| //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Eliminates allocas by either converting them into vectors or by migrating |
| // them to local address space. |
| // |
| // Two passes are exposed by this file: |
| // - "promote-alloca-to-vector", which runs early in the pipeline and only |
| // promotes to vector. Promotion to vector is almost always profitable |
| // except when the alloca is too big and the promotion would result in |
| // very high register pressure. |
| // - "promote-alloca", which does both promotion to vector and LDS and runs |
| // much later in the pipeline. This runs after SROA because promoting to |
| // LDS is of course less profitable than getting rid of the alloca or |
| // vectorizing it, thus we only want to do it when the only alternative is |
| // lowering the alloca to stack. |
| // |
| // Note that both of them exist for the old and new PMs. The new PM passes are |
| // declared in AMDGPU.h and the legacy PM ones are declared here.s |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AMDGPU.h" |
| #include "GCNSubtarget.h" |
| #include "Utils/AMDGPUBaseInfo.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Analysis/CaptureTracking.h" |
| #include "llvm/Analysis/InstSimplifyFolder.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/CodeGen/TargetPassConfig.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/IntrinsicsAMDGPU.h" |
| #include "llvm/IR/IntrinsicsR600.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Transforms/Utils/SSAUpdater.h" |
| |
| #define DEBUG_TYPE "amdgpu-promote-alloca" |
| |
| using namespace llvm; |
| |
| namespace { |
| |
| static cl::opt<bool> |
| DisablePromoteAllocaToVector("disable-promote-alloca-to-vector", |
| cl::desc("Disable promote alloca to vector"), |
| cl::init(false)); |
| |
| static cl::opt<bool> |
| DisablePromoteAllocaToLDS("disable-promote-alloca-to-lds", |
| cl::desc("Disable promote alloca to LDS"), |
| cl::init(false)); |
| |
| static cl::opt<unsigned> PromoteAllocaToVectorLimit( |
| "amdgpu-promote-alloca-to-vector-limit", |
| cl::desc("Maximum byte size to consider promote alloca to vector"), |
| cl::init(0)); |
| |
| static cl::opt<unsigned> PromoteAllocaToVectorMaxRegs( |
| "amdgpu-promote-alloca-to-vector-max-regs", |
| cl::desc( |
| "Maximum vector size (in 32b registers) to use when promoting alloca"), |
| cl::init(32)); |
| |
| // Use up to 1/4 of available register budget for vectorization. |
| // FIXME: Increase the limit for whole function budgets? Perhaps x2? |
| static cl::opt<unsigned> PromoteAllocaToVectorVGPRRatio( |
| "amdgpu-promote-alloca-to-vector-vgpr-ratio", |
| cl::desc("Ratio of VGPRs to budget for promoting alloca to vectors"), |
| cl::init(4)); |
| |
| static cl::opt<unsigned> |
| LoopUserWeight("promote-alloca-vector-loop-user-weight", |
| cl::desc("The bonus weight of users of allocas within loop " |
| "when sorting profitable allocas"), |
| cl::init(4)); |
| |
| // We support vector indices of the form (A * stride) + B |
| // All parts are optional. |
| struct GEPToVectorIndex { |
| Value *VarIndex = nullptr; // defaults to 0 |
| ConstantInt *VarMul = nullptr; // defaults to 1 |
| ConstantInt *ConstIndex = nullptr; // defaults to 0 |
| Value *Full = nullptr; |
| }; |
| |
| struct MemTransferInfo { |
| ConstantInt *SrcIndex = nullptr; |
| ConstantInt *DestIndex = nullptr; |
| }; |
| |
| // Analysis for planning the different strategies of alloca promotion. |
| struct AllocaAnalysis { |
| AllocaInst *Alloca = nullptr; |
| DenseSet<Value *> Pointers; |
| SmallVector<Use *> Uses; |
| unsigned Score = 0; |
| bool HaveSelectOrPHI = false; |
| struct { |
| FixedVectorType *Ty = nullptr; |
| SmallVector<Instruction *> Worklist; |
| SmallVector<Instruction *> UsersToRemove; |
| MapVector<GetElementPtrInst *, GEPToVectorIndex> GEPVectorIdx; |
| MapVector<MemTransferInst *, MemTransferInfo> TransferInfo; |
| } Vector; |
| struct { |
| bool Enable = false; |
| SmallVector<User *> Worklist; |
| } LDS; |
| |
| explicit AllocaAnalysis(AllocaInst *Alloca) : Alloca(Alloca) {} |
| }; |
| |
| // Shared implementation which can do both promotion to vector and to LDS. |
| class AMDGPUPromoteAllocaImpl { |
| private: |
| const TargetMachine &TM; |
| LoopInfo &LI; |
| Module *Mod = nullptr; |
| const DataLayout *DL = nullptr; |
| |
| // FIXME: This should be per-kernel. |
| uint32_t LocalMemLimit = 0; |
| uint32_t CurrentLocalMemUsage = 0; |
| unsigned MaxVGPRs; |
| unsigned VGPRBudgetRatio; |
| unsigned MaxVectorRegs; |
| |
| bool IsAMDGCN = false; |
| bool IsAMDHSA = false; |
| |
| std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); |
| Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); |
| |
| bool collectAllocaUses(AllocaAnalysis &AA) const; |
| |
| /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand |
| /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). |
| /// Returns true if both operands are derived from the same alloca. Val should |
| /// be the same value as one of the input operands of UseInst. |
| bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, |
| Instruction *UseInst, int OpIdx0, |
| int OpIdx1) const; |
| |
| /// Check whether we have enough local memory for promotion. |
| bool hasSufficientLocalMem(const Function &F); |
| |
| FixedVectorType *getVectorTypeForAlloca(Type *AllocaTy) const; |
| void analyzePromoteToVector(AllocaAnalysis &AA) const; |
| void promoteAllocaToVector(AllocaAnalysis &AA); |
| void analyzePromoteToLDS(AllocaAnalysis &AA) const; |
| bool tryPromoteAllocaToLDS(AllocaAnalysis &AA, bool SufficientLDS, |
| SetVector<IntrinsicInst *> &DeferredIntrs); |
| void |
| finishDeferredAllocaToLDSPromotion(SetVector<IntrinsicInst *> &DeferredIntrs); |
| |
| void scoreAlloca(AllocaAnalysis &AA) const; |
| |
| void setFunctionLimits(const Function &F); |
| |
| public: |
| AMDGPUPromoteAllocaImpl(TargetMachine &TM, LoopInfo &LI) : TM(TM), LI(LI) { |
| |
| const Triple &TT = TM.getTargetTriple(); |
| IsAMDGCN = TT.isAMDGCN(); |
| IsAMDHSA = TT.getOS() == Triple::AMDHSA; |
| } |
| |
| bool run(Function &F, bool PromoteToLDS); |
| }; |
| |
| // FIXME: This can create globals so should be a module pass. |
| class AMDGPUPromoteAlloca : public FunctionPass { |
| public: |
| static char ID; |
| |
| AMDGPUPromoteAlloca() : FunctionPass(ID) {} |
| |
| bool runOnFunction(Function &F) override { |
| if (skipFunction(F)) |
| return false; |
| if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) |
| return AMDGPUPromoteAllocaImpl( |
| TPC->getTM<TargetMachine>(), |
| getAnalysis<LoopInfoWrapperPass>().getLoopInfo()) |
| .run(F, /*PromoteToLDS*/ true); |
| return false; |
| } |
| |
| StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesCFG(); |
| AU.addRequired<LoopInfoWrapperPass>(); |
| FunctionPass::getAnalysisUsage(AU); |
| } |
| }; |
| |
| static unsigned getMaxVGPRs(unsigned LDSBytes, const TargetMachine &TM, |
| const Function &F) { |
| if (!TM.getTargetTriple().isAMDGCN()) |
| return 128; |
| |
| const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); |
| |
| unsigned DynamicVGPRBlockSize = AMDGPU::getDynamicVGPRBlockSize(F); |
| // Temporarily check both the attribute and the subtarget feature, until the |
| // latter is removed. |
| if (DynamicVGPRBlockSize == 0 && ST.isDynamicVGPREnabled()) |
| DynamicVGPRBlockSize = ST.getDynamicVGPRBlockSize(); |
| |
| unsigned MaxVGPRs = ST.getMaxNumVGPRs( |
| ST.getWavesPerEU(ST.getFlatWorkGroupSizes(F), LDSBytes, F).first, |
| DynamicVGPRBlockSize); |
| |
| // A non-entry function has only 32 caller preserved registers. |
| // Do not promote alloca which will force spilling unless we know the function |
| // will be inlined. |
| if (!F.hasFnAttribute(Attribute::AlwaysInline) && |
| !AMDGPU::isEntryFunctionCC(F.getCallingConv())) |
| MaxVGPRs = std::min(MaxVGPRs, 32u); |
| return MaxVGPRs; |
| } |
| |
| } // end anonymous namespace |
| |
| char AMDGPUPromoteAlloca::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(AMDGPUPromoteAlloca, DEBUG_TYPE, |
| "AMDGPU promote alloca to vector or LDS", false, false) |
| // Move LDS uses from functions to kernels before promote alloca for accurate |
| // estimation of LDS available |
| INITIALIZE_PASS_DEPENDENCY(AMDGPULowerModuleLDSLegacy) |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| INITIALIZE_PASS_END(AMDGPUPromoteAlloca, DEBUG_TYPE, |
| "AMDGPU promote alloca to vector or LDS", false, false) |
| |
| char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; |
| |
| PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F, |
| FunctionAnalysisManager &AM) { |
| auto &LI = AM.getResult<LoopAnalysis>(F); |
| bool Changed = AMDGPUPromoteAllocaImpl(TM, LI).run(F, /*PromoteToLDS=*/true); |
| if (Changed) { |
| PreservedAnalyses PA; |
| PA.preserveSet<CFGAnalyses>(); |
| return PA; |
| } |
| return PreservedAnalyses::all(); |
| } |
| |
| PreservedAnalyses |
| AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) { |
| auto &LI = AM.getResult<LoopAnalysis>(F); |
| bool Changed = AMDGPUPromoteAllocaImpl(TM, LI).run(F, /*PromoteToLDS=*/false); |
| if (Changed) { |
| PreservedAnalyses PA; |
| PA.preserveSet<CFGAnalyses>(); |
| return PA; |
| } |
| return PreservedAnalyses::all(); |
| } |
| |
| FunctionPass *llvm::createAMDGPUPromoteAlloca() { |
| return new AMDGPUPromoteAlloca(); |
| } |
| |
| bool AMDGPUPromoteAllocaImpl::collectAllocaUses(AllocaAnalysis &AA) const { |
| const auto RejectUser = [&](Instruction *Inst, Twine Msg) { |
| LLVM_DEBUG(dbgs() << " Cannot promote alloca: " << Msg << "\n" |
| << " " << *Inst << "\n"); |
| return false; |
| }; |
| |
| SmallVector<Instruction *, 4> WorkList({AA.Alloca}); |
| while (!WorkList.empty()) { |
| auto *Cur = WorkList.pop_back_val(); |
| if (find(AA.Pointers, Cur) != AA.Pointers.end()) |
| continue; |
| AA.Pointers.insert(Cur); |
| for (auto &U : Cur->uses()) { |
| auto *Inst = cast<Instruction>(U.getUser()); |
| if (isa<StoreInst>(Inst)) { |
| if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) { |
| return RejectUser(Inst, "pointer escapes via store"); |
| } |
| } |
| AA.Uses.push_back(&U); |
| |
| if (isa<GetElementPtrInst>(U.getUser())) { |
| WorkList.push_back(Inst); |
| } else if (auto *SI = dyn_cast<SelectInst>(Inst)) { |
| // Only promote a select if we know that the other select operand is |
| // from another pointer that will also be promoted. |
| if (!binaryOpIsDerivedFromSameAlloca(AA.Alloca, Cur, SI, 1, 2)) |
| return RejectUser(Inst, "select from mixed objects"); |
| WorkList.push_back(Inst); |
| AA.HaveSelectOrPHI = true; |
| } else if (auto *Phi = dyn_cast<PHINode>(Inst)) { |
| // Repeat for phis. |
| |
| // TODO: Handle more complex cases. We should be able to replace loops |
| // over arrays. |
| switch (Phi->getNumIncomingValues()) { |
| case 1: |
| break; |
| case 2: |
| if (!binaryOpIsDerivedFromSameAlloca(AA.Alloca, Cur, Phi, 0, 1)) |
| return RejectUser(Inst, "phi from mixed objects"); |
| break; |
| default: |
| return RejectUser(Inst, "phi with too many operands"); |
| } |
| |
| WorkList.push_back(Inst); |
| AA.HaveSelectOrPHI = true; |
| } |
| } |
| } |
| return true; |
| } |
| |
| void AMDGPUPromoteAllocaImpl::scoreAlloca(AllocaAnalysis &AA) const { |
| LLVM_DEBUG(dbgs() << "Scoring: " << *AA.Alloca << "\n"); |
| unsigned Score = 0; |
| // Increment score by one for each user + a bonus for users within loops. |
| for (auto *U : AA.Uses) { |
| Instruction *Inst = cast<Instruction>(U->getUser()); |
| if (isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) || |
| isa<PHINode>(Inst)) |
| continue; |
| unsigned UserScore = |
| 1 + (LoopUserWeight * LI.getLoopDepth(Inst->getParent())); |
| LLVM_DEBUG(dbgs() << " [+" << UserScore << "]:\t" << *Inst << "\n"); |
| Score += UserScore; |
| } |
| LLVM_DEBUG(dbgs() << " => Final Score:" << Score << "\n"); |
| AA.Score = Score; |
| } |
| |
| void AMDGPUPromoteAllocaImpl::setFunctionLimits(const Function &F) { |
| // Load per function limits, overriding with global options where appropriate. |
| // R600 register tuples/aliasing are fragile with large vector promotions so |
| // apply architecture specific limit here. |
| const int R600MaxVectorRegs = 16; |
| MaxVectorRegs = F.getFnAttributeAsParsedInteger( |
| "amdgpu-promote-alloca-to-vector-max-regs", |
| IsAMDGCN ? PromoteAllocaToVectorMaxRegs : R600MaxVectorRegs); |
| if (PromoteAllocaToVectorMaxRegs.getNumOccurrences()) |
| MaxVectorRegs = PromoteAllocaToVectorMaxRegs; |
| VGPRBudgetRatio = F.getFnAttributeAsParsedInteger( |
| "amdgpu-promote-alloca-to-vector-vgpr-ratio", |
| PromoteAllocaToVectorVGPRRatio); |
| if (PromoteAllocaToVectorVGPRRatio.getNumOccurrences()) |
| VGPRBudgetRatio = PromoteAllocaToVectorVGPRRatio; |
| } |
| |
| bool AMDGPUPromoteAllocaImpl::run(Function &F, bool PromoteToLDS) { |
| Mod = F.getParent(); |
| DL = &Mod->getDataLayout(); |
| |
| const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); |
| if (!ST.isPromoteAllocaEnabled()) |
| return false; |
| |
| bool SufficientLDS = PromoteToLDS && hasSufficientLocalMem(F); |
| MaxVGPRs = getMaxVGPRs(CurrentLocalMemUsage, TM, F); |
| setFunctionLimits(F); |
| |
| unsigned VectorizationBudget = |
| (PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8 |
| : (MaxVGPRs * 32)) / |
| VGPRBudgetRatio; |
| |
| std::vector<AllocaAnalysis> Allocas; |
| for (Instruction &I : F.getEntryBlock()) { |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { |
| // Array allocations are probably not worth handling, since an allocation |
| // of the array type is the canonical form. |
| if (!AI->isStaticAlloca() || AI->isArrayAllocation()) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "Analyzing: " << *AI << '\n'); |
| |
| AllocaAnalysis AA{AI}; |
| if (collectAllocaUses(AA)) { |
| analyzePromoteToVector(AA); |
| if (PromoteToLDS) |
| analyzePromoteToLDS(AA); |
| if (AA.Vector.Ty || AA.LDS.Enable) { |
| scoreAlloca(AA); |
| Allocas.push_back(std::move(AA)); |
| } |
| } |
| } |
| } |
| |
| stable_sort(Allocas, |
| [](const auto &A, const auto &B) { return A.Score > B.Score; }); |
| |
| // clang-format off |
| LLVM_DEBUG( |
| dbgs() << "Sorted Worklist:\n"; |
| for (const auto &AA : Allocas) |
| dbgs() << " " << *AA.Alloca << "\n"; |
| ); |
| // clang-format on |
| |
| bool Changed = false; |
| SetVector<IntrinsicInst *> DeferredIntrs; |
| for (AllocaAnalysis &AA : Allocas) { |
| if (AA.Vector.Ty) { |
| const unsigned AllocaCost = |
| DL->getTypeSizeInBits(AA.Alloca->getAllocatedType()); |
| // First, check if we have enough budget to vectorize this alloca. |
| if (AllocaCost <= VectorizationBudget) { |
| promoteAllocaToVector(AA); |
| Changed = true; |
| assert((VectorizationBudget - AllocaCost) < VectorizationBudget && |
| "Underflow!"); |
| VectorizationBudget -= AllocaCost; |
| LLVM_DEBUG(dbgs() << " Remaining vectorization budget:" |
| << VectorizationBudget << "\n"); |
| continue; |
| } else { |
| LLVM_DEBUG(dbgs() << "Alloca too big for vectorization (size:" |
| << AllocaCost << ", budget:" << VectorizationBudget |
| << "): " << *AA.Alloca << "\n"); |
| } |
| } |
| |
| if (AA.LDS.Enable && |
| tryPromoteAllocaToLDS(AA, SufficientLDS, DeferredIntrs)) |
| Changed = true; |
| } |
| finishDeferredAllocaToLDSPromotion(DeferredIntrs); |
| |
| // NOTE: tryPromoteAllocaToVector removes the alloca, so Allocas contains |
| // dangling pointers. If we want to reuse it past this point, the loop above |
| // would need to be updated to remove successfully promoted allocas. |
| |
| return Changed; |
| } |
| |
| // Checks if the instruction I is a memset user of the alloca AI that we can |
| // deal with. Currently, only non-volatile memsets that affect the whole alloca |
| // are handled. |
| static bool isSupportedMemset(MemSetInst *I, AllocaInst *AI, |
| const DataLayout &DL) { |
| using namespace PatternMatch; |
| // For now we only care about non-volatile memsets that affect the whole type |
| // (start at index 0 and fill the whole alloca). |
| // |
| // TODO: Now that we moved to PromoteAlloca we could handle any memsets |
| // (except maybe volatile ones?) - we just need to use shufflevector if it |
| // only affects a subset of the vector. |
| const unsigned Size = DL.getTypeStoreSize(AI->getAllocatedType()); |
| return I->getOperand(0) == AI && |
| match(I->getOperand(2), m_SpecificInt(Size)) && !I->isVolatile(); |
| } |
| |
| static Value *calculateVectorIndex(Value *Ptr, AllocaAnalysis &AA) { |
| IRBuilder<> B(Ptr->getContext()); |
| |
| Ptr = Ptr->stripPointerCasts(); |
| if (Ptr == AA.Alloca) |
| return B.getInt32(0); |
| |
| auto *GEP = cast<GetElementPtrInst>(Ptr); |
| auto I = AA.Vector.GEPVectorIdx.find(GEP); |
| assert(I != AA.Vector.GEPVectorIdx.end() && "Must have entry for GEP!"); |
| |
| if (!I->second.Full) { |
| Value *Result = nullptr; |
| B.SetInsertPoint(GEP); |
| |
| if (I->second.VarIndex) { |
| Result = I->second.VarIndex; |
| Result = B.CreateSExtOrTrunc(Result, B.getInt32Ty()); |
| |
| if (I->second.VarMul) |
| Result = B.CreateMul(Result, I->second.VarMul); |
| } |
| |
| if (I->second.ConstIndex) { |
| if (Result) |
| Result = B.CreateAdd(Result, I->second.ConstIndex); |
| else |
| Result = I->second.ConstIndex; |
| } |
| |
| if (!Result) |
| Result = B.getInt32(0); |
| |
| I->second.Full = Result; |
| } |
| |
| return I->second.Full; |
| } |
| |
| static std::optional<GEPToVectorIndex> |
| computeGEPToVectorIndex(GetElementPtrInst *GEP, AllocaInst *Alloca, |
| Type *VecElemTy, const DataLayout &DL) { |
| // TODO: Extracting a "multiple of X" from a GEP might be a useful generic |
| // helper. |
| LLVMContext &Ctx = GEP->getContext(); |
| unsigned BW = DL.getIndexTypeSizeInBits(GEP->getType()); |
| SmallMapVector<Value *, APInt, 4> VarOffsets; |
| APInt ConstOffset(BW, 0); |
| |
| // Walk backwards through nested GEPs to collect both constant and variable |
| // offsets, so that nested vector GEP chains can be lowered in one step. |
| // |
| // Given this IR fragment as input: |
| // |
| // %0 = alloca [10 x <2 x i32>], align 8, addrspace(5) |
| // %1 = getelementptr [10 x <2 x i32>], ptr addrspace(5) %0, i32 0, i32 %j |
| // %2 = getelementptr i8, ptr addrspace(5) %1, i32 4 |
| // %3 = load i32, ptr addrspace(5) %2, align 4 |
| // |
| // Combine both GEP operations in a single pass, producing: |
| // BasePtr = %0 |
| // ConstOffset = 4 |
| // VarOffsets = { %j -> element_size(<2 x i32>) } |
| // |
| // That lets us emit a single buffer_load directly into a VGPR, without ever |
| // allocating scratch memory for the intermediate pointer. |
| Value *CurPtr = GEP; |
| while (auto *CurGEP = dyn_cast<GetElementPtrInst>(CurPtr)) { |
| if (!CurGEP->collectOffset(DL, BW, VarOffsets, ConstOffset)) |
| return {}; |
| |
| // Move to the next outer pointer. |
| CurPtr = CurGEP->getPointerOperand(); |
| } |
| |
| assert(CurPtr == Alloca && "GEP not based on alloca"); |
| |
| int64_t VecElemSize = DL.getTypeAllocSize(VecElemTy); |
| if (VarOffsets.size() > 1) |
| return {}; |
| |
| APInt IndexQuot; |
| int64_t Rem; |
| APInt::sdivrem(ConstOffset, VecElemSize, IndexQuot, Rem); |
| if (Rem != 0) |
| return {}; |
| |
| GEPToVectorIndex Result; |
| |
| if (!ConstOffset.isZero()) |
| Result.ConstIndex = ConstantInt::get(Ctx, IndexQuot.sextOrTrunc(BW)); |
| |
| if (VarOffsets.empty()) |
| return Result; |
| |
| const auto &VarOffset = VarOffsets.front(); |
| APInt OffsetQuot; |
| APInt::sdivrem(VarOffset.second, VecElemSize, OffsetQuot, Rem); |
| if (Rem != 0 || OffsetQuot.isZero()) |
| return {}; |
| |
| Result.VarIndex = VarOffset.first; |
| auto *OffsetType = dyn_cast<IntegerType>(Result.VarIndex->getType()); |
| if (!OffsetType) |
| return {}; |
| |
| if (!OffsetQuot.isOne()) |
| Result.VarMul = ConstantInt::get(Ctx, OffsetQuot.sextOrTrunc(BW)); |
| |
| return Result; |
| } |
| |
| /// Promotes a single user of the alloca to a vector form. |
| /// |
| /// \param Inst Instruction to be promoted. |
| /// \param DL Module Data Layout. |
| /// \param AA Alloca Analysis. |
| /// \param VecStoreSize Size of \p VectorTy in bytes. |
| /// \param ElementSize Size of \p VectorTy element type in bytes. |
| /// \param CurVal Current value of the vector (e.g. last stored value) |
| /// \param[out] DeferredLoads \p Inst is added to this vector if it can't |
| /// be promoted now. This happens when promoting requires \p |
| /// CurVal, but \p CurVal is nullptr. |
| /// \return the stored value if \p Inst would have written to the alloca, or |
| /// nullptr otherwise. |
| static Value *promoteAllocaUserToVector(Instruction *Inst, const DataLayout &DL, |
| AllocaAnalysis &AA, |
| unsigned VecStoreSize, |
| unsigned ElementSize, |
| function_ref<Value *()> GetCurVal) { |
| // Note: we use InstSimplifyFolder because it can leverage the DataLayout |
| // to do more folding, especially in the case of vector splats. |
| IRBuilder<InstSimplifyFolder> Builder(Inst->getContext(), |
| InstSimplifyFolder(DL)); |
| Builder.SetInsertPoint(Inst); |
| |
| const auto CreateTempPtrIntCast = [&Builder, DL](Value *Val, |
| Type *PtrTy) -> Value * { |
| assert(DL.getTypeStoreSize(Val->getType()) == DL.getTypeStoreSize(PtrTy)); |
| const unsigned Size = DL.getTypeStoreSizeInBits(PtrTy); |
| if (!PtrTy->isVectorTy()) |
| return Builder.CreateBitOrPointerCast(Val, Builder.getIntNTy(Size)); |
| const unsigned NumPtrElts = cast<FixedVectorType>(PtrTy)->getNumElements(); |
| // If we want to cast to cast, e.g. a <2 x ptr> into a <4 x i32>, we need to |
| // first cast the ptr vector to <2 x i64>. |
| assert((Size % NumPtrElts == 0) && "Vector size not divisble"); |
| Type *EltTy = Builder.getIntNTy(Size / NumPtrElts); |
| return Builder.CreateBitOrPointerCast( |
| Val, FixedVectorType::get(EltTy, NumPtrElts)); |
| }; |
| |
| Type *VecEltTy = AA.Vector.Ty->getElementType(); |
| |
| switch (Inst->getOpcode()) { |
| case Instruction::Load: { |
| Value *CurVal = GetCurVal(); |
| Value *Index = |
| calculateVectorIndex(cast<LoadInst>(Inst)->getPointerOperand(), AA); |
| |
| // We're loading the full vector. |
| Type *AccessTy = Inst->getType(); |
| TypeSize AccessSize = DL.getTypeStoreSize(AccessTy); |
| if (Constant *CI = dyn_cast<Constant>(Index)) { |
| if (CI->isZeroValue() && AccessSize == VecStoreSize) { |
| if (AccessTy->isPtrOrPtrVectorTy()) |
| CurVal = CreateTempPtrIntCast(CurVal, AccessTy); |
| else if (CurVal->getType()->isPtrOrPtrVectorTy()) |
| CurVal = CreateTempPtrIntCast(CurVal, CurVal->getType()); |
| Value *NewVal = Builder.CreateBitOrPointerCast(CurVal, AccessTy); |
| Inst->replaceAllUsesWith(NewVal); |
| return nullptr; |
| } |
| } |
| |
| // Loading a subvector. |
| if (isa<FixedVectorType>(AccessTy)) { |
| assert(AccessSize.isKnownMultipleOf(DL.getTypeStoreSize(VecEltTy))); |
| const unsigned NumLoadedElts = AccessSize / DL.getTypeStoreSize(VecEltTy); |
| auto *SubVecTy = FixedVectorType::get(VecEltTy, NumLoadedElts); |
| assert(DL.getTypeStoreSize(SubVecTy) == DL.getTypeStoreSize(AccessTy)); |
| |
| // If idx is dynamic, then sandwich load with bitcasts. |
| // ie. VectorTy SubVecTy AccessTy |
| // <64 x i8> -> <16 x i8> <8 x i16> |
| // <64 x i8> -> <4 x i128> -> i128 -> <8 x i16> |
| // Extracting subvector with dynamic index has very large expansion in |
| // the amdgpu backend. Limit to pow2. |
| FixedVectorType *VectorTy = AA.Vector.Ty; |
| TypeSize NumBits = DL.getTypeStoreSize(SubVecTy) * 8u; |
| uint64_t LoadAlign = cast<LoadInst>(Inst)->getAlign().value(); |
| bool IsAlignedLoad = NumBits <= (LoadAlign * 8u); |
| unsigned TotalNumElts = VectorTy->getNumElements(); |
| bool IsProperlyDivisible = TotalNumElts % NumLoadedElts == 0; |
| if (!isa<ConstantInt>(Index) && |
| llvm::isPowerOf2_32(SubVecTy->getNumElements()) && |
| IsProperlyDivisible && IsAlignedLoad) { |
| IntegerType *NewElemTy = Builder.getIntNTy(NumBits); |
| const unsigned NewNumElts = |
| DL.getTypeStoreSize(VectorTy) * 8u / NumBits; |
| const unsigned LShrAmt = llvm::Log2_32(SubVecTy->getNumElements()); |
| FixedVectorType *BitCastTy = |
| FixedVectorType::get(NewElemTy, NewNumElts); |
| Value *BCVal = Builder.CreateBitCast(CurVal, BitCastTy); |
| Value *NewIdx = Builder.CreateLShr( |
| Index, ConstantInt::get(Index->getType(), LShrAmt)); |
| Value *ExtVal = Builder.CreateExtractElement(BCVal, NewIdx); |
| Value *BCOut = Builder.CreateBitCast(ExtVal, AccessTy); |
| Inst->replaceAllUsesWith(BCOut); |
| return nullptr; |
| } |
| |
| Value *SubVec = PoisonValue::get(SubVecTy); |
| for (unsigned K = 0; K < NumLoadedElts; ++K) { |
| Value *CurIdx = |
| Builder.CreateAdd(Index, ConstantInt::get(Index->getType(), K)); |
| SubVec = Builder.CreateInsertElement( |
| SubVec, Builder.CreateExtractElement(CurVal, CurIdx), K); |
| } |
| |
| if (AccessTy->isPtrOrPtrVectorTy()) |
| SubVec = CreateTempPtrIntCast(SubVec, AccessTy); |
| else if (SubVecTy->isPtrOrPtrVectorTy()) |
| SubVec = CreateTempPtrIntCast(SubVec, SubVecTy); |
| |
| SubVec = Builder.CreateBitOrPointerCast(SubVec, AccessTy); |
| Inst->replaceAllUsesWith(SubVec); |
| return nullptr; |
| } |
| |
| // We're loading one element. |
| Value *ExtractElement = Builder.CreateExtractElement(CurVal, Index); |
| if (AccessTy != VecEltTy) |
| ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, AccessTy); |
| |
| Inst->replaceAllUsesWith(ExtractElement); |
| return nullptr; |
| } |
| case Instruction::Store: { |
| // For stores, it's a bit trickier and it depends on whether we're storing |
| // the full vector or not. If we're storing the full vector, we don't need |
| // to know the current value. If this is a store of a single element, we |
| // need to know the value. |
| StoreInst *SI = cast<StoreInst>(Inst); |
| Value *Index = calculateVectorIndex(SI->getPointerOperand(), AA); |
| Value *Val = SI->getValueOperand(); |
| |
| // We're storing the full vector, we can handle this without knowing CurVal. |
| Type *AccessTy = Val->getType(); |
| TypeSize AccessSize = DL.getTypeStoreSize(AccessTy); |
| if (Constant *CI = dyn_cast<Constant>(Index)) { |
| if (CI->isZeroValue() && AccessSize == VecStoreSize) { |
| if (AccessTy->isPtrOrPtrVectorTy()) |
| Val = CreateTempPtrIntCast(Val, AccessTy); |
| else if (AA.Vector.Ty->isPtrOrPtrVectorTy()) |
| Val = CreateTempPtrIntCast(Val, AA.Vector.Ty); |
| return Builder.CreateBitOrPointerCast(Val, AA.Vector.Ty); |
| } |
| } |
| |
| // Storing a subvector. |
| if (isa<FixedVectorType>(AccessTy)) { |
| assert(AccessSize.isKnownMultipleOf(DL.getTypeStoreSize(VecEltTy))); |
| const unsigned NumWrittenElts = |
| AccessSize / DL.getTypeStoreSize(VecEltTy); |
| const unsigned NumVecElts = AA.Vector.Ty->getNumElements(); |
| auto *SubVecTy = FixedVectorType::get(VecEltTy, NumWrittenElts); |
| assert(DL.getTypeStoreSize(SubVecTy) == DL.getTypeStoreSize(AccessTy)); |
| |
| if (SubVecTy->isPtrOrPtrVectorTy()) |
| Val = CreateTempPtrIntCast(Val, SubVecTy); |
| else if (AccessTy->isPtrOrPtrVectorTy()) |
| Val = CreateTempPtrIntCast(Val, AccessTy); |
| |
| Val = Builder.CreateBitOrPointerCast(Val, SubVecTy); |
| |
| Value *CurVec = GetCurVal(); |
| for (unsigned K = 0, NumElts = std::min(NumWrittenElts, NumVecElts); |
| K < NumElts; ++K) { |
| Value *CurIdx = |
| Builder.CreateAdd(Index, ConstantInt::get(Index->getType(), K)); |
| CurVec = Builder.CreateInsertElement( |
| CurVec, Builder.CreateExtractElement(Val, K), CurIdx); |
| } |
| return CurVec; |
| } |
| |
| if (Val->getType() != VecEltTy) |
| Val = Builder.CreateBitOrPointerCast(Val, VecEltTy); |
| return Builder.CreateInsertElement(GetCurVal(), Val, Index); |
| } |
| case Instruction::Call: { |
| if (auto *MTI = dyn_cast<MemTransferInst>(Inst)) { |
| // For memcpy, we need to know curval. |
| ConstantInt *Length = cast<ConstantInt>(MTI->getLength()); |
| unsigned NumCopied = Length->getZExtValue() / ElementSize; |
| MemTransferInfo *TI = &AA.Vector.TransferInfo[MTI]; |
| unsigned SrcBegin = TI->SrcIndex->getZExtValue(); |
| unsigned DestBegin = TI->DestIndex->getZExtValue(); |
| |
| SmallVector<int> Mask; |
| for (unsigned Idx = 0; Idx < AA.Vector.Ty->getNumElements(); ++Idx) { |
| if (Idx >= DestBegin && Idx < DestBegin + NumCopied) { |
| Mask.push_back(SrcBegin < AA.Vector.Ty->getNumElements() |
| ? SrcBegin++ |
| : PoisonMaskElem); |
| } else { |
| Mask.push_back(Idx); |
| } |
| } |
| |
| return Builder.CreateShuffleVector(GetCurVal(), Mask); |
| } |
| |
| if (auto *MSI = dyn_cast<MemSetInst>(Inst)) { |
| // For memset, we don't need to know the previous value because we |
| // currently only allow memsets that cover the whole alloca. |
| Value *Elt = MSI->getOperand(1); |
| const unsigned BytesPerElt = DL.getTypeStoreSize(VecEltTy); |
| if (BytesPerElt > 1) { |
| Value *EltBytes = Builder.CreateVectorSplat(BytesPerElt, Elt); |
| |
| // If the element type of the vector is a pointer, we need to first cast |
| // to an integer, then use a PtrCast. |
| if (VecEltTy->isPointerTy()) { |
| Type *PtrInt = Builder.getIntNTy(BytesPerElt * 8); |
| Elt = Builder.CreateBitCast(EltBytes, PtrInt); |
| Elt = Builder.CreateIntToPtr(Elt, VecEltTy); |
| } else |
| Elt = Builder.CreateBitCast(EltBytes, VecEltTy); |
| } |
| |
| return Builder.CreateVectorSplat(AA.Vector.Ty->getElementCount(), Elt); |
| } |
| |
| if (auto *Intr = dyn_cast<IntrinsicInst>(Inst)) { |
| if (Intr->getIntrinsicID() == Intrinsic::objectsize) { |
| Intr->replaceAllUsesWith( |
| Builder.getIntN(Intr->getType()->getIntegerBitWidth(), |
| DL.getTypeAllocSize(AA.Vector.Ty))); |
| return nullptr; |
| } |
| } |
| |
| llvm_unreachable("Unsupported call when promoting alloca to vector"); |
| } |
| |
| default: |
| llvm_unreachable("Inconsistency in instructions promotable to vector"); |
| } |
| |
| llvm_unreachable("Did not return after promoting instruction!"); |
| } |
| |
| static bool isSupportedAccessType(FixedVectorType *VecTy, Type *AccessTy, |
| const DataLayout &DL) { |
| // Access as a vector type can work if the size of the access vector is a |
| // multiple of the size of the alloca's vector element type. |
| // |
| // Examples: |
| // - VecTy = <8 x float>, AccessTy = <4 x float> -> OK |
| // - VecTy = <4 x double>, AccessTy = <2 x float> -> OK |
| // - VecTy = <4 x double>, AccessTy = <3 x float> -> NOT OK |
| // - 3*32 is not a multiple of 64 |
| // |
| // We could handle more complicated cases, but it'd make things a lot more |
| // complicated. |
| if (isa<FixedVectorType>(AccessTy)) { |
| TypeSize AccTS = DL.getTypeStoreSize(AccessTy); |
| // If the type size and the store size don't match, we would need to do more |
| // than just bitcast to translate between an extracted/insertable subvectors |
| // and the accessed value. |
| if (AccTS * 8 != DL.getTypeSizeInBits(AccessTy)) |
| return false; |
| TypeSize VecTS = DL.getTypeStoreSize(VecTy->getElementType()); |
| return AccTS.isKnownMultipleOf(VecTS); |
| } |
| |
| return CastInst::isBitOrNoopPointerCastable(VecTy->getElementType(), AccessTy, |
| DL); |
| } |
| |
| /// Iterates over an instruction worklist that may contain multiple instructions |
| /// from the same basic block, but in a different order. |
| template <typename InstContainer> |
| static void forEachWorkListItem(const InstContainer &WorkList, |
| std::function<void(Instruction *)> Fn) { |
| // Bucket up uses of the alloca by the block they occur in. |
| // This is important because we have to handle multiple defs/uses in a block |
| // ourselves: SSAUpdater is purely for cross-block references. |
| DenseMap<BasicBlock *, SmallDenseSet<Instruction *>> UsesByBlock; |
| for (Instruction *User : WorkList) |
| UsesByBlock[User->getParent()].insert(User); |
| |
| for (Instruction *User : WorkList) { |
| BasicBlock *BB = User->getParent(); |
| auto &BlockUses = UsesByBlock[BB]; |
| |
| // Already processed, skip. |
| if (BlockUses.empty()) |
| continue; |
| |
| // Only user in the block, directly process it. |
| if (BlockUses.size() == 1) { |
| Fn(User); |
| continue; |
| } |
| |
| // Multiple users in the block, do a linear scan to see users in order. |
| for (Instruction &Inst : *BB) { |
| if (!BlockUses.contains(&Inst)) |
| continue; |
| |
| Fn(&Inst); |
| } |
| |
| // Clear the block so we know it's been processed. |
| BlockUses.clear(); |
| } |
| } |
| |
| /// Find an insert point after an alloca, after all other allocas clustered at |
| /// the start of the block. |
| static BasicBlock::iterator skipToNonAllocaInsertPt(BasicBlock &BB, |
| BasicBlock::iterator I) { |
| for (BasicBlock::iterator E = BB.end(); I != E && isa<AllocaInst>(*I); ++I) |
| ; |
| return I; |
| } |
| |
| FixedVectorType * |
| AMDGPUPromoteAllocaImpl::getVectorTypeForAlloca(Type *AllocaTy) const { |
| if (DisablePromoteAllocaToVector) { |
| LLVM_DEBUG(dbgs() << " Promote alloca to vectors is disabled\n"); |
| return nullptr; |
| } |
| |
| auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy); |
| if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) { |
| uint64_t NumElems = 1; |
| Type *ElemTy; |
| do { |
| NumElems *= ArrayTy->getNumElements(); |
| ElemTy = ArrayTy->getElementType(); |
| } while ((ArrayTy = dyn_cast<ArrayType>(ElemTy))); |
| |
| // Check for array of vectors |
| auto *InnerVectorTy = dyn_cast<FixedVectorType>(ElemTy); |
| if (InnerVectorTy) { |
| NumElems *= InnerVectorTy->getNumElements(); |
| ElemTy = InnerVectorTy->getElementType(); |
| } |
| |
| if (VectorType::isValidElementType(ElemTy) && NumElems > 0) { |
| unsigned ElementSize = DL->getTypeSizeInBits(ElemTy) / 8; |
| if (ElementSize > 0) { |
| unsigned AllocaSize = DL->getTypeStoreSize(AllocaTy); |
| // Expand vector if required to match padding of inner type, |
| // i.e. odd size subvectors. |
| // Storage size of new vector must match that of alloca for correct |
| // behaviour of byte offsets and GEP computation. |
| if (NumElems * ElementSize != AllocaSize) |
| NumElems = AllocaSize / ElementSize; |
| if (NumElems > 0 && (AllocaSize % ElementSize) == 0) |
| VectorTy = FixedVectorType::get(ElemTy, NumElems); |
| } |
| } |
| } |
| if (!VectorTy) { |
| LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n"); |
| return nullptr; |
| } |
| |
| const unsigned MaxElements = |
| (MaxVectorRegs * 32) / DL->getTypeSizeInBits(VectorTy->getElementType()); |
| |
| if (VectorTy->getNumElements() > MaxElements || |
| VectorTy->getNumElements() < 2) { |
| LLVM_DEBUG(dbgs() << " " << *VectorTy |
| << " has an unsupported number of elements\n"); |
| return nullptr; |
| } |
| |
| Type *VecEltTy = VectorTy->getElementType(); |
| unsigned ElementSizeInBits = DL->getTypeSizeInBits(VecEltTy); |
| if (ElementSizeInBits != DL->getTypeAllocSizeInBits(VecEltTy)) { |
| LLVM_DEBUG(dbgs() << " Cannot convert to vector if the allocation size " |
| "does not match the type's size\n"); |
| return nullptr; |
| } |
| |
| return VectorTy; |
| } |
| |
| void AMDGPUPromoteAllocaImpl::analyzePromoteToVector(AllocaAnalysis &AA) const { |
| if (AA.HaveSelectOrPHI) { |
| LLVM_DEBUG(dbgs() << " Cannot convert to vector due to select or phi\n"); |
| return; |
| } |
| |
| Type *AllocaTy = AA.Alloca->getAllocatedType(); |
| AA.Vector.Ty = getVectorTypeForAlloca(AllocaTy); |
| if (!AA.Vector.Ty) |
| return; |
| |
| const auto RejectUser = [&](Instruction *Inst, Twine Msg) { |
| LLVM_DEBUG(dbgs() << " Cannot promote alloca to vector: " << Msg << "\n" |
| << " " << *Inst << "\n"); |
| AA.Vector.Ty = nullptr; |
| }; |
| |
| Type *VecEltTy = AA.Vector.Ty->getElementType(); |
| unsigned ElementSize = DL->getTypeSizeInBits(VecEltTy) / 8; |
| assert(ElementSize > 0); |
| for (auto *U : AA.Uses) { |
| Instruction *Inst = cast<Instruction>(U->getUser()); |
| |
| if (Value *Ptr = getLoadStorePointerOperand(Inst)) { |
| assert(!isa<StoreInst>(Inst) || |
| U->getOperandNo() == StoreInst::getPointerOperandIndex()); |
| |
| Type *AccessTy = getLoadStoreType(Inst); |
| if (AccessTy->isAggregateType()) |
| return RejectUser(Inst, "unsupported load/store as aggregate"); |
| assert(!AccessTy->isAggregateType() || AccessTy->isArrayTy()); |
| |
| // Check that this is a simple access of a vector element. |
| bool IsSimple = isa<LoadInst>(Inst) ? cast<LoadInst>(Inst)->isSimple() |
| : cast<StoreInst>(Inst)->isSimple(); |
| if (!IsSimple) |
| return RejectUser(Inst, "not a simple load or store"); |
| |
| Ptr = Ptr->stripPointerCasts(); |
| |
| // Alloca already accessed as vector. |
| if (Ptr == AA.Alloca && |
| DL->getTypeStoreSize(AA.Alloca->getAllocatedType()) == |
| DL->getTypeStoreSize(AccessTy)) { |
| AA.Vector.Worklist.push_back(Inst); |
| continue; |
| } |
| |
| if (!isSupportedAccessType(AA.Vector.Ty, AccessTy, *DL)) |
| return RejectUser(Inst, "not a supported access type"); |
| |
| AA.Vector.Worklist.push_back(Inst); |
| continue; |
| } |
| |
| if (auto *GEP = dyn_cast<GetElementPtrInst>(Inst)) { |
| // If we can't compute a vector index from this GEP, then we can't |
| // promote this alloca to vector. |
| auto Index = computeGEPToVectorIndex(GEP, AA.Alloca, VecEltTy, *DL); |
| if (!Index) |
| return RejectUser(Inst, "cannot compute vector index for GEP"); |
| |
| AA.Vector.GEPVectorIdx[GEP] = std::move(Index.value()); |
| AA.Vector.UsersToRemove.push_back(Inst); |
| continue; |
| } |
| |
| if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst); |
| MSI && isSupportedMemset(MSI, AA.Alloca, *DL)) { |
| AA.Vector.Worklist.push_back(Inst); |
| continue; |
| } |
| |
| if (MemTransferInst *TransferInst = dyn_cast<MemTransferInst>(Inst)) { |
| if (TransferInst->isVolatile()) |
| return RejectUser(Inst, "mem transfer inst is volatile"); |
| |
| ConstantInt *Len = dyn_cast<ConstantInt>(TransferInst->getLength()); |
| if (!Len || (Len->getZExtValue() % ElementSize)) |
| return RejectUser(Inst, "mem transfer inst length is non-constant or " |
| "not a multiple of the vector element size"); |
| |
| auto getConstIndexIntoAlloca = [&](Value *Ptr) -> ConstantInt * { |
| if (Ptr == AA.Alloca) |
| return ConstantInt::get(Ptr->getContext(), APInt(32, 0)); |
| |
| GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr); |
| const auto &GEPI = AA.Vector.GEPVectorIdx.find(GEP)->second; |
| if (GEPI.VarIndex) |
| return nullptr; |
| if (GEPI.ConstIndex) |
| return GEPI.ConstIndex; |
| return ConstantInt::get(Ptr->getContext(), APInt(32, 0)); |
| }; |
| |
| MemTransferInfo *TI = |
| &AA.Vector.TransferInfo.try_emplace(TransferInst).first->second; |
| unsigned OpNum = U->getOperandNo(); |
| if (OpNum == 0) { |
| Value *Dest = TransferInst->getDest(); |
| ConstantInt *Index = getConstIndexIntoAlloca(Dest); |
| if (!Index) |
| return RejectUser(Inst, "could not calculate constant dest index"); |
| TI->DestIndex = Index; |
| } else { |
| assert(OpNum == 1); |
| Value *Src = TransferInst->getSource(); |
| ConstantInt *Index = getConstIndexIntoAlloca(Src); |
| if (!Index) |
| return RejectUser(Inst, "could not calculate constant src index"); |
| TI->SrcIndex = Index; |
| } |
| continue; |
| } |
| |
| if (auto *Intr = dyn_cast<IntrinsicInst>(Inst)) { |
| if (Intr->getIntrinsicID() == Intrinsic::objectsize) { |
| AA.Vector.Worklist.push_back(Inst); |
| continue; |
| } |
| } |
| |
| // Ignore assume-like intrinsics and comparisons used in assumes. |
| if (isAssumeLikeIntrinsic(Inst)) { |
| if (!Inst->use_empty()) |
| return RejectUser(Inst, "assume-like intrinsic cannot have any users"); |
| AA.Vector.UsersToRemove.push_back(Inst); |
| continue; |
| } |
| |
| if (isa<ICmpInst>(Inst) && all_of(Inst->users(), [](User *U) { |
| return isAssumeLikeIntrinsic(cast<Instruction>(U)); |
| })) { |
| AA.Vector.UsersToRemove.push_back(Inst); |
| continue; |
| } |
| |
| return RejectUser(Inst, "unhandled alloca user"); |
| } |
| |
| // Follow-up check to ensure we've seen both sides of all transfer insts. |
| for (const auto &Entry : AA.Vector.TransferInfo) { |
| const MemTransferInfo &TI = Entry.second; |
| if (!TI.SrcIndex || !TI.DestIndex) |
| return RejectUser(Entry.first, |
| "mem transfer inst between different objects"); |
| AA.Vector.Worklist.push_back(Entry.first); |
| } |
| } |
| |
| void AMDGPUPromoteAllocaImpl::promoteAllocaToVector(AllocaAnalysis &AA) { |
| LLVM_DEBUG(dbgs() << "Promoting to vectors: " << *AA.Alloca << '\n'); |
| LLVM_DEBUG(dbgs() << " type conversion: " << *AA.Alloca->getAllocatedType() |
| << " -> " << *AA.Vector.Ty << '\n'); |
| const unsigned VecStoreSize = DL->getTypeStoreSize(AA.Vector.Ty); |
| |
| Type *VecEltTy = AA.Vector.Ty->getElementType(); |
| const unsigned ElementSize = DL->getTypeSizeInBits(VecEltTy) / 8; |
| |
| // Alloca is uninitialized memory. Imitate that by making the first value |
| // undef. |
| SSAUpdater Updater; |
| Updater.Initialize(AA.Vector.Ty, "promotealloca"); |
| |
| BasicBlock *EntryBB = AA.Alloca->getParent(); |
| BasicBlock::iterator InitInsertPos = |
| skipToNonAllocaInsertPt(*EntryBB, AA.Alloca->getIterator()); |
| IRBuilder<> Builder(&*InitInsertPos); |
| Value *AllocaInitValue = Builder.CreateFreeze(PoisonValue::get(AA.Vector.Ty)); |
| AllocaInitValue->takeName(AA.Alloca); |
| |
| Updater.AddAvailableValue(AA.Alloca->getParent(), AllocaInitValue); |
| |
| // First handle the initial worklist, in basic block order. |
| // |
| // Insert a placeholder whenever we need the vector value at the top of a |
| // basic block. |
| SmallVector<Instruction *> Placeholders; |
| forEachWorkListItem(AA.Vector.Worklist, [&](Instruction *I) { |
| BasicBlock *BB = I->getParent(); |
| auto GetCurVal = [&]() -> Value * { |
| if (Value *CurVal = Updater.FindValueForBlock(BB)) |
| return CurVal; |
| |
| if (!Placeholders.empty() && Placeholders.back()->getParent() == BB) |
| return Placeholders.back(); |
| |
| // If the current value in the basic block is not yet known, insert a |
| // placeholder that we will replace later. |
| IRBuilder<> Builder(I); |
| auto *Placeholder = cast<Instruction>(Builder.CreateFreeze( |
| PoisonValue::get(AA.Vector.Ty), "promotealloca.placeholder")); |
| Placeholders.push_back(Placeholder); |
| return Placeholders.back(); |
| }; |
| |
| Value *Result = promoteAllocaUserToVector(I, *DL, AA, VecStoreSize, |
| ElementSize, GetCurVal); |
| if (Result) |
| Updater.AddAvailableValue(BB, Result); |
| }); |
| |
| // Now fixup the placeholders. |
| SmallVector<Value *> PlaceholderToNewVal(Placeholders.size()); |
| for (auto [Index, Placeholder] : enumerate(Placeholders)) { |
| Value *NewVal = Updater.GetValueInMiddleOfBlock(Placeholder->getParent()); |
| PlaceholderToNewVal[Index] = NewVal; |
| Placeholder->replaceAllUsesWith(NewVal); |
| } |
| // Note: we cannot merge this loop with the previous one because it is |
| // possible that the placeholder itself can be used in the SSAUpdater. The |
| // replaceAllUsesWith doesn't replace those uses. |
| for (auto [Index, Placeholder] : enumerate(Placeholders)) { |
| if (!Placeholder->use_empty()) |
| Placeholder->replaceAllUsesWith(PlaceholderToNewVal[Index]); |
| Placeholder->eraseFromParent(); |
| } |
| |
| // Delete all instructions. |
| for (Instruction *I : AA.Vector.Worklist) { |
| assert(I->use_empty()); |
| I->eraseFromParent(); |
| } |
| |
| // Delete all the users that are known to be removeable. |
| for (Instruction *I : reverse(AA.Vector.UsersToRemove)) { |
| I->dropDroppableUses(); |
| assert(I->use_empty()); |
| I->eraseFromParent(); |
| } |
| |
| // Alloca should now be dead too. |
| assert(AA.Alloca->use_empty()); |
| AA.Alloca->eraseFromParent(); |
| } |
| |
| std::pair<Value *, Value *> |
| AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) { |
| Function &F = *Builder.GetInsertBlock()->getParent(); |
| const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); |
| |
| if (!IsAMDHSA) { |
| CallInst *LocalSizeY = |
| Builder.CreateIntrinsic(Intrinsic::r600_read_local_size_y, {}); |
| CallInst *LocalSizeZ = |
| Builder.CreateIntrinsic(Intrinsic::r600_read_local_size_z, {}); |
| |
| ST.makeLIDRangeMetadata(LocalSizeY); |
| ST.makeLIDRangeMetadata(LocalSizeZ); |
| |
| return std::pair(LocalSizeY, LocalSizeZ); |
| } |
| |
| // We must read the size out of the dispatch pointer. |
| assert(IsAMDGCN); |
| |
| // We are indexing into this struct, and want to extract the workgroup_size_* |
| // fields. |
| // |
| // typedef struct hsa_kernel_dispatch_packet_s { |
| // uint16_t header; |
| // uint16_t setup; |
| // uint16_t workgroup_size_x ; |
| // uint16_t workgroup_size_y; |
| // uint16_t workgroup_size_z; |
| // uint16_t reserved0; |
| // uint32_t grid_size_x ; |
| // uint32_t grid_size_y ; |
| // uint32_t grid_size_z; |
| // |
| // uint32_t private_segment_size; |
| // uint32_t group_segment_size; |
| // uint64_t kernel_object; |
| // |
| // #ifdef HSA_LARGE_MODEL |
| // void *kernarg_address; |
| // #elif defined HSA_LITTLE_ENDIAN |
| // void *kernarg_address; |
| // uint32_t reserved1; |
| // #else |
| // uint32_t reserved1; |
| // void *kernarg_address; |
| // #endif |
| // uint64_t reserved2; |
| // hsa_signal_t completion_signal; // uint64_t wrapper |
| // } hsa_kernel_dispatch_packet_t |
| // |
| CallInst *DispatchPtr = |
| Builder.CreateIntrinsic(Intrinsic::amdgcn_dispatch_ptr, {}); |
| DispatchPtr->addRetAttr(Attribute::NoAlias); |
| DispatchPtr->addRetAttr(Attribute::NonNull); |
| F.removeFnAttr("amdgpu-no-dispatch-ptr"); |
| |
| // Size of the dispatch packet struct. |
| DispatchPtr->addDereferenceableRetAttr(64); |
| |
| Type *I32Ty = Type::getInt32Ty(Mod->getContext()); |
| |
| // We could do a single 64-bit load here, but it's likely that the basic |
| // 32-bit and extract sequence is already present, and it is probably easier |
| // to CSE this. The loads should be mergeable later anyway. |
| Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, DispatchPtr, 1); |
| LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4)); |
| |
| Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, DispatchPtr, 2); |
| LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4)); |
| |
| MDNode *MD = MDNode::get(Mod->getContext(), {}); |
| LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); |
| LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); |
| ST.makeLIDRangeMetadata(LoadZU); |
| |
| // Extract y component. Upper half of LoadZU should be zero already. |
| Value *Y = Builder.CreateLShr(LoadXY, 16); |
| |
| return std::pair(Y, LoadZU); |
| } |
| |
| Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder, |
| unsigned N) { |
| Function *F = Builder.GetInsertBlock()->getParent(); |
| const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, *F); |
| Intrinsic::ID IntrID = Intrinsic::not_intrinsic; |
| StringRef AttrName; |
| |
| switch (N) { |
| case 0: |
| IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x |
| : (Intrinsic::ID)Intrinsic::r600_read_tidig_x; |
| AttrName = "amdgpu-no-workitem-id-x"; |
| break; |
| case 1: |
| IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y |
| : (Intrinsic::ID)Intrinsic::r600_read_tidig_y; |
| AttrName = "amdgpu-no-workitem-id-y"; |
| break; |
| |
| case 2: |
| IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z |
| : (Intrinsic::ID)Intrinsic::r600_read_tidig_z; |
| AttrName = "amdgpu-no-workitem-id-z"; |
| break; |
| default: |
| llvm_unreachable("invalid dimension"); |
| } |
| |
| Function *WorkitemIdFn = Intrinsic::getOrInsertDeclaration(Mod, IntrID); |
| CallInst *CI = Builder.CreateCall(WorkitemIdFn); |
| ST.makeLIDRangeMetadata(CI); |
| F->removeFnAttr(AttrName); |
| |
| return CI; |
| } |
| |
| static bool isCallPromotable(CallInst *CI) { |
| IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); |
| if (!II) |
| return false; |
| |
| switch (II->getIntrinsicID()) { |
| case Intrinsic::memcpy: |
| case Intrinsic::memmove: |
| case Intrinsic::memset: |
| case Intrinsic::lifetime_start: |
| case Intrinsic::lifetime_end: |
| case Intrinsic::invariant_start: |
| case Intrinsic::invariant_end: |
| case Intrinsic::launder_invariant_group: |
| case Intrinsic::strip_invariant_group: |
| case Intrinsic::objectsize: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca( |
| Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0, |
| int OpIdx1) const { |
| // Figure out which operand is the one we might not be promoting. |
| Value *OtherOp = Inst->getOperand(OpIdx0); |
| if (Val == OtherOp) |
| OtherOp = Inst->getOperand(OpIdx1); |
| |
| if (isa<ConstantPointerNull, ConstantAggregateZero>(OtherOp)) |
| return true; |
| |
| // TODO: getUnderlyingObject will not work on a vector getelementptr |
| Value *OtherObj = getUnderlyingObject(OtherOp); |
| if (!isa<AllocaInst>(OtherObj)) |
| return false; |
| |
| // TODO: We should be able to replace undefs with the right pointer type. |
| |
| // TODO: If we know the other base object is another promotable |
| // alloca, not necessarily this alloca, we can do this. The |
| // important part is both must have the same address space at |
| // the end. |
| if (OtherObj != BaseAlloca) { |
| LLVM_DEBUG( |
| dbgs() << "Found a binary instruction with another alloca object\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void AMDGPUPromoteAllocaImpl::analyzePromoteToLDS(AllocaAnalysis &AA) const { |
| if (DisablePromoteAllocaToLDS) { |
| LLVM_DEBUG(dbgs() << " Promote alloca to LDS is disabled\n"); |
| return; |
| } |
| |
| // Don't promote the alloca to LDS for shader calling conventions as the work |
| // item ID intrinsics are not supported for these calling conventions. |
| // Furthermore not all LDS is available for some of the stages. |
| const Function &ContainingFunction = *AA.Alloca->getFunction(); |
| CallingConv::ID CC = ContainingFunction.getCallingConv(); |
| |
| switch (CC) { |
| case CallingConv::AMDGPU_KERNEL: |
| case CallingConv::SPIR_KERNEL: |
| break; |
| default: |
| LLVM_DEBUG( |
| dbgs() |
| << " promote alloca to LDS not supported with calling convention.\n"); |
| return; |
| } |
| |
| for (Use *Use : AA.Uses) { |
| auto *User = Use->getUser(); |
| |
| if (CallInst *CI = dyn_cast<CallInst>(User)) { |
| if (!isCallPromotable(CI)) |
| return; |
| |
| if (find(AA.LDS.Worklist, User) == AA.LDS.Worklist.end()) |
| AA.LDS.Worklist.push_back(User); |
| continue; |
| } |
| |
| Instruction *UseInst = cast<Instruction>(User); |
| if (UseInst->getOpcode() == Instruction::PtrToInt) |
| return; |
| |
| if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { |
| if (LI->isVolatile()) |
| return; |
| continue; |
| } |
| |
| if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { |
| if (SI->isVolatile()) |
| return; |
| continue; |
| } |
| |
| if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { |
| if (RMW->isVolatile()) |
| return; |
| continue; |
| } |
| |
| if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { |
| if (CAS->isVolatile()) |
| return; |
| continue; |
| } |
| |
| // Only promote a select if we know that the other select operand |
| // is from another pointer that will also be promoted. |
| if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { |
| if (!binaryOpIsDerivedFromSameAlloca(AA.Alloca, Use->get(), ICmp, 0, 1)) |
| return; |
| |
| // May need to rewrite constant operands. |
| if (find(AA.LDS.Worklist, User) == AA.LDS.Worklist.end()) |
| AA.LDS.Worklist.push_back(ICmp); |
| continue; |
| } |
| |
| if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { |
| // Be conservative if an address could be computed outside the bounds of |
| // the alloca. |
| if (!GEP->isInBounds()) |
| return; |
| } else if (!isa<ExtractElementInst, SelectInst, PHINode>(User)) { |
| // Do not promote vector/aggregate type instructions. It is hard to track |
| // their users. |
| |
| // Do not promote addrspacecast. |
| // |
| // TODO: If we know the address is only observed through flat pointers, we |
| // could still promote. |
| return; |
| } |
| |
| if (find(AA.LDS.Worklist, User) == AA.LDS.Worklist.end()) |
| AA.LDS.Worklist.push_back(User); |
| } |
| |
| AA.LDS.Enable = true; |
| } |
| |
| bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) { |
| |
| FunctionType *FTy = F.getFunctionType(); |
| const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); |
| |
| // If the function has any arguments in the local address space, then it's |
| // possible these arguments require the entire local memory space, so |
| // we cannot use local memory in the pass. |
| for (Type *ParamTy : FTy->params()) { |
| PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); |
| if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { |
| LocalMemLimit = 0; |
| LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to " |
| "local memory disabled.\n"); |
| return false; |
| } |
| } |
| |
| LocalMemLimit = ST.getAddressableLocalMemorySize(); |
| if (LocalMemLimit == 0) |
| return false; |
| |
| SmallVector<const Constant *, 16> Stack; |
| SmallPtrSet<const Constant *, 8> VisitedConstants; |
| SmallPtrSet<const GlobalVariable *, 8> UsedLDS; |
| |
| auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool { |
| for (const User *U : Val->users()) { |
| if (const Instruction *Use = dyn_cast<Instruction>(U)) { |
| if (Use->getFunction() == &F) |
| return true; |
| } else { |
| const Constant *C = cast<Constant>(U); |
| if (VisitedConstants.insert(C).second) |
| Stack.push_back(C); |
| } |
| } |
| |
| return false; |
| }; |
| |
| for (GlobalVariable &GV : Mod->globals()) { |
| if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) |
| continue; |
| |
| if (visitUsers(&GV, &GV)) { |
| UsedLDS.insert(&GV); |
| Stack.clear(); |
| continue; |
| } |
| |
| // For any ConstantExpr uses, we need to recursively search the users until |
| // we see a function. |
| while (!Stack.empty()) { |
| const Constant *C = Stack.pop_back_val(); |
| if (visitUsers(&GV, C)) { |
| UsedLDS.insert(&GV); |
| Stack.clear(); |
| break; |
| } |
| } |
| } |
| |
| const DataLayout &DL = Mod->getDataLayout(); |
| SmallVector<std::pair<uint64_t, Align>, 16> AllocatedSizes; |
| AllocatedSizes.reserve(UsedLDS.size()); |
| |
| for (const GlobalVariable *GV : UsedLDS) { |
| Align Alignment = |
| DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType()); |
| uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType()); |
| |
| // HIP uses an extern unsized array in local address space for dynamically |
| // allocated shared memory. In that case, we have to disable the promotion. |
| if (GV->hasExternalLinkage() && AllocSize == 0) { |
| LocalMemLimit = 0; |
| LLVM_DEBUG(dbgs() << "Function has a reference to externally allocated " |
| "local memory. Promoting to local memory " |
| "disabled.\n"); |
| return false; |
| } |
| |
| AllocatedSizes.emplace_back(AllocSize, Alignment); |
| } |
| |
| // Sort to try to estimate the worst case alignment padding |
| // |
| // FIXME: We should really do something to fix the addresses to a more optimal |
| // value instead |
| llvm::sort(AllocatedSizes, llvm::less_second()); |
| |
| // Check how much local memory is being used by global objects |
| CurrentLocalMemUsage = 0; |
| |
| // FIXME: Try to account for padding here. The real padding and address is |
| // currently determined from the inverse order of uses in the function when |
| // legalizing, which could also potentially change. We try to estimate the |
| // worst case here, but we probably should fix the addresses earlier. |
| for (auto Alloc : AllocatedSizes) { |
| CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second); |
| CurrentLocalMemUsage += Alloc.first; |
| } |
| |
| unsigned MaxOccupancy = |
| ST.getWavesPerEU(ST.getFlatWorkGroupSizes(F), CurrentLocalMemUsage, F) |
| .second; |
| |
| // Round up to the next tier of usage. |
| unsigned MaxSizeWithWaveCount = |
| ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); |
| |
| // Program may already use more LDS than is usable at maximum occupancy. |
| if (CurrentLocalMemUsage > MaxSizeWithWaveCount) |
| return false; |
| |
| LocalMemLimit = MaxSizeWithWaveCount; |
| |
| LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage |
| << " bytes of LDS\n" |
| << " Rounding size to " << MaxSizeWithWaveCount |
| << " with a maximum occupancy of " << MaxOccupancy << '\n' |
| << " and " << (LocalMemLimit - CurrentLocalMemUsage) |
| << " available for promotion\n"); |
| |
| return true; |
| } |
| |
| // FIXME: Should try to pick the most likely to be profitable allocas first. |
| bool AMDGPUPromoteAllocaImpl::tryPromoteAllocaToLDS( |
| AllocaAnalysis &AA, bool SufficientLDS, |
| SetVector<IntrinsicInst *> &DeferredIntrs) { |
| LLVM_DEBUG(dbgs() << "Trying to promote to LDS: " << *AA.Alloca << '\n'); |
| |
| // Not likely to have sufficient local memory for promotion. |
| if (!SufficientLDS) |
| return false; |
| |
| const DataLayout &DL = Mod->getDataLayout(); |
| IRBuilder<> Builder(AA.Alloca); |
| |
| const Function &ContainingFunction = *AA.Alloca->getParent()->getParent(); |
| const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction); |
| unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; |
| |
| Align Alignment = DL.getValueOrABITypeAlignment( |
| AA.Alloca->getAlign(), AA.Alloca->getAllocatedType()); |
| |
| // FIXME: This computed padding is likely wrong since it depends on inverse |
| // usage order. |
| // |
| // FIXME: It is also possible that if we're allowed to use all of the memory |
| // could end up using more than the maximum due to alignment padding. |
| |
| uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment); |
| uint32_t AllocSize = |
| WorkGroupSize * DL.getTypeAllocSize(AA.Alloca->getAllocatedType()); |
| NewSize += AllocSize; |
| |
| if (NewSize > LocalMemLimit) { |
| LLVM_DEBUG(dbgs() << " " << AllocSize |
| << " bytes of local memory not available to promote\n"); |
| return false; |
| } |
| |
| CurrentLocalMemUsage = NewSize; |
| |
| LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n"); |
| |
| Function *F = AA.Alloca->getFunction(); |
| |
| Type *GVTy = ArrayType::get(AA.Alloca->getAllocatedType(), WorkGroupSize); |
| GlobalVariable *GV = new GlobalVariable( |
| *Mod, GVTy, false, GlobalValue::InternalLinkage, PoisonValue::get(GVTy), |
| Twine(F->getName()) + Twine('.') + AA.Alloca->getName(), nullptr, |
| GlobalVariable::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS); |
| GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); |
| GV->setAlignment(AA.Alloca->getAlign()); |
| |
| Value *TCntY, *TCntZ; |
| |
| std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); |
| Value *TIdX = getWorkitemID(Builder, 0); |
| Value *TIdY = getWorkitemID(Builder, 1); |
| Value *TIdZ = getWorkitemID(Builder, 2); |
| |
| Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); |
| Tmp0 = Builder.CreateMul(Tmp0, TIdX); |
| Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); |
| Value *TID = Builder.CreateAdd(Tmp0, Tmp1); |
| TID = Builder.CreateAdd(TID, TIdZ); |
| |
| LLVMContext &Context = Mod->getContext(); |
| Value *Indices[] = {Constant::getNullValue(Type::getInt32Ty(Context)), TID}; |
| |
| Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); |
| AA.Alloca->mutateType(Offset->getType()); |
| AA.Alloca->replaceAllUsesWith(Offset); |
| AA.Alloca->eraseFromParent(); |
| |
| PointerType *NewPtrTy = PointerType::get(Context, AMDGPUAS::LOCAL_ADDRESS); |
| |
| for (Value *V : AA.LDS.Worklist) { |
| CallInst *Call = dyn_cast<CallInst>(V); |
| if (!Call) { |
| if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { |
| Value *LHS = CI->getOperand(0); |
| Value *RHS = CI->getOperand(1); |
| |
| Type *NewTy = LHS->getType()->getWithNewType(NewPtrTy); |
| if (isa<ConstantPointerNull, ConstantAggregateZero>(LHS)) |
| CI->setOperand(0, Constant::getNullValue(NewTy)); |
| |
| if (isa<ConstantPointerNull, ConstantAggregateZero>(RHS)) |
| CI->setOperand(1, Constant::getNullValue(NewTy)); |
| |
| continue; |
| } |
| |
| // The operand's value should be corrected on its own and we don't want to |
| // touch the users. |
| if (isa<AddrSpaceCastInst>(V)) |
| continue; |
| |
| assert(V->getType()->isPtrOrPtrVectorTy()); |
| |
| Type *NewTy = V->getType()->getWithNewType(NewPtrTy); |
| V->mutateType(NewTy); |
| |
| // Adjust the types of any constant operands. |
| if (SelectInst *SI = dyn_cast<SelectInst>(V)) { |
| if (isa<ConstantPointerNull, ConstantAggregateZero>(SI->getOperand(1))) |
| SI->setOperand(1, Constant::getNullValue(NewTy)); |
| |
| if (isa<ConstantPointerNull, ConstantAggregateZero>(SI->getOperand(2))) |
| SI->setOperand(2, Constant::getNullValue(NewTy)); |
| } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { |
| for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { |
| if (isa<ConstantPointerNull, ConstantAggregateZero>( |
| Phi->getIncomingValue(I))) |
| Phi->setIncomingValue(I, Constant::getNullValue(NewTy)); |
| } |
| } |
| |
| continue; |
| } |
| |
| IntrinsicInst *Intr = cast<IntrinsicInst>(Call); |
| Builder.SetInsertPoint(Intr); |
| switch (Intr->getIntrinsicID()) { |
| case Intrinsic::lifetime_start: |
| case Intrinsic::lifetime_end: |
| // These intrinsics are for address space 0 only |
| Intr->eraseFromParent(); |
| continue; |
| case Intrinsic::memcpy: |
| case Intrinsic::memmove: |
| // These have 2 pointer operands. In case if second pointer also needs |
| // to be replaced we defer processing of these intrinsics until all |
| // other values are processed. |
| DeferredIntrs.insert(Intr); |
| continue; |
| case Intrinsic::memset: { |
| MemSetInst *MemSet = cast<MemSetInst>(Intr); |
| Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(), |
| MemSet->getLength(), MemSet->getDestAlign(), |
| MemSet->isVolatile()); |
| Intr->eraseFromParent(); |
| continue; |
| } |
| case Intrinsic::invariant_start: |
| case Intrinsic::invariant_end: |
| case Intrinsic::launder_invariant_group: |
| case Intrinsic::strip_invariant_group: { |
| SmallVector<Value *> Args; |
| if (Intr->getIntrinsicID() == Intrinsic::invariant_start) { |
| Args.emplace_back(Intr->getArgOperand(0)); |
| } else if (Intr->getIntrinsicID() == Intrinsic::invariant_end) { |
| Args.emplace_back(Intr->getArgOperand(0)); |
| Args.emplace_back(Intr->getArgOperand(1)); |
| } |
| Args.emplace_back(Offset); |
| Function *F = Intrinsic::getOrInsertDeclaration( |
| Intr->getModule(), Intr->getIntrinsicID(), Offset->getType()); |
| CallInst *NewIntr = |
| CallInst::Create(F, Args, Intr->getName(), Intr->getIterator()); |
| Intr->mutateType(NewIntr->getType()); |
| Intr->replaceAllUsesWith(NewIntr); |
| Intr->eraseFromParent(); |
| continue; |
| } |
| case Intrinsic::objectsize: { |
| Value *Src = Intr->getOperand(0); |
| |
| CallInst *NewCall = Builder.CreateIntrinsic( |
| Intrinsic::objectsize, |
| {Intr->getType(), PointerType::get(Context, AMDGPUAS::LOCAL_ADDRESS)}, |
| {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)}); |
| Intr->replaceAllUsesWith(NewCall); |
| Intr->eraseFromParent(); |
| continue; |
| } |
| default: |
| Intr->print(errs()); |
| llvm_unreachable("Don't know how to promote alloca intrinsic use."); |
| } |
| } |
| |
| return true; |
| } |
| |
| void AMDGPUPromoteAllocaImpl::finishDeferredAllocaToLDSPromotion( |
| SetVector<IntrinsicInst *> &DeferredIntrs) { |
| |
| for (IntrinsicInst *Intr : DeferredIntrs) { |
| IRBuilder<> Builder(Intr); |
| Builder.SetInsertPoint(Intr); |
| Intrinsic::ID ID = Intr->getIntrinsicID(); |
| assert(ID == Intrinsic::memcpy || ID == Intrinsic::memmove); |
| |
| MemTransferInst *MI = cast<MemTransferInst>(Intr); |
| auto *B = Builder.CreateMemTransferInst( |
| ID, MI->getRawDest(), MI->getDestAlign(), MI->getRawSource(), |
| MI->getSourceAlign(), MI->getLength(), MI->isVolatile()); |
| |
| for (unsigned I = 0; I != 2; ++I) { |
| if (uint64_t Bytes = Intr->getParamDereferenceableBytes(I)) { |
| B->addDereferenceableParamAttr(I, Bytes); |
| } |
| } |
| |
| Intr->eraseFromParent(); |
| } |
| } |