| //===-- Resizable Monotonic HashTable ---------------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LIBC_SRC___SUPPORT_HASHTABLE_TABLE_H |
| #define LLVM_LIBC_SRC___SUPPORT_HASHTABLE_TABLE_H |
| |
| #include "hdr/stdint_proxy.h" |
| #include "hdr/types/ENTRY.h" |
| #include "src/__support/CPP/bit.h" // bit_ceil |
| #include "src/__support/CPP/new.h" |
| #include "src/__support/HashTable/bitmask.h" |
| #include "src/__support/alloc-checker.h" |
| #include "src/__support/hash.h" |
| #include "src/__support/macros/attributes.h" |
| #include "src/__support/macros/config.h" |
| #include "src/__support/macros/optimization.h" |
| #include "src/__support/memory_size.h" |
| #include "src/string/memory_utils/inline_strcmp.h" |
| #include "src/string/string_utils.h" |
| #include <stddef.h> |
| |
| namespace LIBC_NAMESPACE_DECL { |
| namespace internal { |
| |
| LIBC_INLINE uint8_t secondary_hash(uint64_t hash) { |
| // top 7 bits of the hash. |
| return static_cast<uint8_t>(hash >> 57); |
| } |
| |
| // Probe sequence based on triangular numbers, which is guaranteed (since our |
| // table size is a power of two) to visit every group of elements exactly once. |
| // |
| // A triangular probe has us jump by 1 more group every time. So first we |
| // jump by 1 group (meaning we just continue our linear scan), then 2 groups |
| // (skipping over 1 group), then 3 groups (skipping over 2 groups), and so on. |
| // |
| // If we set sizeof(Group) to be one unit: |
| // T[k] = sum {1 + 2 + ... + k} = k * (k + 1) / 2 |
| // It is provable that T[k] mod 2^m generates a permutation of |
| // 0, 1, 2, 3, ..., 2^m - 2, 2^m - 1 |
| // Detailed proof is available at: |
| // https://fgiesen.wordpress.com/2015/02/22/triangular-numbers-mod-2n/ |
| struct ProbeSequence { |
| size_t position; |
| size_t stride; |
| size_t entries_mask; |
| |
| LIBC_INLINE size_t next() { |
| position += stride; |
| position &= entries_mask; |
| stride += sizeof(Group); |
| return position; |
| } |
| }; |
| |
| // The number of entries is at least group width: we do not |
| // need to do the fixup when we set the control bytes. |
| // The number of entries is at least 8: we don't have to worry |
| // about special sizes when check the fullness of the table. |
| LIBC_INLINE size_t capacity_to_entries(size_t cap) { |
| if (8 >= sizeof(Group) && cap < 8) |
| return 8; |
| if (16 >= sizeof(Group) && cap < 15) |
| return 16; |
| if (cap < sizeof(Group)) |
| cap = sizeof(Group); |
| // overflow is always checked in allocate() |
| return cpp::bit_ceil(cap * 8 / 7); |
| } |
| |
| // The heap memory layout for N buckets HashTable is as follows: |
| // |
| // ======================= |
| // | N * Entry | |
| // ======================= <- align boundary |
| // | Header | |
| // ======================= <- align boundary (for fast resize) |
| // | (N + 1) * Byte | |
| // ======================= |
| // |
| // The trailing group part is to make sure we can always load |
| // a whole group of control bytes. |
| |
| struct HashTable { |
| HashState state; |
| size_t entries_mask; // number of buckets - 1 |
| size_t available_slots; // less than capacity |
| private: |
| // How many entries are there in the table. |
| LIBC_INLINE size_t num_of_entries() const { return entries_mask + 1; } |
| |
| // How many entries can we store in the table before resizing. |
| LIBC_INLINE size_t full_capacity() const { return num_of_entries() / 8 * 7; } |
| |
| // The alignment of the whole memory area is the maximum of the alignment |
| // among the following types: |
| // - HashTable |
| // - ENTRY |
| // - Group |
| LIBC_INLINE constexpr static size_t table_alignment() { |
| size_t left_align = alignof(HashTable) > alignof(ENTRY) ? alignof(HashTable) |
| : alignof(ENTRY); |
| return left_align > alignof(Group) ? left_align : alignof(Group); |
| } |
| |
| LIBC_INLINE bool is_full() const { return available_slots == 0; } |
| |
| LIBC_INLINE size_t offset_from_entries() const { |
| size_t entries_size = num_of_entries() * sizeof(ENTRY); |
| return entries_size + |
| SafeMemSize::offset_to(entries_size, table_alignment()); |
| } |
| |
| LIBC_INLINE constexpr static size_t offset_to_groups() { |
| size_t header_size = sizeof(HashTable); |
| return header_size + SafeMemSize::offset_to(header_size, table_alignment()); |
| } |
| |
| LIBC_INLINE ENTRY &entry(size_t i) { |
| return reinterpret_cast<ENTRY *>(this)[-i - 1]; |
| } |
| |
| LIBC_INLINE const ENTRY &entry(size_t i) const { |
| return reinterpret_cast<const ENTRY *>(this)[-i - 1]; |
| } |
| |
| LIBC_INLINE uint8_t &control(size_t i) { |
| uint8_t *ptr = reinterpret_cast<uint8_t *>(this) + offset_to_groups(); |
| return ptr[i]; |
| } |
| |
| LIBC_INLINE const uint8_t &control(size_t i) const { |
| const uint8_t *ptr = |
| reinterpret_cast<const uint8_t *>(this) + offset_to_groups(); |
| return ptr[i]; |
| } |
| |
| // We duplicate a group of control bytes to the end. Thus, it is possible that |
| // we need to set two control bytes at the same time. |
| LIBC_INLINE void set_ctrl(size_t index, uint8_t value) { |
| size_t index2 = ((index - sizeof(Group)) & entries_mask) + sizeof(Group); |
| control(index) = value; |
| control(index2) = value; |
| } |
| |
| LIBC_INLINE size_t find(const char *key, uint64_t primary) { |
| uint8_t secondary = secondary_hash(primary); |
| ProbeSequence sequence{static_cast<size_t>(primary), 0, entries_mask}; |
| while (true) { |
| size_t pos = sequence.next(); |
| Group ctrls = Group::load(&control(pos)); |
| IteratableBitMask masks = ctrls.match_byte(secondary); |
| for (size_t i : masks) { |
| size_t index = (pos + i) & entries_mask; |
| ENTRY &entry = this->entry(index); |
| auto comp = [](char l, char r) -> int { return l - r; }; |
| if (LIBC_LIKELY(entry.key != nullptr && |
| inline_strcmp(entry.key, key, comp) == 0)) |
| return index; |
| } |
| BitMask available = ctrls.mask_available(); |
| // Since there is no deletion, the first time we find an available slot |
| // it is also ready to be used as an insertion point. Therefore, we also |
| // return the first available slot we find. If such entry is empty, the |
| // key will be nullptr. |
| if (LIBC_LIKELY(available.any_bit_set())) { |
| size_t index = |
| (pos + available.lowest_set_bit_nonzero()) & entries_mask; |
| return index; |
| } |
| } |
| } |
| |
| LIBC_INLINE uint64_t oneshot_hash(const char *key) const { |
| LIBC_NAMESPACE::internal::HashState hasher = state; |
| hasher.update(key, internal::string_length(key)); |
| return hasher.finish(); |
| } |
| |
| // A fast insertion routine without checking if a key already exists. |
| // Nor does the routine check if the table is full. |
| // This is only to be used in grow() where we insert all existing entries |
| // into a new table. Hence, the requirements are naturally satisfied. |
| LIBC_INLINE ENTRY *unsafe_insert(ENTRY item) { |
| uint64_t primary = oneshot_hash(item.key); |
| uint8_t secondary = secondary_hash(primary); |
| ProbeSequence sequence{static_cast<size_t>(primary), 0, entries_mask}; |
| while (true) { |
| size_t pos = sequence.next(); |
| Group ctrls = Group::load(&control(pos)); |
| BitMask available = ctrls.mask_available(); |
| if (available.any_bit_set()) { |
| size_t index = |
| (pos + available.lowest_set_bit_nonzero()) & entries_mask; |
| set_ctrl(index, secondary); |
| entry(index).key = item.key; |
| entry(index).data = item.data; |
| available_slots--; |
| return &entry(index); |
| } |
| } |
| } |
| |
| LIBC_INLINE HashTable *grow() const { |
| size_t hint = full_capacity() + 1; |
| HashState state = this->state; |
| // migrate to a new random state |
| state.update(&hint, sizeof(hint)); |
| HashTable *new_table = allocate(hint, state.finish()); |
| // It is safe to call unsafe_insert() because we know that: |
| // - the new table has enough capacity to hold all the entries |
| // - there is no duplicate key in the old table |
| if (new_table != nullptr) |
| for (ENTRY e : *this) |
| new_table->unsafe_insert(e); |
| return new_table; |
| } |
| |
| LIBC_INLINE static ENTRY *insert(HashTable *&table, ENTRY item, |
| uint64_t primary) { |
| auto index = table->find(item.key, primary); |
| auto slot = &table->entry(index); |
| // SVr4 and POSIX.1-2001 specify that action is significant only for |
| // unsuccessful searches, so that an ENTER should not do anything |
| // for a successful search. |
| if (slot->key != nullptr) |
| return slot; |
| |
| // if table of full, we try to grow the table |
| if (table->is_full()) { |
| HashTable *new_table = table->grow(); |
| // allocation failed, return nullptr to indicate failure |
| if (new_table == nullptr) |
| return nullptr; |
| // resized sccuessfully: clean up the old table and use the new one |
| deallocate(table); |
| table = new_table; |
| // it is still valid to use the fastpath insertion. |
| return table->unsafe_insert(item); |
| } |
| |
| table->set_ctrl(index, secondary_hash(primary)); |
| slot->key = item.key; |
| slot->data = item.data; |
| table->available_slots--; |
| return slot; |
| } |
| |
| public: |
| LIBC_INLINE static void deallocate(HashTable *table) { |
| if (table) { |
| void *ptr = |
| reinterpret_cast<uint8_t *>(table) - table->offset_from_entries(); |
| operator delete(ptr, std::align_val_t{table_alignment()}); |
| } |
| } |
| |
| LIBC_INLINE static HashTable *allocate(size_t capacity, uint64_t randomness) { |
| // check if capacity_to_entries overflows MAX_MEM_SIZE |
| if (capacity > size_t{1} << (8 * sizeof(size_t) - 1 - 3)) |
| return nullptr; |
| SafeMemSize entries{capacity_to_entries(capacity)}; |
| SafeMemSize entries_size = entries * SafeMemSize{sizeof(ENTRY)}; |
| SafeMemSize align_boundary = entries_size.align_up(table_alignment()); |
| SafeMemSize ctrl_sizes = entries + SafeMemSize{sizeof(Group)}; |
| SafeMemSize header_size{offset_to_groups()}; |
| SafeMemSize total_size = |
| (align_boundary + header_size + ctrl_sizes).align_up(table_alignment()); |
| if (!total_size.valid()) |
| return nullptr; |
| AllocChecker ac; |
| |
| void *mem = operator new(total_size, std::align_val_t{table_alignment()}, |
| ac); |
| |
| HashTable *table = reinterpret_cast<HashTable *>( |
| static_cast<uint8_t *>(mem) + align_boundary); |
| if (ac) { |
| table->entries_mask = entries - 1u; |
| table->available_slots = entries / 8 * 7; |
| table->state = HashState{randomness}; |
| __builtin_memset(&table->control(0), 0x80, ctrl_sizes); |
| __builtin_memset(mem, 0, table->offset_from_entries()); |
| } |
| return table; |
| } |
| |
| struct FullTableIterator { |
| size_t current_offset; |
| size_t remaining; |
| IteratableBitMask current_mask; |
| const HashTable &table; |
| |
| // It is fine to use remaining to represent the iterator: |
| // - this comparison only happens with the same table |
| // - hashtable will not be mutated during the iteration |
| LIBC_INLINE bool operator==(const FullTableIterator &other) const { |
| return remaining == other.remaining; |
| } |
| LIBC_INLINE bool operator!=(const FullTableIterator &other) const { |
| return remaining != other.remaining; |
| } |
| |
| LIBC_INLINE FullTableIterator &operator++() { |
| this->ensure_valid_group(); |
| current_mask.remove_lowest_bit(); |
| remaining--; |
| return *this; |
| } |
| LIBC_INLINE const ENTRY &operator*() { |
| this->ensure_valid_group(); |
| return table.entry( |
| (current_offset + current_mask.lowest_set_bit_nonzero()) & |
| table.entries_mask); |
| } |
| |
| private: |
| LIBC_INLINE void ensure_valid_group() { |
| while (!current_mask.any_bit_set()) { |
| current_offset += sizeof(Group); |
| // It is ensured that the load will only happen at aligned boundaries. |
| current_mask = |
| Group::load_aligned(&table.control(current_offset)).occupied(); |
| } |
| } |
| }; |
| |
| using value_type = ENTRY; |
| using iterator = FullTableIterator; |
| iterator begin() const { |
| return {0, full_capacity() - available_slots, |
| Group::load_aligned(&control(0)).occupied(), *this}; |
| } |
| iterator end() const { return {0, 0, {BitMask{0}}, *this}; } |
| |
| LIBC_INLINE ENTRY *find(const char *key) { |
| uint64_t primary = oneshot_hash(key); |
| ENTRY &entry = this->entry(find(key, primary)); |
| if (entry.key == nullptr) |
| return nullptr; |
| return &entry; |
| } |
| |
| LIBC_INLINE static ENTRY *insert(HashTable *&table, ENTRY item) { |
| uint64_t primary = table->oneshot_hash(item.key); |
| return insert(table, item, primary); |
| } |
| }; |
| } // namespace internal |
| } // namespace LIBC_NAMESPACE_DECL |
| |
| #endif // LLVM_LIBC_SRC___SUPPORT_HASHTABLE_TABLE_H |