| //===- StraightLineStrengthReduce.cpp - -----------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements straight-line strength reduction (SLSR). Unlike loop |
| // strength reduction, this algorithm is designed to reduce arithmetic |
| // redundancy in straight-line code instead of loops. It has proven to be |
| // effective in simplifying arithmetic statements derived from an unrolled loop. |
| // It can also simplify the logic of SeparateConstOffsetFromGEP. |
| // |
| // There are many optimizations we can perform in the domain of SLSR. |
| // We look for strength reduction candidates in the following forms: |
| // |
| // Form Add: B + i * S |
| // Form Mul: (B + i) * S |
| // Form GEP: &B[i * S] |
| // |
| // where S is an integer variable, and i is a constant integer. If we found two |
| // candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2 |
| // in a simpler way with respect to S1 (index delta). For example, |
| // |
| // S1: X = B + i * S |
| // S2: Y = B + i' * S => X + (i' - i) * S |
| // |
| // S1: X = (B + i) * S |
| // S2: Y = (B + i') * S => X + (i' - i) * S |
| // |
| // S1: X = &B[i * S] |
| // S2: Y = &B[i' * S] => &X[(i' - i) * S] |
| // |
| // Note: (i' - i) * S is folded to the extent possible. |
| // |
| // For Add and GEP forms, we can also rewrite a candidate in a simpler way |
| // with respect to other dominating candidates if their B or S are different |
| // but other parts are the same. For example, |
| // |
| // Base Delta: |
| // S1: X = B + i * S |
| // S2: Y = B' + i * S => X + (B' - B) |
| // |
| // S1: X = &B [i * S] |
| // S2: Y = &B'[i * S] => X + (B' - B) |
| // |
| // Stride Delta: |
| // S1: X = B + i * S |
| // S2: Y = B + i * S' => X + i * (S' - S) |
| // |
| // S1: X = &B[i * S] |
| // S2: Y = &B[i * S'] => X + i * (S' - S) |
| // |
| // PS: Stride delta rewrite on Mul form is usually non-profitable, and Base |
| // delta rewrite sometimes is profitable, so we do not support them on Mul. |
| // |
| // This rewriting is in general a good idea. The code patterns we focus on |
| // usually come from loop unrolling, so the delta is likely the same |
| // across iterations and can be reused. When that happens, the optimized form |
| // takes only one add starting from the second iteration. |
| // |
| // When such rewriting is possible, we call S1 a "basis" of S2. When S2 has |
| // multiple bases, we choose to rewrite S2 with respect to its "immediate" |
| // basis, the basis that is the closest ancestor in the dominator tree. |
| // |
| // TODO: |
| // |
| // - Floating point arithmetics when fast math is enabled. |
| |
| #include "llvm/Transforms/Scalar/StraightLineStrengthReduce.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/DebugCounter.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <limits> |
| #include <list> |
| #include <queue> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace PatternMatch; |
| |
| #define DEBUG_TYPE "slsr" |
| |
| static const unsigned UnknownAddressSpace = |
| std::numeric_limits<unsigned>::max(); |
| |
| DEBUG_COUNTER(StraightLineStrengthReduceCounter, "slsr-counter", |
| "Controls whether rewriteCandidate is executed."); |
| |
| // Only for testing. |
| static cl::opt<bool> |
| EnablePoisonReuseGuard("enable-poison-reuse-guard", cl::init(true), |
| cl::desc("Enable poison-reuse guard")); |
| |
| namespace { |
| |
| class StraightLineStrengthReduceLegacyPass : public FunctionPass { |
| const DataLayout *DL = nullptr; |
| |
| public: |
| static char ID; |
| |
| StraightLineStrengthReduceLegacyPass() : FunctionPass(ID) { |
| initializeStraightLineStrengthReduceLegacyPassPass( |
| *PassRegistry::getPassRegistry()); |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addRequired<ScalarEvolutionWrapperPass>(); |
| AU.addRequired<TargetTransformInfoWrapperPass>(); |
| // We do not modify the shape of the CFG. |
| AU.setPreservesCFG(); |
| } |
| |
| bool doInitialization(Module &M) override { |
| DL = &M.getDataLayout(); |
| return false; |
| } |
| |
| bool runOnFunction(Function &F) override; |
| }; |
| |
| class StraightLineStrengthReduce { |
| public: |
| StraightLineStrengthReduce(const DataLayout *DL, DominatorTree *DT, |
| ScalarEvolution *SE, TargetTransformInfo *TTI) |
| : DL(DL), DT(DT), SE(SE), TTI(TTI) {} |
| |
| // SLSR candidate. Such a candidate must be in one of the forms described in |
| // the header comments. |
| struct Candidate { |
| enum Kind { |
| Invalid, // reserved for the default constructor |
| Add, // B + i * S |
| Mul, // (B + i) * S |
| GEP, // &B[..][i * S][..] |
| }; |
| |
| enum DKind { |
| InvalidDelta, // reserved for the default constructor |
| IndexDelta, // Delta is a constant from Index |
| BaseDelta, // Delta is a constant or variable from Base |
| StrideDelta, // Delta is a constant or variable from Stride |
| }; |
| |
| Candidate() = default; |
| Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, |
| Instruction *I, const SCEV *StrideSCEV) |
| : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I), |
| StrideSCEV(StrideSCEV) {} |
| |
| Kind CandidateKind = Invalid; |
| |
| const SCEV *Base = nullptr; |
| // TODO: Swap Index and Stride's name. |
| // Note that Index and Stride of a GEP candidate do not necessarily have the |
| // same integer type. In that case, during rewriting, Stride will be |
| // sign-extended or truncated to Index's type. |
| ConstantInt *Index = nullptr; |
| |
| Value *Stride = nullptr; |
| |
| // The instruction this candidate corresponds to. It helps us to rewrite a |
| // candidate with respect to its immediate basis. Note that one instruction |
| // can correspond to multiple candidates depending on how you associate the |
| // expression. For instance, |
| // |
| // (a + 1) * (b + 2) |
| // |
| // can be treated as |
| // |
| // <Base: a, Index: 1, Stride: b + 2> |
| // |
| // or |
| // |
| // <Base: b, Index: 2, Stride: a + 1> |
| Instruction *Ins = nullptr; |
| |
| // Points to the immediate basis of this candidate, or nullptr if we cannot |
| // find any basis for this candidate. |
| Candidate *Basis = nullptr; |
| |
| DKind DeltaKind = InvalidDelta; |
| |
| // Store SCEV of Stride to compute delta from different strides |
| const SCEV *StrideSCEV = nullptr; |
| |
| // Points to (Y - X) that will be used to rewrite this candidate. |
| Value *Delta = nullptr; |
| |
| /// Cost model: Evaluate the computational efficiency of the candidate. |
| /// |
| /// Efficiency levels (higher is better): |
| /// ZeroInst (5) - [Variable] or [Const] |
| /// OneInstOneVar (4) - [Variable + Const] or [Variable * Const] |
| /// OneInstTwoVar (3) - [Variable + Variable] or [Variable * Variable] |
| /// TwoInstOneVar (2) - [Const + Const * Variable] |
| /// TwoInstTwoVar (1) - [Variable + Const * Variable] |
| enum EfficiencyLevel : unsigned { |
| Unknown = 0, |
| TwoInstTwoVar = 1, |
| TwoInstOneVar = 2, |
| OneInstTwoVar = 3, |
| OneInstOneVar = 4, |
| ZeroInst = 5 |
| }; |
| |
| static EfficiencyLevel |
| getComputationEfficiency(Kind CandidateKind, const ConstantInt *Index, |
| const Value *Stride, const SCEV *Base = nullptr) { |
| bool IsConstantBase = false; |
| bool IsZeroBase = false; |
| // When evaluating the efficiency of a rewrite, if the Base's SCEV is |
| // not available, conservatively assume the base is not constant. |
| if (auto *ConstBase = dyn_cast_or_null<SCEVConstant>(Base)) { |
| IsConstantBase = true; |
| IsZeroBase = ConstBase->getValue()->isZero(); |
| } |
| |
| bool IsConstantStride = isa<ConstantInt>(Stride); |
| bool IsZeroStride = |
| IsConstantStride && cast<ConstantInt>(Stride)->isZero(); |
| // All constants |
| if (IsConstantBase && IsConstantStride) |
| return ZeroInst; |
| |
| // (Base + Index) * Stride |
| if (CandidateKind == Mul) { |
| if (IsZeroStride) |
| return ZeroInst; |
| if (Index->isZero()) |
| return (IsConstantStride || IsConstantBase) ? OneInstOneVar |
| : OneInstTwoVar; |
| |
| if (IsConstantBase) |
| return IsZeroBase && (Index->isOne() || Index->isMinusOne()) |
| ? ZeroInst |
| : OneInstOneVar; |
| |
| if (IsConstantStride) { |
| auto *CI = cast<ConstantInt>(Stride); |
| return (CI->isOne() || CI->isMinusOne()) ? OneInstOneVar |
| : TwoInstOneVar; |
| } |
| return TwoInstTwoVar; |
| } |
| |
| // Base + Index * Stride |
| assert(CandidateKind == Add || CandidateKind == GEP); |
| if (Index->isZero() || IsZeroStride) |
| return ZeroInst; |
| |
| bool IsSimpleIndex = Index->isOne() || Index->isMinusOne(); |
| |
| if (IsConstantBase) |
| return IsZeroBase ? (IsSimpleIndex ? ZeroInst : OneInstOneVar) |
| : (IsSimpleIndex ? OneInstOneVar : TwoInstOneVar); |
| |
| if (IsConstantStride) |
| return IsZeroStride ? ZeroInst : OneInstOneVar; |
| |
| if (IsSimpleIndex) |
| return OneInstTwoVar; |
| |
| return TwoInstTwoVar; |
| } |
| |
| // Evaluate if the given delta is profitable to rewrite this candidate. |
| bool isProfitableRewrite(const Value &Delta, const DKind DeltaKind) const { |
| // This function cannot accurately evaluate the profit of whole expression |
| // with context. A candidate (B + I * S) cannot express whether this |
| // instruction needs to compute on its own (I * S), which may be shared |
| // with other candidates or may need instructions to compute. |
| // If the rewritten form has the same strength, still rewrite to |
| // (X + Delta) since it may expose more CSE opportunities on Delta, as |
| // unrolled loops usually have identical Delta for each unrolled body. |
| // |
| // Note, this function should only be used on Index Delta rewrite. |
| // Base and Stride delta need context info to evaluate the register |
| // pressure impact from variable delta. |
| return getComputationEfficiency(CandidateKind, Index, Stride, Base) <= |
| getRewriteEfficiency(Delta, DeltaKind); |
| } |
| |
| // Evaluate the rewrite efficiency of this candidate with its Basis |
| EfficiencyLevel getRewriteEfficiency() const { |
| return Basis ? getRewriteEfficiency(*Delta, DeltaKind) : Unknown; |
| } |
| |
| // Evaluate the rewrite efficiency of this candidate with a given delta |
| EfficiencyLevel getRewriteEfficiency(const Value &Delta, |
| const DKind DeltaKind) const { |
| switch (DeltaKind) { |
| case BaseDelta: // [X + Delta] |
| return getComputationEfficiency( |
| CandidateKind, |
| ConstantInt::get(cast<IntegerType>(Delta.getType()), 1), &Delta); |
| case StrideDelta: // [X + Index * Delta] |
| return getComputationEfficiency(CandidateKind, Index, &Delta); |
| case IndexDelta: // [X + Delta * Stride] |
| return getComputationEfficiency(CandidateKind, |
| cast<ConstantInt>(&Delta), Stride); |
| default: |
| return Unknown; |
| } |
| } |
| |
| bool isHighEfficiency() const { |
| return getComputationEfficiency(CandidateKind, Index, Stride, Base) >= |
| OneInstOneVar; |
| } |
| |
| // Verify that this candidate has valid delta components relative to the |
| // basis |
| bool hasValidDelta(const Candidate &Basis) const { |
| switch (DeltaKind) { |
| case IndexDelta: |
| // Index differs, Base and Stride must match |
| return Base == Basis.Base && StrideSCEV == Basis.StrideSCEV; |
| case StrideDelta: |
| // Stride differs, Base and Index must match |
| return Base == Basis.Base && Index == Basis.Index; |
| case BaseDelta: |
| // Base differs, Stride and Index must match |
| return StrideSCEV == Basis.StrideSCEV && Index == Basis.Index; |
| default: |
| return false; |
| } |
| } |
| }; |
| |
| bool runOnFunction(Function &F); |
| |
| private: |
| // Fetch straight-line basis for rewriting C, update C.Basis to point to it, |
| // and store the delta between C and its Basis in C.Delta. |
| void setBasisAndDeltaFor(Candidate &C); |
| // Returns whether the candidate can be folded into an addressing mode. |
| bool isFoldable(const Candidate &C, TargetTransformInfo *TTI); |
| |
| // Checks whether I is in a candidate form. If so, adds all the matching forms |
| // to Candidates, and tries to find the immediate basis for each of them. |
| void allocateCandidatesAndFindBasis(Instruction *I); |
| |
| // Allocate candidates and find bases for Add instructions. |
| void allocateCandidatesAndFindBasisForAdd(Instruction *I); |
| |
| // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a |
| // candidate. |
| void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS, |
| Instruction *I); |
| // Allocate candidates and find bases for Mul instructions. |
| void allocateCandidatesAndFindBasisForMul(Instruction *I); |
| |
| // Splits LHS into Base + Index and, if succeeds, calls |
| // allocateCandidatesAndFindBasis. |
| void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS, |
| Instruction *I); |
| |
| // Allocate candidates and find bases for GetElementPtr instructions. |
| void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP); |
| |
| // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate |
| // basis. |
| void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B, |
| ConstantInt *Idx, Value *S, |
| Instruction *I); |
| |
| // Rewrites candidate C with respect to Basis. |
| void rewriteCandidate(const Candidate &C); |
| |
| // Emit code that computes the "bump" from Basis to C. |
| static Value *emitBump(const Candidate &Basis, const Candidate &C, |
| IRBuilder<> &Builder, const DataLayout *DL); |
| |
| const DataLayout *DL = nullptr; |
| DominatorTree *DT = nullptr; |
| ScalarEvolution *SE; |
| TargetTransformInfo *TTI = nullptr; |
| std::list<Candidate> Candidates; |
| |
| // Map from SCEV to instructions that represent the value, |
| // instructions are sorted in depth-first order. |
| DenseMap<const SCEV *, SmallSetVector<Instruction *, 2>> SCEVToInsts; |
| |
| // Record the dependency between instructions. If C.Basis == B, we would have |
| // {B.Ins -> {C.Ins, ...}}. |
| MapVector<Instruction *, std::vector<Instruction *>> DependencyGraph; |
| |
| // Map between each instruction and its possible candidates. |
| DenseMap<Instruction *, SmallVector<Candidate *, 3>> RewriteCandidates; |
| |
| // All instructions that have candidates sort in topological order based on |
| // dependency graph, from roots to leaves. |
| std::vector<Instruction *> SortedCandidateInsts; |
| |
| // Record all instructions that are already rewritten and will be removed |
| // later. |
| std::vector<Instruction *> DeadInstructions; |
| |
| // Classify candidates against Delta kind |
| class CandidateDictTy { |
| public: |
| using CandsTy = SmallVector<Candidate *, 8>; |
| using BBToCandsTy = DenseMap<const BasicBlock *, CandsTy>; |
| |
| private: |
| // Index delta Basis must have the same (Base, StrideSCEV, Inst.Type) |
| using IndexDeltaKeyTy = std::tuple<const SCEV *, const SCEV *, Type *>; |
| DenseMap<IndexDeltaKeyTy, BBToCandsTy> IndexDeltaCandidates; |
| |
| // Base delta Basis must have the same (StrideSCEV, Index, Inst.Type) |
| using BaseDeltaKeyTy = std::tuple<const SCEV *, ConstantInt *, Type *>; |
| DenseMap<BaseDeltaKeyTy, BBToCandsTy> BaseDeltaCandidates; |
| |
| // Stride delta Basis must have the same (Base, Index, Inst.Type) |
| using StrideDeltaKeyTy = std::tuple<const SCEV *, ConstantInt *, Type *>; |
| DenseMap<StrideDeltaKeyTy, BBToCandsTy> StrideDeltaCandidates; |
| |
| public: |
| // TODO: Disable index delta on GEP after we completely move |
| // from typed GEP to PtrAdd. |
| const BBToCandsTy *getCandidatesWithDeltaKind(const Candidate &C, |
| Candidate::DKind K) const { |
| assert(K != Candidate::InvalidDelta); |
| if (K == Candidate::IndexDelta) { |
| IndexDeltaKeyTy IndexDeltaKey(C.Base, C.StrideSCEV, C.Ins->getType()); |
| auto It = IndexDeltaCandidates.find(IndexDeltaKey); |
| if (It != IndexDeltaCandidates.end()) |
| return &It->second; |
| } else if (K == Candidate::BaseDelta) { |
| BaseDeltaKeyTy BaseDeltaKey(C.StrideSCEV, C.Index, C.Ins->getType()); |
| auto It = BaseDeltaCandidates.find(BaseDeltaKey); |
| if (It != BaseDeltaCandidates.end()) |
| return &It->second; |
| } else { |
| assert(K == Candidate::StrideDelta); |
| StrideDeltaKeyTy StrideDeltaKey(C.Base, C.Index, C.Ins->getType()); |
| auto It = StrideDeltaCandidates.find(StrideDeltaKey); |
| if (It != StrideDeltaCandidates.end()) |
| return &It->second; |
| } |
| return nullptr; |
| } |
| |
| // Pointers to C must remain valid until CandidateDict is cleared. |
| void add(Candidate &C) { |
| Type *ValueType = C.Ins->getType(); |
| BasicBlock *BB = C.Ins->getParent(); |
| IndexDeltaKeyTy IndexDeltaKey(C.Base, C.StrideSCEV, ValueType); |
| BaseDeltaKeyTy BaseDeltaKey(C.StrideSCEV, C.Index, ValueType); |
| StrideDeltaKeyTy StrideDeltaKey(C.Base, C.Index, ValueType); |
| IndexDeltaCandidates[IndexDeltaKey][BB].push_back(&C); |
| BaseDeltaCandidates[BaseDeltaKey][BB].push_back(&C); |
| StrideDeltaCandidates[StrideDeltaKey][BB].push_back(&C); |
| } |
| // Remove all mappings from set |
| void clear() { |
| IndexDeltaCandidates.clear(); |
| BaseDeltaCandidates.clear(); |
| StrideDeltaCandidates.clear(); |
| } |
| } CandidateDict; |
| |
| const SCEV *getAndRecordSCEV(Value *V) { |
| auto *S = SE->getSCEV(V); |
| if (isa<Instruction>(V) && !(isa<SCEVCouldNotCompute>(S) || |
| isa<SCEVUnknown>(S) || isa<SCEVConstant>(S))) |
| SCEVToInsts[S].insert(cast<Instruction>(V)); |
| |
| return S; |
| } |
| |
| bool candidatePredicate(Candidate *Basis, Candidate &C, Candidate::DKind K); |
| |
| bool searchFrom(const CandidateDictTy::BBToCandsTy &BBToCands, Candidate &C, |
| Candidate::DKind K); |
| |
| // Get the nearest instruction before CI that represents the value of S, |
| // return nullptr if no instruction is associated with S or S is not a |
| // reusable expression. |
| Value *getNearestValueOfSCEV(const SCEV *S, const Instruction *CI) const { |
| if (isa<SCEVCouldNotCompute>(S)) |
| return nullptr; |
| |
| if (auto *SU = dyn_cast<SCEVUnknown>(S)) |
| return SU->getValue(); |
| if (auto *SC = dyn_cast<SCEVConstant>(S)) |
| return SC->getValue(); |
| |
| auto It = SCEVToInsts.find(S); |
| if (It == SCEVToInsts.end()) |
| return nullptr; |
| |
| // Instructions are sorted in depth-first order, so search for the nearest |
| // instruction by walking the list in reverse order. |
| for (Instruction *I : reverse(It->second)) |
| if (DT->dominates(I, CI)) |
| return I; |
| |
| return nullptr; |
| } |
| |
| struct DeltaInfo { |
| Candidate *Cand; |
| Candidate::DKind DeltaKind; |
| Value *Delta; |
| |
| DeltaInfo() |
| : Cand(nullptr), DeltaKind(Candidate::InvalidDelta), Delta(nullptr) {} |
| DeltaInfo(Candidate *Cand, Candidate::DKind DeltaKind, Value *Delta) |
| : Cand(Cand), DeltaKind(DeltaKind), Delta(Delta) {} |
| operator bool() const { return Cand != nullptr; } |
| }; |
| |
| friend raw_ostream &operator<<(raw_ostream &OS, const DeltaInfo &DI); |
| |
| DeltaInfo compressPath(Candidate &C, Candidate *Basis) const; |
| |
| Candidate *pickRewriteCandidate(Instruction *I) const; |
| void sortCandidateInstructions(); |
| Value *getDelta(const Candidate &C, const Candidate &Basis, |
| Candidate::DKind K) const; |
| static bool isSimilar(Candidate &C, Candidate &Basis, Candidate::DKind K); |
| |
| // Add Basis -> C in DependencyGraph and propagate |
| // C.Stride and C.Delta's dependency to C |
| void addDependency(Candidate &C, Candidate *Basis) { |
| if (Basis) |
| DependencyGraph[Basis->Ins].emplace_back(C.Ins); |
| |
| // If any candidate of Inst has a basis, then Inst will be rewritten, |
| // C must be rewritten after rewriting Inst, so we need to propagate |
| // the dependency to C |
| auto PropagateDependency = [&](Instruction *Inst) { |
| if (auto CandsIt = RewriteCandidates.find(Inst); |
| CandsIt != RewriteCandidates.end() && |
| llvm::any_of(CandsIt->second, |
| [](Candidate *Cand) { return Cand->Basis; })) |
| DependencyGraph[Inst].emplace_back(C.Ins); |
| }; |
| |
| // If C has a variable delta and the delta is a candidate, |
| // propagate its dependency to C |
| if (auto *DeltaInst = dyn_cast_or_null<Instruction>(C.Delta)) |
| PropagateDependency(DeltaInst); |
| |
| // If the stride is a candidate, propagate its dependency to C |
| if (auto *StrideInst = dyn_cast<Instruction>(C.Stride)) |
| PropagateDependency(StrideInst); |
| }; |
| }; |
| |
| inline raw_ostream &operator<<(raw_ostream &OS, |
| const StraightLineStrengthReduce::Candidate &C) { |
| OS << "Ins: " << *C.Ins << "\n Base: " << *C.Base |
| << "\n Index: " << *C.Index << "\n Stride: " << *C.Stride |
| << "\n StrideSCEV: " << *C.StrideSCEV; |
| if (C.Basis) |
| OS << "\n Delta: " << *C.Delta << "\n Basis: \n [ " << *C.Basis << " ]"; |
| return OS; |
| } |
| |
| [[maybe_unused]] LLVM_DUMP_METHOD inline raw_ostream & |
| operator<<(raw_ostream &OS, const StraightLineStrengthReduce::DeltaInfo &DI) { |
| OS << "Cand: " << *DI.Cand << "\n"; |
| OS << "Delta Kind: "; |
| switch (DI.DeltaKind) { |
| case StraightLineStrengthReduce::Candidate::IndexDelta: |
| OS << "Index"; |
| break; |
| case StraightLineStrengthReduce::Candidate::BaseDelta: |
| OS << "Base"; |
| break; |
| case StraightLineStrengthReduce::Candidate::StrideDelta: |
| OS << "Stride"; |
| break; |
| default: |
| break; |
| } |
| OS << "\nDelta: " << *DI.Delta; |
| return OS; |
| } |
| |
| } // end anonymous namespace |
| |
| char StraightLineStrengthReduceLegacyPass::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(StraightLineStrengthReduceLegacyPass, "slsr", |
| "Straight line strength reduction", false, false) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| INITIALIZE_PASS_END(StraightLineStrengthReduceLegacyPass, "slsr", |
| "Straight line strength reduction", false, false) |
| |
| FunctionPass *llvm::createStraightLineStrengthReducePass() { |
| return new StraightLineStrengthReduceLegacyPass(); |
| } |
| |
| // A helper function that unifies the bitwidth of A and B. |
| static void unifyBitWidth(APInt &A, APInt &B) { |
| if (A.getBitWidth() < B.getBitWidth()) |
| A = A.sext(B.getBitWidth()); |
| else if (A.getBitWidth() > B.getBitWidth()) |
| B = B.sext(A.getBitWidth()); |
| } |
| |
| Value *StraightLineStrengthReduce::getDelta(const Candidate &C, |
| const Candidate &Basis, |
| Candidate::DKind K) const { |
| if (K == Candidate::IndexDelta) { |
| APInt Idx = C.Index->getValue(); |
| APInt BasisIdx = Basis.Index->getValue(); |
| unifyBitWidth(Idx, BasisIdx); |
| APInt IndexDelta = Idx - BasisIdx; |
| IntegerType *DeltaType = |
| IntegerType::get(C.Ins->getContext(), IndexDelta.getBitWidth()); |
| return ConstantInt::get(DeltaType, IndexDelta); |
| } else if (K == Candidate::BaseDelta || K == Candidate::StrideDelta) { |
| const SCEV *BasisPart = |
| (K == Candidate::BaseDelta) ? Basis.Base : Basis.StrideSCEV; |
| const SCEV *CandPart = (K == Candidate::BaseDelta) ? C.Base : C.StrideSCEV; |
| const SCEV *Diff = SE->getMinusSCEV(CandPart, BasisPart); |
| return getNearestValueOfSCEV(Diff, C.Ins); |
| } |
| return nullptr; |
| } |
| |
| bool StraightLineStrengthReduce::isSimilar(Candidate &C, Candidate &Basis, |
| Candidate::DKind K) { |
| bool SameType = false; |
| switch (K) { |
| case Candidate::StrideDelta: |
| SameType = C.StrideSCEV->getType() == Basis.StrideSCEV->getType(); |
| break; |
| case Candidate::BaseDelta: |
| SameType = C.Base->getType() == Basis.Base->getType(); |
| break; |
| case Candidate::IndexDelta: |
| SameType = true; |
| break; |
| default:; |
| } |
| return SameType && Basis.Ins != C.Ins && |
| Basis.CandidateKind == C.CandidateKind; |
| } |
| |
| // Try to find a Delta that C can reuse Basis to rewrite. |
| // Set C.Delta, C.Basis, and C.DeltaKind if found. |
| // Return true if found a constant delta. |
| // Return false if not found or the delta is not a constant. |
| bool StraightLineStrengthReduce::candidatePredicate(Candidate *Basis, |
| Candidate &C, |
| Candidate::DKind K) { |
| SmallVector<Instruction *> DropPoisonGeneratingInsts; |
| // Ensure the IR of Basis->Ins is not more poisonous than its SCEV. |
| if (!isSimilar(C, *Basis, K) || |
| (EnablePoisonReuseGuard && |
| !SE->canReuseInstruction(SE->getSCEV(Basis->Ins), Basis->Ins, |
| DropPoisonGeneratingInsts))) |
| return false; |
| |
| assert(DT->dominates(Basis->Ins, C.Ins)); |
| Value *Delta = getDelta(C, *Basis, K); |
| if (!Delta) |
| return false; |
| |
| // IndexDelta rewrite is not always profitable, e.g., |
| // X = B + 8 * S |
| // Y = B + S, |
| // rewriting Y to X - 7 * S is probably a bad idea. |
| // So, we need to check if the rewrite form's computation efficiency |
| // is better than the original form. |
| if (K == Candidate::IndexDelta && |
| !C.isProfitableRewrite(*Delta, Candidate::IndexDelta)) |
| return false; |
| |
| // If there is a Delta that we can reuse Basis to rewrite C, |
| // clean up DropPoisonGeneratingInsts returned by successful |
| // SE->canReuseInstruction() |
| for (Instruction *I : DropPoisonGeneratingInsts) |
| I->dropPoisonGeneratingAnnotations(); |
| |
| // Record delta if none has been found yet, or the new delta is |
| // a constant that is better than the existing delta. |
| if (!C.Delta || isa<ConstantInt>(Delta)) { |
| C.Delta = Delta; |
| C.Basis = Basis; |
| C.DeltaKind = K; |
| } |
| return isa<ConstantInt>(C.Delta); |
| } |
| |
| // return true if find a Basis with constant delta and stop searching, |
| // return false if did not find a Basis or the delta is not a constant |
| // and continue searching for a Basis with constant delta |
| bool StraightLineStrengthReduce::searchFrom( |
| const CandidateDictTy::BBToCandsTy &BBToCands, Candidate &C, |
| Candidate::DKind K) { |
| |
| // Stride delta rewrite on Mul form is usually non-profitable, and Base |
| // delta rewrite sometimes is profitable, so we do not support them on Mul. |
| if (C.CandidateKind == Candidate::Mul && K != Candidate::IndexDelta) |
| return false; |
| |
| // Search dominating candidates by walking the immediate-dominator chain |
| // from the candidate's defining block upward. Visiting blocks in this |
| // order ensures we prefer the closest dominating basis. |
| const BasicBlock *BB = C.Ins->getParent(); |
| while (BB) { |
| auto It = BBToCands.find(BB); |
| if (It != BBToCands.end()) |
| for (Candidate *Basis : reverse(It->second)) |
| if (candidatePredicate(Basis, C, K)) |
| return true; |
| |
| const DomTreeNode *Node = DT->getNode(BB); |
| if (!Node) |
| break; |
| Node = Node->getIDom(); |
| BB = Node ? Node->getBlock() : nullptr; |
| } |
| return false; |
| } |
| |
| void StraightLineStrengthReduce::setBasisAndDeltaFor(Candidate &C) { |
| if (const auto *BaseDeltaCandidates = |
| CandidateDict.getCandidatesWithDeltaKind(C, Candidate::BaseDelta)) |
| if (searchFrom(*BaseDeltaCandidates, C, Candidate::BaseDelta)) { |
| LLVM_DEBUG(dbgs() << "Found delta from Base: " << *C.Delta << "\n"); |
| return; |
| } |
| |
| if (const auto *StrideDeltaCandidates = |
| CandidateDict.getCandidatesWithDeltaKind(C, Candidate::StrideDelta)) |
| if (searchFrom(*StrideDeltaCandidates, C, Candidate::StrideDelta)) { |
| LLVM_DEBUG(dbgs() << "Found delta from Stride: " << *C.Delta << "\n"); |
| return; |
| } |
| |
| if (const auto *IndexDeltaCandidates = |
| CandidateDict.getCandidatesWithDeltaKind(C, Candidate::IndexDelta)) |
| if (searchFrom(*IndexDeltaCandidates, C, Candidate::IndexDelta)) { |
| LLVM_DEBUG(dbgs() << "Found delta from Index: " << *C.Delta << "\n"); |
| return; |
| } |
| |
| // If we did not find a constant delta, we might have found a variable delta |
| if (C.Delta) { |
| LLVM_DEBUG({ |
| dbgs() << "Found delta from "; |
| if (C.DeltaKind == Candidate::BaseDelta) |
| dbgs() << "Base: "; |
| else |
| dbgs() << "Stride: "; |
| dbgs() << *C.Delta << "\n"; |
| }); |
| assert(C.DeltaKind != Candidate::InvalidDelta && C.Basis); |
| } |
| } |
| |
| // Compress the path from `Basis` to the deepest Basis in the Basis chain |
| // to avoid non-profitable data dependency and improve ILP. |
| // X = A + 1 |
| // Y = X + 1 |
| // Z = Y + 1 |
| // -> |
| // X = A + 1 |
| // Y = A + 2 |
| // Z = A + 3 |
| // Return the delta info for C aginst the new Basis |
| auto StraightLineStrengthReduce::compressPath(Candidate &C, |
| Candidate *Basis) const |
| -> DeltaInfo { |
| if (!Basis || !Basis->Basis || C.CandidateKind == Candidate::Mul) |
| return {}; |
| Candidate *Root = Basis; |
| Value *NewDelta = nullptr; |
| auto NewKind = Candidate::InvalidDelta; |
| |
| while (Root->Basis) { |
| Candidate *NextRoot = Root->Basis; |
| if (C.Base == NextRoot->Base && C.StrideSCEV == NextRoot->StrideSCEV && |
| isSimilar(C, *NextRoot, Candidate::IndexDelta)) { |
| ConstantInt *CI = |
| cast<ConstantInt>(getDelta(C, *NextRoot, Candidate::IndexDelta)); |
| if (CI->isZero() || CI->isOne() || isa<SCEVConstant>(C.StrideSCEV)) { |
| Root = NextRoot; |
| NewKind = Candidate::IndexDelta; |
| NewDelta = CI; |
| continue; |
| } |
| } |
| |
| const SCEV *CandPart = nullptr; |
| const SCEV *BasisPart = nullptr; |
| auto CurrKind = Candidate::InvalidDelta; |
| if (C.Base == NextRoot->Base && C.Index == NextRoot->Index) { |
| CandPart = C.StrideSCEV; |
| BasisPart = NextRoot->StrideSCEV; |
| CurrKind = Candidate::StrideDelta; |
| } else if (C.StrideSCEV == NextRoot->StrideSCEV && |
| C.Index == NextRoot->Index) { |
| CandPart = C.Base; |
| BasisPart = NextRoot->Base; |
| CurrKind = Candidate::BaseDelta; |
| } else |
| break; |
| |
| assert(CandPart && BasisPart); |
| if (!isSimilar(C, *NextRoot, CurrKind)) |
| break; |
| |
| if (auto DeltaVal = |
| dyn_cast<SCEVConstant>(SE->getMinusSCEV(CandPart, BasisPart))) { |
| Root = NextRoot; |
| NewDelta = DeltaVal->getValue(); |
| NewKind = CurrKind; |
| } else |
| break; |
| } |
| |
| if (Root != Basis) { |
| assert(NewKind != Candidate::InvalidDelta && NewDelta); |
| LLVM_DEBUG(dbgs() << "Found new Basis with " << *NewDelta |
| << " from path compression.\n"); |
| return {Root, NewKind, NewDelta}; |
| } |
| |
| return {}; |
| } |
| |
| // Topologically sort candidate instructions based on their relationship in |
| // dependency graph. |
| void StraightLineStrengthReduce::sortCandidateInstructions() { |
| SortedCandidateInsts.clear(); |
| // An instruction may have multiple candidates that get different Basis |
| // instructions, and each candidate can get dependencies from Basis and |
| // Stride when Stride will also be rewritten by SLSR. Hence, an instruction |
| // may have multiple dependencies. Use InDegree to ensure all dependencies |
| // processed before processing itself. |
| DenseMap<Instruction *, int> InDegree; |
| for (auto &KV : DependencyGraph) { |
| InDegree.try_emplace(KV.first, 0); |
| |
| for (auto *Child : KV.second) { |
| InDegree[Child]++; |
| } |
| } |
| std::queue<Instruction *> WorkList; |
| DenseSet<Instruction *> Visited; |
| |
| for (auto &KV : DependencyGraph) |
| if (InDegree[KV.first] == 0) |
| WorkList.push(KV.first); |
| |
| while (!WorkList.empty()) { |
| Instruction *I = WorkList.front(); |
| WorkList.pop(); |
| if (!Visited.insert(I).second) |
| continue; |
| |
| SortedCandidateInsts.push_back(I); |
| |
| for (auto *Next : DependencyGraph[I]) { |
| auto &Degree = InDegree[Next]; |
| if (--Degree == 0) |
| WorkList.push(Next); |
| } |
| } |
| |
| assert(SortedCandidateInsts.size() == DependencyGraph.size() && |
| "Dependency graph should not have cycles"); |
| } |
| |
| auto StraightLineStrengthReduce::pickRewriteCandidate(Instruction *I) const |
| -> Candidate * { |
| // Return the candidate of instruction I that has the highest profit. |
| auto It = RewriteCandidates.find(I); |
| if (It == RewriteCandidates.end()) |
| return nullptr; |
| |
| Candidate *BestC = nullptr; |
| auto BestEfficiency = Candidate::Unknown; |
| for (Candidate *C : reverse(It->second)) |
| if (C->Basis) { |
| auto Efficiency = C->getRewriteEfficiency(); |
| if (Efficiency > BestEfficiency) { |
| BestEfficiency = Efficiency; |
| BestC = C; |
| } |
| } |
| |
| return BestC; |
| } |
| |
| static bool isGEPFoldable(GetElementPtrInst *GEP, |
| const TargetTransformInfo *TTI) { |
| SmallVector<const Value *, 4> Indices(GEP->indices()); |
| return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(), |
| Indices) == TargetTransformInfo::TCC_Free; |
| } |
| |
| // Returns whether (Base + Index * Stride) can be folded to an addressing mode. |
| static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride, |
| TargetTransformInfo *TTI) { |
| // Index->getSExtValue() may crash if Index is wider than 64-bit. |
| return Index->getBitWidth() <= 64 && |
| TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true, |
| Index->getSExtValue(), UnknownAddressSpace); |
| } |
| |
| bool StraightLineStrengthReduce::isFoldable(const Candidate &C, |
| TargetTransformInfo *TTI) { |
| if (C.CandidateKind == Candidate::Add) |
| return isAddFoldable(C.Base, C.Index, C.Stride, TTI); |
| if (C.CandidateKind == Candidate::GEP) |
| return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI); |
| return false; |
| } |
| |
| void StraightLineStrengthReduce::allocateCandidatesAndFindBasis( |
| Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, |
| Instruction *I) { |
| // Record the SCEV of S that we may use it as a variable delta. |
| // Ensure that we rewrite C with a existing IR that reproduces delta value. |
| |
| Candidate C(CT, B, Idx, S, I, getAndRecordSCEV(S)); |
| // If we can fold I into an addressing mode, computing I is likely free or |
| // takes only one instruction. So, we don't need to analyze or rewrite it. |
| // |
| // Currently, this algorithm can at best optimize complex computations into |
| // a `variable +/* constant` form. However, some targets have stricter |
| // constraints on the their addressing mode. |
| // For example, a `variable + constant` can only be folded to an addressing |
| // mode if the constant falls within a certain range. |
| // So, we also check if the instruction is already high efficient enough |
| // for the strength reduction algorithm. |
| if (!isFoldable(C, TTI) && !C.isHighEfficiency()) { |
| setBasisAndDeltaFor(C); |
| |
| // Compress unnecessary rewrite to improve ILP |
| if (auto Res = compressPath(C, C.Basis)) { |
| C.Basis = Res.Cand; |
| C.DeltaKind = Res.DeltaKind; |
| C.Delta = Res.Delta; |
| } |
| } |
| // Regardless of whether we find a basis for C, we need to push C to the |
| // candidate list so that it can be the basis of other candidates. |
| LLVM_DEBUG(dbgs() << "Allocated Candidate: " << C << "\n"); |
| Candidates.push_back(C); |
| RewriteCandidates[C.Ins].push_back(&Candidates.back()); |
| CandidateDict.add(Candidates.back()); |
| } |
| |
| void StraightLineStrengthReduce::allocateCandidatesAndFindBasis( |
| Instruction *I) { |
| switch (I->getOpcode()) { |
| case Instruction::Add: |
| allocateCandidatesAndFindBasisForAdd(I); |
| break; |
| case Instruction::Mul: |
| allocateCandidatesAndFindBasisForMul(I); |
| break; |
| case Instruction::GetElementPtr: |
| allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I)); |
| break; |
| } |
| } |
| |
| void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd( |
| Instruction *I) { |
| // Try matching B + i * S. |
| if (!isa<IntegerType>(I->getType())) |
| return; |
| |
| assert(I->getNumOperands() == 2 && "isn't I an add?"); |
| Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); |
| allocateCandidatesAndFindBasisForAdd(LHS, RHS, I); |
| if (LHS != RHS) |
| allocateCandidatesAndFindBasisForAdd(RHS, LHS, I); |
| } |
| |
| void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd( |
| Value *LHS, Value *RHS, Instruction *I) { |
| Value *S = nullptr; |
| ConstantInt *Idx = nullptr; |
| if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) { |
| // I = LHS + RHS = LHS + Idx * S |
| allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I); |
| } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) { |
| // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx) |
| APInt One(Idx->getBitWidth(), 1); |
| Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue()); |
| allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I); |
| } else { |
| // At least, I = LHS + 1 * RHS |
| ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1); |
| allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS, |
| I); |
| } |
| } |
| |
| // Returns true if A matches B + C where C is constant. |
| static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) { |
| return match(A, m_c_Add(m_Value(B), m_ConstantInt(C))); |
| } |
| |
| // Returns true if A matches B | C where C is constant. |
| static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) { |
| return match(A, m_c_Or(m_Value(B), m_ConstantInt(C))); |
| } |
| |
| void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul( |
| Value *LHS, Value *RHS, Instruction *I) { |
| Value *B = nullptr; |
| ConstantInt *Idx = nullptr; |
| if (matchesAdd(LHS, B, Idx)) { |
| // If LHS is in the form of "Base + Index", then I is in the form of |
| // "(Base + Index) * RHS". |
| allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I); |
| } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) { |
| // If LHS is in the form of "Base | Index" and Base and Index have no common |
| // bits set, then |
| // Base | Index = Base + Index |
| // and I is thus in the form of "(Base + Index) * RHS". |
| allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I); |
| } else { |
| // Otherwise, at least try the form (LHS + 0) * RHS. |
| ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0); |
| allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS, |
| I); |
| } |
| } |
| |
| void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul( |
| Instruction *I) { |
| // Try matching (B + i) * S. |
| // TODO: we could extend SLSR to float and vector types. |
| if (!isa<IntegerType>(I->getType())) |
| return; |
| |
| assert(I->getNumOperands() == 2 && "isn't I a mul?"); |
| Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); |
| allocateCandidatesAndFindBasisForMul(LHS, RHS, I); |
| if (LHS != RHS) { |
| // Symmetrically, try to split RHS to Base + Index. |
| allocateCandidatesAndFindBasisForMul(RHS, LHS, I); |
| } |
| } |
| |
| void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP( |
| GetElementPtrInst *GEP) { |
| // TODO: handle vector GEPs |
| if (GEP->getType()->isVectorTy()) |
| return; |
| |
| SmallVector<const SCEV *, 4> IndexExprs; |
| for (Use &Idx : GEP->indices()) |
| IndexExprs.push_back(SE->getSCEV(Idx)); |
| |
| gep_type_iterator GTI = gep_type_begin(GEP); |
| for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { |
| if (GTI.isStruct()) |
| continue; |
| |
| const SCEV *OrigIndexExpr = IndexExprs[I - 1]; |
| IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType()); |
| |
| // The base of this candidate is GEP's base plus the offsets of all |
| // indices except this current one. |
| const SCEV *BaseExpr = SE->getGEPExpr(cast<GEPOperator>(GEP), IndexExprs); |
| Value *ArrayIdx = GEP->getOperand(I); |
| uint64_t ElementSize = GTI.getSequentialElementStride(*DL); |
| IntegerType *PtrIdxTy = cast<IntegerType>(DL->getIndexType(GEP->getType())); |
| // If the element size overflows the type, truncate. |
| ConstantInt *ElementSizeIdx = |
| ConstantInt::getSigned(PtrIdxTy, ElementSize, /*ImplicitTrunc=*/true); |
| if (ArrayIdx->getType()->getIntegerBitWidth() <= |
| DL->getIndexSizeInBits(GEP->getAddressSpace())) { |
| // Skip factoring if ArrayIdx is wider than the index size, because |
| // ArrayIdx is implicitly truncated to the index size. |
| allocateCandidatesAndFindBasis(Candidate::GEP, BaseExpr, ElementSizeIdx, |
| ArrayIdx, GEP); |
| } |
| // When ArrayIdx is the sext of a value, we try to factor that value as |
| // well. Handling this case is important because array indices are |
| // typically sign-extended to the pointer index size. |
| Value *TruncatedArrayIdx = nullptr; |
| if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))) && |
| TruncatedArrayIdx->getType()->getIntegerBitWidth() <= |
| DL->getIndexSizeInBits(GEP->getAddressSpace())) { |
| // Skip factoring if TruncatedArrayIdx is wider than the pointer size, |
| // because TruncatedArrayIdx is implicitly truncated to the pointer size. |
| allocateCandidatesAndFindBasis(Candidate::GEP, BaseExpr, ElementSizeIdx, |
| TruncatedArrayIdx, GEP); |
| } |
| |
| IndexExprs[I - 1] = OrigIndexExpr; |
| } |
| } |
| |
| Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis, |
| const Candidate &C, |
| IRBuilder<> &Builder, |
| const DataLayout *DL) { |
| auto CreateMul = [&](Value *LHS, Value *RHS) { |
| if (ConstantInt *CR = dyn_cast<ConstantInt>(RHS)) { |
| const APInt &ConstRHS = CR->getValue(); |
| IntegerType *DeltaType = |
| IntegerType::get(C.Ins->getContext(), ConstRHS.getBitWidth()); |
| if (ConstRHS.isPowerOf2()) { |
| ConstantInt *Exponent = |
| ConstantInt::get(DeltaType, ConstRHS.logBase2()); |
| return Builder.CreateShl(LHS, Exponent); |
| } |
| if (ConstRHS.isNegatedPowerOf2()) { |
| ConstantInt *Exponent = |
| ConstantInt::get(DeltaType, (-ConstRHS).logBase2()); |
| return Builder.CreateNeg(Builder.CreateShl(LHS, Exponent)); |
| } |
| } |
| |
| return Builder.CreateMul(LHS, RHS); |
| }; |
| |
| Value *Delta = C.Delta; |
| // If Delta is 0, C is a fully redundant of C.Basis, |
| // just replace C.Ins with Basis.Ins |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Delta); |
| CI && CI->getValue().isZero()) |
| return nullptr; |
| |
| if (C.DeltaKind == Candidate::IndexDelta) { |
| APInt IndexDelta = cast<ConstantInt>(C.Delta)->getValue(); |
| // IndexDelta |
| // X = B + i * S |
| // Y = B + i` * S |
| // = B + (i + IndexDelta) * S |
| // = B + i * S + IndexDelta * S |
| // = X + IndexDelta * S |
| // Bump = (i' - i) * S |
| |
| // Common case 1: if (i' - i) is 1, Bump = S. |
| if (IndexDelta == 1) |
| return C.Stride; |
| // Common case 2: if (i' - i) is -1, Bump = -S. |
| if (IndexDelta.isAllOnes()) |
| return Builder.CreateNeg(C.Stride); |
| |
| IntegerType *DeltaType = |
| IntegerType::get(Basis.Ins->getContext(), IndexDelta.getBitWidth()); |
| Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType); |
| |
| return CreateMul(ExtendedStride, C.Delta); |
| } |
| |
| assert(C.DeltaKind == Candidate::StrideDelta || |
| C.DeltaKind == Candidate::BaseDelta); |
| assert(C.CandidateKind != Candidate::Mul); |
| // StrideDelta |
| // X = B + i * S |
| // Y = B + i * S' |
| // = B + i * (S + StrideDelta) |
| // = B + i * S + i * StrideDelta |
| // = X + i * StrideDelta |
| // Bump = i * (S' - S) |
| // |
| // BaseDelta |
| // X = B + i * S |
| // Y = B' + i * S |
| // = (B + BaseDelta) + i * S |
| // = X + BaseDelta |
| // Bump = (B' - B). |
| Value *Bump = C.Delta; |
| if (C.DeltaKind == Candidate::StrideDelta) { |
| // If this value is consumed by a GEP, promote StrideDelta before doing |
| // StrideDelta * Index to ensure the same semantics as the original GEP. |
| if (C.CandidateKind == Candidate::GEP) { |
| auto *GEP = cast<GetElementPtrInst>(C.Ins); |
| Type *NewScalarIndexTy = |
| DL->getIndexType(GEP->getPointerOperandType()->getScalarType()); |
| Bump = Builder.CreateSExtOrTrunc(Bump, NewScalarIndexTy); |
| } |
| if (!C.Index->isOne()) { |
| Value *ExtendedIndex = |
| Builder.CreateSExtOrTrunc(C.Index, Bump->getType()); |
| Bump = CreateMul(Bump, ExtendedIndex); |
| } |
| } |
| return Bump; |
| } |
| |
| void StraightLineStrengthReduce::rewriteCandidate(const Candidate &C) { |
| if (!DebugCounter::shouldExecute(StraightLineStrengthReduceCounter)) |
| return; |
| |
| const Candidate &Basis = *C.Basis; |
| assert(C.Delta && C.CandidateKind == Basis.CandidateKind && |
| C.hasValidDelta(Basis)); |
| |
| IRBuilder<> Builder(C.Ins); |
| Value *Bump = emitBump(Basis, C, Builder, DL); |
| Value *Reduced = nullptr; // equivalent to but weaker than C.Ins |
| // If delta is 0, C is a fully redundant of Basis, and Bump is nullptr, |
| // just replace C.Ins with Basis.Ins |
| if (!Bump) |
| Reduced = Basis.Ins; |
| else { |
| switch (C.CandidateKind) { |
| case Candidate::Add: |
| case Candidate::Mul: { |
| // C = Basis + Bump |
| Value *NegBump; |
| if (match(Bump, m_Neg(m_Value(NegBump)))) { |
| // If Bump is a neg instruction, emit C = Basis - (-Bump). |
| Reduced = Builder.CreateSub(Basis.Ins, NegBump); |
| // We only use the negative argument of Bump, and Bump itself may be |
| // trivially dead. |
| RecursivelyDeleteTriviallyDeadInstructions(Bump); |
| } else { |
| // It's tempting to preserve nsw on Bump and/or Reduced. However, it's |
| // usually unsound, e.g., |
| // |
| // X = (-2 +nsw 1) *nsw INT_MAX |
| // Y = (-2 +nsw 3) *nsw INT_MAX |
| // => |
| // Y = X + 2 * INT_MAX |
| // |
| // Neither + and * in the resultant expression are nsw. |
| Reduced = Builder.CreateAdd(Basis.Ins, Bump); |
| } |
| break; |
| } |
| case Candidate::GEP: { |
| bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds(); |
| // C = (char *)Basis + Bump |
| Reduced = Builder.CreatePtrAdd(Basis.Ins, Bump, "", InBounds); |
| break; |
| } |
| default: |
| llvm_unreachable("C.CandidateKind is invalid"); |
| }; |
| Reduced->takeName(C.Ins); |
| } |
| C.Ins->replaceAllUsesWith(Reduced); |
| DeadInstructions.push_back(C.Ins); |
| } |
| |
| bool StraightLineStrengthReduceLegacyPass::runOnFunction(Function &F) { |
| if (skipFunction(F)) |
| return false; |
| |
| auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| return StraightLineStrengthReduce(DL, DT, SE, TTI).runOnFunction(F); |
| } |
| |
| bool StraightLineStrengthReduce::runOnFunction(Function &F) { |
| LLVM_DEBUG(dbgs() << "SLSR on Function: " << F.getName() << "\n"); |
| // Traverse the dominator tree in the depth-first order. This order makes sure |
| // all bases of a candidate are in Candidates when we process it. |
| for (const auto Node : depth_first(DT)) |
| for (auto &I : *(Node->getBlock())) |
| allocateCandidatesAndFindBasis(&I); |
| |
| // Build the dependency graph and sort candidate instructions from dependency |
| // roots to leaves |
| for (auto &C : Candidates) { |
| DependencyGraph.try_emplace(C.Ins); |
| addDependency(C, C.Basis); |
| } |
| sortCandidateInstructions(); |
| |
| // Rewrite candidates in the topological order that rewrites a Candidate |
| // always before rewriting its Basis |
| for (Instruction *I : reverse(SortedCandidateInsts)) |
| if (Candidate *C = pickRewriteCandidate(I)) |
| rewriteCandidate(*C); |
| |
| for (auto *DeadIns : DeadInstructions) |
| // A dead instruction may be another dead instruction's op, |
| // don't delete an instruction twice |
| if (DeadIns->getParent()) |
| RecursivelyDeleteTriviallyDeadInstructions(DeadIns); |
| |
| bool Ret = !DeadInstructions.empty(); |
| DeadInstructions.clear(); |
| DependencyGraph.clear(); |
| RewriteCandidates.clear(); |
| SortedCandidateInsts.clear(); |
| // First clear all references to candidates in the list |
| CandidateDict.clear(); |
| // Then destroy the list |
| Candidates.clear(); |
| return Ret; |
| } |
| |
| PreservedAnalyses |
| StraightLineStrengthReducePass::run(Function &F, FunctionAnalysisManager &AM) { |
| const DataLayout *DL = &F.getDataLayout(); |
| auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); |
| auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); |
| auto *TTI = &AM.getResult<TargetIRAnalysis>(F); |
| |
| if (!StraightLineStrengthReduce(DL, DT, SE, TTI).runOnFunction(F)) |
| return PreservedAnalyses::all(); |
| |
| PreservedAnalyses PA; |
| PA.preserveSet<CFGAnalyses>(); |
| PA.preserve<DominatorTreeAnalysis>(); |
| PA.preserve<ScalarEvolutionAnalysis>(); |
| PA.preserve<TargetIRAnalysis>(); |
| return PA; |
| } |