, including new PHI-nodes insertion and the |
| /// requested uses update. |
| void SSAUpdaterBulk::RewriteAllUses(DominatorTree *DT, |
| SmallVectorImpl<PHINode *> *InsertedPHIs) { |
| DenseMap<BasicBlock *, BBValueInfo> BBInfos; |
| for (RewriteInfo &R : Rewrites) { |
| BBInfos.clear(); |
| |
| // Compute locations for new phi-nodes. |
| // For that we need to initialize DefBlocks from definitions in R.Defines, |
| // UsingBlocks from uses in R.Uses, then compute LiveInBlocks, and then use |
| // this set for computing iterated dominance frontier (IDF). |
| // The IDF blocks are the blocks where we need to insert new phi-nodes. |
| ForwardIDFCalculator IDF(*DT); |
| LLVM_DEBUG(dbgs() << "SSAUpdater: rewriting " << R.Uses.size() |
| << " use(s)\n"); |
| |
| SmallPtrSet<BasicBlock *, 2> DefBlocks(llvm::from_range, |
| llvm::make_first_range(R.Defines)); |
| IDF.setDefiningBlocks(DefBlocks); |
| |
| SmallPtrSet<BasicBlock *, 2> UsingBlocks; |
| for (Use *U : R.Uses) |
| UsingBlocks.insert(getUserBB(U)); |
| |
| SmallVector<BasicBlock *, 32> IDFBlocks; |
| SmallPtrSet<BasicBlock *, 32> LiveInBlocks; |
| ComputeLiveInBlocks(UsingBlocks, DefBlocks, LiveInBlocks, PredCache); |
| IDF.setLiveInBlocks(LiveInBlocks); |
| IDF.calculate(IDFBlocks); |
| |
| // Reserve sufficient buckets to prevent map growth. [1] |
| BBInfos.reserve(LiveInBlocks.size() + DefBlocks.size()); |
| |
| for (auto [BB, V] : R.Defines) |
| BBInfos[BB].LiveOutValue = V; |
| |
| // We've computed IDF, now insert new phi-nodes there. |
| for (BasicBlock *FrontierBB : IDFBlocks) { |
| IRBuilder<> B(FrontierBB, FrontierBB->begin()); |
| PHINode *PN = B.CreatePHI(R.Ty, 0, R.Name); |
| BBInfos[FrontierBB].LiveInValue = PN; |
| if (InsertedPHIs) |
| InsertedPHIs->push_back(PN); |
| } |
| |
| // IsLiveOut indicates whether we are computing live-out values (true) or |
| // live-in values (false). |
| auto ComputeValue = [&](BasicBlock *BB, bool IsLiveOut) -> Value * { |
| BBValueInfo *BBInfo = &BBInfos[BB]; |
| |
| if (IsLiveOut && BBInfo->LiveOutValue) |
| return BBInfo->LiveOutValue; |
| |
| if (BBInfo->LiveInValue) |
| return BBInfo->LiveInValue; |
| |
| SmallVector<BBValueInfo *, 4> Stack = {BBInfo}; |
| Value *V = nullptr; |
| |
| while (DT->isReachableFromEntry(BB) && !PredCache.get(BB).empty() && |
| (BB = DT->getNode(BB)->getIDom()->getBlock())) { |
| BBInfo = &BBInfos[BB]; |
| |
| if (BBInfo->LiveOutValue) { |
| V = BBInfo->LiveOutValue; |
| break; |
| } |
| |
| if (BBInfo->LiveInValue) { |
| V = BBInfo->LiveInValue; |
| break; |
| } |
| |
| Stack.emplace_back(BBInfo); |
| } |
| |
| if (!V) |
| V = UndefValue::get(R.Ty); |
| |
| for (BBValueInfo *BBInfo : Stack) |
| // Loop above can insert new entries into the BBInfos map: assume the |
| // map shouldn't grow due to [1] and BBInfo references are valid. |
| BBInfo->LiveInValue = V; |
| |
| return V; |
| }; |
| |
| // Fill in arguments of the inserted PHIs. |
| for (BasicBlock *BB : IDFBlocks) { |
| auto *PHI = cast<PHINode>(&BB->front()); |
| for (BasicBlock *Pred : PredCache.get(BB)) |
| PHI->addIncoming(ComputeValue(Pred, /*IsLiveOut=*/true), Pred); |
| } |
| |
| // Rewrite actual uses with the inserted definitions. |
| SmallPtrSet<Use *, 4> ProcessedUses; |
| for (Use *U : R.Uses) { |
| if (!ProcessedUses.insert(U).second) |
| continue; |
| |
| auto *User = cast<Instruction>(U->getUser()); |
| BasicBlock *BB = getUserBB(U); |
| Value *V = ComputeValue(BB, /*IsLiveOut=*/BB != User->getParent()); |
| Value *OldVal = U->get(); |
| assert(OldVal && "Invalid use!"); |
| // Notify that users of the existing value that it is being replaced. |
| if (OldVal != V && OldVal->hasValueHandle()) |
| ValueHandleBase::ValueIsRAUWd(OldVal, V); |
| LLVM_DEBUG(dbgs() << "SSAUpdater: replacing " << *OldVal << " with " << *V |
| << "\n"); |
| U->set(V); |
| } |
| } |
| } |
| |
| // Perform a single pass of simplification over the worklist of PHIs. |
| // This should be called after RewriteAllUses() because simplifying PHIs |
| // immediately after creation would require updating all references to those |
| // PHIs in the BBValueInfo structures, which would necessitate additional |
| // reference tracking overhead. |
| static void simplifyPass(MutableArrayRef<PHINode *> Worklist, |
| const DataLayout &DL) { |
| for (PHINode *&PHI : Worklist) { |
| if (Value *Simplified = simplifyInstruction(PHI, DL)) { |
| PHI->replaceAllUsesWith(Simplified); |
| PHI->eraseFromParent(); |
| PHI = nullptr; // Mark as removed. |
| } |
| } |
| } |
| |
| #ifndef NDEBUG // Should this be under EXPENSIVE_CHECKS? |
| // New PHI nodes should not reference one another but they may reference |
| // themselves or existing PHI nodes, and existing PHI nodes may reference new |
| // PHI nodes. |
| static bool |
| PHIAreRefEachOther(const iterator_range<BasicBlock::phi_iterator> NewPHIs) { |
| SmallPtrSet<PHINode *, 8> NewPHISet; |
| for (PHINode &PN : NewPHIs) |
| NewPHISet.insert(&PN); |
| for (PHINode &PHI : NewPHIs) { |
| for (Value *V : PHI.incoming_values()) { |
| PHINode *IncPHI = dyn_cast<PHINode>(V); |
| if (IncPHI && IncPHI != &PHI && NewPHISet.contains(IncPHI)) |
| return true; |
| } |
| } |
| return false; |
| } |
| #endif |
| |
| static bool replaceIfIdentical(PHINode &PHI, PHINode &ReplPHI) { |
| if (!PHI.isIdenticalToWhenDefined(&ReplPHI)) |
| return false; |
| PHI.replaceAllUsesWith(&ReplPHI); |
| PHI.eraseFromParent(); |
| return true; |
| } |
| |
| namespace llvm { |
| |
| bool EliminateNewDuplicatePHINodes(BasicBlock *BB, |
| BasicBlock::phi_iterator FirstExistingPN) { |
| assert(!PHIAreRefEachOther(make_range(BB->phis().begin(), FirstExistingPN))); |
| |
| // Deduplicate new PHIs first to reduce the number of comparisons on the |
| // following new -> existing pass. |
| bool Changed = false; |
| for (auto I = BB->phis().begin(); I != FirstExistingPN; ++I) { |
| for (auto J = std::next(I); J != FirstExistingPN;) { |
| Changed |= replaceIfIdentical(*J++, *I); |
| } |
| } |
| |
| // Iterate over existing PHIs and replace identical new PHIs. |
| for (PHINode &ExistingPHI : make_range(FirstExistingPN, BB->phis().end())) { |
| auto I = BB->phis().begin(); |
| assert(I != FirstExistingPN); // Should be at least one new PHI. |
| do { |
| Changed |= replaceIfIdentical(*I++, ExistingPHI); |
| } while (I != FirstExistingPN); |
| if (BB->phis().begin() == FirstExistingPN) |
| return Changed; |
| } |
| return Changed; |
| } |
| |
| } // end namespace llvm |
| |
| static void deduplicatePass(ArrayRef<PHINode *> Worklist) { |
| SmallDenseMap<BasicBlock *, unsigned> BBs; |
| for (PHINode *PHI : Worklist) { |
| if (PHI) |
| ++BBs[PHI->getParent()]; |
| } |
| |
| for (auto [BB, NumNewPHIs] : BBs) { |
| auto FirstExistingPN = std::next(BB->phis().begin(), NumNewPHIs); |
| EliminateNewDuplicatePHINodes(BB, FirstExistingPN); |
| } |
| } |
| |
| void SSAUpdaterBulk::RewriteAndOptimizeAllUses(DominatorTree &DT) { |
| SmallVector<PHINode *, 4> PHIs; |
| RewriteAllUses(&DT, &PHIs); |
| if (PHIs.empty()) |
| return; |
| |
| simplifyPass(PHIs, PHIs.front()->getParent()->getDataLayout()); |
| deduplicatePass(PHIs); |
| } |