blob: da30f761341327acafc1430466a7af565b563217 [file] [log] [blame]
//===-- DNBArchImplX86_64.cpp -----------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/25/07.
//
//===----------------------------------------------------------------------===//
#if defined (__i386__) || defined (__x86_64__)
#include <sys/cdefs.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#include "MacOSX/x86_64/DNBArchImplX86_64.h"
#include "../HasAVX.h"
#include "DNBLog.h"
#include "MachThread.h"
#include "MachProcess.h"
#include <mach/mach.h>
#include <stdlib.h>
#if defined (LLDB_DEBUGSERVER_RELEASE) || defined (LLDB_DEBUGSERVER_DEBUG)
enum debugState {
debugStateUnknown,
debugStateOff,
debugStateOn
};
static debugState sFPUDebugState = debugStateUnknown;
static debugState sAVXForceState = debugStateUnknown;
static bool DebugFPURegs ()
{
if (sFPUDebugState == debugStateUnknown)
{
if (getenv("DNB_DEBUG_FPU_REGS"))
sFPUDebugState = debugStateOn;
else
sFPUDebugState = debugStateOff;
}
return (sFPUDebugState == debugStateOn);
}
static bool ForceAVXRegs ()
{
if (sFPUDebugState == debugStateUnknown)
{
if (getenv("DNB_DEBUG_X86_FORCE_AVX_REGS"))
sAVXForceState = debugStateOn;
else
sAVXForceState = debugStateOff;
}
return (sAVXForceState == debugStateOn);
}
#define DEBUG_FPU_REGS (DebugFPURegs())
#define FORCE_AVX_REGS (ForceAVXRegs())
#else
#define DEBUG_FPU_REGS (0)
#define FORCE_AVX_REGS (0)
#endif
extern "C" bool
CPUHasAVX()
{
enum AVXPresence
{
eAVXUnknown = -1,
eAVXNotPresent = 0,
eAVXPresent = 1
};
static AVXPresence g_has_avx = eAVXUnknown;
if (g_has_avx == eAVXUnknown)
{
g_has_avx = eAVXNotPresent;
// Only xnu-2020 or later has AVX support, any versions before
// this have a busted thread_get_state RPC where it would truncate
// the thread state buffer (<rdar://problem/10122874>). So we need to
// verify the kernel version number manually or disable AVX support.
int mib[2];
char buffer[1024];
size_t length = sizeof(buffer);
uint64_t xnu_version = 0;
mib[0] = CTL_KERN;
mib[1] = KERN_VERSION;
int err = ::sysctl(mib, 2, &buffer, &length, NULL, 0);
if (err == 0)
{
const char *xnu = strstr (buffer, "xnu-");
if (xnu)
{
const char *xnu_version_cstr = xnu + 4;
xnu_version = strtoull (xnu_version_cstr, NULL, 0);
if (xnu_version >= 2020 && xnu_version != ULLONG_MAX)
{
if (::HasAVX())
{
g_has_avx = eAVXPresent;
}
}
}
}
DNBLogThreadedIf (LOG_THREAD, "CPUHasAVX(): g_has_avx = %i (err = %i, errno = %i, xnu_version = %llu)", g_has_avx, err, errno, xnu_version);
}
return (g_has_avx == eAVXPresent);
}
uint64_t
DNBArchImplX86_64::GetPC(uint64_t failValue)
{
// Get program counter
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.context.gpr.__rip;
return failValue;
}
kern_return_t
DNBArchImplX86_64::SetPC(uint64_t value)
{
// Get program counter
kern_return_t err = GetGPRState(false);
if (err == KERN_SUCCESS)
{
m_state.context.gpr.__rip = value;
err = SetGPRState();
}
return err == KERN_SUCCESS;
}
uint64_t
DNBArchImplX86_64::GetSP(uint64_t failValue)
{
// Get stack pointer
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.context.gpr.__rsp;
return failValue;
}
// Uncomment the value below to verify the values in the debugger.
//#define DEBUG_GPR_VALUES 1 // DO NOT CHECK IN WITH THIS DEFINE ENABLED
kern_return_t
DNBArchImplX86_64::GetGPRState(bool force)
{
if (force || m_state.GetError(e_regSetGPR, Read))
{
#if DEBUG_GPR_VALUES
m_state.context.gpr.__rax = ('a' << 8) + 'x';
m_state.context.gpr.__rbx = ('b' << 8) + 'x';
m_state.context.gpr.__rcx = ('c' << 8) + 'x';
m_state.context.gpr.__rdx = ('d' << 8) + 'x';
m_state.context.gpr.__rdi = ('d' << 8) + 'i';
m_state.context.gpr.__rsi = ('s' << 8) + 'i';
m_state.context.gpr.__rbp = ('b' << 8) + 'p';
m_state.context.gpr.__rsp = ('s' << 8) + 'p';
m_state.context.gpr.__r8 = ('r' << 8) + '8';
m_state.context.gpr.__r9 = ('r' << 8) + '9';
m_state.context.gpr.__r10 = ('r' << 8) + 'a';
m_state.context.gpr.__r11 = ('r' << 8) + 'b';
m_state.context.gpr.__r12 = ('r' << 8) + 'c';
m_state.context.gpr.__r13 = ('r' << 8) + 'd';
m_state.context.gpr.__r14 = ('r' << 8) + 'e';
m_state.context.gpr.__r15 = ('r' << 8) + 'f';
m_state.context.gpr.__rip = ('i' << 8) + 'p';
m_state.context.gpr.__rflags = ('f' << 8) + 'l';
m_state.context.gpr.__cs = ('c' << 8) + 's';
m_state.context.gpr.__fs = ('f' << 8) + 's';
m_state.context.gpr.__gs = ('g' << 8) + 's';
m_state.SetError(e_regSetGPR, Read, 0);
#else
mach_msg_type_number_t count = e_regSetWordSizeGPR;
m_state.SetError(e_regSetGPR, Read, ::thread_get_state(m_thread->MachPortNumber(), __x86_64_THREAD_STATE, (thread_state_t)&m_state.context.gpr, &count));
DNBLogThreadedIf (LOG_THREAD, "::thread_get_state (0x%4.4x, %u, &gpr, %u) => 0x%8.8x"
"\n\trax = %16.16llx rbx = %16.16llx rcx = %16.16llx rdx = %16.16llx"
"\n\trdi = %16.16llx rsi = %16.16llx rbp = %16.16llx rsp = %16.16llx"
"\n\t r8 = %16.16llx r9 = %16.16llx r10 = %16.16llx r11 = %16.16llx"
"\n\tr12 = %16.16llx r13 = %16.16llx r14 = %16.16llx r15 = %16.16llx"
"\n\trip = %16.16llx"
"\n\tflg = %16.16llx cs = %16.16llx fs = %16.16llx gs = %16.16llx",
m_thread->MachPortNumber(), x86_THREAD_STATE64, x86_THREAD_STATE64_COUNT,
m_state.GetError(e_regSetGPR, Read),
m_state.context.gpr.__rax,m_state.context.gpr.__rbx,m_state.context.gpr.__rcx,
m_state.context.gpr.__rdx,m_state.context.gpr.__rdi,m_state.context.gpr.__rsi,
m_state.context.gpr.__rbp,m_state.context.gpr.__rsp,m_state.context.gpr.__r8,
m_state.context.gpr.__r9, m_state.context.gpr.__r10,m_state.context.gpr.__r11,
m_state.context.gpr.__r12,m_state.context.gpr.__r13,m_state.context.gpr.__r14,
m_state.context.gpr.__r15,m_state.context.gpr.__rip,m_state.context.gpr.__rflags,
m_state.context.gpr.__cs,m_state.context.gpr.__fs, m_state.context.gpr.__gs);
// DNBLogThreadedIf (LOG_THREAD, "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x"
// "\n\trax = %16.16llx"
// "\n\trbx = %16.16llx"
// "\n\trcx = %16.16llx"
// "\n\trdx = %16.16llx"
// "\n\trdi = %16.16llx"
// "\n\trsi = %16.16llx"
// "\n\trbp = %16.16llx"
// "\n\trsp = %16.16llx"
// "\n\t r8 = %16.16llx"
// "\n\t r9 = %16.16llx"
// "\n\tr10 = %16.16llx"
// "\n\tr11 = %16.16llx"
// "\n\tr12 = %16.16llx"
// "\n\tr13 = %16.16llx"
// "\n\tr14 = %16.16llx"
// "\n\tr15 = %16.16llx"
// "\n\trip = %16.16llx"
// "\n\tflg = %16.16llx"
// "\n\t cs = %16.16llx"
// "\n\t fs = %16.16llx"
// "\n\t gs = %16.16llx",
// m_thread->MachPortNumber(),
// x86_THREAD_STATE64,
// x86_THREAD_STATE64_COUNT,
// m_state.GetError(e_regSetGPR, Read),
// m_state.context.gpr.__rax,
// m_state.context.gpr.__rbx,
// m_state.context.gpr.__rcx,
// m_state.context.gpr.__rdx,
// m_state.context.gpr.__rdi,
// m_state.context.gpr.__rsi,
// m_state.context.gpr.__rbp,
// m_state.context.gpr.__rsp,
// m_state.context.gpr.__r8,
// m_state.context.gpr.__r9,
// m_state.context.gpr.__r10,
// m_state.context.gpr.__r11,
// m_state.context.gpr.__r12,
// m_state.context.gpr.__r13,
// m_state.context.gpr.__r14,
// m_state.context.gpr.__r15,
// m_state.context.gpr.__rip,
// m_state.context.gpr.__rflags,
// m_state.context.gpr.__cs,
// m_state.context.gpr.__fs,
// m_state.context.gpr.__gs);
#endif
}
return m_state.GetError(e_regSetGPR, Read);
}
// Uncomment the value below to verify the values in the debugger.
//#define DEBUG_FPU_REGS 1 // DO NOT CHECK IN WITH THIS DEFINE ENABLED
kern_return_t
DNBArchImplX86_64::GetFPUState(bool force)
{
if (force || m_state.GetError(e_regSetFPU, Read))
{
if (DEBUG_FPU_REGS) {
if (CPUHasAVX() || FORCE_AVX_REGS)
{
m_state.context.fpu.avx.__fpu_reserved[0] = -1;
m_state.context.fpu.avx.__fpu_reserved[1] = -1;
*(uint16_t *)&(m_state.context.fpu.avx.__fpu_fcw) = 0x1234;
*(uint16_t *)&(m_state.context.fpu.avx.__fpu_fsw) = 0x5678;
m_state.context.fpu.avx.__fpu_ftw = 1;
m_state.context.fpu.avx.__fpu_rsrv1 = UINT8_MAX;
m_state.context.fpu.avx.__fpu_fop = 2;
m_state.context.fpu.avx.__fpu_ip = 3;
m_state.context.fpu.avx.__fpu_cs = 4;
m_state.context.fpu.avx.__fpu_rsrv2 = UINT8_MAX;
m_state.context.fpu.avx.__fpu_dp = 5;
m_state.context.fpu.avx.__fpu_ds = 6;
m_state.context.fpu.avx.__fpu_rsrv3 = UINT16_MAX;
m_state.context.fpu.avx.__fpu_mxcsr = 8;
m_state.context.fpu.avx.__fpu_mxcsrmask = 9;
int i;
for (i=0; i<16; ++i)
{
if (i<10)
{
m_state.context.fpu.avx.__fpu_stmm0.__mmst_reg[i] = 'a';
m_state.context.fpu.avx.__fpu_stmm1.__mmst_reg[i] = 'b';
m_state.context.fpu.avx.__fpu_stmm2.__mmst_reg[i] = 'c';
m_state.context.fpu.avx.__fpu_stmm3.__mmst_reg[i] = 'd';
m_state.context.fpu.avx.__fpu_stmm4.__mmst_reg[i] = 'e';
m_state.context.fpu.avx.__fpu_stmm5.__mmst_reg[i] = 'f';
m_state.context.fpu.avx.__fpu_stmm6.__mmst_reg[i] = 'g';
m_state.context.fpu.avx.__fpu_stmm7.__mmst_reg[i] = 'h';
}
else
{
m_state.context.fpu.avx.__fpu_stmm0.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.avx.__fpu_stmm1.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.avx.__fpu_stmm2.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.avx.__fpu_stmm3.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.avx.__fpu_stmm4.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.avx.__fpu_stmm5.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.avx.__fpu_stmm6.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.avx.__fpu_stmm7.__mmst_reg[i] = INT8_MIN;
}
m_state.context.fpu.avx.__fpu_xmm0.__xmm_reg[i] = '0' + 2 * i;
m_state.context.fpu.avx.__fpu_xmm1.__xmm_reg[i] = '1' + 2 * i;
m_state.context.fpu.avx.__fpu_xmm2.__xmm_reg[i] = '2' + 2 * i;
m_state.context.fpu.avx.__fpu_xmm3.__xmm_reg[i] = '3' + 2 * i;
m_state.context.fpu.avx.__fpu_xmm4.__xmm_reg[i] = '4' + 2 * i;
m_state.context.fpu.avx.__fpu_xmm5.__xmm_reg[i] = '5' + 2 * i;
m_state.context.fpu.avx.__fpu_xmm6.__xmm_reg[i] = '6' + 2 * i;
m_state.context.fpu.avx.__fpu_xmm7.__xmm_reg[i] = '7' + 2 * i;
m_state.context.fpu.avx.__fpu_xmm8.__xmm_reg[i] = '8' + 2 * i;
m_state.context.fpu.avx.__fpu_xmm9.__xmm_reg[i] = '9' + 2 * i;
m_state.context.fpu.avx.__fpu_xmm10.__xmm_reg[i] = 'A' + 2 * i;
m_state.context.fpu.avx.__fpu_xmm11.__xmm_reg[i] = 'B' + 2 * i;
m_state.context.fpu.avx.__fpu_xmm12.__xmm_reg[i] = 'C' + 2 * i;
m_state.context.fpu.avx.__fpu_xmm13.__xmm_reg[i] = 'D' + 2 * i;
m_state.context.fpu.avx.__fpu_xmm14.__xmm_reg[i] = 'E' + 2 * i;
m_state.context.fpu.avx.__fpu_xmm15.__xmm_reg[i] = 'F' + 2 * i;
m_state.context.fpu.avx.__fpu_ymmh0.__xmm_reg[i] = '0' + i;
m_state.context.fpu.avx.__fpu_ymmh1.__xmm_reg[i] = '1' + i;
m_state.context.fpu.avx.__fpu_ymmh2.__xmm_reg[i] = '2' + i;
m_state.context.fpu.avx.__fpu_ymmh3.__xmm_reg[i] = '3' + i;
m_state.context.fpu.avx.__fpu_ymmh4.__xmm_reg[i] = '4' + i;
m_state.context.fpu.avx.__fpu_ymmh5.__xmm_reg[i] = '5' + i;
m_state.context.fpu.avx.__fpu_ymmh6.__xmm_reg[i] = '6' + i;
m_state.context.fpu.avx.__fpu_ymmh7.__xmm_reg[i] = '7' + i;
m_state.context.fpu.avx.__fpu_ymmh8.__xmm_reg[i] = '8' + i;
m_state.context.fpu.avx.__fpu_ymmh9.__xmm_reg[i] = '9' + i;
m_state.context.fpu.avx.__fpu_ymmh10.__xmm_reg[i] = 'A' + i;
m_state.context.fpu.avx.__fpu_ymmh11.__xmm_reg[i] = 'B' + i;
m_state.context.fpu.avx.__fpu_ymmh12.__xmm_reg[i] = 'C' + i;
m_state.context.fpu.avx.__fpu_ymmh13.__xmm_reg[i] = 'D' + i;
m_state.context.fpu.avx.__fpu_ymmh14.__xmm_reg[i] = 'E' + i;
m_state.context.fpu.avx.__fpu_ymmh15.__xmm_reg[i] = 'F' + i;
}
for (i=0; i<sizeof(m_state.context.fpu.avx.__fpu_rsrv4); ++i)
m_state.context.fpu.avx.__fpu_rsrv4[i] = INT8_MIN;
m_state.context.fpu.avx.__fpu_reserved1 = -1;
for (i=0; i<sizeof(m_state.context.fpu.avx.__avx_reserved1); ++i)
m_state.context.fpu.avx.__avx_reserved1[i] = INT8_MIN;
m_state.SetError(e_regSetFPU, Read, 0);
}
else
{
m_state.context.fpu.no_avx.__fpu_reserved[0] = -1;
m_state.context.fpu.no_avx.__fpu_reserved[1] = -1;
*(uint16_t *)&(m_state.context.fpu.no_avx.__fpu_fcw) = 0x1234;
*(uint16_t *)&(m_state.context.fpu.no_avx.__fpu_fsw) = 0x5678;
m_state.context.fpu.no_avx.__fpu_ftw = 1;
m_state.context.fpu.no_avx.__fpu_rsrv1 = UINT8_MAX;
m_state.context.fpu.no_avx.__fpu_fop = 2;
m_state.context.fpu.no_avx.__fpu_ip = 3;
m_state.context.fpu.no_avx.__fpu_cs = 4;
m_state.context.fpu.no_avx.__fpu_rsrv2 = 5;
m_state.context.fpu.no_avx.__fpu_dp = 6;
m_state.context.fpu.no_avx.__fpu_ds = 7;
m_state.context.fpu.no_avx.__fpu_rsrv3 = UINT16_MAX;
m_state.context.fpu.no_avx.__fpu_mxcsr = 8;
m_state.context.fpu.no_avx.__fpu_mxcsrmask = 9;
int i;
for (i=0; i<16; ++i)
{
if (i<10)
{
m_state.context.fpu.no_avx.__fpu_stmm0.__mmst_reg[i] = 'a';
m_state.context.fpu.no_avx.__fpu_stmm1.__mmst_reg[i] = 'b';
m_state.context.fpu.no_avx.__fpu_stmm2.__mmst_reg[i] = 'c';
m_state.context.fpu.no_avx.__fpu_stmm3.__mmst_reg[i] = 'd';
m_state.context.fpu.no_avx.__fpu_stmm4.__mmst_reg[i] = 'e';
m_state.context.fpu.no_avx.__fpu_stmm5.__mmst_reg[i] = 'f';
m_state.context.fpu.no_avx.__fpu_stmm6.__mmst_reg[i] = 'g';
m_state.context.fpu.no_avx.__fpu_stmm7.__mmst_reg[i] = 'h';
}
else
{
m_state.context.fpu.no_avx.__fpu_stmm0.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.no_avx.__fpu_stmm1.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.no_avx.__fpu_stmm2.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.no_avx.__fpu_stmm3.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.no_avx.__fpu_stmm4.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.no_avx.__fpu_stmm5.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.no_avx.__fpu_stmm6.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.no_avx.__fpu_stmm7.__mmst_reg[i] = INT8_MIN;
}
m_state.context.fpu.no_avx.__fpu_xmm0.__xmm_reg[i] = '0';
m_state.context.fpu.no_avx.__fpu_xmm1.__xmm_reg[i] = '1';
m_state.context.fpu.no_avx.__fpu_xmm2.__xmm_reg[i] = '2';
m_state.context.fpu.no_avx.__fpu_xmm3.__xmm_reg[i] = '3';
m_state.context.fpu.no_avx.__fpu_xmm4.__xmm_reg[i] = '4';
m_state.context.fpu.no_avx.__fpu_xmm5.__xmm_reg[i] = '5';
m_state.context.fpu.no_avx.__fpu_xmm6.__xmm_reg[i] = '6';
m_state.context.fpu.no_avx.__fpu_xmm7.__xmm_reg[i] = '7';
m_state.context.fpu.no_avx.__fpu_xmm8.__xmm_reg[i] = '8';
m_state.context.fpu.no_avx.__fpu_xmm9.__xmm_reg[i] = '9';
m_state.context.fpu.no_avx.__fpu_xmm10.__xmm_reg[i] = 'A';
m_state.context.fpu.no_avx.__fpu_xmm11.__xmm_reg[i] = 'B';
m_state.context.fpu.no_avx.__fpu_xmm12.__xmm_reg[i] = 'C';
m_state.context.fpu.no_avx.__fpu_xmm13.__xmm_reg[i] = 'D';
m_state.context.fpu.no_avx.__fpu_xmm14.__xmm_reg[i] = 'E';
m_state.context.fpu.no_avx.__fpu_xmm15.__xmm_reg[i] = 'F';
}
for (i=0; i<sizeof(m_state.context.fpu.no_avx.__fpu_rsrv4); ++i)
m_state.context.fpu.no_avx.__fpu_rsrv4[i] = INT8_MIN;
m_state.context.fpu.no_avx.__fpu_reserved1 = -1;
m_state.SetError(e_regSetFPU, Read, 0);
}
}
else
{
if (CPUHasAVX() || FORCE_AVX_REGS)
{
mach_msg_type_number_t count = e_regSetWordSizeAVX;
m_state.SetError(e_regSetFPU, Read, ::thread_get_state(m_thread->MachPortNumber(), __x86_64_AVX_STATE, (thread_state_t)&m_state.context.fpu.avx, &count));
DNBLogThreadedIf (LOG_THREAD, "::thread_get_state (0x%4.4x, %u, &avx, %u (%u passed in) carp) => 0x%8.8x",
m_thread->MachPortNumber(), __x86_64_AVX_STATE, (uint32_t)count,
e_regSetWordSizeAVX, m_state.GetError(e_regSetFPU, Read));
}
else
{
mach_msg_type_number_t count = e_regSetWordSizeFPU;
m_state.SetError(e_regSetFPU, Read, ::thread_get_state(m_thread->MachPortNumber(), __x86_64_FLOAT_STATE, (thread_state_t)&m_state.context.fpu.no_avx, &count));
DNBLogThreadedIf (LOG_THREAD, "::thread_get_state (0x%4.4x, %u, &fpu, %u (%u passed in) => 0x%8.8x",
m_thread->MachPortNumber(), __x86_64_FLOAT_STATE, (uint32_t)count,
e_regSetWordSizeFPU, m_state.GetError(e_regSetFPU, Read));
}
}
}
return m_state.GetError(e_regSetFPU, Read);
}
kern_return_t
DNBArchImplX86_64::GetEXCState(bool force)
{
if (force || m_state.GetError(e_regSetEXC, Read))
{
mach_msg_type_number_t count = e_regSetWordSizeEXC;
m_state.SetError(e_regSetEXC, Read, ::thread_get_state(m_thread->MachPortNumber(), __x86_64_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, &count));
}
return m_state.GetError(e_regSetEXC, Read);
}
kern_return_t
DNBArchImplX86_64::SetGPRState()
{
kern_return_t kret = ::thread_abort_safely(m_thread->MachPortNumber());
DNBLogThreadedIf (LOG_THREAD, "thread = 0x%4.4x calling thread_abort_safely (tid) => %u (SetGPRState() for stop_count = %u)", m_thread->MachPortNumber(), kret, m_thread->Process()->StopCount());
m_state.SetError(e_regSetGPR, Write, ::thread_set_state(m_thread->MachPortNumber(), __x86_64_THREAD_STATE, (thread_state_t)&m_state.context.gpr, e_regSetWordSizeGPR));
DNBLogThreadedIf (LOG_THREAD, "::thread_set_state (0x%4.4x, %u, &gpr, %u) => 0x%8.8x"
"\n\trax = %16.16llx rbx = %16.16llx rcx = %16.16llx rdx = %16.16llx"
"\n\trdi = %16.16llx rsi = %16.16llx rbp = %16.16llx rsp = %16.16llx"
"\n\t r8 = %16.16llx r9 = %16.16llx r10 = %16.16llx r11 = %16.16llx"
"\n\tr12 = %16.16llx r13 = %16.16llx r14 = %16.16llx r15 = %16.16llx"
"\n\trip = %16.16llx"
"\n\tflg = %16.16llx cs = %16.16llx fs = %16.16llx gs = %16.16llx",
m_thread->MachPortNumber(), __x86_64_THREAD_STATE, e_regSetWordSizeGPR,
m_state.GetError(e_regSetGPR, Write),
m_state.context.gpr.__rax,m_state.context.gpr.__rbx,m_state.context.gpr.__rcx,
m_state.context.gpr.__rdx,m_state.context.gpr.__rdi,m_state.context.gpr.__rsi,
m_state.context.gpr.__rbp,m_state.context.gpr.__rsp,m_state.context.gpr.__r8,
m_state.context.gpr.__r9, m_state.context.gpr.__r10,m_state.context.gpr.__r11,
m_state.context.gpr.__r12,m_state.context.gpr.__r13,m_state.context.gpr.__r14,
m_state.context.gpr.__r15,m_state.context.gpr.__rip,m_state.context.gpr.__rflags,
m_state.context.gpr.__cs, m_state.context.gpr.__fs, m_state.context.gpr.__gs);
return m_state.GetError(e_regSetGPR, Write);
}
kern_return_t
DNBArchImplX86_64::SetFPUState()
{
if (DEBUG_FPU_REGS)
{
m_state.SetError(e_regSetFPU, Write, 0);
return m_state.GetError(e_regSetFPU, Write);
}
else
{
if (CPUHasAVX() || FORCE_AVX_REGS)
{
m_state.SetError(e_regSetFPU, Write, ::thread_set_state(m_thread->MachPortNumber(), __x86_64_AVX_STATE, (thread_state_t)&m_state.context.fpu.avx, e_regSetWordSizeAVX));
return m_state.GetError(e_regSetFPU, Write);
}
else
{
m_state.SetError(e_regSetFPU, Write, ::thread_set_state(m_thread->MachPortNumber(), __x86_64_FLOAT_STATE, (thread_state_t)&m_state.context.fpu.no_avx, e_regSetWordSizeFPU));
return m_state.GetError(e_regSetFPU, Write);
}
}
}
kern_return_t
DNBArchImplX86_64::SetEXCState()
{
m_state.SetError(e_regSetEXC, Write, ::thread_set_state(m_thread->MachPortNumber(), __x86_64_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, e_regSetWordSizeEXC));
return m_state.GetError(e_regSetEXC, Write);
}
kern_return_t
DNBArchImplX86_64::GetDBGState(bool force)
{
if (force || m_state.GetError(e_regSetDBG, Read))
{
mach_msg_type_number_t count = e_regSetWordSizeDBG;
m_state.SetError(e_regSetDBG, Read, ::thread_get_state(m_thread->MachPortNumber(), __x86_64_DEBUG_STATE, (thread_state_t)&m_state.context.dbg, &count));
}
return m_state.GetError(e_regSetDBG, Read);
}
kern_return_t
DNBArchImplX86_64::SetDBGState(bool also_set_on_task)
{
m_state.SetError(e_regSetDBG, Write, ::thread_set_state(m_thread->MachPortNumber(), __x86_64_DEBUG_STATE, (thread_state_t)&m_state.context.dbg, e_regSetWordSizeDBG));
if (also_set_on_task)
{
kern_return_t kret = ::task_set_state(m_thread->Process()->Task().TaskPort(), __x86_64_DEBUG_STATE, (thread_state_t)&m_state.context.dbg, e_regSetWordSizeDBG);
if (kret != KERN_SUCCESS)
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplX86_64::SetDBGState failed to set debug control register state: 0x%8.8x.", kret);
}
return m_state.GetError(e_regSetDBG, Write);
}
void
DNBArchImplX86_64::ThreadWillResume()
{
// Do we need to step this thread? If so, let the mach thread tell us so.
if (m_thread->IsStepping())
{
// This is the primary thread, let the arch do anything it needs
EnableHardwareSingleStep(true);
}
// Reset the debug status register, if necessary, before we resume.
kern_return_t kret = GetDBGState(false);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplX86_64::ThreadWillResume() GetDBGState() => 0x%8.8x.", kret);
if (kret != KERN_SUCCESS)
return;
DBG &debug_state = m_state.context.dbg;
bool need_reset = false;
uint32_t i, num = NumSupportedHardwareWatchpoints();
for (i = 0; i < num; ++i)
if (IsWatchpointHit(debug_state, i))
need_reset = true;
if (need_reset)
{
ClearWatchpointHits(debug_state);
kret = SetDBGState(false);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplX86_64::ThreadWillResume() SetDBGState() => 0x%8.8x.", kret);
}
}
bool
DNBArchImplX86_64::ThreadDidStop()
{
bool success = true;
m_state.InvalidateAllRegisterStates();
// Are we stepping a single instruction?
if (GetGPRState(true) == KERN_SUCCESS)
{
// We are single stepping, was this the primary thread?
if (m_thread->IsStepping())
{
// This was the primary thread, we need to clear the trace
// bit if so.
success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
}
else
{
// The MachThread will automatically restore the suspend count
// in ThreadDidStop(), so we don't need to do anything here if
// we weren't the primary thread the last time
}
}
return success;
}
bool
DNBArchImplX86_64::NotifyException(MachException::Data& exc)
{
switch (exc.exc_type)
{
case EXC_BAD_ACCESS:
break;
case EXC_BAD_INSTRUCTION:
break;
case EXC_ARITHMETIC:
break;
case EXC_EMULATION:
break;
case EXC_SOFTWARE:
break;
case EXC_BREAKPOINT:
if (exc.exc_data.size() >= 2 && exc.exc_data[0] == 2)
{
// exc_code = EXC_I386_BPT
//
nub_addr_t pc = GetPC(INVALID_NUB_ADDRESS);
if (pc != INVALID_NUB_ADDRESS && pc > 0)
{
pc -= 1;
// Check for a breakpoint at one byte prior to the current PC value
// since the PC will be just past the trap.
DNBBreakpoint *bp = m_thread->Process()->Breakpoints().FindByAddress(pc);
if (bp)
{
// Backup the PC for i386 since the trap was taken and the PC
// is at the address following the single byte trap instruction.
if (m_state.context.gpr.__rip > 0)
{
m_state.context.gpr.__rip = pc;
// Write the new PC back out
SetGPRState ();
}
}
return true;
}
}
else if (exc.exc_data.size() >= 2 && exc.exc_data[0] == 1)
{
// exc_code = EXC_I386_SGL
//
// Check whether this corresponds to a watchpoint hit event.
// If yes, set the exc_sub_code to the data break address.
nub_addr_t addr = 0;
uint32_t hw_index = GetHardwareWatchpointHit(addr);
if (hw_index != INVALID_NUB_HW_INDEX)
{
exc.exc_data[1] = addr;
// Piggyback the hw_index in the exc.data.
exc.exc_data.push_back(hw_index);
}
return true;
}
break;
case EXC_SYSCALL:
break;
case EXC_MACH_SYSCALL:
break;
case EXC_RPC_ALERT:
break;
}
return false;
}
uint32_t
DNBArchImplX86_64::NumSupportedHardwareWatchpoints()
{
// Available debug address registers: dr0, dr1, dr2, dr3.
return 4;
}
static uint32_t
size_and_rw_bits(nub_size_t size, bool read, bool write)
{
uint32_t rw;
if (read) {
rw = 0x3; // READ or READ/WRITE
} else if (write) {
rw = 0x1; // WRITE
} else {
assert(0 && "read and write cannot both be false");
}
switch (size) {
case 1:
return rw;
case 2:
return (0x1 << 2) | rw;
case 4:
return (0x3 << 2) | rw;
case 8:
return (0x2 << 2) | rw;
default:
assert(0 && "invalid size, must be one of 1, 2, 4, or 8");
}
}
void
DNBArchImplX86_64::SetWatchpoint(DBG &debug_state, uint32_t hw_index, nub_addr_t addr, nub_size_t size, bool read, bool write)
{
// Set both dr7 (debug control register) and dri (debug address register).
// dr7{7-0} encodes the local/gloabl enable bits:
// global enable --. .-- local enable
// | |
// v v
// dr0 -> bits{1-0}
// dr1 -> bits{3-2}
// dr2 -> bits{5-4}
// dr3 -> bits{7-6}
//
// dr7{31-16} encodes the rw/len bits:
// b_x+3, b_x+2, b_x+1, b_x
// where bits{x+1, x} => rw
// 0b00: execute, 0b01: write, 0b11: read-or-write, 0b10: io read-or-write (unused)
// and bits{x+3, x+2} => len
// 0b00: 1-byte, 0b01: 2-byte, 0b11: 4-byte, 0b10: 8-byte
//
// dr0 -> bits{19-16}
// dr1 -> bits{23-20}
// dr2 -> bits{27-24}
// dr3 -> bits{31-28}
debug_state.__dr7 |= (1 << (2*hw_index) |
size_and_rw_bits(size, read, write) << (16+4*hw_index));
switch (hw_index) {
case 0:
debug_state.__dr0 = addr; break;
case 1:
debug_state.__dr1 = addr; break;
case 2:
debug_state.__dr2 = addr; break;
case 3:
debug_state.__dr3 = addr; break;
default:
assert(0 && "invalid hardware register index, must be one of 0, 1, 2, or 3");
}
return;
}
void
DNBArchImplX86_64::ClearWatchpoint(DBG &debug_state, uint32_t hw_index)
{
debug_state.__dr7 &= ~(3 << (2*hw_index));
switch (hw_index) {
case 0:
debug_state.__dr0 = 0; break;
case 1:
debug_state.__dr1 = 0; break;
case 2:
debug_state.__dr2 = 0; break;
case 3:
debug_state.__dr3 = 0; break;
default:
assert(0 && "invalid hardware register index, must be one of 0, 1, 2, or 3");
}
return;
}
bool
DNBArchImplX86_64::IsWatchpointVacant(const DBG &debug_state, uint32_t hw_index)
{
// Check dr7 (debug control register) for local/global enable bits:
// global enable --. .-- local enable
// | |
// v v
// dr0 -> bits{1-0}
// dr1 -> bits{3-2}
// dr2 -> bits{5-4}
// dr3 -> bits{7-6}
return (debug_state.__dr7 & (3 << (2*hw_index))) == 0;
}
// Resets local copy of debug status register to wait for the next debug exception.
void
DNBArchImplX86_64::ClearWatchpointHits(DBG &debug_state)
{
// See also IsWatchpointHit().
debug_state.__dr6 = 0;
return;
}
bool
DNBArchImplX86_64::IsWatchpointHit(const DBG &debug_state, uint32_t hw_index)
{
// Check dr6 (debug status register) whether a watchpoint hits:
// is watchpoint hit?
// |
// v
// dr0 -> bits{0}
// dr1 -> bits{1}
// dr2 -> bits{2}
// dr3 -> bits{3}
return (debug_state.__dr6 & (1 << hw_index));
}
nub_addr_t
DNBArchImplX86_64::GetWatchAddress(const DBG &debug_state, uint32_t hw_index)
{
switch (hw_index) {
case 0:
return debug_state.__dr0;
case 1:
return debug_state.__dr1;
case 2:
return debug_state.__dr2;
case 3:
return debug_state.__dr3;
default:
assert(0 && "invalid hardware register index, must be one of 0, 1, 2, or 3");
}
}
bool
DNBArchImplX86_64::StartTransForHWP()
{
if (m_2pc_trans_state != Trans_Done && m_2pc_trans_state != Trans_Rolled_Back)
DNBLogError ("%s inconsistent state detected, expected %d or %d, got: %d", __FUNCTION__, Trans_Done, Trans_Rolled_Back, m_2pc_trans_state);
m_2pc_dbg_checkpoint = m_state.context.dbg;
m_2pc_trans_state = Trans_Pending;
return true;
}
bool
DNBArchImplX86_64::RollbackTransForHWP()
{
m_state.context.dbg = m_2pc_dbg_checkpoint;
if (m_2pc_trans_state != Trans_Pending)
DNBLogError ("%s inconsistent state detected, expected %d, got: %d", __FUNCTION__, Trans_Pending, m_2pc_trans_state);
m_2pc_trans_state = Trans_Rolled_Back;
kern_return_t kret = SetDBGState(false);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplX86_64::RollbackTransForHWP() SetDBGState() => 0x%8.8x.", kret);
if (kret == KERN_SUCCESS)
return true;
else
return false;
}
bool
DNBArchImplX86_64::FinishTransForHWP()
{
m_2pc_trans_state = Trans_Done;
return true;
}
DNBArchImplX86_64::DBG
DNBArchImplX86_64::GetDBGCheckpoint()
{
return m_2pc_dbg_checkpoint;
}
uint32_t
DNBArchImplX86_64::EnableHardwareWatchpoint (nub_addr_t addr, nub_size_t size, bool read, bool write, bool also_set_on_task)
{
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplX86_64::EnableHardwareWatchpoint(addr = 0x%llx, size = %llu, read = %u, write = %u)", (uint64_t)addr, (uint64_t)size, read, write);
const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
// Can only watch 1, 2, 4, or 8 bytes.
if (!(size == 1 || size == 2 || size == 4 || size == 8))
return INVALID_NUB_HW_INDEX;
// We must watch for either read or write
if (read == false && write == false)
return INVALID_NUB_HW_INDEX;
// Read the debug state
kern_return_t kret = GetDBGState(false);
if (kret == KERN_SUCCESS)
{
// Check to make sure we have the needed hardware support
uint32_t i = 0;
DBG &debug_state = m_state.context.dbg;
for (i = 0; i < num_hw_watchpoints; ++i)
{
if (IsWatchpointVacant(debug_state, i))
break;
}
// See if we found an available hw breakpoint slot above
if (i < num_hw_watchpoints)
{
StartTransForHWP();
// Modify our local copy of the debug state, first.
SetWatchpoint(debug_state, i, addr, size, read, write);
// Now set the watch point in the inferior.
kret = SetDBGState(also_set_on_task);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplX86_64::EnableHardwareWatchpoint() SetDBGState() => 0x%8.8x.", kret);
if (kret == KERN_SUCCESS)
return i;
else // Revert to the previous debug state voluntarily. The transaction coordinator knows that we have failed.
m_state.context.dbg = GetDBGCheckpoint();
}
else
{
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplX86_64::EnableHardwareWatchpoint(): All hardware resources (%u) are in use.", num_hw_watchpoints);
}
}
return INVALID_NUB_HW_INDEX;
}
bool
DNBArchImplX86_64::DisableHardwareWatchpoint (uint32_t hw_index, bool also_set_on_task)
{
kern_return_t kret = GetDBGState(false);
const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
if (kret == KERN_SUCCESS)
{
DBG &debug_state = m_state.context.dbg;
if (hw_index < num_hw_points && !IsWatchpointVacant(debug_state, hw_index))
{
StartTransForHWP();
// Modify our local copy of the debug state, first.
ClearWatchpoint(debug_state, hw_index);
// Now disable the watch point in the inferior.
kret = SetDBGState(also_set_on_task);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplX86_64::DisableHardwareWatchpoint( %u )",
hw_index);
if (kret == KERN_SUCCESS)
return true;
else // Revert to the previous debug state voluntarily. The transaction coordinator knows that we have failed.
m_state.context.dbg = GetDBGCheckpoint();
}
}
return false;
}
// Iterate through the debug status register; return the index of the first hit.
uint32_t
DNBArchImplX86_64::GetHardwareWatchpointHit(nub_addr_t &addr)
{
// Read the debug state
kern_return_t kret = GetDBGState(true);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplX86_64::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x.", kret);
if (kret == KERN_SUCCESS)
{
DBG &debug_state = m_state.context.dbg;
uint32_t i, num = NumSupportedHardwareWatchpoints();
for (i = 0; i < num; ++i)
{
if (IsWatchpointHit(debug_state, i))
{
addr = GetWatchAddress(debug_state, i);
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchImplX86_64::GetHardwareWatchpointHit() found => %u (addr = 0x%llx).",
i,
(uint64_t)addr);
return i;
}
}
}
return INVALID_NUB_HW_INDEX;
}
// Set the single step bit in the processor status register.
kern_return_t
DNBArchImplX86_64::EnableHardwareSingleStep (bool enable)
{
if (GetGPRState(false) == KERN_SUCCESS)
{
const uint32_t trace_bit = 0x100u;
if (enable)
m_state.context.gpr.__rflags |= trace_bit;
else
m_state.context.gpr.__rflags &= ~trace_bit;
return SetGPRState();
}
return m_state.GetError(e_regSetGPR, Read);
}
//----------------------------------------------------------------------
// Register information definitions
//----------------------------------------------------------------------
enum
{
gpr_rax = 0,
gpr_rbx,
gpr_rcx,
gpr_rdx,
gpr_rdi,
gpr_rsi,
gpr_rbp,
gpr_rsp,
gpr_r8,
gpr_r9,
gpr_r10,
gpr_r11,
gpr_r12,
gpr_r13,
gpr_r14,
gpr_r15,
gpr_rip,
gpr_rflags,
gpr_cs,
gpr_fs,
gpr_gs,
gpr_eax,
gpr_ebx,
gpr_ecx,
gpr_edx,
gpr_edi,
gpr_esi,
gpr_ebp,
gpr_esp,
gpr_r8d, // Low 32 bits or r8
gpr_r9d, // Low 32 bits or r9
gpr_r10d, // Low 32 bits or r10
gpr_r11d, // Low 32 bits or r11
gpr_r12d, // Low 32 bits or r12
gpr_r13d, // Low 32 bits or r13
gpr_r14d, // Low 32 bits or r14
gpr_r15d, // Low 32 bits or r15
gpr_ax ,
gpr_bx ,
gpr_cx ,
gpr_dx ,
gpr_di ,
gpr_si ,
gpr_bp ,
gpr_sp ,
gpr_r8w, // Low 16 bits or r8
gpr_r9w, // Low 16 bits or r9
gpr_r10w, // Low 16 bits or r10
gpr_r11w, // Low 16 bits or r11
gpr_r12w, // Low 16 bits or r12
gpr_r13w, // Low 16 bits or r13
gpr_r14w, // Low 16 bits or r14
gpr_r15w, // Low 16 bits or r15
gpr_ah ,
gpr_bh ,
gpr_ch ,
gpr_dh ,
gpr_al ,
gpr_bl ,
gpr_cl ,
gpr_dl ,
gpr_dil,
gpr_sil,
gpr_bpl,
gpr_spl,
gpr_r8l, // Low 8 bits or r8
gpr_r9l, // Low 8 bits or r9
gpr_r10l, // Low 8 bits or r10
gpr_r11l, // Low 8 bits or r11
gpr_r12l, // Low 8 bits or r12
gpr_r13l, // Low 8 bits or r13
gpr_r14l, // Low 8 bits or r14
gpr_r15l, // Low 8 bits or r15
k_num_gpr_regs
};
enum {
fpu_fcw,
fpu_fsw,
fpu_ftw,
fpu_fop,
fpu_ip,
fpu_cs,
fpu_dp,
fpu_ds,
fpu_mxcsr,
fpu_mxcsrmask,
fpu_stmm0,
fpu_stmm1,
fpu_stmm2,
fpu_stmm3,
fpu_stmm4,
fpu_stmm5,
fpu_stmm6,
fpu_stmm7,
fpu_xmm0,
fpu_xmm1,
fpu_xmm2,
fpu_xmm3,
fpu_xmm4,
fpu_xmm5,
fpu_xmm6,
fpu_xmm7,
fpu_xmm8,
fpu_xmm9,
fpu_xmm10,
fpu_xmm11,
fpu_xmm12,
fpu_xmm13,
fpu_xmm14,
fpu_xmm15,
fpu_ymm0,
fpu_ymm1,
fpu_ymm2,
fpu_ymm3,
fpu_ymm4,
fpu_ymm5,
fpu_ymm6,
fpu_ymm7,
fpu_ymm8,
fpu_ymm9,
fpu_ymm10,
fpu_ymm11,
fpu_ymm12,
fpu_ymm13,
fpu_ymm14,
fpu_ymm15,
k_num_fpu_regs,
// Aliases
fpu_fctrl = fpu_fcw,
fpu_fstat = fpu_fsw,
fpu_ftag = fpu_ftw,
fpu_fiseg = fpu_cs,
fpu_fioff = fpu_ip,
fpu_foseg = fpu_ds,
fpu_fooff = fpu_dp
};
enum {
exc_trapno,
exc_err,
exc_faultvaddr,
k_num_exc_regs,
};
enum gcc_dwarf_regnums
{
gcc_dwarf_rax = 0,
gcc_dwarf_rdx = 1,
gcc_dwarf_rcx = 2,
gcc_dwarf_rbx = 3,
gcc_dwarf_rsi = 4,
gcc_dwarf_rdi = 5,
gcc_dwarf_rbp = 6,
gcc_dwarf_rsp = 7,
gcc_dwarf_r8,
gcc_dwarf_r9,
gcc_dwarf_r10,
gcc_dwarf_r11,
gcc_dwarf_r12,
gcc_dwarf_r13,
gcc_dwarf_r14,
gcc_dwarf_r15,
gcc_dwarf_rip,
gcc_dwarf_xmm0,
gcc_dwarf_xmm1,
gcc_dwarf_xmm2,
gcc_dwarf_xmm3,
gcc_dwarf_xmm4,
gcc_dwarf_xmm5,
gcc_dwarf_xmm6,
gcc_dwarf_xmm7,
gcc_dwarf_xmm8,
gcc_dwarf_xmm9,
gcc_dwarf_xmm10,
gcc_dwarf_xmm11,
gcc_dwarf_xmm12,
gcc_dwarf_xmm13,
gcc_dwarf_xmm14,
gcc_dwarf_xmm15,
gcc_dwarf_stmm0,
gcc_dwarf_stmm1,
gcc_dwarf_stmm2,
gcc_dwarf_stmm3,
gcc_dwarf_stmm4,
gcc_dwarf_stmm5,
gcc_dwarf_stmm6,
gcc_dwarf_stmm7,
gcc_dwarf_ymm0 = gcc_dwarf_xmm0,
gcc_dwarf_ymm1 = gcc_dwarf_xmm1,
gcc_dwarf_ymm2 = gcc_dwarf_xmm2,
gcc_dwarf_ymm3 = gcc_dwarf_xmm3,
gcc_dwarf_ymm4 = gcc_dwarf_xmm4,
gcc_dwarf_ymm5 = gcc_dwarf_xmm5,
gcc_dwarf_ymm6 = gcc_dwarf_xmm6,
gcc_dwarf_ymm7 = gcc_dwarf_xmm7,
gcc_dwarf_ymm8 = gcc_dwarf_xmm8,
gcc_dwarf_ymm9 = gcc_dwarf_xmm9,
gcc_dwarf_ymm10 = gcc_dwarf_xmm10,
gcc_dwarf_ymm11 = gcc_dwarf_xmm11,
gcc_dwarf_ymm12 = gcc_dwarf_xmm12,
gcc_dwarf_ymm13 = gcc_dwarf_xmm13,
gcc_dwarf_ymm14 = gcc_dwarf_xmm14,
gcc_dwarf_ymm15 = gcc_dwarf_xmm15
};
enum gdb_regnums
{
gdb_rax = 0,
gdb_rbx = 1,
gdb_rcx = 2,
gdb_rdx = 3,
gdb_rsi = 4,
gdb_rdi = 5,
gdb_rbp = 6,
gdb_rsp = 7,
gdb_r8 = 8,
gdb_r9 = 9,
gdb_r10 = 10,
gdb_r11 = 11,
gdb_r12 = 12,
gdb_r13 = 13,
gdb_r14 = 14,
gdb_r15 = 15,
gdb_rip = 16,
gdb_rflags = 17,
gdb_cs = 18,
gdb_ss = 19,
gdb_ds = 20,
gdb_es = 21,
gdb_fs = 22,
gdb_gs = 23,
gdb_stmm0 = 24,
gdb_stmm1 = 25,
gdb_stmm2 = 26,
gdb_stmm3 = 27,
gdb_stmm4 = 28,
gdb_stmm5 = 29,
gdb_stmm6 = 30,
gdb_stmm7 = 31,
gdb_fctrl = 32, gdb_fcw = gdb_fctrl,
gdb_fstat = 33, gdb_fsw = gdb_fstat,
gdb_ftag = 34, gdb_ftw = gdb_ftag,
gdb_fiseg = 35, gdb_fpu_cs = gdb_fiseg,
gdb_fioff = 36, gdb_ip = gdb_fioff,
gdb_foseg = 37, gdb_fpu_ds = gdb_foseg,
gdb_fooff = 38, gdb_dp = gdb_fooff,
gdb_fop = 39,
gdb_xmm0 = 40,
gdb_xmm1 = 41,
gdb_xmm2 = 42,
gdb_xmm3 = 43,
gdb_xmm4 = 44,
gdb_xmm5 = 45,
gdb_xmm6 = 46,
gdb_xmm7 = 47,
gdb_xmm8 = 48,
gdb_xmm9 = 49,
gdb_xmm10 = 50,
gdb_xmm11 = 51,
gdb_xmm12 = 52,
gdb_xmm13 = 53,
gdb_xmm14 = 54,
gdb_xmm15 = 55,
gdb_mxcsr = 56,
gdb_ymm0 = gdb_xmm0,
gdb_ymm1 = gdb_xmm1,
gdb_ymm2 = gdb_xmm2,
gdb_ymm3 = gdb_xmm3,
gdb_ymm4 = gdb_xmm4,
gdb_ymm5 = gdb_xmm5,
gdb_ymm6 = gdb_xmm6,
gdb_ymm7 = gdb_xmm7,
gdb_ymm8 = gdb_xmm8,
gdb_ymm9 = gdb_xmm9,
gdb_ymm10 = gdb_xmm10,
gdb_ymm11 = gdb_xmm11,
gdb_ymm12 = gdb_xmm12,
gdb_ymm13 = gdb_xmm13,
gdb_ymm14 = gdb_xmm14,
gdb_ymm15 = gdb_xmm15
};
#define GPR_OFFSET(reg) (offsetof (DNBArchImplX86_64::GPR, __##reg))
#define FPU_OFFSET(reg) (offsetof (DNBArchImplX86_64::FPU, __fpu_##reg) + offsetof (DNBArchImplX86_64::Context, fpu.no_avx))
#define AVX_OFFSET(reg) (offsetof (DNBArchImplX86_64::AVX, __fpu_##reg) + offsetof (DNBArchImplX86_64::Context, fpu.avx))
#define EXC_OFFSET(reg) (offsetof (DNBArchImplX86_64::EXC, __##reg) + offsetof (DNBArchImplX86_64::Context, exc))
#define AVX_OFFSET_YMM(n) (AVX_OFFSET(ymmh0) + (32 * n))
#define GPR_SIZE(reg) (sizeof(((DNBArchImplX86_64::GPR *)NULL)->__##reg))
#define FPU_SIZE_UINT(reg) (sizeof(((DNBArchImplX86_64::FPU *)NULL)->__fpu_##reg))
#define FPU_SIZE_MMST(reg) (sizeof(((DNBArchImplX86_64::FPU *)NULL)->__fpu_##reg.__mmst_reg))
#define FPU_SIZE_XMM(reg) (sizeof(((DNBArchImplX86_64::FPU *)NULL)->__fpu_##reg.__xmm_reg))
#define FPU_SIZE_YMM(reg) (32)
#define EXC_SIZE(reg) (sizeof(((DNBArchImplX86_64::EXC *)NULL)->__##reg))
// These macros will auto define the register name, alt name, register size,
// register offset, encoding, format and native register. This ensures that
// the register state structures are defined correctly and have the correct
// sizes and offsets.
#define DEFINE_GPR(reg) { e_regSetGPR, gpr_##reg, #reg, NULL, Uint, Hex, GPR_SIZE(reg), GPR_OFFSET(reg), gcc_dwarf_##reg, gcc_dwarf_##reg, INVALID_NUB_REGNUM, gdb_##reg, NULL, g_invalidate_##reg }
#define DEFINE_GPR_ALT(reg, alt, gen) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, GPR_SIZE(reg), GPR_OFFSET(reg), gcc_dwarf_##reg, gcc_dwarf_##reg, gen, gdb_##reg, NULL, g_invalidate_##reg }
#define DEFINE_GPR_ALT2(reg, alt) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, GPR_SIZE(reg), GPR_OFFSET(reg), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, gdb_##reg, NULL, NULL }
#define DEFINE_GPR_ALT3(reg, alt, gen) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, GPR_SIZE(reg), GPR_OFFSET(reg), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, gen, gdb_##reg, NULL, NULL }
#define DEFINE_GPR_ALT4(reg, alt, gen) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, GPR_SIZE(reg), GPR_OFFSET(reg), gcc_dwarf_##reg, gcc_dwarf_##reg, gen, gdb_##reg, NULL, NULL }
#define DEFINE_GPR_PSEUDO_32(reg32,reg64) { e_regSetGPR, gpr_##reg32, #reg32, NULL, Uint, Hex, 4, 0,INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, g_contained_##reg64, g_invalidate_##reg64 }
#define DEFINE_GPR_PSEUDO_16(reg16,reg64) { e_regSetGPR, gpr_##reg16, #reg16, NULL, Uint, Hex, 2, 0,INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, g_contained_##reg64, g_invalidate_##reg64 }
#define DEFINE_GPR_PSEUDO_8H(reg8,reg64) { e_regSetGPR, gpr_##reg8 , #reg8 , NULL, Uint, Hex, 1, 1,INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, g_contained_##reg64, g_invalidate_##reg64 }
#define DEFINE_GPR_PSEUDO_8L(reg8,reg64) { e_regSetGPR, gpr_##reg8 , #reg8 , NULL, Uint, Hex, 1, 0,INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, g_contained_##reg64, g_invalidate_##reg64 }
// General purpose registers for 64 bit
const char *g_contained_rax[] = { "rax", NULL };
const char *g_contained_rbx[] = { "rbx", NULL };
const char *g_contained_rcx[] = { "rcx", NULL };
const char *g_contained_rdx[] = { "rdx", NULL };
const char *g_contained_rdi[] = { "rdi", NULL };
const char *g_contained_rsi[] = { "rsi", NULL };
const char *g_contained_rbp[] = { "rbp", NULL };
const char *g_contained_rsp[] = { "rsp", NULL };
const char *g_contained_r8[] = { "r8", NULL };
const char *g_contained_r9[] = { "r9", NULL };
const char *g_contained_r10[] = { "r10", NULL };
const char *g_contained_r11[] = { "r11", NULL };
const char *g_contained_r12[] = { "r12", NULL };
const char *g_contained_r13[] = { "r13", NULL };
const char *g_contained_r14[] = { "r14", NULL };
const char *g_contained_r15[] = { "r15", NULL };
const char *g_invalidate_rax[] = { "rax", "eax", "ax", "ah", "al", NULL };
const char *g_invalidate_rbx[] = { "rbx", "ebx", "bx", "bh", "bl", NULL };
const char *g_invalidate_rcx[] = { "rcx", "ecx", "cx", "ch", "cl", NULL };
const char *g_invalidate_rdx[] = { "rdx", "edx", "dx", "dh", "dl", NULL };
const char *g_invalidate_rdi[] = { "rdi", "edi", "di", "dil", NULL };
const char *g_invalidate_rsi[] = { "rsi", "esi", "si", "sil", NULL };
const char *g_invalidate_rbp[] = { "rbp", "ebp", "bp", "bpl", NULL };
const char *g_invalidate_rsp[] = { "rsp", "esp", "sp", "spl", NULL };
const char *g_invalidate_r8 [] = { "r8", "r8d", "r8w", "r8l", NULL };
const char *g_invalidate_r9 [] = { "r9", "r9d", "r9w", "r9l", NULL };
const char *g_invalidate_r10[] = { "r10", "r10d", "r10w", "r10l", NULL };
const char *g_invalidate_r11[] = { "r11", "r11d", "r11w", "r11l", NULL };
const char *g_invalidate_r12[] = { "r12", "r12d", "r12w", "r12l", NULL };
const char *g_invalidate_r13[] = { "r13", "r13d", "r13w", "r13l", NULL };
const char *g_invalidate_r14[] = { "r14", "r14d", "r14w", "r14l", NULL };
const char *g_invalidate_r15[] = { "r15", "r15d", "r15w", "r15l", NULL };
const DNBRegisterInfo
DNBArchImplX86_64::g_gpr_registers[] =
{
DEFINE_GPR (rax),
DEFINE_GPR (rbx),
DEFINE_GPR_ALT (rcx , "arg4", GENERIC_REGNUM_ARG4),
DEFINE_GPR_ALT (rdx , "arg3", GENERIC_REGNUM_ARG3),
DEFINE_GPR_ALT (rdi , "arg1", GENERIC_REGNUM_ARG1),
DEFINE_GPR_ALT (rsi , "arg2", GENERIC_REGNUM_ARG2),
DEFINE_GPR_ALT (rbp , "fp" , GENERIC_REGNUM_FP),
DEFINE_GPR_ALT (rsp , "sp" , GENERIC_REGNUM_SP),
DEFINE_GPR_ALT (r8 , "arg5", GENERIC_REGNUM_ARG5),
DEFINE_GPR_ALT (r9 , "arg6", GENERIC_REGNUM_ARG6),
DEFINE_GPR (r10),
DEFINE_GPR (r11),
DEFINE_GPR (r12),
DEFINE_GPR (r13),
DEFINE_GPR (r14),
DEFINE_GPR (r15),
DEFINE_GPR_ALT4 (rip , "pc", GENERIC_REGNUM_PC),
DEFINE_GPR_ALT3 (rflags, "flags", GENERIC_REGNUM_FLAGS),
DEFINE_GPR_ALT2 (cs, NULL),
DEFINE_GPR_ALT2 (fs, NULL),
DEFINE_GPR_ALT2 (gs, NULL),
DEFINE_GPR_PSEUDO_32 (eax, rax),
DEFINE_GPR_PSEUDO_32 (ebx, rbx),
DEFINE_GPR_PSEUDO_32 (ecx, rcx),
DEFINE_GPR_PSEUDO_32 (edx, rdx),
DEFINE_GPR_PSEUDO_32 (edi, rdi),
DEFINE_GPR_PSEUDO_32 (esi, rsi),
DEFINE_GPR_PSEUDO_32 (ebp, rbp),
DEFINE_GPR_PSEUDO_32 (esp, rsp),
DEFINE_GPR_PSEUDO_32 (r8d, r8),
DEFINE_GPR_PSEUDO_32 (r9d, r9),
DEFINE_GPR_PSEUDO_32 (r10d, r10),
DEFINE_GPR_PSEUDO_32 (r11d, r11),
DEFINE_GPR_PSEUDO_32 (r12d, r12),
DEFINE_GPR_PSEUDO_32 (r13d, r13),
DEFINE_GPR_PSEUDO_32 (r14d, r14),
DEFINE_GPR_PSEUDO_32 (r15d, r15),
DEFINE_GPR_PSEUDO_16 (ax , rax),
DEFINE_GPR_PSEUDO_16 (bx , rbx),
DEFINE_GPR_PSEUDO_16 (cx , rcx),
DEFINE_GPR_PSEUDO_16 (dx , rdx),
DEFINE_GPR_PSEUDO_16 (di , rdi),
DEFINE_GPR_PSEUDO_16 (si , rsi),
DEFINE_GPR_PSEUDO_16 (bp , rbp),
DEFINE_GPR_PSEUDO_16 (sp , rsp),
DEFINE_GPR_PSEUDO_16 (r8w, r8),
DEFINE_GPR_PSEUDO_16 (r9w, r9),
DEFINE_GPR_PSEUDO_16 (r10w, r10),
DEFINE_GPR_PSEUDO_16 (r11w, r11),
DEFINE_GPR_PSEUDO_16 (r12w, r12),
DEFINE_GPR_PSEUDO_16 (r13w, r13),
DEFINE_GPR_PSEUDO_16 (r14w, r14),
DEFINE_GPR_PSEUDO_16 (r15w, r15),
DEFINE_GPR_PSEUDO_8H (ah , rax),
DEFINE_GPR_PSEUDO_8H (bh , rbx),
DEFINE_GPR_PSEUDO_8H (ch , rcx),
DEFINE_GPR_PSEUDO_8H (dh , rdx),
DEFINE_GPR_PSEUDO_8L (al , rax),
DEFINE_GPR_PSEUDO_8L (bl , rbx),
DEFINE_GPR_PSEUDO_8L (cl , rcx),
DEFINE_GPR_PSEUDO_8L (dl , rdx),
DEFINE_GPR_PSEUDO_8L (dil, rdi),
DEFINE_GPR_PSEUDO_8L (sil, rsi),
DEFINE_GPR_PSEUDO_8L (bpl, rbp),
DEFINE_GPR_PSEUDO_8L (spl, rsp),
DEFINE_GPR_PSEUDO_8L (r8l, r8),
DEFINE_GPR_PSEUDO_8L (r9l, r9),
DEFINE_GPR_PSEUDO_8L (r10l, r10),
DEFINE_GPR_PSEUDO_8L (r11l, r11),
DEFINE_GPR_PSEUDO_8L (r12l, r12),
DEFINE_GPR_PSEUDO_8L (r13l, r13),
DEFINE_GPR_PSEUDO_8L (r14l, r14),
DEFINE_GPR_PSEUDO_8L (r15l, r15)
};
// Floating point registers 64 bit
const DNBRegisterInfo
DNBArchImplX86_64::g_fpu_registers_no_avx[] =
{
{ e_regSetFPU, fpu_fcw , "fctrl" , NULL, Uint, Hex, FPU_SIZE_UINT(fcw) , FPU_OFFSET(fcw) , -1U, -1U, -1U, -1U, NULL, NULL },
{ e_regSetFPU, fpu_fsw , "fstat" , NULL, Uint, Hex, FPU_SIZE_UINT(fsw) , FPU_OFFSET(fsw) , -1U, -1U, -1U, -1U, NULL, NULL },
{ e_regSetFPU, fpu_ftw , "ftag" , NULL, Uint, Hex, FPU_SIZE_UINT(ftw) , FPU_OFFSET(ftw) , -1U, -1U, -1U, -1U, NULL, NULL },
{ e_regSetFPU, fpu_fop , "fop" , NULL, Uint, Hex, FPU_SIZE_UINT(fop) , FPU_OFFSET(fop) , -1U, -1U, -1U, -1U, NULL, NULL },
{ e_regSetFPU, fpu_ip , "fioff" , NULL, Uint, Hex, FPU_SIZE_UINT(ip) , FPU_OFFSET(ip) , -1U, -1U, -1U, -1U, NULL, NULL },
{ e_regSetFPU, fpu_cs , "fiseg" , NULL, Uint, Hex, FPU_SIZE_UINT(cs) , FPU_OFFSET(cs) , -1U, -1U, -1U, -1U, NULL, NULL },
{ e_regSetFPU, fpu_dp , "fooff" , NULL, Uint, Hex, FPU_SIZE_UINT(dp) , FPU_OFFSET(dp) , -1U, -1U, -1U, -1U, NULL, NULL },
{ e_regSetFPU, fpu_ds , "foseg" , NULL, Uint, Hex, FPU_SIZE_UINT(ds) , FPU_OFFSET(ds) , -1U, -1U, -1U, -1U, NULL, NULL },
{ e_regSetFPU, fpu_mxcsr , "mxcsr" , NULL, Uint, Hex, FPU_SIZE_UINT(mxcsr) , FPU_OFFSET(mxcsr) , -1U, -1U, -1U, -1U, NULL, NULL },
{ e_regSetFPU, fpu_mxcsrmask, "mxcsrmask" , NULL, Uint, Hex, FPU_SIZE_UINT(mxcsrmask) , FPU_OFFSET(mxcsrmask) , -1U, -1U, -1U, -1U, NULL, NULL },
{ e_regSetFPU, fpu_stmm0, "stmm0", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm0), FPU_OFFSET(stmm0), gcc_dwarf_stmm0, gcc_dwarf_stmm0, -1U, gdb_stmm0, NULL, NULL },
{ e_regSetFPU, fpu_stmm1, "stmm1", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm1), FPU_OFFSET(stmm1), gcc_dwarf_stmm1, gcc_dwarf_stmm1, -1U, gdb_stmm1, NULL, NULL },
{ e_regSetFPU, fpu_stmm2, "stmm2", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm2), FPU_OFFSET(stmm2), gcc_dwarf_stmm2, gcc_dwarf_stmm2, -1U, gdb_stmm2, NULL, NULL },
{ e_regSetFPU, fpu_stmm3, "stmm3", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm3), FPU_OFFSET(stmm3), gcc_dwarf_stmm3, gcc_dwarf_stmm3, -1U, gdb_stmm3, NULL, NULL },
{ e_regSetFPU, fpu_stmm4, "stmm4", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm4), FPU_OFFSET(stmm4), gcc_dwarf_stmm4, gcc_dwarf_stmm4, -1U, gdb_stmm4, NULL, NULL },
{ e_regSetFPU, fpu_stmm5, "stmm5", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm5), FPU_OFFSET(stmm5), gcc_dwarf_stmm5, gcc_dwarf_stmm5, -1U, gdb_stmm5, NULL, NULL },
{ e_regSetFPU, fpu_stmm6, "stmm6", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm6), FPU_OFFSET(stmm6), gcc_dwarf_stmm6, gcc_dwarf_stmm6, -1U, gdb_stmm6, NULL, NULL },
{ e_regSetFPU, fpu_stmm7, "stmm7", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm7), FPU_OFFSET(stmm7), gcc_dwarf_stmm7, gcc_dwarf_stmm7, -1U, gdb_stmm7, NULL, NULL },
{ e_regSetFPU, fpu_xmm0 , "xmm0" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm0) , FPU_OFFSET(xmm0) , gcc_dwarf_xmm0 , gcc_dwarf_xmm0 , -1U, gdb_xmm0 , NULL, NULL },
{ e_regSetFPU, fpu_xmm1 , "xmm1" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm1) , FPU_OFFSET(xmm1) , gcc_dwarf_xmm1 , gcc_dwarf_xmm1 , -1U, gdb_xmm1 , NULL, NULL },
{ e_regSetFPU, fpu_xmm2 , "xmm2" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm2) , FPU_OFFSET(xmm2) , gcc_dwarf_xmm2 , gcc_dwarf_xmm2 , -1U, gdb_xmm2 , NULL, NULL },
{ e_regSetFPU, fpu_xmm3 , "xmm3" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm3) , FPU_OFFSET(xmm3) , gcc_dwarf_xmm3 , gcc_dwarf_xmm3 , -1U, gdb_xmm3 , NULL, NULL },
{ e_regSetFPU, fpu_xmm4 , "xmm4" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm4) , FPU_OFFSET(xmm4) , gcc_dwarf_xmm4 , gcc_dwarf_xmm4 , -1U, gdb_xmm4 , NULL, NULL },
{ e_regSetFPU, fpu_xmm5 , "xmm5" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm5) , FPU_OFFSET(xmm5) , gcc_dwarf_xmm5 , gcc_dwarf_xmm5 , -1U, gdb_xmm5 , NULL, NULL },
{ e_regSetFPU, fpu_xmm6 , "xmm6" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm6) , FPU_OFFSET(xmm6) , gcc_dwarf_xmm6 , gcc_dwarf_xmm6 , -1U, gdb_xmm6 , NULL, NULL },
{ e_regSetFPU, fpu_xmm7 , "xmm7" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm7) , FPU_OFFSET(xmm7) , gcc_dwarf_xmm7 , gcc_dwarf_xmm7 , -1U, gdb_xmm7 , NULL, NULL },
{ e_regSetFPU, fpu_xmm8 , "xmm8" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm8) , FPU_OFFSET(xmm8) , gcc_dwarf_xmm8 , gcc_dwarf_xmm8 , -1U, gdb_xmm8 , NULL, NULL },
{ e_regSetFPU, fpu_xmm9 , "xmm9" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm9) , FPU_OFFSET(xmm9) , gcc_dwarf_xmm9 , gcc_dwarf_xmm9 , -1U, gdb_xmm9 , NULL, NULL },
{ e_regSetFPU, fpu_xmm10, "xmm10" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm10) , FPU_OFFSET(xmm10), gcc_dwarf_xmm10, gcc_dwarf_xmm10, -1U, gdb_xmm10, NULL, NULL },
{ e_regSetFPU, fpu_xmm11, "xmm11" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm11) , FPU_OFFSET(xmm11), gcc_dwarf_xmm11, gcc_dwarf_xmm11, -1U, gdb_xmm11, NULL, NULL },
{ e_regSetFPU, fpu_xmm12, "xmm12" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm12) , FPU_OFFSET(xmm12), gcc_dwarf_xmm12, gcc_dwarf_xmm12, -1U, gdb_xmm12, NULL, NULL },
{ e_regSetFPU, fpu_xmm13, "xmm13" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm13) , FPU_OFFSET(xmm13), gcc_dwarf_xmm13, gcc_dwarf_xmm13, -1U, gdb_xmm13, NULL, NULL },
{ e_regSetFPU, fpu_xmm14, "xmm14" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm14) , FPU_OFFSET(xmm14), gcc_dwarf_xmm14, gcc_dwarf_xmm14, -1U, gdb_xmm14, NULL, NULL },
{ e_regSetFPU, fpu_xmm15, "xmm15" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm15) , FPU_OFFSET(xmm15), gcc_dwarf_xmm15, gcc_dwarf_xmm15, -1U, gdb_xmm15, NULL, NULL },
};
static const char *g_contained_ymm0 [] = { "ymm0", NULL };
static const char *g_contained_ymm1 [] = { "ymm1", NULL };
static const char *g_contained_ymm2 [] = { "ymm2", NULL };
static const char *g_contained_ymm3 [] = { "ymm3", NULL };
static const char *g_contained_ymm4 [] = { "ymm4", NULL };
static const char *g_contained_ymm5 [] = { "ymm5", NULL };
static const char *g_contained_ymm6 [] = { "ymm6", NULL };
static const char *g_contained_ymm7 [] = { "ymm7", NULL };
static const char *g_contained_ymm8 [] = { "ymm8", NULL };
static const char *g_contained_ymm9 [] = { "ymm9", NULL };
static const char *g_contained_ymm10[] = { "ymm10", NULL };
static const char *g_contained_ymm11[] = { "ymm11", NULL };
static const char *g_contained_ymm12[] = { "ymm12", NULL };
static const char *g_contained_ymm13[] = { "ymm13", NULL };
static const char *g_contained_ymm14[] = { "ymm14", NULL };
static const char *g_contained_ymm15[] = { "ymm15", NULL };
const DNBRegisterInfo
DNBArchImplX86_64::g_fpu_registers_avx[] =
{
{ e_regSetFPU, fpu_fcw , "fctrl" , NULL, Uint, Hex, FPU_SIZE_UINT(fcw) , AVX_OFFSET(fcw) , -1U, -1U, -1U, -1U, NULL, NULL },
{ e_regSetFPU, fpu_fsw , "fstat" , NULL, Uint, Hex, FPU_SIZE_UINT(fsw) , AVX_OFFSET(fsw) , -1U, -1U, -1U, -1U, NULL, NULL },
{ e_regSetFPU, fpu_ftw , "ftag" , NULL, Uint, Hex, FPU_SIZE_UINT(ftw) , AVX_OFFSET(ftw) , -1U, -1U, -1U, -1U, NULL, NULL },
{ e_regSetFPU, fpu_fop , "fop" , NULL, Uint, Hex, FPU_SIZE_UINT(fop) , AVX_OFFSET(fop) , -1U, -1U, -1U, -1U, NULL, NULL },
{ e_regSetFPU, fpu_ip , "fioff" , NULL, Uint, Hex, FPU_SIZE_UINT(ip) , AVX_OFFSET(ip) , -1U, -1U, -1U, -1U, NULL, NULL },
{ e_regSetFPU, fpu_cs , "fiseg" , NULL, Uint, Hex, FPU_SIZE_UINT(cs) , AVX_OFFSET(cs) , -1U, -1U, -1U, -1U, NULL, NULL },
{ e_regSetFPU, fpu_dp , "fooff" , NULL, Uint, Hex, FPU_SIZE_UINT(dp) , AVX_OFFSET(dp) , -1U, -1U, -1U, -1U, NULL, NULL },
{ e_regSetFPU, fpu_ds , "foseg" , NULL, Uint, Hex, FPU_SIZE_UINT(ds) , AVX_OFFSET(ds) , -1U, -1U, -1U, -1U, NULL, NULL },
{ e_regSetFPU, fpu_mxcsr , "mxcsr" , NULL, Uint, Hex, FPU_SIZE_UINT(mxcsr) , AVX_OFFSET(mxcsr) , -1U, -1U, -1U, -1U, NULL, NULL },
{ e_regSetFPU, fpu_mxcsrmask, "mxcsrmask" , NULL, Uint, Hex, FPU_SIZE_UINT(mxcsrmask) , AVX_OFFSET(mxcsrmask) , -1U, -1U, -1U, -1U, NULL, NULL },
{ e_regSetFPU, fpu_stmm0, "stmm0", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm0), AVX_OFFSET(stmm0), gcc_dwarf_stmm0, gcc_dwarf_stmm0, -1U, gdb_stmm0, NULL, NULL },
{ e_regSetFPU, fpu_stmm1, "stmm1", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm1), AVX_OFFSET(stmm1), gcc_dwarf_stmm1, gcc_dwarf_stmm1, -1U, gdb_stmm1, NULL, NULL },
{ e_regSetFPU, fpu_stmm2, "stmm2", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm2), AVX_OFFSET(stmm2), gcc_dwarf_stmm2, gcc_dwarf_stmm2, -1U, gdb_stmm2, NULL, NULL },
{ e_regSetFPU, fpu_stmm3, "stmm3", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm3), AVX_OFFSET(stmm3), gcc_dwarf_stmm3, gcc_dwarf_stmm3, -1U, gdb_stmm3, NULL, NULL },
{ e_regSetFPU, fpu_stmm4, "stmm4", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm4), AVX_OFFSET(stmm4), gcc_dwarf_stmm4, gcc_dwarf_stmm4, -1U, gdb_stmm4, NULL, NULL },
{ e_regSetFPU, fpu_stmm5, "stmm5", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm5), AVX_OFFSET(stmm5), gcc_dwarf_stmm5, gcc_dwarf_stmm5, -1U, gdb_stmm5, NULL, NULL },
{ e_regSetFPU, fpu_stmm6, "stmm6", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm6), AVX_OFFSET(stmm6), gcc_dwarf_stmm6, gcc_dwarf_stmm6, -1U, gdb_stmm6, NULL, NULL },
{ e_regSetFPU, fpu_stmm7, "stmm7", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm7), AVX_OFFSET(stmm7), gcc_dwarf_stmm7, gcc_dwarf_stmm7, -1U, gdb_stmm7, NULL, NULL },
{ e_regSetFPU, fpu_ymm0 , "ymm0" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm0) , AVX_OFFSET_YMM(0) , gcc_dwarf_ymm0 , gcc_dwarf_ymm0 , -1U, gdb_ymm0, NULL, NULL },
{ e_regSetFPU, fpu_ymm1 , "ymm1" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm1) , AVX_OFFSET_YMM(1) , gcc_dwarf_ymm1 , gcc_dwarf_ymm1 , -1U, gdb_ymm1, NULL, NULL },
{ e_regSetFPU, fpu_ymm2 , "ymm2" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm2) , AVX_OFFSET_YMM(2) , gcc_dwarf_ymm2 , gcc_dwarf_ymm2 , -1U, gdb_ymm2, NULL, NULL },
{ e_regSetFPU, fpu_ymm3 , "ymm3" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm3) , AVX_OFFSET_YMM(3) , gcc_dwarf_ymm3 , gcc_dwarf_ymm3 , -1U, gdb_ymm3, NULL, NULL },
{ e_regSetFPU, fpu_ymm4 , "ymm4" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm4) , AVX_OFFSET_YMM(4) , gcc_dwarf_ymm4 , gcc_dwarf_ymm4 , -1U, gdb_ymm4, NULL, NULL },
{ e_regSetFPU, fpu_ymm5 , "ymm5" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm5) , AVX_OFFSET_YMM(5) , gcc_dwarf_ymm5 , gcc_dwarf_ymm5 , -1U, gdb_ymm5, NULL, NULL },
{ e_regSetFPU, fpu_ymm6 , "ymm6" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm6) , AVX_OFFSET_YMM(6) , gcc_dwarf_ymm6 , gcc_dwarf_ymm6 , -1U, gdb_ymm6, NULL, NULL },
{ e_regSetFPU, fpu_ymm7 , "ymm7" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm7) , AVX_OFFSET_YMM(7) , gcc_dwarf_ymm7 , gcc_dwarf_ymm7 , -1U, gdb_ymm7, NULL, NULL },
{ e_regSetFPU, fpu_ymm8 , "ymm8" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm8) , AVX_OFFSET_YMM(8) , gcc_dwarf_ymm8 , gcc_dwarf_ymm8 , -1U, gdb_ymm8 , NULL, NULL },
{ e_regSetFPU, fpu_ymm9 , "ymm9" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm9) , AVX_OFFSET_YMM(9) , gcc_dwarf_ymm9 , gcc_dwarf_ymm9 , -1U, gdb_ymm9 , NULL, NULL },
{ e_regSetFPU, fpu_ymm10, "ymm10" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm10) , AVX_OFFSET_YMM(10), gcc_dwarf_ymm10, gcc_dwarf_ymm10, -1U, gdb_ymm10, NULL, NULL },
{ e_regSetFPU, fpu_ymm11, "ymm11" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm11) , AVX_OFFSET_YMM(11), gcc_dwarf_ymm11, gcc_dwarf_ymm11, -1U, gdb_ymm11, NULL, NULL },
{ e_regSetFPU, fpu_ymm12, "ymm12" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm12) , AVX_OFFSET_YMM(12), gcc_dwarf_ymm12, gcc_dwarf_ymm12, -1U, gdb_ymm12, NULL, NULL },
{ e_regSetFPU, fpu_ymm13, "ymm13" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm13) , AVX_OFFSET_YMM(13), gcc_dwarf_ymm13, gcc_dwarf_ymm13, -1U, gdb_ymm13, NULL, NULL },
{ e_regSetFPU, fpu_ymm14, "ymm14" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm14) , AVX_OFFSET_YMM(14), gcc_dwarf_ymm14, gcc_dwarf_ymm14, -1U, gdb_ymm14, NULL, NULL },
{ e_regSetFPU, fpu_ymm15, "ymm15" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm15) , AVX_OFFSET_YMM(15), gcc_dwarf_ymm15, gcc_dwarf_ymm15, -1U, gdb_ymm15, NULL, NULL },
{ e_regSetFPU, fpu_xmm0 , "xmm0" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm0) , 0, gcc_dwarf_xmm0 , gcc_dwarf_xmm0 , -1U, gdb_xmm0 , g_contained_ymm0 , NULL },
{ e_regSetFPU, fpu_xmm1 , "xmm1" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm1) , 0, gcc_dwarf_xmm1 , gcc_dwarf_xmm1 , -1U, gdb_xmm1 , g_contained_ymm1 , NULL },
{ e_regSetFPU, fpu_xmm2 , "xmm2" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm2) , 0, gcc_dwarf_xmm2 , gcc_dwarf_xmm2 , -1U, gdb_xmm2 , g_contained_ymm2 , NULL },
{ e_regSetFPU, fpu_xmm3 , "xmm3" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm3) , 0, gcc_dwarf_xmm3 , gcc_dwarf_xmm3 , -1U, gdb_xmm3 , g_contained_ymm3 , NULL },
{ e_regSetFPU, fpu_xmm4 , "xmm4" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm4) , 0, gcc_dwarf_xmm4 , gcc_dwarf_xmm4 , -1U, gdb_xmm4 , g_contained_ymm4 , NULL },
{ e_regSetFPU, fpu_xmm5 , "xmm5" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm5) , 0, gcc_dwarf_xmm5 , gcc_dwarf_xmm5 , -1U, gdb_xmm5 , g_contained_ymm5 , NULL },
{ e_regSetFPU, fpu_xmm6 , "xmm6" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm6) , 0, gcc_dwarf_xmm6 , gcc_dwarf_xmm6 , -1U, gdb_xmm6 , g_contained_ymm6 , NULL },
{ e_regSetFPU, fpu_xmm7 , "xmm7" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm7) , 0, gcc_dwarf_xmm7 , gcc_dwarf_xmm7 , -1U, gdb_xmm7 , g_contained_ymm7 , NULL },
{ e_regSetFPU, fpu_xmm8 , "xmm8" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm8) , 0, gcc_dwarf_xmm8 , gcc_dwarf_xmm8 , -1U, gdb_xmm8 , g_contained_ymm8 , NULL },
{ e_regSetFPU, fpu_xmm9 , "xmm9" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm9) , 0, gcc_dwarf_xmm9 , gcc_dwarf_xmm9 , -1U, gdb_xmm9 , g_contained_ymm9 , NULL },
{ e_regSetFPU, fpu_xmm10, "xmm10" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm10) , 0, gcc_dwarf_xmm10, gcc_dwarf_xmm10, -1U, gdb_xmm10, g_contained_ymm10, NULL },
{ e_regSetFPU, fpu_xmm11, "xmm11" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm11) , 0, gcc_dwarf_xmm11, gcc_dwarf_xmm11, -1U, gdb_xmm11, g_contained_ymm11, NULL },
{ e_regSetFPU, fpu_xmm12, "xmm12" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm12) , 0, gcc_dwarf_xmm12, gcc_dwarf_xmm12, -1U, gdb_xmm12, g_contained_ymm12, NULL },
{ e_regSetFPU, fpu_xmm13, "xmm13" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm13) , 0, gcc_dwarf_xmm13, gcc_dwarf_xmm13, -1U, gdb_xmm13, g_contained_ymm13, NULL },
{ e_regSetFPU, fpu_xmm14, "xmm14" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm14) , 0, gcc_dwarf_xmm14, gcc_dwarf_xmm14, -1U, gdb_xmm14, g_contained_ymm14, NULL },
{ e_regSetFPU, fpu_xmm15, "xmm15" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm15) , 0, gcc_dwarf_xmm15, gcc_dwarf_xmm15, -1U, gdb_xmm15, g_contained_ymm15, NULL }
};
// Exception registers
const DNBRegisterInfo
DNBArchImplX86_64::g_exc_registers[] =
{
{ e_regSetEXC, exc_trapno, "trapno" , NULL, Uint, Hex, EXC_SIZE (trapno) , EXC_OFFSET (trapno) , -1U, -1U, -1U, -1U, NULL, NULL },
{ e_regSetEXC, exc_err, "err" , NULL, Uint, Hex, EXC_SIZE (err) , EXC_OFFSET (err) , -1U, -1U, -1U, -1U, NULL, NULL },
{ e_regSetEXC, exc_faultvaddr, "faultvaddr", NULL, Uint, Hex, EXC_SIZE (faultvaddr), EXC_OFFSET (faultvaddr) , -1U, -1U, -1U, -1U, NULL, NULL }
};
// Number of registers in each register set
const size_t DNBArchImplX86_64::k_num_gpr_registers = sizeof(g_gpr_registers)/sizeof(DNBRegisterInfo);
const size_t DNBArchImplX86_64::k_num_fpu_registers_no_avx = sizeof(g_fpu_registers_no_avx)/sizeof(DNBRegisterInfo);
const size_t DNBArchImplX86_64::k_num_fpu_registers_avx = sizeof(g_fpu_registers_avx)/sizeof(DNBRegisterInfo);
const size_t DNBArchImplX86_64::k_num_exc_registers = sizeof(g_exc_registers)/sizeof(DNBRegisterInfo);
const size_t DNBArchImplX86_64::k_num_all_registers_no_avx = k_num_gpr_registers + k_num_fpu_registers_no_avx + k_num_exc_registers;
const size_t DNBArchImplX86_64::k_num_all_registers_avx = k_num_gpr_registers + k_num_fpu_registers_avx + k_num_exc_registers;
//----------------------------------------------------------------------
// Register set definitions. The first definitions at register set index
// of zero is for all registers, followed by other registers sets. The
// register information for the all register set need not be filled in.
//----------------------------------------------------------------------
const DNBRegisterSetInfo
DNBArchImplX86_64::g_reg_sets_no_avx[] =
{
{ "x86_64 Registers", NULL, k_num_all_registers_no_avx },
{ "General Purpose Registers", g_gpr_registers, k_num_gpr_registers },
{ "Floating Point Registers", g_fpu_registers_no_avx, k_num_fpu_registers_no_avx },
{ "Exception State Registers", g_exc_registers, k_num_exc_registers }
};
const DNBRegisterSetInfo
DNBArchImplX86_64::g_reg_sets_avx[] =
{
{ "x86_64 Registers", NULL, k_num_all_registers_avx },
{ "General Purpose Registers", g_gpr_registers, k_num_gpr_registers },
{ "Floating Point Registers", g_fpu_registers_avx, k_num_fpu_registers_avx },
{ "Exception State Registers", g_exc_registers, k_num_exc_registers }
};
// Total number of register sets for this architecture
const size_t DNBArchImplX86_64::k_num_register_sets = sizeof(g_reg_sets_avx)/sizeof(DNBRegisterSetInfo);
DNBArchProtocol *
DNBArchImplX86_64::Create (MachThread *thread)
{
DNBArchImplX86_64 *obj = new DNBArchImplX86_64 (thread);
return obj;
}
const uint8_t * const
DNBArchImplX86_64::SoftwareBreakpointOpcode (nub_size_t byte_size)
{
static const uint8_t g_breakpoint_opcode[] = { 0xCC };
if (byte_size == 1)
return g_breakpoint_opcode;
return NULL;
}
const DNBRegisterSetInfo *
DNBArchImplX86_64::GetRegisterSetInfo(nub_size_t *num_reg_sets)
{
*num_reg_sets = k_num_register_sets;
if (CPUHasAVX() || FORCE_AVX_REGS)
return g_reg_sets_avx;
else
return g_reg_sets_no_avx;
}
void
DNBArchImplX86_64::Initialize()
{
DNBArchPluginInfo arch_plugin_info =
{
CPU_TYPE_X86_64,
DNBArchImplX86_64::Create,
DNBArchImplX86_64::GetRegisterSetInfo,
DNBArchImplX86_64::SoftwareBreakpointOpcode
};
// Register this arch plug-in with the main protocol class
DNBArchProtocol::RegisterArchPlugin (arch_plugin_info);
}
bool
DNBArchImplX86_64::GetRegisterValue(int set, int reg, DNBRegisterValue *value)
{
if (set == REGISTER_SET_GENERIC)
{
switch (reg)
{
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = gpr_rip;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = gpr_rsp;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
set = e_regSetGPR;
reg = gpr_rbp;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = gpr_rflags;
break;
case GENERIC_REGNUM_RA: // Return Address
default:
return false;
}
}
if (GetRegisterState(set, false) != KERN_SUCCESS)
return false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo)
{
value->info = *regInfo;
switch (set)
{
case e_regSetGPR:
if (reg < k_num_gpr_registers)
{
value->value.uint64 = ((uint64_t*)(&m_state.context.gpr))[reg];
return true;
}
break;
case e_regSetFPU:
if (CPUHasAVX() || FORCE_AVX_REGS)
{
switch (reg)
{
case fpu_fcw: value->value.uint16 = *((uint16_t *)(&m_state.context.fpu.avx.__fpu_fcw)); return true;
case fpu_fsw: value->value.uint16 = *((uint16_t *)(&m_state.context.fpu.avx.__fpu_fsw)); return true;
case fpu_ftw: value->value.uint8 = m_state.context.fpu.avx.__fpu_ftw; return true;
case fpu_fop: value->value.uint16 = m_state.context.fpu.avx.__fpu_fop; return true;
case fpu_ip: value->value.uint32 = m_state.context.fpu.avx.__fpu_ip; return true;
case fpu_cs: value->value.uint16 = m_state.context.fpu.avx.__fpu_cs; return true;
case fpu_dp: value->value.uint32 = m_state.context.fpu.avx.__fpu_dp; return true;
case fpu_ds: value->value.uint16 = m_state.context.fpu.avx.__fpu_ds; return true;
case fpu_mxcsr: value->value.uint32 = m_state.context.fpu.avx.__fpu_mxcsr; return true;
case fpu_mxcsrmask: value->value.uint32 = m_state.context.fpu.avx.__fpu_mxcsrmask; return true;
case fpu_stmm0:
case fpu_stmm1:
case fpu_stmm2:
case fpu_stmm3:
case fpu_stmm4:
case fpu_stmm5:
case fpu_stmm6:
case fpu_stmm7:
memcpy(&value->value.uint8, &m_state.context.fpu.avx.__fpu_stmm0 + (reg - fpu_stmm0), 10);
return true;
case fpu_xmm0:
case fpu_xmm1:
case fpu_xmm2:
case fpu_xmm3:
case fpu_xmm4:
case fpu_xmm5:
case fpu_xmm6:
case fpu_xmm7:
case fpu_xmm8:
case fpu_xmm9:
case fpu_xmm10:
case fpu_xmm11:
case fpu_xmm12:
case fpu_xmm13:
case fpu_xmm14:
case fpu_xmm15:
memcpy(&value->value.uint8, &m_state.context.fpu.avx.__fpu_xmm0 + (reg - fpu_xmm0), 16);
return true;
case fpu_ymm0:
case fpu_ymm1:
case fpu_ymm2:
case fpu_ymm3:
case fpu_ymm4:
case fpu_ymm5:
case fpu_ymm6:
case fpu_ymm7:
case fpu_ymm8:
case fpu_ymm9:
case fpu_ymm10:
case fpu_ymm11:
case fpu_ymm12:
case fpu_ymm13:
case fpu_ymm14:
case fpu_ymm15:
memcpy(&value->value.uint8, &m_state.context.fpu.avx.__fpu_xmm0 + (reg - fpu_ymm0), 16);
memcpy((&value->value.uint8) + 16, &m_state.context.fpu.avx.__fpu_ymmh0 + (reg - fpu_ymm0), 16);
return true;
}
}
else
{
switch (reg)
{
case fpu_fcw: value->value.uint16 = *((uint16_t *)(&m_state.context.fpu.no_avx.__fpu_fcw)); return true;
case fpu_fsw: value->value.uint16 = *((uint16_t *)(&m_state.context.fpu.no_avx.__fpu_fsw)); return true;
case fpu_ftw: value->value.uint8 = m_state.context.fpu.no_avx.__fpu_ftw; return true;
case fpu_fop: value->value.uint16 = m_state.context.fpu.no_avx.__fpu_fop; return true;
case fpu_ip: value->value.uint32 = m_state.context.fpu.no_avx.__fpu_ip; return true;
case fpu_cs: value->value.uint16 = m_state.context.fpu.no_avx.__fpu_cs; return true;
case fpu_dp: value->value.uint32 = m_state.context.fpu.no_avx.__fpu_dp; return true;
case fpu_ds: value->value.uint16 = m_state.context.fpu.no_avx.__fpu_ds; return true;
case fpu_mxcsr: value->value.uint32 = m_state.context.fpu.no_avx.__fpu_mxcsr; return true;
case fpu_mxcsrmask: value->value.uint32 = m_state.context.fpu.no_avx.__fpu_mxcsrmask; return true;
case fpu_stmm0:
case fpu_stmm1:
case fpu_stmm2:
case fpu_stmm3:
case fpu_stmm4:
case fpu_stmm5:
case fpu_stmm6:
case fpu_stmm7:
memcpy(&value->value.uint8, &m_state.context.fpu.no_avx.__fpu_stmm0 + (reg - fpu_stmm0), 10);
return true;
case fpu_xmm0:
case fpu_xmm1:
case fpu_xmm2:
case fpu_xmm3:
case fpu_xmm4:
case fpu_xmm5:
case fpu_xmm6:
case fpu_xmm7:
case fpu_xmm8:
case fpu_xmm9:
case fpu_xmm10:
case fpu_xmm11:
case fpu_xmm12:
case fpu_xmm13:
case fpu_xmm14:
case fpu_xmm15:
memcpy(&value->value.uint8, &m_state.context.fpu.no_avx.__fpu_xmm0 + (reg - fpu_xmm0), 16);
return true;
}
}
break;
case e_regSetEXC:
switch (reg)
{
case exc_trapno: value->value.uint32 = m_state.context.exc.__trapno; return true;
case exc_err: value->value.uint32 = m_state.context.exc.__err; return true;
case exc_faultvaddr:value->value.uint64 = m_state.context.exc.__faultvaddr; return true;
}
break;
}
}
return false;
}
bool
DNBArchImplX86_64::SetRegisterValue(int set, int reg, const DNBRegisterValue *value)
{
if (set == REGISTER_SET_GENERIC)
{
switch (reg)
{
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = gpr_rip;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = gpr_rsp;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
set = e_regSetGPR;
reg = gpr_rbp;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = gpr_rflags;
break;
case GENERIC_REGNUM_RA: // Return Address
default:
return false;
}
}
if (GetRegisterState(set, false) != KERN_SUCCESS)
return false;
bool success = false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo)
{
switch (set)
{
case e_regSetGPR:
if (reg < k_num_gpr_registers)
{
((uint64_t*)(&m_state.context.gpr))[reg] = value->value.uint64;
success = true;
}
break;
case e_regSetFPU:
if (CPUHasAVX() || FORCE_AVX_REGS)
{
switch (reg)
{
case fpu_fcw: *((uint16_t *)(&m_state.context.fpu.avx.__fpu_fcw)) = value->value.uint16; success = true; break;
case fpu_fsw: *((uint16_t *)(&m_state.context.fpu.avx.__fpu_fsw)) = value->value.uint16; success = true; break;
case fpu_ftw: m_state.context.fpu.avx.__fpu_ftw = value->value.uint8; success = true; break;
case fpu_fop: m_state.context.fpu.avx.__fpu_fop = value->value.uint16; success = true; break;
case fpu_ip: m_state.context.fpu.avx.__fpu_ip = value->value.uint32; success = true; break;
case fpu_cs: m_state.context.fpu.avx.__fpu_cs = value->value.uint16; success = true; break;
case fpu_dp: m_state.context.fpu.avx.__fpu_dp = value->value.uint32; success = true; break;
case fpu_ds: m_state.context.fpu.avx.__fpu_ds = value->value.uint16; success = true; break;
case fpu_mxcsr: m_state.context.fpu.avx.__fpu_mxcsr = value->value.uint32; success = true; break;
case fpu_mxcsrmask: m_state.context.fpu.avx.__fpu_mxcsrmask = value->value.uint32; success = true; break;
case fpu_stmm0:
case fpu_stmm1:
case fpu_stmm2:
case fpu_stmm3:
case fpu_stmm4:
case fpu_stmm5:
case fpu_stmm6:
case fpu_stmm7:
memcpy (&m_state.context.fpu.avx.__fpu_stmm0 + (reg - fpu_stmm0), &value->value.uint8, 10);
success = true;
break;
case fpu_xmm0:
case fpu_xmm1:
case fpu_xmm2:
case fpu_xmm3:
case fpu_xmm4:
case fpu_xmm5:
case fpu_xmm6:
case fpu_xmm7:
case fpu_xmm8:
case fpu_xmm9:
case fpu_xmm10:
case fpu_xmm11:
case fpu_xmm12:
case fpu_xmm13:
case fpu_xmm14:
case fpu_xmm15:
memcpy (&m_state.context.fpu.avx.__fpu_xmm0 + (reg - fpu_xmm0), &value->value.uint8, 16);
success = true;
break;
case fpu_ymm0:
case fpu_ymm1:
case fpu_ymm2:
case fpu_ymm3:
case fpu_ymm4:
case fpu_ymm5:
case fpu_ymm6:
case fpu_ymm7:
case fpu_ymm8:
case fpu_ymm9:
case fpu_ymm10:
case fpu_ymm11:
case fpu_ymm12:
case fpu_ymm13:
case fpu_ymm14:
case fpu_ymm15:
memcpy(&m_state.context.fpu.avx.__fpu_xmm0 + (reg - fpu_ymm0), &value->value.uint8, 16);
memcpy(&m_state.context.fpu.avx.__fpu_ymmh0 + (reg - fpu_ymm0), (&value->value.uint8) + 16, 16);
return true;
}
}
else
{
switch (reg)
{
case fpu_fcw: *((uint16_t *)(&m_state.context.fpu.no_avx.__fpu_fcw)) = value->value.uint16; success = true; break;
case fpu_fsw: *((uint16_t *)(&m_state.context.fpu.no_avx.__fpu_fsw)) = value->value.uint16; success = true; break;
case fpu_ftw: m_state.context.fpu.no_avx.__fpu_ftw = value->value.uint8; success = true; break;
case fpu_fop: m_state.context.fpu.no_avx.__fpu_fop = value->value.uint16; success = true; break;
case fpu_ip: m_state.context.fpu.no_avx.__fpu_ip = value->value.uint32; success = true; break;
case fpu_cs: m_state.context.fpu.no_avx.__fpu_cs = value->value.uint16; success = true; break;
case fpu_dp: m_state.context.fpu.no_avx.__fpu_dp = value->value.uint32; success = true; break;
case fpu_ds: m_state.context.fpu.no_avx.__fpu_ds = value->value.uint16; success = true; break;
case fpu_mxcsr: m_state.context.fpu.no_avx.__fpu_mxcsr = value->value.uint32; success = true; break;
case fpu_mxcsrmask: m_state.context.fpu.no_avx.__fpu_mxcsrmask = value->value.uint32; success = true; break;
case fpu_stmm0:
case fpu_stmm1:
case fpu_stmm2:
case fpu_stmm3:
case fpu_stmm4:
case fpu_stmm5:
case fpu_stmm6:
case fpu_stmm7:
memcpy (&m_state.context.fpu.no_avx.__fpu_stmm0 + (reg - fpu_stmm0), &value->value.uint8, 10);
success = true;
break;
case fpu_xmm0:
case fpu_xmm1:
case fpu_xmm2:
case fpu_xmm3:
case fpu_xmm4:
case fpu_xmm5:
case fpu_xmm6:
case fpu_xmm7:
case fpu_xmm8:
case fpu_xmm9:
case fpu_xmm10:
case fpu_xmm11:
case fpu_xmm12:
case fpu_xmm13:
case fpu_xmm14:
case fpu_xmm15:
memcpy (&m_state.context.fpu.no_avx.__fpu_xmm0 + (reg - fpu_xmm0), &value->value.uint8, 16);
success = true;
break;
}
}
break;
case e_regSetEXC:
switch (reg)
{
case exc_trapno: m_state.context.exc.__trapno = value->value.uint32; success = true; break;
case exc_err: m_state.context.exc.__err = value->value.uint32; success = true; break;
case exc_faultvaddr:m_state.context.exc.__faultvaddr = value->value.uint64; success = true; break;
}
break;
}
}
if (success)
return SetRegisterState(set) == KERN_SUCCESS;
return false;
}
uint32_t
DNBArchImplX86_64::GetRegisterContextSize()
{
static uint32_t g_cached_size = 0;
if (g_cached_size == 0)
{
if (CPUHasAVX() || FORCE_AVX_REGS)
{
for (size_t i=0; i<k_num_fpu_registers_avx; ++i)
{
if (g_fpu_registers_avx[i].value_regs == NULL)
g_cached_size += g_fpu_registers_avx[i].size;
}
}
else
{
for (size_t i=0; i<k_num_fpu_registers_no_avx; ++i)
{
if (g_fpu_registers_no_avx[i].value_regs == NULL)
g_cached_size += g_fpu_registers_no_avx[i].size;
}
}
DNBLogThreaded ("DNBArchImplX86_64::GetRegisterContextSize() - GPR = %zu, FPU = %u, EXC = %zu", sizeof(GPR), g_cached_size, sizeof(EXC));
g_cached_size += sizeof(GPR);
g_cached_size += sizeof(EXC);
DNBLogThreaded ("DNBArchImplX86_64::GetRegisterContextSize() - GPR + FPU + EXC = %u", g_cached_size);
}
return g_cached_size;
}
nub_size_t
DNBArchImplX86_64::GetRegisterContext (void *buf, nub_size_t buf_len)
{
uint32_t size = GetRegisterContextSize();
if (buf && buf_len)
{
bool force = false;
kern_return_t kret;
if ((kret = GetGPRState(force)) != KERN_SUCCESS)
{
DNBLogThreadedIf (LOG_THREAD, "DNBArchImplX86_64::GetRegisterContext (buf = %p, len = %llu) error: GPR regs failed to read: %u ", buf, (uint64_t)buf_len, kret);
size = 0;
}
else
if ((kret = GetFPUState(force)) != KERN_SUCCESS)
{
DNBLogThreadedIf (LOG_THREAD, "DNBArchImplX86_64::GetRegisterContext (buf = %p, len = %llu) error: %s regs failed to read: %u", buf, (uint64_t)buf_len, CPUHasAVX() ? "AVX" : "FPU", kret);
size = 0;
}
else
if ((kret = GetEXCState(force)) != KERN_SUCCESS)
{
DNBLogThreadedIf (LOG_THREAD, "DNBArchImplX86_64::GetRegisterContext (buf = %p, len = %llu) error: EXC regs failed to read: %u", buf, (uint64_t)buf_len, kret);
size = 0;
}
else
{
uint8_t *p = (uint8_t *)buf;
// Copy the GPR registers
memcpy(p, &m_state.context.gpr, sizeof(GPR));
p += sizeof(GPR);
if (CPUHasAVX() || FORCE_AVX_REGS)
{
// Walk around the gaps in the FPU regs
memcpy(p, &m_state.context.fpu.avx.__fpu_fcw, 5);
p += 5;
memcpy(p, &m_state.context.fpu.avx.__fpu_fop, 8);
p += 8;
memcpy(p, &m_state.context.fpu.avx.__fpu_dp, 6);
p += 6;
memcpy(p, &m_state.context.fpu.avx.__fpu_mxcsr, 8);
p += 8;
// Work around the padding between the stmm registers as they are 16
// byte structs with 10 bytes of the value in each
for (size_t i=0; i<8; ++i)
{
memcpy(p, &m_state.context.fpu.avx.__fpu_stmm0 + i, 10);
p += 10;
}
// Interleave the XMM and YMMH registers to make the YMM registers
for (size_t i=0; i<16; ++i)
{
memcpy(p, &m_state.context.fpu.avx.__fpu_xmm0 + i, 16);
p += 16;
memcpy(p, &m_state.context.fpu.avx.__fpu_ymmh0 + i, 16);
p += 16;
}
}
else
{
// Walk around the gaps in the FPU regs
memcpy(p, &m_state.context.fpu.no_avx.__fpu_fcw, 5);
p += 5;
memcpy(p, &m_state.context.fpu.no_avx.__fpu_fop, 8);
p += 8;
memcpy(p, &m_state.context.fpu.no_avx.__fpu_dp, 6);
p += 6;
memcpy(p, &m_state.context.fpu.no_avx.__fpu_mxcsr, 8);
p += 8;
// Work around the padding between the stmm registers as they are 16
// byte structs with 10 bytes of the value in each
for (size_t i=0; i<8; ++i)
{
memcpy(p, &m_state.context.fpu.no_avx.__fpu_stmm0 + i, 10);
p += 10;
}
// Copy the XMM registers in a single block
memcpy(p, &m_state.context.fpu.no_avx.__fpu_xmm0, 16 * 16);
p += 16 * 16;
}
// Copy the exception registers
memcpy(p, &m_state.context.exc, sizeof(EXC));
p += sizeof(EXC);
// make sure we end up with exactly what we think we should have
size_t bytes_written = p - (uint8_t *)buf;
assert (bytes_written == size);
}
}
DNBLogThreadedIf (LOG_THREAD, "DNBArchImplX86_64::GetRegisterContext (buf = %p, len = %llu) => %u", buf, (uint64_t)buf_len, size);
// Return the size of the register context even if NULL was passed in
return size;
}
nub_size_t
DNBArchImplX86_64::SetRegisterContext (const void *buf, nub_size_t buf_len)
{
uint32_t size = GetRegisterContextSize();
if (buf == NULL || buf_len == 0)
size = 0;
if (size)
{
if (size > buf_len)
size = buf_len;
uint8_t *p = (uint8_t *)buf;
// Copy the GPR registers
memcpy(&m_state.context.gpr, p, sizeof(GPR));
p += sizeof(GPR);
if (CPUHasAVX() || FORCE_AVX_REGS)
{
// Walk around the gaps in the FPU regs
memcpy(&m_state.context.fpu.avx.__fpu_fcw, p, 5);
p += 5;
memcpy(&m_state.context.fpu.avx.__fpu_fop, p, 8);
p += 8;
memcpy(&m_state.context.fpu.avx.__fpu_dp, p, 6);
p += 6;
memcpy(&m_state.context.fpu.avx.__fpu_mxcsr, p, 8);
p += 8;
// Work around the padding between the stmm registers as they are 16
// byte structs with 10 bytes of the value in each
for (size_t i=0; i<8; ++i)
{
memcpy(&m_state.context.fpu.avx.__fpu_stmm0 + i, p, 10);
p += 10;
}
// Interleave the XMM and YMMH registers to make the YMM registers
for (size_t i=0; i<16; ++i)
{
memcpy(&m_state.context.fpu.avx.__fpu_xmm0 + i, p, 16);
p += 16;
memcpy(&m_state.context.fpu.avx.__fpu_ymmh0 + i, p, 16);
p += 16;
}
}
else
{
// Copy fcw through mxcsrmask as there is no padding
memcpy(&m_state.context.fpu.no_avx.__fpu_fcw, p, 5);
p += 5;
memcpy(&m_state.context.fpu.no_avx.__fpu_fop, p, 8);
p += 8;
memcpy(&m_state.context.fpu.no_avx.__fpu_dp, p, 6);
p += 6;
memcpy(&m_state.context.fpu.no_avx.__fpu_mxcsr, p, 8);
p += 8;
// Work around the padding between the stmm registers as they are 16
// byte structs with 10 bytes of the value in each
for (size_t i=0; i<8; ++i)
{
memcpy(&m_state.context.fpu.no_avx.__fpu_stmm0 + i, p, 10);
p += 10;
}
// Copy the XMM registers in a single block
memcpy(&m_state.context.fpu.no_avx.__fpu_xmm0, p, 16 * 16);
p += 16 * 16;
}
// Copy the exception registers
memcpy(&m_state.context.exc, p, sizeof(EXC));
p += sizeof(EXC);
// make sure we end up with exactly what we think we should have
size_t bytes_written = p - (uint8_t *)buf;
assert (bytes_written == size);
kern_return_t kret;
if ((kret = SetGPRState()) != KERN_SUCCESS)
DNBLogThreadedIf (LOG_THREAD, "DNBArchImplX86_64::SetRegisterContext (buf = %p, len = %llu) error: GPR regs failed to write: %u", buf, (uint64_t)buf_len, kret);
if ((kret = SetFPUState()) != KERN_SUCCESS)
DNBLogThreadedIf (LOG_THREAD, "DNBArchImplX86_64::SetRegisterContext (buf = %p, len = %llu) error: %s regs failed to write: %u", buf, (uint64_t)buf_len, CPUHasAVX() ? "AVX" : "FPU", kret);
if ((kret = SetEXCState()) != KERN_SUCCESS)
DNBLogThreadedIf (LOG_THREAD, "DNBArchImplX86_64::SetRegisterContext (buf = %p, len = %llu) error: EXP regs failed to write: %u", buf, (uint64_t)buf_len, kret);
}
DNBLogThreadedIf (LOG_THREAD, "DNBArchImplX86_64::SetRegisterContext (buf = %p, len = %llu) => %llu", buf, (uint64_t)buf_len, (uint64_t)size);
return size;
}
uint32_t
DNBArchImplX86_64::SaveRegisterState ()
{
kern_return_t kret = ::thread_abort_safely(m_thread->MachPortNumber());
DNBLogThreadedIf (LOG_THREAD, "thread = 0x%4.4x calling thread_abort_safely (tid) => %u (SetGPRState() for stop_count = %u)", m_thread->MachPortNumber(), kret, m_thread->Process()->StopCount());
// Always re-read the registers because above we call thread_abort_safely();
bool force = true;
if ((kret = GetGPRState(force)) != KERN_SUCCESS)
{
DNBLogThreadedIf (LOG_THREAD, "DNBArchImplX86_64::SaveRegisterState () error: GPR regs failed to read: %u ", kret);
}
else if ((kret = GetFPUState(force)) != KERN_SUCCESS)
{
DNBLogThreadedIf (LOG_THREAD, "DNBArchImplX86_64::SaveRegisterState () error: %s regs failed to read: %u", CPUHasAVX() ? "AVX" : "FPU", kret);
}
else
{
const uint32_t save_id = GetNextRegisterStateSaveID ();
m_saved_register_states[save_id] = m_state.context;
return save_id;
}
return 0;
}
bool
DNBArchImplX86_64::RestoreRegisterState (uint32_t save_id)
{
SaveRegisterStates::iterator pos = m_saved_register_states.find(save_id);
if (pos != m_saved_register_states.end())
{
m_state.context.gpr = pos->second.gpr;
m_state.context.fpu = pos->second.fpu;
m_state.SetError(e_regSetGPR, Read, 0);
m_state.SetError(e_regSetFPU, Read, 0);
kern_return_t kret;
bool success = true;
if ((kret = SetGPRState()) != KERN_SUCCESS)
{
DNBLogThreadedIf (LOG_THREAD, "DNBArchImplX86_64::RestoreRegisterState (save_id = %u) error: GPR regs failed to write: %u", save_id, kret);
success = false;
}
else if ((kret = SetFPUState()) != KERN_SUCCESS)
{
DNBLogThreadedIf (LOG_THREAD, "DNBArchImplX86_64::RestoreRegisterState (save_id = %u) error: %s regs failed to write: %u", save_id, CPUHasAVX() ? "AVX" : "FPU", kret);
success = false;
}
m_saved_register_states.erase(pos);
return success;
}
return false;
}
kern_return_t
DNBArchImplX86_64::GetRegisterState(int set, bool force)
{
switch (set)
{
case e_regSetALL: return GetGPRState(force) | GetFPUState(force) | GetEXCState(force);
case e_regSetGPR: return GetGPRState(force);
case e_regSetFPU: return GetFPUState(force);
case e_regSetEXC: return GetEXCState(force);
default: break;
}
return KERN_INVALID_ARGUMENT;
}
kern_return_t
DNBArchImplX86_64::SetRegisterState(int set)
{
// Make sure we have a valid context to set.
if (RegisterSetStateIsValid(set))
{
switch (set)
{
case e_regSetALL: return SetGPRState() | SetFPUState() | SetEXCState();
case e_regSetGPR: return SetGPRState();
case e_regSetFPU: return SetFPUState();
case e_regSetEXC: return SetEXCState();
default: break;
}
}
return KERN_INVALID_ARGUMENT;
}
bool
DNBArchImplX86_64::RegisterSetStateIsValid (int set) const
{
return m_state.RegsAreValid(set);
}
#endif // #if defined (__i386__) || defined (__x86_64__)