blob: 20ff17d0b7639873b54061d0b5b337077b3962e4 [file] [log] [blame]
//===-- ABISysV_ppc.cpp -----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "ABISysV_ppc.h"
// C Includes
// C++ Includes
// Other libraries and framework includes
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Triple.h"
// Project includes
#include "lldb/Core/ConstString.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/Error.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/RegisterValue.h"
#include "lldb/Core/Value.h"
#include "lldb/Core/ValueObjectConstResult.h"
#include "lldb/Core/ValueObjectRegister.h"
#include "lldb/Core/ValueObjectMemory.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Thread.h"
using namespace lldb;
using namespace lldb_private;
enum dwarf_regnums
{
dwarf_r0 = 0,
dwarf_r1,
dwarf_r2,
dwarf_r3,
dwarf_r4,
dwarf_r5,
dwarf_r6,
dwarf_r7,
dwarf_r8,
dwarf_r9,
dwarf_r10,
dwarf_r11,
dwarf_r12,
dwarf_r13,
dwarf_r14,
dwarf_r15,
dwarf_r16,
dwarf_r17,
dwarf_r18,
dwarf_r19,
dwarf_r20,
dwarf_r21,
dwarf_r22,
dwarf_r23,
dwarf_r24,
dwarf_r25,
dwarf_r26,
dwarf_r27,
dwarf_r28,
dwarf_r29,
dwarf_r30,
dwarf_r31,
dwarf_f0,
dwarf_f1,
dwarf_f2,
dwarf_f3,
dwarf_f4,
dwarf_f5,
dwarf_f6,
dwarf_f7,
dwarf_f8,
dwarf_f9,
dwarf_f10,
dwarf_f11,
dwarf_f12,
dwarf_f13,
dwarf_f14,
dwarf_f15,
dwarf_f16,
dwarf_f17,
dwarf_f18,
dwarf_f19,
dwarf_f20,
dwarf_f21,
dwarf_f22,
dwarf_f23,
dwarf_f24,
dwarf_f25,
dwarf_f26,
dwarf_f27,
dwarf_f28,
dwarf_f29,
dwarf_f30,
dwarf_f31,
dwarf_cr,
dwarf_fpscr,
dwarf_xer = 101,
dwarf_lr = 108,
dwarf_ctr,
dwarf_pc,
dwarf_cfa,
};
// Note that the size and offset will be updated by platform-specific classes.
#define DEFINE_GPR(reg, alt, kind1, kind2, kind3, kind4) \
{ #reg, alt, 8, 0, eEncodingUint, \
eFormatHex, { kind1, kind2, kind3, kind4}, nullptr, nullptr }
static const RegisterInfo
g_register_infos[] =
{
// General purpose registers. eh_frame, DWARF, Generic, Process Plugin
DEFINE_GPR(r0, nullptr, dwarf_r0, dwarf_r0, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM),
DEFINE_GPR(r1, "sp", dwarf_r1, dwarf_r1, LLDB_REGNUM_GENERIC_SP, LLDB_INVALID_REGNUM),
DEFINE_GPR(r2, nullptr, dwarf_r2, dwarf_r2, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM),
DEFINE_GPR(r3, "arg1", dwarf_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG1, LLDB_INVALID_REGNUM),
DEFINE_GPR(r4, "arg2", dwarf_r4, dwarf_r4, LLDB_REGNUM_GENERIC_ARG2 ,LLDB_INVALID_REGNUM),
DEFINE_GPR(r5, "arg3", dwarf_r5, dwarf_r5, LLDB_REGNUM_GENERIC_ARG3, LLDB_INVALID_REGNUM),
DEFINE_GPR(r6, "arg4", dwarf_r6, dwarf_r6, LLDB_REGNUM_GENERIC_ARG4, LLDB_INVALID_REGNUM),
DEFINE_GPR(r7, "arg5", dwarf_r7, dwarf_r7, LLDB_REGNUM_GENERIC_ARG5, LLDB_INVALID_REGNUM),
DEFINE_GPR(r8, "arg6", dwarf_r8, dwarf_r8, LLDB_REGNUM_GENERIC_ARG6, LLDB_INVALID_REGNUM),
DEFINE_GPR(r9, "arg7", dwarf_r9, dwarf_r9, LLDB_REGNUM_GENERIC_ARG7, LLDB_INVALID_REGNUM),
DEFINE_GPR(r10, "arg8", dwarf_r10, dwarf_r10, LLDB_REGNUM_GENERIC_ARG8, LLDB_INVALID_REGNUM),
DEFINE_GPR(r11, nullptr, dwarf_r11, dwarf_r11, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM),
DEFINE_GPR(r12, nullptr, dwarf_r12, dwarf_r12, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM),
DEFINE_GPR(r13, nullptr, dwarf_r13, dwarf_r13, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM),
DEFINE_GPR(r14, nullptr, dwarf_r14, dwarf_r14, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM),
DEFINE_GPR(r15, nullptr, dwarf_r15, dwarf_r15, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM),
DEFINE_GPR(r16, nullptr, dwarf_r16, dwarf_r16, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM),
DEFINE_GPR(r17, nullptr, dwarf_r17, dwarf_r17, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM),
DEFINE_GPR(r18, nullptr, dwarf_r18, dwarf_r18, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM),
DEFINE_GPR(r19, nullptr, dwarf_r19, dwarf_r19, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM),
DEFINE_GPR(r20, nullptr, dwarf_r20, dwarf_r20, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM),
DEFINE_GPR(r21, nullptr, dwarf_r21, dwarf_r21, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM),
DEFINE_GPR(r22, nullptr, dwarf_r22, dwarf_r22, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM),
DEFINE_GPR(r23, nullptr, dwarf_r23, dwarf_r23, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM),
DEFINE_GPR(r24, nullptr, dwarf_r24, dwarf_r24, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM),
DEFINE_GPR(r25, nullptr, dwarf_r25, dwarf_r25, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM),
DEFINE_GPR(r26, nullptr, dwarf_r26, dwarf_r26, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM),
DEFINE_GPR(r27, nullptr, dwarf_r27, dwarf_r27, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM),
DEFINE_GPR(r28, nullptr, dwarf_r28, dwarf_r28, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM),
DEFINE_GPR(r29, nullptr, dwarf_r29, dwarf_r29, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM),
DEFINE_GPR(r30, nullptr, dwarf_r30, dwarf_r30, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM),
DEFINE_GPR(r31, nullptr, dwarf_r31, dwarf_r31, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM),
DEFINE_GPR(lr, "lr", dwarf_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, LLDB_INVALID_REGNUM),
DEFINE_GPR(cr, "cr", dwarf_cr, dwarf_cr, LLDB_REGNUM_GENERIC_FLAGS, LLDB_INVALID_REGNUM),
DEFINE_GPR(xer, "xer", dwarf_xer, dwarf_xer, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM),
DEFINE_GPR(ctr, "ctr", dwarf_ctr, dwarf_ctr, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM),
DEFINE_GPR(pc, "pc", dwarf_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, LLDB_INVALID_REGNUM),
{ nullptr, nullptr, 8, 0, eEncodingUint, eFormatHex, { dwarf_cfa, dwarf_cfa, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM}, nullptr, nullptr }
};
static const uint32_t k_num_register_infos = llvm::array_lengthof(g_register_infos);
const lldb_private::RegisterInfo *
ABISysV_ppc::GetRegisterInfoArray (uint32_t &count)
{
count = k_num_register_infos;
return g_register_infos;
}
size_t
ABISysV_ppc::GetRedZoneSize () const
{
return 224;
}
//------------------------------------------------------------------
// Static Functions
//------------------------------------------------------------------
ABISP
ABISysV_ppc::CreateInstance (const ArchSpec &arch)
{
static ABISP g_abi_sp;
if (arch.GetTriple().getArch() == llvm::Triple::ppc)
{
if (!g_abi_sp)
g_abi_sp.reset (new ABISysV_ppc);
return g_abi_sp;
}
return ABISP();
}
bool
ABISysV_ppc::PrepareTrivialCall (Thread &thread,
addr_t sp,
addr_t func_addr,
addr_t return_addr,
llvm::ArrayRef<addr_t> args) const
{
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
if (log)
{
StreamString s;
s.Printf("ABISysV_ppc::PrepareTrivialCall (tid = 0x%" PRIx64 ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64 ", return_addr = 0x%" PRIx64,
thread.GetID(),
(uint64_t)sp,
(uint64_t)func_addr,
(uint64_t)return_addr);
for (size_t i = 0; i < args.size(); ++i)
s.Printf (", arg%" PRIu64 " = 0x%" PRIx64, static_cast<uint64_t>(i + 1), args[i]);
s.PutCString (")");
log->PutCString(s.GetString().c_str());
}
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
const RegisterInfo *reg_info = nullptr;
if (args.size() > 8) // TODO handle more than 8 arguments
return false;
for (size_t i = 0; i < args.size(); ++i)
{
reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + i);
if (log)
log->Printf("About to write arg%" PRIu64 " (0x%" PRIx64 ") into %s", static_cast<uint64_t>(i + 1), args[i], reg_info->name);
if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i]))
return false;
}
// First, align the SP
if (log)
log->Printf("16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64, (uint64_t)sp, (uint64_t)(sp & ~0xfull));
sp &= ~(0xfull); // 16-byte alignment
sp -= 8;
Error error;
const RegisterInfo *pc_reg_info = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
const RegisterInfo *sp_reg_info = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
ProcessSP process_sp (thread.GetProcess());
RegisterValue reg_value;
#if 0
// This code adds an extra frame so that we don't lose the function that we came from
// by pushing the PC and the FP and then writing the current FP to point to the FP value
// we just pushed. It is disabled for now until the stack backtracing code can be debugged.
// Save current PC
const RegisterInfo *fp_reg_info = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FP);
if (reg_ctx->ReadRegister(pc_reg_info, reg_value))
{
if (log)
log->Printf("Pushing the current PC onto the stack: 0x%" PRIx64 ": 0x%" PRIx64, (uint64_t)sp, reg_value.GetAsUInt64());
if (!process_sp->WritePointerToMemory(sp, reg_value.GetAsUInt64(), error))
return false;
sp -= 8;
// Save current FP
if (reg_ctx->ReadRegister(fp_reg_info, reg_value))
{
if (log)
log->Printf("Pushing the current FP onto the stack: 0x%" PRIx64 ": 0x%" PRIx64, (uint64_t)sp, reg_value.GetAsUInt64());
if (!process_sp->WritePointerToMemory(sp, reg_value.GetAsUInt64(), error))
return false;
}
// Setup FP backchain
reg_value.SetUInt64 (sp);
if (log)
log->Printf("Writing FP: 0x%" PRIx64 " (for FP backchain)", reg_value.GetAsUInt64());
if (!reg_ctx->WriteRegister(fp_reg_info, reg_value))
{
return false;
}
sp -= 8;
}
#endif
if (log)
log->Printf("Pushing the return address onto the stack: 0x%" PRIx64 ": 0x%" PRIx64, (uint64_t)sp, (uint64_t)return_addr);
// Save return address onto the stack
if (!process_sp->WritePointerToMemory(sp, return_addr, error))
return false;
// %r1 is set to the actual stack value.
if (log)
log->Printf("Writing SP: 0x%" PRIx64, (uint64_t)sp);
if (!reg_ctx->WriteRegisterFromUnsigned (sp_reg_info, sp))
return false;
// %pc is set to the address of the called function.
if (log)
log->Printf("Writing IP: 0x%" PRIx64, (uint64_t)func_addr);
if (!reg_ctx->WriteRegisterFromUnsigned (pc_reg_info, func_addr))
return false;
return true;
}
static bool ReadIntegerArgument(Scalar &scalar,
unsigned int bit_width,
bool is_signed,
Thread &thread,
uint32_t *argument_register_ids,
unsigned int &current_argument_register,
addr_t &current_stack_argument)
{
if (bit_width > 64)
return false; // Scalar can't hold large integer arguments
if (current_argument_register < 6)
{
scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned(argument_register_ids[current_argument_register], 0);
current_argument_register++;
if (is_signed)
scalar.SignExtend (bit_width);
}
else
{
uint32_t byte_size = (bit_width + (8-1))/8;
Error error;
if (thread.GetProcess()->ReadScalarIntegerFromMemory(current_stack_argument, byte_size, is_signed, scalar, error))
{
current_stack_argument += byte_size;
return true;
}
return false;
}
return true;
}
bool
ABISysV_ppc::GetArgumentValues (Thread &thread,
ValueList &values) const
{
unsigned int num_values = values.GetSize();
unsigned int value_index;
// Extract the register context so we can read arguments from registers
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
// Get the pointer to the first stack argument so we have a place to start
// when reading data
addr_t sp = reg_ctx->GetSP(0);
if (!sp)
return false;
addr_t current_stack_argument = sp + 48; // jump over return address
uint32_t argument_register_ids[8];
argument_register_ids[0] = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1)->kinds[eRegisterKindLLDB];
argument_register_ids[1] = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2)->kinds[eRegisterKindLLDB];
argument_register_ids[2] = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG3)->kinds[eRegisterKindLLDB];
argument_register_ids[3] = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG4)->kinds[eRegisterKindLLDB];
argument_register_ids[4] = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG5)->kinds[eRegisterKindLLDB];
argument_register_ids[5] = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG6)->kinds[eRegisterKindLLDB];
argument_register_ids[6] = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG7)->kinds[eRegisterKindLLDB];
argument_register_ids[7] = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG8)->kinds[eRegisterKindLLDB];
unsigned int current_argument_register = 0;
for (value_index = 0;
value_index < num_values;
++value_index)
{
Value *value = values.GetValueAtIndex(value_index);
if (!value)
return false;
// We currently only support extracting values with Clang QualTypes.
// Do we care about others?
CompilerType compiler_type = value->GetCompilerType();
if (!compiler_type)
return false;
bool is_signed;
if (compiler_type.IsIntegerOrEnumerationType (is_signed))
{
ReadIntegerArgument(value->GetScalar(),
compiler_type.GetBitSize(&thread),
is_signed,
thread,
argument_register_ids,
current_argument_register,
current_stack_argument);
}
else if (compiler_type.IsPointerType ())
{
ReadIntegerArgument(value->GetScalar(),
compiler_type.GetBitSize(&thread),
false,
thread,
argument_register_ids,
current_argument_register,
current_stack_argument);
}
}
return true;
}
Error
ABISysV_ppc::SetReturnValueObject(lldb::StackFrameSP &frame_sp, lldb::ValueObjectSP &new_value_sp)
{
Error error;
if (!new_value_sp)
{
error.SetErrorString("Empty value object for return value.");
return error;
}
CompilerType compiler_type = new_value_sp->GetCompilerType();
if (!compiler_type)
{
error.SetErrorString ("Null clang type for return value.");
return error;
}
Thread *thread = frame_sp->GetThread().get();
bool is_signed;
uint32_t count;
bool is_complex;
RegisterContext *reg_ctx = thread->GetRegisterContext().get();
bool set_it_simple = false;
if (compiler_type.IsIntegerOrEnumerationType (is_signed) || compiler_type.IsPointerType())
{
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName("r3", 0);
DataExtractor data;
Error data_error;
size_t num_bytes = new_value_sp->GetData(data, data_error);
if (data_error.Fail())
{
error.SetErrorStringWithFormat("Couldn't convert return value to raw data: %s", data_error.AsCString());
return error;
}
lldb::offset_t offset = 0;
if (num_bytes <= 8)
{
uint64_t raw_value = data.GetMaxU64(&offset, num_bytes);
if (reg_ctx->WriteRegisterFromUnsigned (reg_info, raw_value))
set_it_simple = true;
}
else
{
error.SetErrorString("We don't support returning longer than 64 bit integer values at present.");
}
}
else if (compiler_type.IsFloatingPointType (count, is_complex))
{
if (is_complex)
error.SetErrorString ("We don't support returning complex values at present");
else
{
size_t bit_width = compiler_type.GetBitSize(frame_sp.get());
if (bit_width <= 64)
{
DataExtractor data;
Error data_error;
size_t num_bytes = new_value_sp->GetData(data, data_error);
if (data_error.Fail())
{
error.SetErrorStringWithFormat("Couldn't convert return value to raw data: %s", data_error.AsCString());
return error;
}
unsigned char buffer[16];
ByteOrder byte_order = data.GetByteOrder();
data.CopyByteOrderedData (0, num_bytes, buffer, 16, byte_order);
set_it_simple = true;
}
else
{
// FIXME - don't know how to do 80 bit long doubles yet.
error.SetErrorString ("We don't support returning float values > 64 bits at present");
}
}
}
if (!set_it_simple)
{
// Okay we've got a structure or something that doesn't fit in a simple register.
// We should figure out where it really goes, but we don't support this yet.
error.SetErrorString ("We only support setting simple integer and float return types at present.");
}
return error;
}
ValueObjectSP
ABISysV_ppc::GetReturnValueObjectSimple (Thread &thread,
CompilerType &return_compiler_type) const
{
ValueObjectSP return_valobj_sp;
Value value;
if (!return_compiler_type)
return return_valobj_sp;
//value.SetContext (Value::eContextTypeClangType, return_value_type);
value.SetCompilerType (return_compiler_type);
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return return_valobj_sp;
const uint32_t type_flags = return_compiler_type.GetTypeInfo ();
if (type_flags & eTypeIsScalar)
{
value.SetValueType(Value::eValueTypeScalar);
bool success = false;
if (type_flags & eTypeIsInteger)
{
// Extract the register context so we can read arguments from registers
const size_t byte_size = return_compiler_type.GetByteSize(nullptr);
uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned(reg_ctx->GetRegisterInfoByName("r3", 0), 0);
const bool is_signed = (type_flags & eTypeIsSigned) != 0;
switch (byte_size)
{
default:
break;
case sizeof(uint64_t):
if (is_signed)
value.GetScalar() = (int64_t)(raw_value);
else
value.GetScalar() = (uint64_t)(raw_value);
success = true;
break;
case sizeof(uint32_t):
if (is_signed)
value.GetScalar() = (int32_t)(raw_value & UINT32_MAX);
else
value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
success = true;
break;
case sizeof(uint16_t):
if (is_signed)
value.GetScalar() = (int16_t)(raw_value & UINT16_MAX);
else
value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
success = true;
break;
case sizeof(uint8_t):
if (is_signed)
value.GetScalar() = (int8_t)(raw_value & UINT8_MAX);
else
value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
success = true;
break;
}
}
else if (type_flags & eTypeIsFloat)
{
if (type_flags & eTypeIsComplex)
{
// Don't handle complex yet.
}
else
{
const size_t byte_size = return_compiler_type.GetByteSize(nullptr);
if (byte_size <= sizeof(long double))
{
const RegisterInfo *f1_info = reg_ctx->GetRegisterInfoByName("f1", 0);
RegisterValue f1_value;
if (reg_ctx->ReadRegister (f1_info, f1_value))
{
DataExtractor data;
if (f1_value.GetData(data))
{
lldb::offset_t offset = 0;
if (byte_size == sizeof(float))
{
value.GetScalar() = (float) data.GetFloat(&offset);
success = true;
}
else if (byte_size == sizeof(double))
{
value.GetScalar() = (double) data.GetDouble(&offset);
success = true;
}
}
}
}
}
}
if (success)
return_valobj_sp = ValueObjectConstResult::Create (thread.GetStackFrameAtIndex(0).get(),
value,
ConstString(""));
}
else if (type_flags & eTypeIsPointer)
{
unsigned r3_id = reg_ctx->GetRegisterInfoByName("r3", 0)->kinds[eRegisterKindLLDB];
value.GetScalar() = (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(r3_id, 0);
value.SetValueType(Value::eValueTypeScalar);
return_valobj_sp = ValueObjectConstResult::Create (thread.GetStackFrameAtIndex(0).get(),
value,
ConstString(""));
}
else if (type_flags & eTypeIsVector)
{
const size_t byte_size = return_compiler_type.GetByteSize(nullptr);
if (byte_size > 0)
{
const RegisterInfo *altivec_reg = reg_ctx->GetRegisterInfoByName("v2", 0);
if (altivec_reg)
{
if (byte_size <= altivec_reg->byte_size)
{
ProcessSP process_sp (thread.GetProcess());
if (process_sp)
{
std::unique_ptr<DataBufferHeap> heap_data_ap (new DataBufferHeap(byte_size, 0));
const ByteOrder byte_order = process_sp->GetByteOrder();
RegisterValue reg_value;
if (reg_ctx->ReadRegister(altivec_reg, reg_value))
{
Error error;
if (reg_value.GetAsMemoryData (altivec_reg,
heap_data_ap->GetBytes(),
heap_data_ap->GetByteSize(),
byte_order,
error))
{
DataExtractor data (DataBufferSP (heap_data_ap.release()),
byte_order,
process_sp->GetTarget().GetArchitecture().GetAddressByteSize());
return_valobj_sp = ValueObjectConstResult::Create (&thread,
return_compiler_type,
ConstString(""),
data);
}
}
}
}
}
}
}
return return_valobj_sp;
}
ValueObjectSP
ABISysV_ppc::GetReturnValueObjectImpl (Thread &thread, CompilerType &return_compiler_type) const
{
ValueObjectSP return_valobj_sp;
if (!return_compiler_type)
return return_valobj_sp;
ExecutionContext exe_ctx (thread.shared_from_this());
return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type);
if (return_valobj_sp)
return return_valobj_sp;
RegisterContextSP reg_ctx_sp = thread.GetRegisterContext();
if (!reg_ctx_sp)
return return_valobj_sp;
const size_t bit_width = return_compiler_type.GetBitSize(&thread);
if (return_compiler_type.IsAggregateType())
{
Target *target = exe_ctx.GetTargetPtr();
bool is_memory = true;
if (bit_width <= 128)
{
ByteOrder target_byte_order = target->GetArchitecture().GetByteOrder();
DataBufferSP data_sp (new DataBufferHeap(16, 0));
DataExtractor return_ext (data_sp,
target_byte_order,
target->GetArchitecture().GetAddressByteSize());
const RegisterInfo *r3_info = reg_ctx_sp->GetRegisterInfoByName("r3", 0);
const RegisterInfo *rdx_info = reg_ctx_sp->GetRegisterInfoByName("rdx", 0);
RegisterValue r3_value, rdx_value;
reg_ctx_sp->ReadRegister (r3_info, r3_value);
reg_ctx_sp->ReadRegister (rdx_info, rdx_value);
DataExtractor r3_data, rdx_data;
r3_value.GetData(r3_data);
rdx_value.GetData(rdx_data);
uint32_t fp_bytes = 0; // Tracks how much of the xmm registers we've consumed so far
uint32_t integer_bytes = 0; // Tracks how much of the r3/rds registers we've consumed so far
const uint32_t num_children = return_compiler_type.GetNumFields ();
// Since we are in the small struct regime, assume we are not in memory.
is_memory = false;
for (uint32_t idx = 0; idx < num_children; idx++)
{
std::string name;
uint64_t field_bit_offset = 0;
bool is_signed;
bool is_complex;
uint32_t count;
CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex(idx, name, &field_bit_offset, nullptr, nullptr);
const size_t field_bit_width = field_compiler_type.GetBitSize(&thread);
// If there are any unaligned fields, this is stored in memory.
if (field_bit_offset % field_bit_width != 0)
{
is_memory = true;
break;
}
uint32_t field_byte_width = field_bit_width/8;
uint32_t field_byte_offset = field_bit_offset/8;
DataExtractor *copy_from_extractor = nullptr;
uint32_t copy_from_offset = 0;
if (field_compiler_type.IsIntegerOrEnumerationType (is_signed) || field_compiler_type.IsPointerType ())
{
if (integer_bytes < 8)
{
if (integer_bytes + field_byte_width <= 8)
{
// This is in RAX, copy from register to our result structure:
copy_from_extractor = &r3_data;
copy_from_offset = integer_bytes;
integer_bytes += field_byte_width;
}
else
{
// The next field wouldn't fit in the remaining space, so we pushed it to rdx.
copy_from_extractor = &rdx_data;
copy_from_offset = 0;
integer_bytes = 8 + field_byte_width;
}
}
else if (integer_bytes + field_byte_width <= 16)
{
copy_from_extractor = &rdx_data;
copy_from_offset = integer_bytes - 8;
integer_bytes += field_byte_width;
}
else
{
// The last field didn't fit. I can't see how that would happen w/o the overall size being
// greater than 16 bytes. For now, return a nullptr return value object.
return return_valobj_sp;
}
}
else if (field_compiler_type.IsFloatingPointType (count, is_complex))
{
// Structs with long doubles are always passed in memory.
if (field_bit_width == 128)
{
is_memory = true;
break;
}
else if (field_bit_width == 64)
{
copy_from_offset = 0;
fp_bytes += field_byte_width;
}
else if (field_bit_width == 32)
{
// This one is kind of complicated. If we are in an "eightbyte" with another float, we'll
// be stuffed into an xmm register with it. If we are in an "eightbyte" with one or more ints,
// then we will be stuffed into the appropriate GPR with them.
bool in_gpr;
if (field_byte_offset % 8 == 0)
{
// We are at the beginning of one of the eightbytes, so check the next element (if any)
if (idx == num_children - 1)
in_gpr = false;
else
{
uint64_t next_field_bit_offset = 0;
CompilerType next_field_compiler_type = return_compiler_type.GetFieldAtIndex (idx + 1,
name,
&next_field_bit_offset,
nullptr,
nullptr);
if (next_field_compiler_type.IsIntegerOrEnumerationType (is_signed))
in_gpr = true;
else
{
copy_from_offset = 0;
in_gpr = false;
}
}
}
else if (field_byte_offset % 4 == 0)
{
// We are inside of an eightbyte, so see if the field before us is floating point:
// This could happen if somebody put padding in the structure.
if (idx == 0)
in_gpr = false;
else
{
uint64_t prev_field_bit_offset = 0;
CompilerType prev_field_compiler_type = return_compiler_type.GetFieldAtIndex (idx - 1,
name,
&prev_field_bit_offset,
nullptr,
nullptr);
if (prev_field_compiler_type.IsIntegerOrEnumerationType (is_signed))
in_gpr = true;
else
{
copy_from_offset = 4;
in_gpr = false;
}
}
}
else
{
is_memory = true;
continue;
}
// Okay, we've figured out whether we are in GPR or XMM, now figure out which one.
if (in_gpr)
{
if (integer_bytes < 8)
{
// This is in RAX, copy from register to our result structure:
copy_from_extractor = &r3_data;
copy_from_offset = integer_bytes;
integer_bytes += field_byte_width;
}
else
{
copy_from_extractor = &rdx_data;
copy_from_offset = integer_bytes - 8;
integer_bytes += field_byte_width;
}
}
else
{
fp_bytes += field_byte_width;
}
}
}
// These two tests are just sanity checks. If I somehow get the
// type calculation wrong above it is better to just return nothing
// than to assert or crash.
if (!copy_from_extractor)
return return_valobj_sp;
if (copy_from_offset + field_byte_width > copy_from_extractor->GetByteSize())
return return_valobj_sp;
copy_from_extractor->CopyByteOrderedData (copy_from_offset,
field_byte_width,
data_sp->GetBytes() + field_byte_offset,
field_byte_width,
target_byte_order);
}
if (!is_memory)
{
// The result is in our data buffer. Let's make a variable object out of it:
return_valobj_sp = ValueObjectConstResult::Create (&thread,
return_compiler_type,
ConstString(""),
return_ext);
}
}
// FIXME: This is just taking a guess, r3 may very well no longer hold the return storage location.
// If we are going to do this right, when we make a new frame we should check to see if it uses a memory
// return, and if we are at the first instruction and if so stash away the return location. Then we would
// only return the memory return value if we know it is valid.
if (is_memory)
{
unsigned r3_id = reg_ctx_sp->GetRegisterInfoByName("r3", 0)->kinds[eRegisterKindLLDB];
lldb::addr_t storage_addr = (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(r3_id, 0);
return_valobj_sp = ValueObjectMemory::Create(&thread,
"",
Address(storage_addr, nullptr),
return_compiler_type);
}
}
return return_valobj_sp;
}
bool
ABISysV_ppc::CreateFunctionEntryUnwindPlan (UnwindPlan &unwind_plan)
{
unwind_plan.Clear();
unwind_plan.SetRegisterKind (eRegisterKindDWARF);
uint32_t lr_reg_num = dwarf_lr;
uint32_t sp_reg_num = dwarf_r1;
uint32_t pc_reg_num = dwarf_pc;
UnwindPlan::RowSP row(new UnwindPlan::Row);
// Our Call Frame Address is the stack pointer value
row->GetCFAValue().SetIsRegisterPlusOffset (sp_reg_num, 0);
// The previous PC is in the LR
row->SetRegisterLocationToRegister(pc_reg_num, lr_reg_num, true);
unwind_plan.AppendRow (row);
// All other registers are the same.
unwind_plan.SetSourceName ("ppc at-func-entry default");
unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);
return true;
}
bool
ABISysV_ppc::CreateDefaultUnwindPlan (UnwindPlan &unwind_plan)
{
unwind_plan.Clear();
unwind_plan.SetRegisterKind (eRegisterKindDWARF);
uint32_t sp_reg_num = dwarf_r1;
uint32_t pc_reg_num = dwarf_lr;
UnwindPlan::RowSP row(new UnwindPlan::Row);
const int32_t ptr_size = 4;
row->GetCFAValue().SetIsRegisterDereferenced (sp_reg_num);
row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * 1, true);
row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
unwind_plan.AppendRow (row);
unwind_plan.SetSourceName ("ppc default unwind plan");
unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);
unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
unwind_plan.SetReturnAddressRegister(dwarf_lr);
return true;
}
bool
ABISysV_ppc::RegisterIsVolatile (const RegisterInfo *reg_info)
{
return !RegisterIsCalleeSaved (reg_info);
}
// See "Register Usage" in the
// "System V Application Binary Interface"
// "64-bit PowerPC ELF Application Binary Interface Supplement"
// current version is 1.9 released 2004 at http://refspecs.linuxfoundation.org/ELF/ppc/PPC-elf64abi-1.9.pdf
bool
ABISysV_ppc::RegisterIsCalleeSaved (const RegisterInfo *reg_info)
{
if (reg_info)
{
// Preserved registers are :
// r1,r2,r13-r31
// f14-f31 (not yet)
// v20-v31 (not yet)
// vrsave (not yet)
const char *name = reg_info->name;
if (name[0] == 'r')
{
if ((name[1] == '1' || name[1] == '2') && name[2] == '\0')
return true;
if (name[1] == '1' && name[2] > '2')
return true;
if ((name[1] == '2' || name[1] == '3') && name[2] != '\0')
return true;
}
if (name[0] == 'f' && name[1] >= '0' && name[1] <= '9')
{
if (name[3] == '1' && name[4] >= '4')
return true;
if ((name[3] == '2' || name[3] == '3') && name[4] != '\0')
return true;
}
if (name[0] == 's' && name[1] == 'p' && name[2] == '\0') // sp
return true;
if (name[0] == 'f' && name[1] == 'p' && name[2] == '\0') // fp
return true;
if (name[0] == 'p' && name[1] == 'c' && name[2] == '\0') // pc
return true;
}
return false;
}
void
ABISysV_ppc::Initialize()
{
PluginManager::RegisterPlugin (GetPluginNameStatic(),
"System V ABI for ppc targets",
CreateInstance);
}
void
ABISysV_ppc::Terminate()
{
PluginManager::UnregisterPlugin (CreateInstance);
}
lldb_private::ConstString
ABISysV_ppc::GetPluginNameStatic()
{
static ConstString g_name("sysv-ppc");
return g_name;
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
lldb_private::ConstString
ABISysV_ppc::GetPluginName()
{
return GetPluginNameStatic();
}
uint32_t
ABISysV_ppc::GetPluginVersion()
{
return 1;
}