blob: fc72b915faf547c0a4efc8d8540c2f48d7cfd458 [file] [log] [blame] [edit]
//===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Eliminates allocas by either converting them into vectors or by migrating
// them to local address space.
//
// Two passes are exposed by this file:
// - "promote-alloca-to-vector", which runs early in the pipeline and only
// promotes to vector. Promotion to vector is almost always profitable
// except when the alloca is too big and the promotion would result in
// very high register pressure.
// - "promote-alloca", which does both promotion to vector and LDS and runs
// much later in the pipeline. This runs after SROA because promoting to
// LDS is of course less profitable than getting rid of the alloca or
// vectorizing it, thus we only want to do it when the only alternative is
// lowering the alloca to stack.
//
// Note that both of them exist for the old and new PMs. The new PM passes are
// declared in AMDGPU.h and the legacy PM ones are declared here.s
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/InstSimplifyFolder.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IntrinsicsR600.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#define DEBUG_TYPE "amdgpu-promote-alloca"
using namespace llvm;
namespace {
static cl::opt<bool>
DisablePromoteAllocaToVector("disable-promote-alloca-to-vector",
cl::desc("Disable promote alloca to vector"),
cl::init(false));
static cl::opt<bool>
DisablePromoteAllocaToLDS("disable-promote-alloca-to-lds",
cl::desc("Disable promote alloca to LDS"),
cl::init(false));
static cl::opt<unsigned> PromoteAllocaToVectorLimit(
"amdgpu-promote-alloca-to-vector-limit",
cl::desc("Maximum byte size to consider promote alloca to vector"),
cl::init(0));
static cl::opt<unsigned> PromoteAllocaToVectorMaxRegs(
"amdgpu-promote-alloca-to-vector-max-regs",
cl::desc(
"Maximum vector size (in 32b registers) to use when promoting alloca"),
cl::init(32));
// Use up to 1/4 of available register budget for vectorization.
// FIXME: Increase the limit for whole function budgets? Perhaps x2?
static cl::opt<unsigned> PromoteAllocaToVectorVGPRRatio(
"amdgpu-promote-alloca-to-vector-vgpr-ratio",
cl::desc("Ratio of VGPRs to budget for promoting alloca to vectors"),
cl::init(4));
static cl::opt<unsigned>
LoopUserWeight("promote-alloca-vector-loop-user-weight",
cl::desc("The bonus weight of users of allocas within loop "
"when sorting profitable allocas"),
cl::init(4));
// We support vector indices of the form (A * stride) + B
// All parts are optional.
struct GEPToVectorIndex {
Value *VarIndex = nullptr; // defaults to 0
ConstantInt *VarMul = nullptr; // defaults to 1
ConstantInt *ConstIndex = nullptr; // defaults to 0
Value *Full = nullptr;
};
struct MemTransferInfo {
ConstantInt *SrcIndex = nullptr;
ConstantInt *DestIndex = nullptr;
};
// Analysis for planning the different strategies of alloca promotion.
struct AllocaAnalysis {
AllocaInst *Alloca = nullptr;
DenseSet<Value *> Pointers;
SmallVector<Use *> Uses;
unsigned Score = 0;
bool HaveSelectOrPHI = false;
struct {
FixedVectorType *Ty = nullptr;
SmallVector<Instruction *> Worklist;
SmallVector<Instruction *> UsersToRemove;
MapVector<GetElementPtrInst *, GEPToVectorIndex> GEPVectorIdx;
MapVector<MemTransferInst *, MemTransferInfo> TransferInfo;
} Vector;
struct {
bool Enable = false;
SmallVector<User *> Worklist;
} LDS;
explicit AllocaAnalysis(AllocaInst *Alloca) : Alloca(Alloca) {}
};
// Shared implementation which can do both promotion to vector and to LDS.
class AMDGPUPromoteAllocaImpl {
private:
const TargetMachine &TM;
LoopInfo &LI;
Module *Mod = nullptr;
const DataLayout *DL = nullptr;
// FIXME: This should be per-kernel.
uint32_t LocalMemLimit = 0;
uint32_t CurrentLocalMemUsage = 0;
unsigned MaxVGPRs;
unsigned VGPRBudgetRatio;
unsigned MaxVectorRegs;
bool IsAMDGCN = false;
bool IsAMDHSA = false;
std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder);
Value *getWorkitemID(IRBuilder<> &Builder, unsigned N);
bool collectAllocaUses(AllocaAnalysis &AA) const;
/// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand
/// indices to an instruction with 2 pointer inputs (e.g. select, icmp).
/// Returns true if both operands are derived from the same alloca. Val should
/// be the same value as one of the input operands of UseInst.
bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val,
Instruction *UseInst, int OpIdx0,
int OpIdx1) const;
/// Check whether we have enough local memory for promotion.
bool hasSufficientLocalMem(const Function &F);
FixedVectorType *getVectorTypeForAlloca(Type *AllocaTy) const;
void analyzePromoteToVector(AllocaAnalysis &AA) const;
void promoteAllocaToVector(AllocaAnalysis &AA);
void analyzePromoteToLDS(AllocaAnalysis &AA) const;
bool tryPromoteAllocaToLDS(AllocaAnalysis &AA, bool SufficientLDS,
SetVector<IntrinsicInst *> &DeferredIntrs);
void
finishDeferredAllocaToLDSPromotion(SetVector<IntrinsicInst *> &DeferredIntrs);
void scoreAlloca(AllocaAnalysis &AA) const;
void setFunctionLimits(const Function &F);
public:
AMDGPUPromoteAllocaImpl(TargetMachine &TM, LoopInfo &LI) : TM(TM), LI(LI) {
const Triple &TT = TM.getTargetTriple();
IsAMDGCN = TT.isAMDGCN();
IsAMDHSA = TT.getOS() == Triple::AMDHSA;
}
bool run(Function &F, bool PromoteToLDS);
};
// FIXME: This can create globals so should be a module pass.
class AMDGPUPromoteAlloca : public FunctionPass {
public:
static char ID;
AMDGPUPromoteAlloca() : FunctionPass(ID) {}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>())
return AMDGPUPromoteAllocaImpl(
TPC->getTM<TargetMachine>(),
getAnalysis<LoopInfoWrapperPass>().getLoopInfo())
.run(F, /*PromoteToLDS*/ true);
return false;
}
StringRef getPassName() const override { return "AMDGPU Promote Alloca"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<LoopInfoWrapperPass>();
FunctionPass::getAnalysisUsage(AU);
}
};
static unsigned getMaxVGPRs(unsigned LDSBytes, const TargetMachine &TM,
const Function &F) {
if (!TM.getTargetTriple().isAMDGCN())
return 128;
const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
unsigned DynamicVGPRBlockSize = AMDGPU::getDynamicVGPRBlockSize(F);
// Temporarily check both the attribute and the subtarget feature, until the
// latter is removed.
if (DynamicVGPRBlockSize == 0 && ST.isDynamicVGPREnabled())
DynamicVGPRBlockSize = ST.getDynamicVGPRBlockSize();
unsigned MaxVGPRs = ST.getMaxNumVGPRs(
ST.getWavesPerEU(ST.getFlatWorkGroupSizes(F), LDSBytes, F).first,
DynamicVGPRBlockSize);
// A non-entry function has only 32 caller preserved registers.
// Do not promote alloca which will force spilling unless we know the function
// will be inlined.
if (!F.hasFnAttribute(Attribute::AlwaysInline) &&
!AMDGPU::isEntryFunctionCC(F.getCallingConv()))
MaxVGPRs = std::min(MaxVGPRs, 32u);
return MaxVGPRs;
}
} // end anonymous namespace
char AMDGPUPromoteAlloca::ID = 0;
INITIALIZE_PASS_BEGIN(AMDGPUPromoteAlloca, DEBUG_TYPE,
"AMDGPU promote alloca to vector or LDS", false, false)
// Move LDS uses from functions to kernels before promote alloca for accurate
// estimation of LDS available
INITIALIZE_PASS_DEPENDENCY(AMDGPULowerModuleLDSLegacy)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(AMDGPUPromoteAlloca, DEBUG_TYPE,
"AMDGPU promote alloca to vector or LDS", false, false)
char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID;
PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &LI = AM.getResult<LoopAnalysis>(F);
bool Changed = AMDGPUPromoteAllocaImpl(TM, LI).run(F, /*PromoteToLDS=*/true);
if (Changed) {
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
return PA;
}
return PreservedAnalyses::all();
}
PreservedAnalyses
AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) {
auto &LI = AM.getResult<LoopAnalysis>(F);
bool Changed = AMDGPUPromoteAllocaImpl(TM, LI).run(F, /*PromoteToLDS=*/false);
if (Changed) {
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
return PA;
}
return PreservedAnalyses::all();
}
FunctionPass *llvm::createAMDGPUPromoteAlloca() {
return new AMDGPUPromoteAlloca();
}
bool AMDGPUPromoteAllocaImpl::collectAllocaUses(AllocaAnalysis &AA) const {
const auto RejectUser = [&](Instruction *Inst, Twine Msg) {
LLVM_DEBUG(dbgs() << " Cannot promote alloca: " << Msg << "\n"
<< " " << *Inst << "\n");
return false;
};
SmallVector<Instruction *, 4> WorkList({AA.Alloca});
while (!WorkList.empty()) {
auto *Cur = WorkList.pop_back_val();
if (find(AA.Pointers, Cur) != AA.Pointers.end())
continue;
AA.Pointers.insert(Cur);
for (auto &U : Cur->uses()) {
auto *Inst = cast<Instruction>(U.getUser());
if (isa<StoreInst>(Inst)) {
if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) {
return RejectUser(Inst, "pointer escapes via store");
}
}
AA.Uses.push_back(&U);
if (isa<GetElementPtrInst>(U.getUser())) {
WorkList.push_back(Inst);
} else if (auto *SI = dyn_cast<SelectInst>(Inst)) {
// Only promote a select if we know that the other select operand is
// from another pointer that will also be promoted.
if (!binaryOpIsDerivedFromSameAlloca(AA.Alloca, Cur, SI, 1, 2))
return RejectUser(Inst, "select from mixed objects");
WorkList.push_back(Inst);
AA.HaveSelectOrPHI = true;
} else if (auto *Phi = dyn_cast<PHINode>(Inst)) {
// Repeat for phis.
// TODO: Handle more complex cases. We should be able to replace loops
// over arrays.
switch (Phi->getNumIncomingValues()) {
case 1:
break;
case 2:
if (!binaryOpIsDerivedFromSameAlloca(AA.Alloca, Cur, Phi, 0, 1))
return RejectUser(Inst, "phi from mixed objects");
break;
default:
return RejectUser(Inst, "phi with too many operands");
}
WorkList.push_back(Inst);
AA.HaveSelectOrPHI = true;
}
}
}
return true;
}
void AMDGPUPromoteAllocaImpl::scoreAlloca(AllocaAnalysis &AA) const {
LLVM_DEBUG(dbgs() << "Scoring: " << *AA.Alloca << "\n");
unsigned Score = 0;
// Increment score by one for each user + a bonus for users within loops.
for (auto *U : AA.Uses) {
Instruction *Inst = cast<Instruction>(U->getUser());
if (isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) ||
isa<PHINode>(Inst))
continue;
unsigned UserScore =
1 + (LoopUserWeight * LI.getLoopDepth(Inst->getParent()));
LLVM_DEBUG(dbgs() << " [+" << UserScore << "]:\t" << *Inst << "\n");
Score += UserScore;
}
LLVM_DEBUG(dbgs() << " => Final Score:" << Score << "\n");
AA.Score = Score;
}
void AMDGPUPromoteAllocaImpl::setFunctionLimits(const Function &F) {
// Load per function limits, overriding with global options where appropriate.
// R600 register tuples/aliasing are fragile with large vector promotions so
// apply architecture specific limit here.
const int R600MaxVectorRegs = 16;
MaxVectorRegs = F.getFnAttributeAsParsedInteger(
"amdgpu-promote-alloca-to-vector-max-regs",
IsAMDGCN ? PromoteAllocaToVectorMaxRegs : R600MaxVectorRegs);
if (PromoteAllocaToVectorMaxRegs.getNumOccurrences())
MaxVectorRegs = PromoteAllocaToVectorMaxRegs;
VGPRBudgetRatio = F.getFnAttributeAsParsedInteger(
"amdgpu-promote-alloca-to-vector-vgpr-ratio",
PromoteAllocaToVectorVGPRRatio);
if (PromoteAllocaToVectorVGPRRatio.getNumOccurrences())
VGPRBudgetRatio = PromoteAllocaToVectorVGPRRatio;
}
bool AMDGPUPromoteAllocaImpl::run(Function &F, bool PromoteToLDS) {
Mod = F.getParent();
DL = &Mod->getDataLayout();
const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
if (!ST.isPromoteAllocaEnabled())
return false;
bool SufficientLDS = PromoteToLDS && hasSufficientLocalMem(F);
MaxVGPRs = getMaxVGPRs(CurrentLocalMemUsage, TM, F);
setFunctionLimits(F);
unsigned VectorizationBudget =
(PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8
: (MaxVGPRs * 32)) /
VGPRBudgetRatio;
std::vector<AllocaAnalysis> Allocas;
for (Instruction &I : F.getEntryBlock()) {
if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
// Array allocations are probably not worth handling, since an allocation
// of the array type is the canonical form.
if (!AI->isStaticAlloca() || AI->isArrayAllocation())
continue;
LLVM_DEBUG(dbgs() << "Analyzing: " << *AI << '\n');
AllocaAnalysis AA{AI};
if (collectAllocaUses(AA)) {
analyzePromoteToVector(AA);
if (PromoteToLDS)
analyzePromoteToLDS(AA);
if (AA.Vector.Ty || AA.LDS.Enable) {
scoreAlloca(AA);
Allocas.push_back(std::move(AA));
}
}
}
}
stable_sort(Allocas,
[](const auto &A, const auto &B) { return A.Score > B.Score; });
// clang-format off
LLVM_DEBUG(
dbgs() << "Sorted Worklist:\n";
for (const auto &AA : Allocas)
dbgs() << " " << *AA.Alloca << "\n";
);
// clang-format on
bool Changed = false;
SetVector<IntrinsicInst *> DeferredIntrs;
for (AllocaAnalysis &AA : Allocas) {
if (AA.Vector.Ty) {
const unsigned AllocaCost =
DL->getTypeSizeInBits(AA.Alloca->getAllocatedType());
// First, check if we have enough budget to vectorize this alloca.
if (AllocaCost <= VectorizationBudget) {
promoteAllocaToVector(AA);
Changed = true;
assert((VectorizationBudget - AllocaCost) < VectorizationBudget &&
"Underflow!");
VectorizationBudget -= AllocaCost;
LLVM_DEBUG(dbgs() << " Remaining vectorization budget:"
<< VectorizationBudget << "\n");
continue;
} else {
LLVM_DEBUG(dbgs() << "Alloca too big for vectorization (size:"
<< AllocaCost << ", budget:" << VectorizationBudget
<< "): " << *AA.Alloca << "\n");
}
}
if (AA.LDS.Enable &&
tryPromoteAllocaToLDS(AA, SufficientLDS, DeferredIntrs))
Changed = true;
}
finishDeferredAllocaToLDSPromotion(DeferredIntrs);
// NOTE: tryPromoteAllocaToVector removes the alloca, so Allocas contains
// dangling pointers. If we want to reuse it past this point, the loop above
// would need to be updated to remove successfully promoted allocas.
return Changed;
}
// Checks if the instruction I is a memset user of the alloca AI that we can
// deal with. Currently, only non-volatile memsets that affect the whole alloca
// are handled.
static bool isSupportedMemset(MemSetInst *I, AllocaInst *AI,
const DataLayout &DL) {
using namespace PatternMatch;
// For now we only care about non-volatile memsets that affect the whole type
// (start at index 0 and fill the whole alloca).
//
// TODO: Now that we moved to PromoteAlloca we could handle any memsets
// (except maybe volatile ones?) - we just need to use shufflevector if it
// only affects a subset of the vector.
const unsigned Size = DL.getTypeStoreSize(AI->getAllocatedType());
return I->getOperand(0) == AI &&
match(I->getOperand(2), m_SpecificInt(Size)) && !I->isVolatile();
}
static Value *calculateVectorIndex(Value *Ptr, AllocaAnalysis &AA) {
IRBuilder<> B(Ptr->getContext());
Ptr = Ptr->stripPointerCasts();
if (Ptr == AA.Alloca)
return B.getInt32(0);
auto *GEP = cast<GetElementPtrInst>(Ptr);
auto I = AA.Vector.GEPVectorIdx.find(GEP);
assert(I != AA.Vector.GEPVectorIdx.end() && "Must have entry for GEP!");
if (!I->second.Full) {
Value *Result = nullptr;
B.SetInsertPoint(GEP);
if (I->second.VarIndex) {
Result = I->second.VarIndex;
Result = B.CreateSExtOrTrunc(Result, B.getInt32Ty());
if (I->second.VarMul)
Result = B.CreateMul(Result, I->second.VarMul);
}
if (I->second.ConstIndex) {
if (Result)
Result = B.CreateAdd(Result, I->second.ConstIndex);
else
Result = I->second.ConstIndex;
}
if (!Result)
Result = B.getInt32(0);
I->second.Full = Result;
}
return I->second.Full;
}
static std::optional<GEPToVectorIndex>
computeGEPToVectorIndex(GetElementPtrInst *GEP, AllocaInst *Alloca,
Type *VecElemTy, const DataLayout &DL) {
// TODO: Extracting a "multiple of X" from a GEP might be a useful generic
// helper.
LLVMContext &Ctx = GEP->getContext();
unsigned BW = DL.getIndexTypeSizeInBits(GEP->getType());
SmallMapVector<Value *, APInt, 4> VarOffsets;
APInt ConstOffset(BW, 0);
// Walk backwards through nested GEPs to collect both constant and variable
// offsets, so that nested vector GEP chains can be lowered in one step.
//
// Given this IR fragment as input:
//
// %0 = alloca [10 x <2 x i32>], align 8, addrspace(5)
// %1 = getelementptr [10 x <2 x i32>], ptr addrspace(5) %0, i32 0, i32 %j
// %2 = getelementptr i8, ptr addrspace(5) %1, i32 4
// %3 = load i32, ptr addrspace(5) %2, align 4
//
// Combine both GEP operations in a single pass, producing:
// BasePtr = %0
// ConstOffset = 4
// VarOffsets = { %j -> element_size(<2 x i32>) }
//
// That lets us emit a single buffer_load directly into a VGPR, without ever
// allocating scratch memory for the intermediate pointer.
Value *CurPtr = GEP;
while (auto *CurGEP = dyn_cast<GetElementPtrInst>(CurPtr)) {
if (!CurGEP->collectOffset(DL, BW, VarOffsets, ConstOffset))
return {};
// Move to the next outer pointer.
CurPtr = CurGEP->getPointerOperand();
}
assert(CurPtr == Alloca && "GEP not based on alloca");
int64_t VecElemSize = DL.getTypeAllocSize(VecElemTy);
if (VarOffsets.size() > 1)
return {};
APInt IndexQuot;
int64_t Rem;
APInt::sdivrem(ConstOffset, VecElemSize, IndexQuot, Rem);
if (Rem != 0)
return {};
GEPToVectorIndex Result;
if (!ConstOffset.isZero())
Result.ConstIndex = ConstantInt::get(Ctx, IndexQuot.sextOrTrunc(BW));
if (VarOffsets.empty())
return Result;
const auto &VarOffset = VarOffsets.front();
APInt OffsetQuot;
APInt::sdivrem(VarOffset.second, VecElemSize, OffsetQuot, Rem);
if (Rem != 0 || OffsetQuot.isZero())
return {};
Result.VarIndex = VarOffset.first;
auto *OffsetType = dyn_cast<IntegerType>(Result.VarIndex->getType());
if (!OffsetType)
return {};
if (!OffsetQuot.isOne())
Result.VarMul = ConstantInt::get(Ctx, OffsetQuot.sextOrTrunc(BW));
return Result;
}
/// Promotes a single user of the alloca to a vector form.
///
/// \param Inst Instruction to be promoted.
/// \param DL Module Data Layout.
/// \param AA Alloca Analysis.
/// \param VecStoreSize Size of \p VectorTy in bytes.
/// \param ElementSize Size of \p VectorTy element type in bytes.
/// \param CurVal Current value of the vector (e.g. last stored value)
/// \param[out] DeferredLoads \p Inst is added to this vector if it can't
/// be promoted now. This happens when promoting requires \p
/// CurVal, but \p CurVal is nullptr.
/// \return the stored value if \p Inst would have written to the alloca, or
/// nullptr otherwise.
static Value *promoteAllocaUserToVector(Instruction *Inst, const DataLayout &DL,
AllocaAnalysis &AA,
unsigned VecStoreSize,
unsigned ElementSize,
function_ref<Value *()> GetCurVal) {
// Note: we use InstSimplifyFolder because it can leverage the DataLayout
// to do more folding, especially in the case of vector splats.
IRBuilder<InstSimplifyFolder> Builder(Inst->getContext(),
InstSimplifyFolder(DL));
Builder.SetInsertPoint(Inst);
const auto CreateTempPtrIntCast = [&Builder, DL](Value *Val,
Type *PtrTy) -> Value * {
assert(DL.getTypeStoreSize(Val->getType()) == DL.getTypeStoreSize(PtrTy));
const unsigned Size = DL.getTypeStoreSizeInBits(PtrTy);
if (!PtrTy->isVectorTy())
return Builder.CreateBitOrPointerCast(Val, Builder.getIntNTy(Size));
const unsigned NumPtrElts = cast<FixedVectorType>(PtrTy)->getNumElements();
// If we want to cast to cast, e.g. a <2 x ptr> into a <4 x i32>, we need to
// first cast the ptr vector to <2 x i64>.
assert((Size % NumPtrElts == 0) && "Vector size not divisble");
Type *EltTy = Builder.getIntNTy(Size / NumPtrElts);
return Builder.CreateBitOrPointerCast(
Val, FixedVectorType::get(EltTy, NumPtrElts));
};
Type *VecEltTy = AA.Vector.Ty->getElementType();
switch (Inst->getOpcode()) {
case Instruction::Load: {
Value *CurVal = GetCurVal();
Value *Index =
calculateVectorIndex(cast<LoadInst>(Inst)->getPointerOperand(), AA);
// We're loading the full vector.
Type *AccessTy = Inst->getType();
TypeSize AccessSize = DL.getTypeStoreSize(AccessTy);
if (Constant *CI = dyn_cast<Constant>(Index)) {
if (CI->isZeroValue() && AccessSize == VecStoreSize) {
if (AccessTy->isPtrOrPtrVectorTy())
CurVal = CreateTempPtrIntCast(CurVal, AccessTy);
else if (CurVal->getType()->isPtrOrPtrVectorTy())
CurVal = CreateTempPtrIntCast(CurVal, CurVal->getType());
Value *NewVal = Builder.CreateBitOrPointerCast(CurVal, AccessTy);
Inst->replaceAllUsesWith(NewVal);
return nullptr;
}
}
// Loading a subvector.
if (isa<FixedVectorType>(AccessTy)) {
assert(AccessSize.isKnownMultipleOf(DL.getTypeStoreSize(VecEltTy)));
const unsigned NumLoadedElts = AccessSize / DL.getTypeStoreSize(VecEltTy);
auto *SubVecTy = FixedVectorType::get(VecEltTy, NumLoadedElts);
assert(DL.getTypeStoreSize(SubVecTy) == DL.getTypeStoreSize(AccessTy));
// If idx is dynamic, then sandwich load with bitcasts.
// ie. VectorTy SubVecTy AccessTy
// <64 x i8> -> <16 x i8> <8 x i16>
// <64 x i8> -> <4 x i128> -> i128 -> <8 x i16>
// Extracting subvector with dynamic index has very large expansion in
// the amdgpu backend. Limit to pow2.
FixedVectorType *VectorTy = AA.Vector.Ty;
TypeSize NumBits = DL.getTypeStoreSize(SubVecTy) * 8u;
uint64_t LoadAlign = cast<LoadInst>(Inst)->getAlign().value();
bool IsAlignedLoad = NumBits <= (LoadAlign * 8u);
unsigned TotalNumElts = VectorTy->getNumElements();
bool IsProperlyDivisible = TotalNumElts % NumLoadedElts == 0;
if (!isa<ConstantInt>(Index) &&
llvm::isPowerOf2_32(SubVecTy->getNumElements()) &&
IsProperlyDivisible && IsAlignedLoad) {
IntegerType *NewElemTy = Builder.getIntNTy(NumBits);
const unsigned NewNumElts =
DL.getTypeStoreSize(VectorTy) * 8u / NumBits;
const unsigned LShrAmt = llvm::Log2_32(SubVecTy->getNumElements());
FixedVectorType *BitCastTy =
FixedVectorType::get(NewElemTy, NewNumElts);
Value *BCVal = Builder.CreateBitCast(CurVal, BitCastTy);
Value *NewIdx = Builder.CreateLShr(
Index, ConstantInt::get(Index->getType(), LShrAmt));
Value *ExtVal = Builder.CreateExtractElement(BCVal, NewIdx);
Value *BCOut = Builder.CreateBitCast(ExtVal, AccessTy);
Inst->replaceAllUsesWith(BCOut);
return nullptr;
}
Value *SubVec = PoisonValue::get(SubVecTy);
for (unsigned K = 0; K < NumLoadedElts; ++K) {
Value *CurIdx =
Builder.CreateAdd(Index, ConstantInt::get(Index->getType(), K));
SubVec = Builder.CreateInsertElement(
SubVec, Builder.CreateExtractElement(CurVal, CurIdx), K);
}
if (AccessTy->isPtrOrPtrVectorTy())
SubVec = CreateTempPtrIntCast(SubVec, AccessTy);
else if (SubVecTy->isPtrOrPtrVectorTy())
SubVec = CreateTempPtrIntCast(SubVec, SubVecTy);
SubVec = Builder.CreateBitOrPointerCast(SubVec, AccessTy);
Inst->replaceAllUsesWith(SubVec);
return nullptr;
}
// We're loading one element.
Value *ExtractElement = Builder.CreateExtractElement(CurVal, Index);
if (AccessTy != VecEltTy)
ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, AccessTy);
Inst->replaceAllUsesWith(ExtractElement);
return nullptr;
}
case Instruction::Store: {
// For stores, it's a bit trickier and it depends on whether we're storing
// the full vector or not. If we're storing the full vector, we don't need
// to know the current value. If this is a store of a single element, we
// need to know the value.
StoreInst *SI = cast<StoreInst>(Inst);
Value *Index = calculateVectorIndex(SI->getPointerOperand(), AA);
Value *Val = SI->getValueOperand();
// We're storing the full vector, we can handle this without knowing CurVal.
Type *AccessTy = Val->getType();
TypeSize AccessSize = DL.getTypeStoreSize(AccessTy);
if (Constant *CI = dyn_cast<Constant>(Index)) {
if (CI->isZeroValue() && AccessSize == VecStoreSize) {
if (AccessTy->isPtrOrPtrVectorTy())
Val = CreateTempPtrIntCast(Val, AccessTy);
else if (AA.Vector.Ty->isPtrOrPtrVectorTy())
Val = CreateTempPtrIntCast(Val, AA.Vector.Ty);
return Builder.CreateBitOrPointerCast(Val, AA.Vector.Ty);
}
}
// Storing a subvector.
if (isa<FixedVectorType>(AccessTy)) {
assert(AccessSize.isKnownMultipleOf(DL.getTypeStoreSize(VecEltTy)));
const unsigned NumWrittenElts =
AccessSize / DL.getTypeStoreSize(VecEltTy);
const unsigned NumVecElts = AA.Vector.Ty->getNumElements();
auto *SubVecTy = FixedVectorType::get(VecEltTy, NumWrittenElts);
assert(DL.getTypeStoreSize(SubVecTy) == DL.getTypeStoreSize(AccessTy));
if (SubVecTy->isPtrOrPtrVectorTy())
Val = CreateTempPtrIntCast(Val, SubVecTy);
else if (AccessTy->isPtrOrPtrVectorTy())
Val = CreateTempPtrIntCast(Val, AccessTy);
Val = Builder.CreateBitOrPointerCast(Val, SubVecTy);
Value *CurVec = GetCurVal();
for (unsigned K = 0, NumElts = std::min(NumWrittenElts, NumVecElts);
K < NumElts; ++K) {
Value *CurIdx =
Builder.CreateAdd(Index, ConstantInt::get(Index->getType(), K));
CurVec = Builder.CreateInsertElement(
CurVec, Builder.CreateExtractElement(Val, K), CurIdx);
}
return CurVec;
}
if (Val->getType() != VecEltTy)
Val = Builder.CreateBitOrPointerCast(Val, VecEltTy);
return Builder.CreateInsertElement(GetCurVal(), Val, Index);
}
case Instruction::Call: {
if (auto *MTI = dyn_cast<MemTransferInst>(Inst)) {
// For memcpy, we need to know curval.
ConstantInt *Length = cast<ConstantInt>(MTI->getLength());
unsigned NumCopied = Length->getZExtValue() / ElementSize;
MemTransferInfo *TI = &AA.Vector.TransferInfo[MTI];
unsigned SrcBegin = TI->SrcIndex->getZExtValue();
unsigned DestBegin = TI->DestIndex->getZExtValue();
SmallVector<int> Mask;
for (unsigned Idx = 0; Idx < AA.Vector.Ty->getNumElements(); ++Idx) {
if (Idx >= DestBegin && Idx < DestBegin + NumCopied) {
Mask.push_back(SrcBegin < AA.Vector.Ty->getNumElements()
? SrcBegin++
: PoisonMaskElem);
} else {
Mask.push_back(Idx);
}
}
return Builder.CreateShuffleVector(GetCurVal(), Mask);
}
if (auto *MSI = dyn_cast<MemSetInst>(Inst)) {
// For memset, we don't need to know the previous value because we
// currently only allow memsets that cover the whole alloca.
Value *Elt = MSI->getOperand(1);
const unsigned BytesPerElt = DL.getTypeStoreSize(VecEltTy);
if (BytesPerElt > 1) {
Value *EltBytes = Builder.CreateVectorSplat(BytesPerElt, Elt);
// If the element type of the vector is a pointer, we need to first cast
// to an integer, then use a PtrCast.
if (VecEltTy->isPointerTy()) {
Type *PtrInt = Builder.getIntNTy(BytesPerElt * 8);
Elt = Builder.CreateBitCast(EltBytes, PtrInt);
Elt = Builder.CreateIntToPtr(Elt, VecEltTy);
} else
Elt = Builder.CreateBitCast(EltBytes, VecEltTy);
}
return Builder.CreateVectorSplat(AA.Vector.Ty->getElementCount(), Elt);
}
if (auto *Intr = dyn_cast<IntrinsicInst>(Inst)) {
if (Intr->getIntrinsicID() == Intrinsic::objectsize) {
Intr->replaceAllUsesWith(
Builder.getIntN(Intr->getType()->getIntegerBitWidth(),
DL.getTypeAllocSize(AA.Vector.Ty)));
return nullptr;
}
}
llvm_unreachable("Unsupported call when promoting alloca to vector");
}
default:
llvm_unreachable("Inconsistency in instructions promotable to vector");
}
llvm_unreachable("Did not return after promoting instruction!");
}
static bool isSupportedAccessType(FixedVectorType *VecTy, Type *AccessTy,
const DataLayout &DL) {
// Access as a vector type can work if the size of the access vector is a
// multiple of the size of the alloca's vector element type.
//
// Examples:
// - VecTy = <8 x float>, AccessTy = <4 x float> -> OK
// - VecTy = <4 x double>, AccessTy = <2 x float> -> OK
// - VecTy = <4 x double>, AccessTy = <3 x float> -> NOT OK
// - 3*32 is not a multiple of 64
//
// We could handle more complicated cases, but it'd make things a lot more
// complicated.
if (isa<FixedVectorType>(AccessTy)) {
TypeSize AccTS = DL.getTypeStoreSize(AccessTy);
// If the type size and the store size don't match, we would need to do more
// than just bitcast to translate between an extracted/insertable subvectors
// and the accessed value.
if (AccTS * 8 != DL.getTypeSizeInBits(AccessTy))
return false;
TypeSize VecTS = DL.getTypeStoreSize(VecTy->getElementType());
return AccTS.isKnownMultipleOf(VecTS);
}
return CastInst::isBitOrNoopPointerCastable(VecTy->getElementType(), AccessTy,
DL);
}
/// Iterates over an instruction worklist that may contain multiple instructions
/// from the same basic block, but in a different order.
template <typename InstContainer>
static void forEachWorkListItem(const InstContainer &WorkList,
std::function<void(Instruction *)> Fn) {
// Bucket up uses of the alloca by the block they occur in.
// This is important because we have to handle multiple defs/uses in a block
// ourselves: SSAUpdater is purely for cross-block references.
DenseMap<BasicBlock *, SmallDenseSet<Instruction *>> UsesByBlock;
for (Instruction *User : WorkList)
UsesByBlock[User->getParent()].insert(User);
for (Instruction *User : WorkList) {
BasicBlock *BB = User->getParent();
auto &BlockUses = UsesByBlock[BB];
// Already processed, skip.
if (BlockUses.empty())
continue;
// Only user in the block, directly process it.
if (BlockUses.size() == 1) {
Fn(User);
continue;
}
// Multiple users in the block, do a linear scan to see users in order.
for (Instruction &Inst : *BB) {
if (!BlockUses.contains(&Inst))
continue;
Fn(&Inst);
}
// Clear the block so we know it's been processed.
BlockUses.clear();
}
}
/// Find an insert point after an alloca, after all other allocas clustered at
/// the start of the block.
static BasicBlock::iterator skipToNonAllocaInsertPt(BasicBlock &BB,
BasicBlock::iterator I) {
for (BasicBlock::iterator E = BB.end(); I != E && isa<AllocaInst>(*I); ++I)
;
return I;
}
FixedVectorType *
AMDGPUPromoteAllocaImpl::getVectorTypeForAlloca(Type *AllocaTy) const {
if (DisablePromoteAllocaToVector) {
LLVM_DEBUG(dbgs() << " Promote alloca to vectors is disabled\n");
return nullptr;
}
auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy);
if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) {
uint64_t NumElems = 1;
Type *ElemTy;
do {
NumElems *= ArrayTy->getNumElements();
ElemTy = ArrayTy->getElementType();
} while ((ArrayTy = dyn_cast<ArrayType>(ElemTy)));
// Check for array of vectors
auto *InnerVectorTy = dyn_cast<FixedVectorType>(ElemTy);
if (InnerVectorTy) {
NumElems *= InnerVectorTy->getNumElements();
ElemTy = InnerVectorTy->getElementType();
}
if (VectorType::isValidElementType(ElemTy) && NumElems > 0) {
unsigned ElementSize = DL->getTypeSizeInBits(ElemTy) / 8;
if (ElementSize > 0) {
unsigned AllocaSize = DL->getTypeStoreSize(AllocaTy);
// Expand vector if required to match padding of inner type,
// i.e. odd size subvectors.
// Storage size of new vector must match that of alloca for correct
// behaviour of byte offsets and GEP computation.
if (NumElems * ElementSize != AllocaSize)
NumElems = AllocaSize / ElementSize;
if (NumElems > 0 && (AllocaSize % ElementSize) == 0)
VectorTy = FixedVectorType::get(ElemTy, NumElems);
}
}
}
if (!VectorTy) {
LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n");
return nullptr;
}
const unsigned MaxElements =
(MaxVectorRegs * 32) / DL->getTypeSizeInBits(VectorTy->getElementType());
if (VectorTy->getNumElements() > MaxElements ||
VectorTy->getNumElements() < 2) {
LLVM_DEBUG(dbgs() << " " << *VectorTy
<< " has an unsupported number of elements\n");
return nullptr;
}
Type *VecEltTy = VectorTy->getElementType();
unsigned ElementSizeInBits = DL->getTypeSizeInBits(VecEltTy);
if (ElementSizeInBits != DL->getTypeAllocSizeInBits(VecEltTy)) {
LLVM_DEBUG(dbgs() << " Cannot convert to vector if the allocation size "
"does not match the type's size\n");
return nullptr;
}
return VectorTy;
}
void AMDGPUPromoteAllocaImpl::analyzePromoteToVector(AllocaAnalysis &AA) const {
if (AA.HaveSelectOrPHI) {
LLVM_DEBUG(dbgs() << " Cannot convert to vector due to select or phi\n");
return;
}
Type *AllocaTy = AA.Alloca->getAllocatedType();
AA.Vector.Ty = getVectorTypeForAlloca(AllocaTy);
if (!AA.Vector.Ty)
return;
const auto RejectUser = [&](Instruction *Inst, Twine Msg) {
LLVM_DEBUG(dbgs() << " Cannot promote alloca to vector: " << Msg << "\n"
<< " " << *Inst << "\n");
AA.Vector.Ty = nullptr;
};
Type *VecEltTy = AA.Vector.Ty->getElementType();
unsigned ElementSize = DL->getTypeSizeInBits(VecEltTy) / 8;
assert(ElementSize > 0);
for (auto *U : AA.Uses) {
Instruction *Inst = cast<Instruction>(U->getUser());
if (Value *Ptr = getLoadStorePointerOperand(Inst)) {
assert(!isa<StoreInst>(Inst) ||
U->getOperandNo() == StoreInst::getPointerOperandIndex());
Type *AccessTy = getLoadStoreType(Inst);
if (AccessTy->isAggregateType())
return RejectUser(Inst, "unsupported load/store as aggregate");
assert(!AccessTy->isAggregateType() || AccessTy->isArrayTy());
// Check that this is a simple access of a vector element.
bool IsSimple = isa<LoadInst>(Inst) ? cast<LoadInst>(Inst)->isSimple()
: cast<StoreInst>(Inst)->isSimple();
if (!IsSimple)
return RejectUser(Inst, "not a simple load or store");
Ptr = Ptr->stripPointerCasts();
// Alloca already accessed as vector.
if (Ptr == AA.Alloca &&
DL->getTypeStoreSize(AA.Alloca->getAllocatedType()) ==
DL->getTypeStoreSize(AccessTy)) {
AA.Vector.Worklist.push_back(Inst);
continue;
}
if (!isSupportedAccessType(AA.Vector.Ty, AccessTy, *DL))
return RejectUser(Inst, "not a supported access type");
AA.Vector.Worklist.push_back(Inst);
continue;
}
if (auto *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
// If we can't compute a vector index from this GEP, then we can't
// promote this alloca to vector.
auto Index = computeGEPToVectorIndex(GEP, AA.Alloca, VecEltTy, *DL);
if (!Index)
return RejectUser(Inst, "cannot compute vector index for GEP");
AA.Vector.GEPVectorIdx[GEP] = std::move(Index.value());
AA.Vector.UsersToRemove.push_back(Inst);
continue;
}
if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst);
MSI && isSupportedMemset(MSI, AA.Alloca, *DL)) {
AA.Vector.Worklist.push_back(Inst);
continue;
}
if (MemTransferInst *TransferInst = dyn_cast<MemTransferInst>(Inst)) {
if (TransferInst->isVolatile())
return RejectUser(Inst, "mem transfer inst is volatile");
ConstantInt *Len = dyn_cast<ConstantInt>(TransferInst->getLength());
if (!Len || (Len->getZExtValue() % ElementSize))
return RejectUser(Inst, "mem transfer inst length is non-constant or "
"not a multiple of the vector element size");
auto getConstIndexIntoAlloca = [&](Value *Ptr) -> ConstantInt * {
if (Ptr == AA.Alloca)
return ConstantInt::get(Ptr->getContext(), APInt(32, 0));
GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr);
const auto &GEPI = AA.Vector.GEPVectorIdx.find(GEP)->second;
if (GEPI.VarIndex)
return nullptr;
if (GEPI.ConstIndex)
return GEPI.ConstIndex;
return ConstantInt::get(Ptr->getContext(), APInt(32, 0));
};
MemTransferInfo *TI =
&AA.Vector.TransferInfo.try_emplace(TransferInst).first->second;
unsigned OpNum = U->getOperandNo();
if (OpNum == 0) {
Value *Dest = TransferInst->getDest();
ConstantInt *Index = getConstIndexIntoAlloca(Dest);
if (!Index)
return RejectUser(Inst, "could not calculate constant dest index");
TI->DestIndex = Index;
} else {
assert(OpNum == 1);
Value *Src = TransferInst->getSource();
ConstantInt *Index = getConstIndexIntoAlloca(Src);
if (!Index)
return RejectUser(Inst, "could not calculate constant src index");
TI->SrcIndex = Index;
}
continue;
}
if (auto *Intr = dyn_cast<IntrinsicInst>(Inst)) {
if (Intr->getIntrinsicID() == Intrinsic::objectsize) {
AA.Vector.Worklist.push_back(Inst);
continue;
}
}
// Ignore assume-like intrinsics and comparisons used in assumes.
if (isAssumeLikeIntrinsic(Inst)) {
if (!Inst->use_empty())
return RejectUser(Inst, "assume-like intrinsic cannot have any users");
AA.Vector.UsersToRemove.push_back(Inst);
continue;
}
if (isa<ICmpInst>(Inst) && all_of(Inst->users(), [](User *U) {
return isAssumeLikeIntrinsic(cast<Instruction>(U));
})) {
AA.Vector.UsersToRemove.push_back(Inst);
continue;
}
return RejectUser(Inst, "unhandled alloca user");
}
// Follow-up check to ensure we've seen both sides of all transfer insts.
for (const auto &Entry : AA.Vector.TransferInfo) {
const MemTransferInfo &TI = Entry.second;
if (!TI.SrcIndex || !TI.DestIndex)
return RejectUser(Entry.first,
"mem transfer inst between different objects");
AA.Vector.Worklist.push_back(Entry.first);
}
}
void AMDGPUPromoteAllocaImpl::promoteAllocaToVector(AllocaAnalysis &AA) {
LLVM_DEBUG(dbgs() << "Promoting to vectors: " << *AA.Alloca << '\n');
LLVM_DEBUG(dbgs() << " type conversion: " << *AA.Alloca->getAllocatedType()
<< " -> " << *AA.Vector.Ty << '\n');
const unsigned VecStoreSize = DL->getTypeStoreSize(AA.Vector.Ty);
Type *VecEltTy = AA.Vector.Ty->getElementType();
const unsigned ElementSize = DL->getTypeSizeInBits(VecEltTy) / 8;
// Alloca is uninitialized memory. Imitate that by making the first value
// undef.
SSAUpdater Updater;
Updater.Initialize(AA.Vector.Ty, "promotealloca");
BasicBlock *EntryBB = AA.Alloca->getParent();
BasicBlock::iterator InitInsertPos =
skipToNonAllocaInsertPt(*EntryBB, AA.Alloca->getIterator());
IRBuilder<> Builder(&*InitInsertPos);
Value *AllocaInitValue = Builder.CreateFreeze(PoisonValue::get(AA.Vector.Ty));
AllocaInitValue->takeName(AA.Alloca);
Updater.AddAvailableValue(AA.Alloca->getParent(), AllocaInitValue);
// First handle the initial worklist, in basic block order.
//
// Insert a placeholder whenever we need the vector value at the top of a
// basic block.
SmallVector<Instruction *> Placeholders;
forEachWorkListItem(AA.Vector.Worklist, [&](Instruction *I) {
BasicBlock *BB = I->getParent();
auto GetCurVal = [&]() -> Value * {
if (Value *CurVal = Updater.FindValueForBlock(BB))
return CurVal;
if (!Placeholders.empty() && Placeholders.back()->getParent() == BB)
return Placeholders.back();
// If the current value in the basic block is not yet known, insert a
// placeholder that we will replace later.
IRBuilder<> Builder(I);
auto *Placeholder = cast<Instruction>(Builder.CreateFreeze(
PoisonValue::get(AA.Vector.Ty), "promotealloca.placeholder"));
Placeholders.push_back(Placeholder);
return Placeholders.back();
};
Value *Result = promoteAllocaUserToVector(I, *DL, AA, VecStoreSize,
ElementSize, GetCurVal);
if (Result)
Updater.AddAvailableValue(BB, Result);
});
// Now fixup the placeholders.
SmallVector<Value *> PlaceholderToNewVal(Placeholders.size());
for (auto [Index, Placeholder] : enumerate(Placeholders)) {
Value *NewVal = Updater.GetValueInMiddleOfBlock(Placeholder->getParent());
PlaceholderToNewVal[Index] = NewVal;
Placeholder->replaceAllUsesWith(NewVal);
}
// Note: we cannot merge this loop with the previous one because it is
// possible that the placeholder itself can be used in the SSAUpdater. The
// replaceAllUsesWith doesn't replace those uses.
for (auto [Index, Placeholder] : enumerate(Placeholders)) {
if (!Placeholder->use_empty())
Placeholder->replaceAllUsesWith(PlaceholderToNewVal[Index]);
Placeholder->eraseFromParent();
}
// Delete all instructions.
for (Instruction *I : AA.Vector.Worklist) {
assert(I->use_empty());
I->eraseFromParent();
}
// Delete all the users that are known to be removeable.
for (Instruction *I : reverse(AA.Vector.UsersToRemove)) {
I->dropDroppableUses();
assert(I->use_empty());
I->eraseFromParent();
}
// Alloca should now be dead too.
assert(AA.Alloca->use_empty());
AA.Alloca->eraseFromParent();
}
std::pair<Value *, Value *>
AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) {
Function &F = *Builder.GetInsertBlock()->getParent();
const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
if (!IsAMDHSA) {
CallInst *LocalSizeY =
Builder.CreateIntrinsic(Intrinsic::r600_read_local_size_y, {});
CallInst *LocalSizeZ =
Builder.CreateIntrinsic(Intrinsic::r600_read_local_size_z, {});
ST.makeLIDRangeMetadata(LocalSizeY);
ST.makeLIDRangeMetadata(LocalSizeZ);
return std::pair(LocalSizeY, LocalSizeZ);
}
// We must read the size out of the dispatch pointer.
assert(IsAMDGCN);
// We are indexing into this struct, and want to extract the workgroup_size_*
// fields.
//
// typedef struct hsa_kernel_dispatch_packet_s {
// uint16_t header;
// uint16_t setup;
// uint16_t workgroup_size_x ;
// uint16_t workgroup_size_y;
// uint16_t workgroup_size_z;
// uint16_t reserved0;
// uint32_t grid_size_x ;
// uint32_t grid_size_y ;
// uint32_t grid_size_z;
//
// uint32_t private_segment_size;
// uint32_t group_segment_size;
// uint64_t kernel_object;
//
// #ifdef HSA_LARGE_MODEL
// void *kernarg_address;
// #elif defined HSA_LITTLE_ENDIAN
// void *kernarg_address;
// uint32_t reserved1;
// #else
// uint32_t reserved1;
// void *kernarg_address;
// #endif
// uint64_t reserved2;
// hsa_signal_t completion_signal; // uint64_t wrapper
// } hsa_kernel_dispatch_packet_t
//
CallInst *DispatchPtr =
Builder.CreateIntrinsic(Intrinsic::amdgcn_dispatch_ptr, {});
DispatchPtr->addRetAttr(Attribute::NoAlias);
DispatchPtr->addRetAttr(Attribute::NonNull);
F.removeFnAttr("amdgpu-no-dispatch-ptr");
// Size of the dispatch packet struct.
DispatchPtr->addDereferenceableRetAttr(64);
Type *I32Ty = Type::getInt32Ty(Mod->getContext());
// We could do a single 64-bit load here, but it's likely that the basic
// 32-bit and extract sequence is already present, and it is probably easier
// to CSE this. The loads should be mergeable later anyway.
Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, DispatchPtr, 1);
LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4));
Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, DispatchPtr, 2);
LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4));
MDNode *MD = MDNode::get(Mod->getContext(), {});
LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD);
LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD);
ST.makeLIDRangeMetadata(LoadZU);
// Extract y component. Upper half of LoadZU should be zero already.
Value *Y = Builder.CreateLShr(LoadXY, 16);
return std::pair(Y, LoadZU);
}
Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder,
unsigned N) {
Function *F = Builder.GetInsertBlock()->getParent();
const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, *F);
Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
StringRef AttrName;
switch (N) {
case 0:
IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x
: (Intrinsic::ID)Intrinsic::r600_read_tidig_x;
AttrName = "amdgpu-no-workitem-id-x";
break;
case 1:
IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y
: (Intrinsic::ID)Intrinsic::r600_read_tidig_y;
AttrName = "amdgpu-no-workitem-id-y";
break;
case 2:
IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z
: (Intrinsic::ID)Intrinsic::r600_read_tidig_z;
AttrName = "amdgpu-no-workitem-id-z";
break;
default:
llvm_unreachable("invalid dimension");
}
Function *WorkitemIdFn = Intrinsic::getOrInsertDeclaration(Mod, IntrID);
CallInst *CI = Builder.CreateCall(WorkitemIdFn);
ST.makeLIDRangeMetadata(CI);
F->removeFnAttr(AttrName);
return CI;
}
static bool isCallPromotable(CallInst *CI) {
IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
if (!II)
return false;
switch (II->getIntrinsicID()) {
case Intrinsic::memcpy:
case Intrinsic::memmove:
case Intrinsic::memset:
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
case Intrinsic::invariant_start:
case Intrinsic::invariant_end:
case Intrinsic::launder_invariant_group:
case Intrinsic::strip_invariant_group:
case Intrinsic::objectsize:
return true;
default:
return false;
}
}
bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca(
Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0,
int OpIdx1) const {
// Figure out which operand is the one we might not be promoting.
Value *OtherOp = Inst->getOperand(OpIdx0);
if (Val == OtherOp)
OtherOp = Inst->getOperand(OpIdx1);
if (isa<ConstantPointerNull, ConstantAggregateZero>(OtherOp))
return true;
// TODO: getUnderlyingObject will not work on a vector getelementptr
Value *OtherObj = getUnderlyingObject(OtherOp);
if (!isa<AllocaInst>(OtherObj))
return false;
// TODO: We should be able to replace undefs with the right pointer type.
// TODO: If we know the other base object is another promotable
// alloca, not necessarily this alloca, we can do this. The
// important part is both must have the same address space at
// the end.
if (OtherObj != BaseAlloca) {
LLVM_DEBUG(
dbgs() << "Found a binary instruction with another alloca object\n");
return false;
}
return true;
}
void AMDGPUPromoteAllocaImpl::analyzePromoteToLDS(AllocaAnalysis &AA) const {
if (DisablePromoteAllocaToLDS) {
LLVM_DEBUG(dbgs() << " Promote alloca to LDS is disabled\n");
return;
}
// Don't promote the alloca to LDS for shader calling conventions as the work
// item ID intrinsics are not supported for these calling conventions.
// Furthermore not all LDS is available for some of the stages.
const Function &ContainingFunction = *AA.Alloca->getFunction();
CallingConv::ID CC = ContainingFunction.getCallingConv();
switch (CC) {
case CallingConv::AMDGPU_KERNEL:
case CallingConv::SPIR_KERNEL:
break;
default:
LLVM_DEBUG(
dbgs()
<< " promote alloca to LDS not supported with calling convention.\n");
return;
}
for (Use *Use : AA.Uses) {
auto *User = Use->getUser();
if (CallInst *CI = dyn_cast<CallInst>(User)) {
if (!isCallPromotable(CI))
return;
if (find(AA.LDS.Worklist, User) == AA.LDS.Worklist.end())
AA.LDS.Worklist.push_back(User);
continue;
}
Instruction *UseInst = cast<Instruction>(User);
if (UseInst->getOpcode() == Instruction::PtrToInt)
return;
if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) {
if (LI->isVolatile())
return;
continue;
}
if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) {
if (SI->isVolatile())
return;
continue;
}
if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) {
if (RMW->isVolatile())
return;
continue;
}
if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) {
if (CAS->isVolatile())
return;
continue;
}
// Only promote a select if we know that the other select operand
// is from another pointer that will also be promoted.
if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
if (!binaryOpIsDerivedFromSameAlloca(AA.Alloca, Use->get(), ICmp, 0, 1))
return;
// May need to rewrite constant operands.
if (find(AA.LDS.Worklist, User) == AA.LDS.Worklist.end())
AA.LDS.Worklist.push_back(ICmp);
continue;
}
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) {
// Be conservative if an address could be computed outside the bounds of
// the alloca.
if (!GEP->isInBounds())
return;
} else if (!isa<ExtractElementInst, SelectInst, PHINode>(User)) {
// Do not promote vector/aggregate type instructions. It is hard to track
// their users.
// Do not promote addrspacecast.
//
// TODO: If we know the address is only observed through flat pointers, we
// could still promote.
return;
}
if (find(AA.LDS.Worklist, User) == AA.LDS.Worklist.end())
AA.LDS.Worklist.push_back(User);
}
AA.LDS.Enable = true;
}
bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) {
FunctionType *FTy = F.getFunctionType();
const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
// If the function has any arguments in the local address space, then it's
// possible these arguments require the entire local memory space, so
// we cannot use local memory in the pass.
for (Type *ParamTy : FTy->params()) {
PointerType *PtrTy = dyn_cast<PointerType>(ParamTy);
if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
LocalMemLimit = 0;
LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to "
"local memory disabled.\n");
return false;
}
}
LocalMemLimit = ST.getAddressableLocalMemorySize();
if (LocalMemLimit == 0)
return false;
SmallVector<const Constant *, 16> Stack;
SmallPtrSet<const Constant *, 8> VisitedConstants;
SmallPtrSet<const GlobalVariable *, 8> UsedLDS;
auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool {
for (const User *U : Val->users()) {
if (const Instruction *Use = dyn_cast<Instruction>(U)) {
if (Use->getFunction() == &F)
return true;
} else {
const Constant *C = cast<Constant>(U);
if (VisitedConstants.insert(C).second)
Stack.push_back(C);
}
}
return false;
};
for (GlobalVariable &GV : Mod->globals()) {
if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
continue;
if (visitUsers(&GV, &GV)) {
UsedLDS.insert(&GV);
Stack.clear();
continue;
}
// For any ConstantExpr uses, we need to recursively search the users until
// we see a function.
while (!Stack.empty()) {
const Constant *C = Stack.pop_back_val();
if (visitUsers(&GV, C)) {
UsedLDS.insert(&GV);
Stack.clear();
break;
}
}
}
const DataLayout &DL = Mod->getDataLayout();
SmallVector<std::pair<uint64_t, Align>, 16> AllocatedSizes;
AllocatedSizes.reserve(UsedLDS.size());
for (const GlobalVariable *GV : UsedLDS) {
Align Alignment =
DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType());
uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType());
// HIP uses an extern unsized array in local address space for dynamically
// allocated shared memory. In that case, we have to disable the promotion.
if (GV->hasExternalLinkage() && AllocSize == 0) {
LocalMemLimit = 0;
LLVM_DEBUG(dbgs() << "Function has a reference to externally allocated "
"local memory. Promoting to local memory "
"disabled.\n");
return false;
}
AllocatedSizes.emplace_back(AllocSize, Alignment);
}
// Sort to try to estimate the worst case alignment padding
//
// FIXME: We should really do something to fix the addresses to a more optimal
// value instead
llvm::sort(AllocatedSizes, llvm::less_second());
// Check how much local memory is being used by global objects
CurrentLocalMemUsage = 0;
// FIXME: Try to account for padding here. The real padding and address is
// currently determined from the inverse order of uses in the function when
// legalizing, which could also potentially change. We try to estimate the
// worst case here, but we probably should fix the addresses earlier.
for (auto Alloc : AllocatedSizes) {
CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second);
CurrentLocalMemUsage += Alloc.first;
}
unsigned MaxOccupancy =
ST.getWavesPerEU(ST.getFlatWorkGroupSizes(F), CurrentLocalMemUsage, F)
.second;
// Round up to the next tier of usage.
unsigned MaxSizeWithWaveCount =
ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F);
// Program may already use more LDS than is usable at maximum occupancy.
if (CurrentLocalMemUsage > MaxSizeWithWaveCount)
return false;
LocalMemLimit = MaxSizeWithWaveCount;
LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage
<< " bytes of LDS\n"
<< " Rounding size to " << MaxSizeWithWaveCount
<< " with a maximum occupancy of " << MaxOccupancy << '\n'
<< " and " << (LocalMemLimit - CurrentLocalMemUsage)
<< " available for promotion\n");
return true;
}
// FIXME: Should try to pick the most likely to be profitable allocas first.
bool AMDGPUPromoteAllocaImpl::tryPromoteAllocaToLDS(
AllocaAnalysis &AA, bool SufficientLDS,
SetVector<IntrinsicInst *> &DeferredIntrs) {
LLVM_DEBUG(dbgs() << "Trying to promote to LDS: " << *AA.Alloca << '\n');
// Not likely to have sufficient local memory for promotion.
if (!SufficientLDS)
return false;
const DataLayout &DL = Mod->getDataLayout();
IRBuilder<> Builder(AA.Alloca);
const Function &ContainingFunction = *AA.Alloca->getParent()->getParent();
const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction);
unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second;
Align Alignment = DL.getValueOrABITypeAlignment(
AA.Alloca->getAlign(), AA.Alloca->getAllocatedType());
// FIXME: This computed padding is likely wrong since it depends on inverse
// usage order.
//
// FIXME: It is also possible that if we're allowed to use all of the memory
// could end up using more than the maximum due to alignment padding.
uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment);
uint32_t AllocSize =
WorkGroupSize * DL.getTypeAllocSize(AA.Alloca->getAllocatedType());
NewSize += AllocSize;
if (NewSize > LocalMemLimit) {
LLVM_DEBUG(dbgs() << " " << AllocSize
<< " bytes of local memory not available to promote\n");
return false;
}
CurrentLocalMemUsage = NewSize;
LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n");
Function *F = AA.Alloca->getFunction();
Type *GVTy = ArrayType::get(AA.Alloca->getAllocatedType(), WorkGroupSize);
GlobalVariable *GV = new GlobalVariable(
*Mod, GVTy, false, GlobalValue::InternalLinkage, PoisonValue::get(GVTy),
Twine(F->getName()) + Twine('.') + AA.Alloca->getName(), nullptr,
GlobalVariable::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS);
GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
GV->setAlignment(AA.Alloca->getAlign());
Value *TCntY, *TCntZ;
std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder);
Value *TIdX = getWorkitemID(Builder, 0);
Value *TIdY = getWorkitemID(Builder, 1);
Value *TIdZ = getWorkitemID(Builder, 2);
Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true);
Tmp0 = Builder.CreateMul(Tmp0, TIdX);
Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true);
Value *TID = Builder.CreateAdd(Tmp0, Tmp1);
TID = Builder.CreateAdd(TID, TIdZ);
LLVMContext &Context = Mod->getContext();
Value *Indices[] = {Constant::getNullValue(Type::getInt32Ty(Context)), TID};
Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices);
AA.Alloca->mutateType(Offset->getType());
AA.Alloca->replaceAllUsesWith(Offset);
AA.Alloca->eraseFromParent();
PointerType *NewPtrTy = PointerType::get(Context, AMDGPUAS::LOCAL_ADDRESS);
for (Value *V : AA.LDS.Worklist) {
CallInst *Call = dyn_cast<CallInst>(V);
if (!Call) {
if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) {
Value *LHS = CI->getOperand(0);
Value *RHS = CI->getOperand(1);
Type *NewTy = LHS->getType()->getWithNewType(NewPtrTy);
if (isa<ConstantPointerNull, ConstantAggregateZero>(LHS))
CI->setOperand(0, Constant::getNullValue(NewTy));
if (isa<ConstantPointerNull, ConstantAggregateZero>(RHS))
CI->setOperand(1, Constant::getNullValue(NewTy));
continue;
}
// The operand's value should be corrected on its own and we don't want to
// touch the users.
if (isa<AddrSpaceCastInst>(V))
continue;
assert(V->getType()->isPtrOrPtrVectorTy());
Type *NewTy = V->getType()->getWithNewType(NewPtrTy);
V->mutateType(NewTy);
// Adjust the types of any constant operands.
if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
if (isa<ConstantPointerNull, ConstantAggregateZero>(SI->getOperand(1)))
SI->setOperand(1, Constant::getNullValue(NewTy));
if (isa<ConstantPointerNull, ConstantAggregateZero>(SI->getOperand(2)))
SI->setOperand(2, Constant::getNullValue(NewTy));
} else if (PHINode *Phi = dyn_cast<PHINode>(V)) {
for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
if (isa<ConstantPointerNull, ConstantAggregateZero>(
Phi->getIncomingValue(I)))
Phi->setIncomingValue(I, Constant::getNullValue(NewTy));
}
}
continue;
}
IntrinsicInst *Intr = cast<IntrinsicInst>(Call);
Builder.SetInsertPoint(Intr);
switch (Intr->getIntrinsicID()) {
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
// These intrinsics are for address space 0 only
Intr->eraseFromParent();
continue;
case Intrinsic::memcpy:
case Intrinsic::memmove:
// These have 2 pointer operands. In case if second pointer also needs
// to be replaced we defer processing of these intrinsics until all
// other values are processed.
DeferredIntrs.insert(Intr);
continue;
case Intrinsic::memset: {
MemSetInst *MemSet = cast<MemSetInst>(Intr);
Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(),
MemSet->getLength(), MemSet->getDestAlign(),
MemSet->isVolatile());
Intr->eraseFromParent();
continue;
}
case Intrinsic::invariant_start:
case Intrinsic::invariant_end:
case Intrinsic::launder_invariant_group:
case Intrinsic::strip_invariant_group: {
SmallVector<Value *> Args;
if (Intr->getIntrinsicID() == Intrinsic::invariant_start) {
Args.emplace_back(Intr->getArgOperand(0));
} else if (Intr->getIntrinsicID() == Intrinsic::invariant_end) {
Args.emplace_back(Intr->getArgOperand(0));
Args.emplace_back(Intr->getArgOperand(1));
}
Args.emplace_back(Offset);
Function *F = Intrinsic::getOrInsertDeclaration(
Intr->getModule(), Intr->getIntrinsicID(), Offset->getType());
CallInst *NewIntr =
CallInst::Create(F, Args, Intr->getName(), Intr->getIterator());
Intr->mutateType(NewIntr->getType());
Intr->replaceAllUsesWith(NewIntr);
Intr->eraseFromParent();
continue;
}
case Intrinsic::objectsize: {
Value *Src = Intr->getOperand(0);
CallInst *NewCall = Builder.CreateIntrinsic(
Intrinsic::objectsize,
{Intr->getType(), PointerType::get(Context, AMDGPUAS::LOCAL_ADDRESS)},
{Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)});
Intr->replaceAllUsesWith(NewCall);
Intr->eraseFromParent();
continue;
}
default:
Intr->print(errs());
llvm_unreachable("Don't know how to promote alloca intrinsic use.");
}
}
return true;
}
void AMDGPUPromoteAllocaImpl::finishDeferredAllocaToLDSPromotion(
SetVector<IntrinsicInst *> &DeferredIntrs) {
for (IntrinsicInst *Intr : DeferredIntrs) {
IRBuilder<> Builder(Intr);
Builder.SetInsertPoint(Intr);
Intrinsic::ID ID = Intr->getIntrinsicID();
assert(ID == Intrinsic::memcpy || ID == Intrinsic::memmove);
MemTransferInst *MI = cast<MemTransferInst>(Intr);
auto *B = Builder.CreateMemTransferInst(
ID, MI->getRawDest(), MI->getDestAlign(), MI->getRawSource(),
MI->getSourceAlign(), MI->getLength(), MI->isVolatile());
for (unsigned I = 0; I != 2; ++I) {
if (uint64_t Bytes = Intr->getParamDereferenceableBytes(I)) {
B->addDereferenceableParamAttr(I, Bytes);
}
}
Intr->eraseFromParent();
}
}