blob: 5ac2644005aac1d5514fed24faca08706e7c38e9 [file] [log] [blame]
#!/usr/bin/env python3
import argparse
import datetime
import functools
import os
import pathlib
import re
import statistics
import subprocess
import sys
import git
import pandas
import tqdm
@functools.total_ordering
class Commit:
"""
This class represents a commit inside a given Git repository.
"""
def __init__(self, git_repo, sha):
self._git_repo = git_repo
self._sha = sha
def __eq__(self, other):
"""
Return whether two commits refer to the same commit.
This doesn't take into account the content of the Git tree at those commits, only the
'identity' of the commits themselves.
"""
return self.fullrev == other.fullrev
def __lt__(self, other):
"""
Return whether a commit is an ancestor of another commit in the Git repository.
"""
# Is self._sha an ancestor of other._sha?
res = subprocess.run(['git', '-C', self._git_repo, 'merge-base', '--is-ancestor', self._sha, other._sha])
if res.returncode not in (0, 1):
raise RuntimeError(f'Error when trying to obtain the commit order for {self._sha} and {other._sha}')
return res.returncode == 0
def __hash__(self):
"""
Return the full revision for this commit.
"""
return hash(self.fullrev)
@functools.cache
def show(self, include_diff=False):
"""
Return the commit information equivalent to `git show` associated to this commit.
"""
cmd = ['git', '-C', self._git_repo, 'show', self._sha]
if not include_diff:
cmd.append('--no-patch')
return subprocess.check_output(cmd, text=True)
@functools.cached_property
def shortrev(self):
"""
Return the shortened version of the given SHA.
"""
return subprocess.check_output(['git', '-C', self._git_repo, 'rev-parse', '--short', self._sha], text=True).strip()
@functools.cached_property
def fullrev(self):
"""
Return the full SHA associated to this commit.
"""
return subprocess.check_output(['git', '-C', self._git_repo, 'rev-parse', self._sha], text=True).strip()
@functools.cached_property
def commit_date(self):
"""
Return the date of the commit as a `datetime.datetime` object.
"""
repo = git.Repo(self._git_repo)
return datetime.datetime.fromtimestamp(repo.commit(self._sha).committed_date)
def prefetch(self):
"""
Prefetch cached properties associated to this commit object.
This makes it possible to control when time is spent recovering that information from Git for
e.g. better reporting to the user.
"""
self.commit_date
self.fullrev
self.shortrev
self.show()
def __str__(self):
return self._sha
def directory_path(string):
if os.path.isdir(string):
return pathlib.Path(string)
else:
raise NotADirectoryError(string)
def parse_lnt(lines, aggregate=statistics.median):
"""
Parse lines in LNT format and return a list of dictionnaries of the form:
[
{
'benchmark': <benchmark1>,
<metric1>: [float],
<metric2>: [float],
'data_points': int,
...
},
{
'benchmark': <benchmark2>,
<metric1>: [float],
<metric2>: [float],
'data_points': int,
...
},
...
]
If a metric has multiple values associated to it, they are aggregated into a single
value using the provided aggregation function.
"""
results = {}
for line in lines:
line = line.strip()
if not line:
continue
(identifier, value) = line.split(' ')
(benchmark, metric) = identifier.split('.')
if benchmark not in results:
results[benchmark] = {'benchmark': benchmark}
entry = results[benchmark]
if metric not in entry:
entry[metric] = []
entry[metric].append(float(value))
for (bm, entry) in results.items():
metrics = [key for key in entry if isinstance(entry[key], list)]
min_data_points = min(len(entry[metric]) for metric in metrics)
for metric in metrics:
entry[metric] = aggregate(entry[metric])
entry['data_points'] = min_data_points
return list(results.values())
def sorted_revlist(git_repo, commits):
"""
Return the list of commits sorted by their chronological order (from oldest to newest) in the
provided Git repository. Items earlier in the list are older than items later in the list.
"""
revlist_cmd = ['git', '-C', git_repo, 'rev-list', '--no-walk'] + list(commits)
revlist = subprocess.check_output(revlist_cmd, text=True).strip().splitlines()
return list(reversed(revlist))
def main(argv):
parser = argparse.ArgumentParser(
prog='find-rerun-candidates',
description='Find benchmarking data points that are good candidates for additional runs, to reduce noise.')
parser.add_argument('directory', type=directory_path,
help='Path to a valid directory containing benchmark data in LNT format, each file being named <commit>.lnt. '
'This is also the format generated by the `benchmark-historical` utility.')
parser.add_argument('--metric', type=str, default='execution_time',
help='The metric to analyze. LNT data may contain multiple metrics (e.g. code size, execution time, etc) -- '
'this option allows selecting which metric is analyzed for rerun candidates. The default is "execution_time".')
parser.add_argument('--filter', type=str, required=False,
help='An optional regular expression used to filter the benchmarks included in the analysis. '
'Only benchmarks whose names match the regular expression will be analyzed.')
parser.add_argument('--outlier-threshold', metavar='FLOAT', type=float, default=0.1,
help='Relative difference from the previous points for considering a data point as an outlier. This threshold is '
'expressed as a floating point number, e.g. 0.25 will detect points that differ by more than 25%% from their '
'previous result.')
parser.add_argument('--data-points-threshold', type=int, required=False,
help='Number of data points above which an outlier is not considered an outlier. If an outlier has more than '
'that number of data points yet its relative difference is above the threshold, it is not considered an '
'outlier. This can be used to re-run noisy data points until we have at least N samples, at which point '
'we consider the data to be accurate, even if the result is beyond the threshold. By default, there is '
'no limit on the number of data points.')
parser.add_argument('--git-repo', type=directory_path, default=pathlib.Path(os.getcwd()),
help='Path to the git repository to use for ordering commits in time. '
'By default, the current working directory is used.')
args = parser.parse_args(argv)
# Extract benchmark data from the directory.
data = {}
files = [f for f in args.directory.glob('*.lnt')]
for file in tqdm.tqdm(files, desc='Parsing LNT files'):
rows = parse_lnt(file.read_text().splitlines())
(commit, _) = os.path.splitext(os.path.basename(file))
commit = Commit(args.git_repo, commit)
data[commit] = rows
# Obtain commit information which is then cached throughout the program. Do this
# eagerly so we can provide a progress bar.
for commit in tqdm.tqdm(data.keys(), desc='Prefetching Git information'):
commit.prefetch()
# Create a dataframe from the raw data and add some columns to it:
# - 'commit' represents the Commit object associated to the results in that row
# - `revlist_order` represents the order of the commit within the Git repository.
revlist = sorted_revlist(args.git_repo, [c.fullrev for c in data.keys()])
data = pandas.DataFrame([row | {'commit': c} for (c, rows) in data.items() for row in rows])
data = data.join(pandas.DataFrame([{'revlist_order': revlist.index(c.fullrev)} for c in data['commit']]))
# Filter the benchmarks if needed.
if args.filter is not None:
keeplist = [b for b in data['benchmark'] if re.search(args.filter, b) is not None]
data = data[data['benchmark'].isin(keeplist)]
# Detect outliers by selecting all benchmarks whose change percentage is beyond the threshold.
# If we have a max number of points, also take that into account.
if args.data_points_threshold is not None:
print(f'Generating outliers with more than {args.outlier_threshold * 100}% relative difference and less than {args.data_points_threshold} data points')
else:
print(f'Generating outliers with more than {args.outlier_threshold * 100}% relative difference')
overall = set()
for (benchmark, series) in data.sort_values(by='revlist_order').groupby('benchmark'):
pct_change = series[args.metric].pct_change()
outliers = series[pct_change.abs() > args.outlier_threshold]
if args.data_points_threshold is not None:
outliers = outliers[outliers['data_points'] < args.data_points_threshold]
outliers = set(outliers['commit'])
overall |= outliers
if len(outliers) > 0:
print(f'{benchmark}: {" ".join(c.shortrev for c in outliers)}')
if len(overall) > 0:
print(f'Summary: {" ".join(c.shortrev for c in overall)}')
else:
print(f'No outliers')
if __name__ == '__main__':
main(sys.argv[1:])