| #!/usr/bin/env python3 |
| |
| import argparse |
| import datetime |
| import functools |
| import os |
| import pathlib |
| import re |
| import statistics |
| import subprocess |
| import sys |
| |
| import git |
| import pandas |
| import tqdm |
| |
| @functools.total_ordering |
| class Commit: |
| """ |
| This class represents a commit inside a given Git repository. |
| """ |
| |
| def __init__(self, git_repo, sha): |
| self._git_repo = git_repo |
| self._sha = sha |
| |
| def __eq__(self, other): |
| """ |
| Return whether two commits refer to the same commit. |
| |
| This doesn't take into account the content of the Git tree at those commits, only the |
| 'identity' of the commits themselves. |
| """ |
| return self.fullrev == other.fullrev |
| |
| def __lt__(self, other): |
| """ |
| Return whether a commit is an ancestor of another commit in the Git repository. |
| """ |
| # Is self._sha an ancestor of other._sha? |
| res = subprocess.run(['git', '-C', self._git_repo, 'merge-base', '--is-ancestor', self._sha, other._sha]) |
| if res.returncode not in (0, 1): |
| raise RuntimeError(f'Error when trying to obtain the commit order for {self._sha} and {other._sha}') |
| return res.returncode == 0 |
| |
| def __hash__(self): |
| """ |
| Return the full revision for this commit. |
| """ |
| return hash(self.fullrev) |
| |
| @functools.cache |
| def show(self, include_diff=False): |
| """ |
| Return the commit information equivalent to `git show` associated to this commit. |
| """ |
| cmd = ['git', '-C', self._git_repo, 'show', self._sha] |
| if not include_diff: |
| cmd.append('--no-patch') |
| return subprocess.check_output(cmd, text=True) |
| |
| @functools.cached_property |
| def shortrev(self): |
| """ |
| Return the shortened version of the given SHA. |
| """ |
| return subprocess.check_output(['git', '-C', self._git_repo, 'rev-parse', '--short', self._sha], text=True).strip() |
| |
| @functools.cached_property |
| def fullrev(self): |
| """ |
| Return the full SHA associated to this commit. |
| """ |
| return subprocess.check_output(['git', '-C', self._git_repo, 'rev-parse', self._sha], text=True).strip() |
| |
| @functools.cached_property |
| def commit_date(self): |
| """ |
| Return the date of the commit as a `datetime.datetime` object. |
| """ |
| repo = git.Repo(self._git_repo) |
| return datetime.datetime.fromtimestamp(repo.commit(self._sha).committed_date) |
| |
| def prefetch(self): |
| """ |
| Prefetch cached properties associated to this commit object. |
| |
| This makes it possible to control when time is spent recovering that information from Git for |
| e.g. better reporting to the user. |
| """ |
| self.commit_date |
| self.fullrev |
| self.shortrev |
| self.show() |
| |
| def __str__(self): |
| return self._sha |
| |
| def directory_path(string): |
| if os.path.isdir(string): |
| return pathlib.Path(string) |
| else: |
| raise NotADirectoryError(string) |
| |
| def parse_lnt(lines, aggregate=statistics.median): |
| """ |
| Parse lines in LNT format and return a list of dictionnaries of the form: |
| |
| [ |
| { |
| 'benchmark': <benchmark1>, |
| <metric1>: [float], |
| <metric2>: [float], |
| 'data_points': int, |
| ... |
| }, |
| { |
| 'benchmark': <benchmark2>, |
| <metric1>: [float], |
| <metric2>: [float], |
| 'data_points': int, |
| ... |
| }, |
| ... |
| ] |
| |
| If a metric has multiple values associated to it, they are aggregated into a single |
| value using the provided aggregation function. |
| """ |
| results = {} |
| for line in lines: |
| line = line.strip() |
| if not line: |
| continue |
| |
| (identifier, value) = line.split(' ') |
| (benchmark, metric) = identifier.split('.') |
| if benchmark not in results: |
| results[benchmark] = {'benchmark': benchmark} |
| |
| entry = results[benchmark] |
| if metric not in entry: |
| entry[metric] = [] |
| entry[metric].append(float(value)) |
| |
| for (bm, entry) in results.items(): |
| metrics = [key for key in entry if isinstance(entry[key], list)] |
| min_data_points = min(len(entry[metric]) for metric in metrics) |
| for metric in metrics: |
| entry[metric] = aggregate(entry[metric]) |
| entry['data_points'] = min_data_points |
| |
| return list(results.values()) |
| |
| def sorted_revlist(git_repo, commits): |
| """ |
| Return the list of commits sorted by their chronological order (from oldest to newest) in the |
| provided Git repository. Items earlier in the list are older than items later in the list. |
| """ |
| revlist_cmd = ['git', '-C', git_repo, 'rev-list', '--no-walk'] + list(commits) |
| revlist = subprocess.check_output(revlist_cmd, text=True).strip().splitlines() |
| return list(reversed(revlist)) |
| |
| def main(argv): |
| parser = argparse.ArgumentParser( |
| prog='find-rerun-candidates', |
| description='Find benchmarking data points that are good candidates for additional runs, to reduce noise.') |
| parser.add_argument('directory', type=directory_path, |
| help='Path to a valid directory containing benchmark data in LNT format, each file being named <commit>.lnt. ' |
| 'This is also the format generated by the `benchmark-historical` utility.') |
| parser.add_argument('--metric', type=str, default='execution_time', |
| help='The metric to analyze. LNT data may contain multiple metrics (e.g. code size, execution time, etc) -- ' |
| 'this option allows selecting which metric is analyzed for rerun candidates. The default is "execution_time".') |
| parser.add_argument('--filter', type=str, required=False, |
| help='An optional regular expression used to filter the benchmarks included in the analysis. ' |
| 'Only benchmarks whose names match the regular expression will be analyzed.') |
| parser.add_argument('--outlier-threshold', metavar='FLOAT', type=float, default=0.1, |
| help='Relative difference from the previous points for considering a data point as an outlier. This threshold is ' |
| 'expressed as a floating point number, e.g. 0.25 will detect points that differ by more than 25%% from their ' |
| 'previous result.') |
| parser.add_argument('--data-points-threshold', type=int, required=False, |
| help='Number of data points above which an outlier is not considered an outlier. If an outlier has more than ' |
| 'that number of data points yet its relative difference is above the threshold, it is not considered an ' |
| 'outlier. This can be used to re-run noisy data points until we have at least N samples, at which point ' |
| 'we consider the data to be accurate, even if the result is beyond the threshold. By default, there is ' |
| 'no limit on the number of data points.') |
| parser.add_argument('--git-repo', type=directory_path, default=pathlib.Path(os.getcwd()), |
| help='Path to the git repository to use for ordering commits in time. ' |
| 'By default, the current working directory is used.') |
| args = parser.parse_args(argv) |
| |
| # Extract benchmark data from the directory. |
| data = {} |
| files = [f for f in args.directory.glob('*.lnt')] |
| for file in tqdm.tqdm(files, desc='Parsing LNT files'): |
| rows = parse_lnt(file.read_text().splitlines()) |
| (commit, _) = os.path.splitext(os.path.basename(file)) |
| commit = Commit(args.git_repo, commit) |
| data[commit] = rows |
| |
| # Obtain commit information which is then cached throughout the program. Do this |
| # eagerly so we can provide a progress bar. |
| for commit in tqdm.tqdm(data.keys(), desc='Prefetching Git information'): |
| commit.prefetch() |
| |
| # Create a dataframe from the raw data and add some columns to it: |
| # - 'commit' represents the Commit object associated to the results in that row |
| # - `revlist_order` represents the order of the commit within the Git repository. |
| revlist = sorted_revlist(args.git_repo, [c.fullrev for c in data.keys()]) |
| data = pandas.DataFrame([row | {'commit': c} for (c, rows) in data.items() for row in rows]) |
| data = data.join(pandas.DataFrame([{'revlist_order': revlist.index(c.fullrev)} for c in data['commit']])) |
| |
| # Filter the benchmarks if needed. |
| if args.filter is not None: |
| keeplist = [b for b in data['benchmark'] if re.search(args.filter, b) is not None] |
| data = data[data['benchmark'].isin(keeplist)] |
| |
| # Detect outliers by selecting all benchmarks whose change percentage is beyond the threshold. |
| # If we have a max number of points, also take that into account. |
| if args.data_points_threshold is not None: |
| print(f'Generating outliers with more than {args.outlier_threshold * 100}% relative difference and less than {args.data_points_threshold} data points') |
| else: |
| print(f'Generating outliers with more than {args.outlier_threshold * 100}% relative difference') |
| |
| overall = set() |
| for (benchmark, series) in data.sort_values(by='revlist_order').groupby('benchmark'): |
| pct_change = series[args.metric].pct_change() |
| outliers = series[pct_change.abs() > args.outlier_threshold] |
| if args.data_points_threshold is not None: |
| outliers = outliers[outliers['data_points'] < args.data_points_threshold] |
| outliers = set(outliers['commit']) |
| overall |= outliers |
| if len(outliers) > 0: |
| print(f'{benchmark}: {" ".join(c.shortrev for c in outliers)}') |
| |
| if len(overall) > 0: |
| print(f'Summary: {" ".join(c.shortrev for c in overall)}') |
| else: |
| print(f'No outliers') |
| |
| if __name__ == '__main__': |
| main(sys.argv[1:]) |