blob: 04a51dce0e6b4c142c693e48026be1a48b501692 [file] [log] [blame]
//===-- DNBArchMachARM64.cpp ------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/25/07.
//
//===----------------------------------------------------------------------===//
#if defined (__arm__) || defined (__arm64__) || defined (__aarch64__)
#include "MacOSX/arm64/DNBArchImplARM64.h"
#if defined (ARM_THREAD_STATE64_COUNT)
#include "MacOSX/MachProcess.h"
#include "MacOSX/MachThread.h"
#include "DNBBreakpoint.h"
#include "DNBLog.h"
#include "DNBRegisterInfo.h"
#include "DNB.h"
#include <inttypes.h>
#include <sys/sysctl.h>
// Break only in privileged or user mode
// (PAC bits in the DBGWVRn_EL1 watchpoint control register)
#define S_USER ((uint32_t)(2u << 1))
#define BCR_ENABLE ((uint32_t)(1u))
#define WCR_ENABLE ((uint32_t)(1u))
// Watchpoint load/store
// (LSC bits in the DBGWVRn_EL1 watchpoint control register)
#define WCR_LOAD ((uint32_t)(1u << 3))
#define WCR_STORE ((uint32_t)(1u << 4))
// Enable breakpoint, watchpoint, and vector catch debug exceptions.
// (MDE bit in the MDSCR_EL1 register. Equivalent to the MDBGen bit in DBGDSCRext in Aarch32)
#define MDE_ENABLE ((uint32_t)(1u << 15))
// Single instruction step
// (SS bit in the MDSCR_EL1 register)
#define SS_ENABLE ((uint32_t)(1u))
static const uint8_t g_arm64_breakpoint_opcode[] = { 0x00, 0x00, 0x20, 0xD4 }; // "brk #0", 0xd4200000 in BE byte order
static const uint8_t g_arm_breakpoint_opcode[] = { 0xFE, 0xDE, 0xFF, 0xE7 }; // this armv7 insn also works in arm64
// If we need to set one logical watchpoint by using
// two hardware watchpoint registers, the watchpoint
// will be split into a "high" and "low" watchpoint.
// Record both of them in the LoHi array.
// It's safe to initialize to all 0's since
// hi > lo and therefore LoHi[i] cannot be 0.
static uint32_t LoHi[16] = { 0 };
void
DNBArchMachARM64::Initialize()
{
DNBArchPluginInfo arch_plugin_info =
{
CPU_TYPE_ARM64,
DNBArchMachARM64::Create,
DNBArchMachARM64::GetRegisterSetInfo,
DNBArchMachARM64::SoftwareBreakpointOpcode
};
// Register this arch plug-in with the main protocol class
DNBArchProtocol::RegisterArchPlugin (arch_plugin_info);
}
DNBArchProtocol *
DNBArchMachARM64::Create (MachThread *thread)
{
DNBArchMachARM64 *obj = new DNBArchMachARM64 (thread);
return obj;
}
const uint8_t * const
DNBArchMachARM64::SoftwareBreakpointOpcode (nub_size_t byte_size)
{
return g_arm_breakpoint_opcode;
}
uint32_t
DNBArchMachARM64::GetCPUType()
{
return CPU_TYPE_ARM64;
}
uint64_t
DNBArchMachARM64::GetPC(uint64_t failValue)
{
// Get program counter
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.context.gpr.__pc;
return failValue;
}
kern_return_t
DNBArchMachARM64::SetPC(uint64_t value)
{
// Get program counter
kern_return_t err = GetGPRState(false);
if (err == KERN_SUCCESS)
{
m_state.context.gpr.__pc = value;
err = SetGPRState();
}
return err == KERN_SUCCESS;
}
uint64_t
DNBArchMachARM64::GetSP(uint64_t failValue)
{
// Get stack pointer
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.context.gpr.__sp;
return failValue;
}
kern_return_t
DNBArchMachARM64::GetGPRState(bool force)
{
int set = e_regSetGPR;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
// Read the registers from our thread
mach_msg_type_number_t count = e_regSetGPRCount;
kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_THREAD_STATE64, (thread_state_t)&m_state.context.gpr, &count);
if (DNBLogEnabledForAny (LOG_THREAD))
{
uint64_t *x = &m_state.context.gpr.__x[0];
DNBLogThreaded("thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count = %u) regs"
"\n x0=%16.16llx"
"\n x1=%16.16llx"
"\n x2=%16.16llx"
"\n x3=%16.16llx"
"\n x4=%16.16llx"
"\n x5=%16.16llx"
"\n x6=%16.16llx"
"\n x7=%16.16llx"
"\n x8=%16.16llx"
"\n x9=%16.16llx"
"\n x10=%16.16llx"
"\n x11=%16.16llx"
"\n x12=%16.16llx"
"\n x13=%16.16llx"
"\n x14=%16.16llx"
"\n x15=%16.16llx"
"\n x16=%16.16llx"
"\n x17=%16.16llx"
"\n x18=%16.16llx"
"\n x19=%16.16llx"
"\n x20=%16.16llx"
"\n x21=%16.16llx"
"\n x22=%16.16llx"
"\n x23=%16.16llx"
"\n x24=%16.16llx"
"\n x25=%16.16llx"
"\n x26=%16.16llx"
"\n x27=%16.16llx"
"\n x28=%16.16llx"
"\n fp=%16.16llx"
"\n lr=%16.16llx"
"\n sp=%16.16llx"
"\n pc=%16.16llx"
"\n cpsr=%8.8x",
m_thread->MachPortNumber(),
e_regSetGPR,
e_regSetGPRCount,
kret,
count,
x[0],
x[1],
x[2],
x[3],
x[4],
x[5],
x[6],
x[7],
x[8],
x[9],
x[0],
x[11],
x[12],
x[13],
x[14],
x[15],
x[16],
x[17],
x[18],
x[19],
x[20],
x[21],
x[22],
x[23],
x[24],
x[25],
x[26],
x[27],
x[28],
m_state.context.gpr.__fp,
m_state.context.gpr.__lr,
m_state.context.gpr.__sp,
m_state.context.gpr.__pc,
m_state.context.gpr.__cpsr);
}
m_state.SetError(set, Read, kret);
return kret;
}
kern_return_t
DNBArchMachARM64::GetVFPState(bool force)
{
int set = e_regSetVFP;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
// Read the registers from our thread
mach_msg_type_number_t count = e_regSetVFPCount;
kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_NEON_STATE64, (thread_state_t)&m_state.context.vfp, &count);
if (DNBLogEnabledForAny (LOG_THREAD))
{
#if defined (__arm64__) || defined (__aarch64__)
DNBLogThreaded("thread_get_state(0x%4.4x, %u, &vfp, %u) => 0x%8.8x (count = %u) regs"
"\n q0 = 0x%16.16llx%16.16llx"
"\n q1 = 0x%16.16llx%16.16llx"
"\n q2 = 0x%16.16llx%16.16llx"
"\n q3 = 0x%16.16llx%16.16llx"
"\n q4 = 0x%16.16llx%16.16llx"
"\n q5 = 0x%16.16llx%16.16llx"
"\n q6 = 0x%16.16llx%16.16llx"
"\n q7 = 0x%16.16llx%16.16llx"
"\n q8 = 0x%16.16llx%16.16llx"
"\n q9 = 0x%16.16llx%16.16llx"
"\n q10 = 0x%16.16llx%16.16llx"
"\n q11 = 0x%16.16llx%16.16llx"
"\n q12 = 0x%16.16llx%16.16llx"
"\n q13 = 0x%16.16llx%16.16llx"
"\n q14 = 0x%16.16llx%16.16llx"
"\n q15 = 0x%16.16llx%16.16llx"
"\n q16 = 0x%16.16llx%16.16llx"
"\n q17 = 0x%16.16llx%16.16llx"
"\n q18 = 0x%16.16llx%16.16llx"
"\n q19 = 0x%16.16llx%16.16llx"
"\n q20 = 0x%16.16llx%16.16llx"
"\n q21 = 0x%16.16llx%16.16llx"
"\n q22 = 0x%16.16llx%16.16llx"
"\n q23 = 0x%16.16llx%16.16llx"
"\n q24 = 0x%16.16llx%16.16llx"
"\n q25 = 0x%16.16llx%16.16llx"
"\n q26 = 0x%16.16llx%16.16llx"
"\n q27 = 0x%16.16llx%16.16llx"
"\n q28 = 0x%16.16llx%16.16llx"
"\n q29 = 0x%16.16llx%16.16llx"
"\n q30 = 0x%16.16llx%16.16llx"
"\n q31 = 0x%16.16llx%16.16llx"
"\n fpsr = 0x%8.8x"
"\n fpcr = 0x%8.8x\n\n",
m_thread->MachPortNumber(),
e_regSetVFP,
e_regSetVFPCount,
kret,
count,
((uint64_t *)&m_state.context.vfp.__v[0])[0] , ((uint64_t *)&m_state.context.vfp.__v[0])[1],
((uint64_t *)&m_state.context.vfp.__v[1])[0] , ((uint64_t *)&m_state.context.vfp.__v[1])[1],
((uint64_t *)&m_state.context.vfp.__v[2])[0] , ((uint64_t *)&m_state.context.vfp.__v[2])[1],
((uint64_t *)&m_state.context.vfp.__v[3])[0] , ((uint64_t *)&m_state.context.vfp.__v[3])[1],
((uint64_t *)&m_state.context.vfp.__v[4])[0] , ((uint64_t *)&m_state.context.vfp.__v[4])[1],
((uint64_t *)&m_state.context.vfp.__v[5])[0] , ((uint64_t *)&m_state.context.vfp.__v[5])[1],
((uint64_t *)&m_state.context.vfp.__v[6])[0] , ((uint64_t *)&m_state.context.vfp.__v[6])[1],
((uint64_t *)&m_state.context.vfp.__v[7])[0] , ((uint64_t *)&m_state.context.vfp.__v[7])[1],
((uint64_t *)&m_state.context.vfp.__v[8])[0] , ((uint64_t *)&m_state.context.vfp.__v[8])[1],
((uint64_t *)&m_state.context.vfp.__v[9])[0] , ((uint64_t *)&m_state.context.vfp.__v[9])[1],
((uint64_t *)&m_state.context.vfp.__v[10])[0], ((uint64_t *)&m_state.context.vfp.__v[10])[1],
((uint64_t *)&m_state.context.vfp.__v[11])[0], ((uint64_t *)&m_state.context.vfp.__v[11])[1],
((uint64_t *)&m_state.context.vfp.__v[12])[0], ((uint64_t *)&m_state.context.vfp.__v[12])[1],
((uint64_t *)&m_state.context.vfp.__v[13])[0], ((uint64_t *)&m_state.context.vfp.__v[13])[1],
((uint64_t *)&m_state.context.vfp.__v[14])[0], ((uint64_t *)&m_state.context.vfp.__v[14])[1],
((uint64_t *)&m_state.context.vfp.__v[15])[0], ((uint64_t *)&m_state.context.vfp.__v[15])[1],
((uint64_t *)&m_state.context.vfp.__v[16])[0], ((uint64_t *)&m_state.context.vfp.__v[16])[1],
((uint64_t *)&m_state.context.vfp.__v[17])[0], ((uint64_t *)&m_state.context.vfp.__v[17])[1],
((uint64_t *)&m_state.context.vfp.__v[18])[0], ((uint64_t *)&m_state.context.vfp.__v[18])[1],
((uint64_t *)&m_state.context.vfp.__v[19])[0], ((uint64_t *)&m_state.context.vfp.__v[19])[1],
((uint64_t *)&m_state.context.vfp.__v[20])[0], ((uint64_t *)&m_state.context.vfp.__v[20])[1],
((uint64_t *)&m_state.context.vfp.__v[21])[0], ((uint64_t *)&m_state.context.vfp.__v[21])[1],
((uint64_t *)&m_state.context.vfp.__v[22])[0], ((uint64_t *)&m_state.context.vfp.__v[22])[1],
((uint64_t *)&m_state.context.vfp.__v[23])[0], ((uint64_t *)&m_state.context.vfp.__v[23])[1],
((uint64_t *)&m_state.context.vfp.__v[24])[0], ((uint64_t *)&m_state.context.vfp.__v[24])[1],
((uint64_t *)&m_state.context.vfp.__v[25])[0], ((uint64_t *)&m_state.context.vfp.__v[25])[1],
((uint64_t *)&m_state.context.vfp.__v[26])[0], ((uint64_t *)&m_state.context.vfp.__v[26])[1],
((uint64_t *)&m_state.context.vfp.__v[27])[0], ((uint64_t *)&m_state.context.vfp.__v[27])[1],
((uint64_t *)&m_state.context.vfp.__v[28])[0], ((uint64_t *)&m_state.context.vfp.__v[28])[1],
((uint64_t *)&m_state.context.vfp.__v[29])[0], ((uint64_t *)&m_state.context.vfp.__v[29])[1],
((uint64_t *)&m_state.context.vfp.__v[30])[0], ((uint64_t *)&m_state.context.vfp.__v[30])[1],
((uint64_t *)&m_state.context.vfp.__v[31])[0], ((uint64_t *)&m_state.context.vfp.__v[31])[1],
m_state.context.vfp.__fpsr,
m_state.context.vfp.__fpcr);
#endif
}
m_state.SetError(set, Read, kret);
return kret;
}
kern_return_t
DNBArchMachARM64::GetEXCState(bool force)
{
int set = e_regSetEXC;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
// Read the registers from our thread
mach_msg_type_number_t count = e_regSetEXCCount;
kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_EXCEPTION_STATE64, (thread_state_t)&m_state.context.exc, &count);
m_state.SetError(set, Read, kret);
return kret;
}
static void
DumpDBGState(const arm_debug_state_t& dbg)
{
uint32_t i = 0;
for (i=0; i<16; i++)
DNBLogThreadedIf(LOG_STEP, "BVR%-2u/BCR%-2u = { 0x%8.8x, 0x%8.8x } WVR%-2u/WCR%-2u = { 0x%8.8x, 0x%8.8x }",
i, i, dbg.__bvr[i], dbg.__bcr[i],
i, i, dbg.__wvr[i], dbg.__wcr[i]);
}
kern_return_t
DNBArchMachARM64::GetDBGState(bool force)
{
int set = e_regSetDBG;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
// Read the registers from our thread
mach_msg_type_number_t count = e_regSetDBGCount;
kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE64, (thread_state_t)&m_state.dbg, &count);
m_state.SetError(set, Read, kret);
return kret;
}
kern_return_t
DNBArchMachARM64::SetGPRState()
{
int set = e_regSetGPR;
kern_return_t kret = ::thread_set_state(m_thread->MachPortNumber(), ARM_THREAD_STATE64, (thread_state_t)&m_state.context.gpr, e_regSetGPRCount);
m_state.SetError(set, Write, kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
return kret; // Return the error code
}
kern_return_t
DNBArchMachARM64::SetVFPState()
{
int set = e_regSetVFP;
kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_NEON_STATE64, (thread_state_t)&m_state.context.vfp, e_regSetVFPCount);
m_state.SetError(set, Write, kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
return kret; // Return the error code
}
kern_return_t
DNBArchMachARM64::SetEXCState()
{
int set = e_regSetEXC;
kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_EXCEPTION_STATE64, (thread_state_t)&m_state.context.exc, e_regSetEXCCount);
m_state.SetError(set, Write, kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
return kret; // Return the error code
}
kern_return_t
DNBArchMachARM64::SetDBGState(bool also_set_on_task)
{
int set = e_regSetDBG;
kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_DEBUG_STATE64, (thread_state_t)&m_state.dbg, e_regSetDBGCount);
if (also_set_on_task)
{
kern_return_t task_kret = task_set_state (m_thread->Process()->Task().TaskPort(), ARM_DEBUG_STATE64, (thread_state_t)&m_state.dbg, e_regSetDBGCount);
if (task_kret != KERN_SUCCESS)
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::SetDBGState failed to set debug control register state: 0x%8.8x.", task_kret);
}
m_state.SetError(set, Write, kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
return kret; // Return the error code
}
void
DNBArchMachARM64::ThreadWillResume()
{
// Do we need to step this thread? If so, let the mach thread tell us so.
if (m_thread->IsStepping())
{
EnableHardwareSingleStep(true);
}
// Disable the triggered watchpoint temporarily before we resume.
// Plus, we try to enable hardware single step to execute past the instruction which triggered our watchpoint.
if (m_watchpoint_did_occur)
{
if (m_watchpoint_hw_index >= 0)
{
kern_return_t kret = GetDBGState(false);
if (kret == KERN_SUCCESS && !IsWatchpointEnabled(m_state.dbg, m_watchpoint_hw_index)) {
// The watchpoint might have been disabled by the user. We don't need to do anything at all
// to enable hardware single stepping.
m_watchpoint_did_occur = false;
m_watchpoint_hw_index = -1;
return;
}
DisableHardwareWatchpoint(m_watchpoint_hw_index, false);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() DisableHardwareWatchpoint(%d) called",
m_watchpoint_hw_index);
// Enable hardware single step to move past the watchpoint-triggering instruction.
m_watchpoint_resume_single_step_enabled = (EnableHardwareSingleStep(true) == KERN_SUCCESS);
// If we are not able to enable single step to move past the watchpoint-triggering instruction,
// at least we should reset the two watchpoint member variables so that the next time around
// this callback function is invoked, the enclosing logical branch is skipped.
if (!m_watchpoint_resume_single_step_enabled) {
// Reset the two watchpoint member variables.
m_watchpoint_did_occur = false;
m_watchpoint_hw_index = -1;
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() failed to enable single step");
}
else
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() succeeded to enable single step");
}
}
}
bool
DNBArchMachARM64::NotifyException(MachException::Data& exc)
{
switch (exc.exc_type)
{
default:
break;
case EXC_BREAKPOINT:
if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_DA_DEBUG)
{
// The data break address is passed as exc_data[1].
nub_addr_t addr = exc.exc_data[1];
// Find the hardware index with the side effect of possibly massaging the
// addr to return the starting address as seen from the debugger side.
uint32_t hw_index = GetHardwareWatchpointHit(addr);
// One logical watchpoint was split into two watchpoint locations because
// it was too big. If the watchpoint exception is indicating the 2nd half
// of the two-parter, find the address of the 1st half and report that --
// that's what lldb is going to expect to see.
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::NotifyException watchpoint %d was hit on address 0x%llx", hw_index, (uint64_t) addr);
const int num_watchpoints = NumSupportedHardwareWatchpoints ();
for (int i = 0; i < num_watchpoints; i++)
{
if (LoHi[i] != 0
&& LoHi[i] == hw_index
&& LoHi[i] != i
&& GetWatchpointAddressByIndex (i) != INVALID_NUB_ADDRESS)
{
addr = GetWatchpointAddressByIndex (i);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::NotifyException It is a linked watchpoint; rewritten to index %d addr 0x%llx", LoHi[i], (uint64_t) addr);
}
}
if (hw_index != INVALID_NUB_HW_INDEX)
{
m_watchpoint_did_occur = true;
m_watchpoint_hw_index = hw_index;
exc.exc_data[1] = addr;
// Piggyback the hw_index in the exc.data.
exc.exc_data.push_back(hw_index);
}
return true;
}
break;
}
return false;
}
bool
DNBArchMachARM64::ThreadDidStop()
{
bool success = true;
m_state.InvalidateAllRegisterStates();
if (m_watchpoint_resume_single_step_enabled)
{
// Great! We now disable the hardware single step as well as re-enable the hardware watchpoint.
// See also ThreadWillResume().
if (EnableHardwareSingleStep(false) == KERN_SUCCESS)
{
if (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0)
{
ReenableHardwareWatchpoint(m_watchpoint_hw_index);
m_watchpoint_resume_single_step_enabled = false;
m_watchpoint_did_occur = false;
m_watchpoint_hw_index = -1;
}
else
{
DNBLogError("internal error detected: m_watchpoint_resume_step_enabled is true but (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0) does not hold!");
}
}
else
{
DNBLogError("internal error detected: m_watchpoint_resume_step_enabled is true but unable to disable single step!");
}
}
// Are we stepping a single instruction?
if (GetGPRState(true) == KERN_SUCCESS)
{
// We are single stepping, was this the primary thread?
if (m_thread->IsStepping())
{
// This was the primary thread, we need to clear the trace
// bit if so.
success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
}
else
{
// The MachThread will automatically restore the suspend count
// in ThreadDidStop(), so we don't need to do anything here if
// we weren't the primary thread the last time
}
}
return success;
}
// Set the single step bit in the processor status register.
kern_return_t
DNBArchMachARM64::EnableHardwareSingleStep (bool enable)
{
DNBError err;
DNBLogThreadedIf(LOG_STEP, "%s( enable = %d )", __FUNCTION__, enable);
err = GetGPRState(false);
if (err.Fail())
{
err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__);
return err.Error();
}
err = GetDBGState(false);
if (err.Fail())
{
err.LogThreaded("%s: failed to read the DBG registers", __FUNCTION__);
return err.Error();
}
if (enable)
{
DNBLogThreadedIf(LOG_STEP, "%s: Setting MDSCR_EL1 Single Step bit at pc 0x%llx", __FUNCTION__, (uint64_t) m_state.context.gpr.__pc);
m_state.dbg.__mdscr_el1 |= SS_ENABLE;
}
else
{
DNBLogThreadedIf(LOG_STEP, "%s: Clearing MDSCR_EL1 Single Step bit at pc 0x%llx", __FUNCTION__, (uint64_t) m_state.context.gpr.__pc);
m_state.dbg.__mdscr_el1 &= ~(SS_ENABLE);
}
return SetDBGState(false);
}
// return 1 if bit "BIT" is set in "value"
static inline uint32_t bit(uint32_t value, uint32_t bit)
{
return (value >> bit) & 1u;
}
// return the bitfield "value[msbit:lsbit]".
static inline uint64_t bits(uint64_t value, uint32_t msbit, uint32_t lsbit)
{
assert(msbit >= lsbit);
uint64_t shift_left = sizeof(value) * 8 - 1 - msbit;
value <<= shift_left; // shift anything above the msbit off of the unsigned edge
value >>= shift_left + lsbit; // shift it back again down to the lsbit (including undoing any shift from above)
return value; // return our result
}
uint32_t
DNBArchMachARM64::NumSupportedHardwareWatchpoints()
{
// Set the init value to something that will let us know that we need to
// autodetect how many watchpoints are supported dynamically...
static uint32_t g_num_supported_hw_watchpoints = UINT_MAX;
if (g_num_supported_hw_watchpoints == UINT_MAX)
{
// Set this to zero in case we can't tell if there are any HW breakpoints
g_num_supported_hw_watchpoints = 0;
size_t len;
uint32_t n = 0;
len = sizeof (n);
if (::sysctlbyname("hw.optional.watchpoint", &n, &len, NULL, 0) == 0)
{
g_num_supported_hw_watchpoints = n;
DNBLogThreadedIf(LOG_THREAD, "hw.optional.watchpoint=%u", n);
}
else
{
// For AArch64 we would need to look at ID_AA64DFR0_EL1 but debugserver runs in EL0 so it can't
// access that reg. The kernel should have filled in the sysctls based on it though.
#if defined (__arm__)
uint32_t register_DBGDIDR;
asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR));
uint32_t numWRPs = bits(register_DBGDIDR, 31, 28);
// Zero is reserved for the WRP count, so don't increment it if it is zero
if (numWRPs > 0)
numWRPs++;
g_num_supported_hw_watchpoints = numWRPs;
DNBLogThreadedIf(LOG_THREAD, "Number of supported hw watchpoints via asm(): %d", g_num_supported_hw_watchpoints);
#endif
}
}
return g_num_supported_hw_watchpoints;
}
uint32_t
DNBArchMachARM64::EnableHardwareWatchpoint (nub_addr_t addr, nub_size_t size, bool read, bool write, bool also_set_on_task)
{
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::EnableHardwareWatchpoint(addr = 0x%8.8llx, size = %zu, read = %u, write = %u)", (uint64_t)addr, size, read, write);
const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
// Can't watch zero bytes
if (size == 0)
return INVALID_NUB_HW_INDEX;
// We must watch for either read or write
if (read == false && write == false)
return INVALID_NUB_HW_INDEX;
// Otherwise, can't watch more than 8 bytes per WVR/WCR pair
if (size > 8)
return INVALID_NUB_HW_INDEX;
// arm64 watchpoints really have an 8-byte alignment requirement. You can put a watchpoint on a 4-byte
// offset address but you can only watch 4 bytes with that watchpoint.
// arm64 watchpoints on an 8-byte (double word) aligned addr can watch any bytes in that
// 8-byte long region of memory. They can watch the 1st byte, the 2nd byte, 3rd byte, etc, or any
// combination therein by setting the bits in the BAS [12:5] (Byte Address Select) field of
// the DBGWCRn_EL1 reg for the watchpoint.
// If the MASK [28:24] bits in the DBGWCRn_EL1 allow a single watchpoint to monitor a larger region
// of memory (16 bytes, 32 bytes, or 2GB) but the Byte Address Select bitfield then selects a larger
// range of bytes, instead of individual bytes. See the ARMv8 Debug Architecture manual for details.
// This implementation does not currently use the MASK bits; the largest single region watched by a single
// watchpoint right now is 8-bytes.
nub_addr_t aligned_wp_address = addr & ~0x7;
uint32_t addr_dword_offset = addr & 0x7;
// Do we need to split up this logical watchpoint into two hardware watchpoint
// registers?
// e.g. a watchpoint of length 4 on address 6. We need do this with
// one watchpoint on address 0 with bytes 6 & 7 being monitored
// one watchpoint on address 8 with bytes 0, 1, 2, 3 being monitored
if (addr_dword_offset + size > 8)
{
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::EnableHardwareWatchpoint(addr = 0x%8.8llx, size = %zu) needs two hardware watchpoints slots to monitor", (uint64_t)addr, size);
int low_watchpoint_size = 8 - addr_dword_offset;
int high_watchpoint_size = addr_dword_offset + size - 8;
uint32_t lo = EnableHardwareWatchpoint(addr, low_watchpoint_size, read, write, also_set_on_task);
if (lo == INVALID_NUB_HW_INDEX)
return INVALID_NUB_HW_INDEX;
uint32_t hi = EnableHardwareWatchpoint (aligned_wp_address + 8, high_watchpoint_size, read, write, also_set_on_task);
if (hi == INVALID_NUB_HW_INDEX)
{
DisableHardwareWatchpoint (lo, also_set_on_task);
return INVALID_NUB_HW_INDEX;
}
// Tag this lo->hi mapping in our database.
LoHi[lo] = hi;
return lo;
}
// At this point
// 1 aligned_wp_address is the requested address rounded down to 8-byte alignment
// 2 addr_dword_offset is the offset into that double word (8-byte) region that we are watching
// 3 size is the number of bytes within that 8-byte region that we are watching
// Set the Byte Address Selects bits DBGWCRn_EL1 bits [12:5] based on the above.
// The bit shift and negation operation will give us 0b11 for 2, 0b1111 for 4, etc, up to 0b11111111 for 8.
// then we shift those bits left by the offset into this dword that we are interested in.
// e.g. if we are watching bytes 4,5,6,7 in a dword we want a BAS of 0b11110000.
uint32_t byte_address_select = ((1 << size) - 1) << addr_dword_offset;
// Read the debug state
kern_return_t kret = GetDBGState(false);
if (kret == KERN_SUCCESS)
{
// Check to make sure we have the needed hardware support
uint32_t i = 0;
for (i=0; i<num_hw_watchpoints; ++i)
{
if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0)
break; // We found an available hw watchpoint slot (in i)
}
// See if we found an available hw watchpoint slot above
if (i < num_hw_watchpoints)
{
//DumpDBGState(m_state.dbg);
// Clear any previous LoHi joined-watchpoint that may have been in use
LoHi[i] = 0;
// shift our Byte Address Select bits up to the correct bit range for the DBGWCRn_EL1
byte_address_select = byte_address_select << 5;
// Make sure bits 1:0 are clear in our address
m_state.dbg.__wvr[i] = aligned_wp_address; // DVA (Data Virtual Address)
m_state.dbg.__wcr[i] = byte_address_select | // Which bytes that follow the DVA that we will watch
S_USER | // Stop only in user mode
(read ? WCR_LOAD : 0) | // Stop on read access?
(write ? WCR_STORE : 0) | // Stop on write access?
WCR_ENABLE; // Enable this watchpoint;
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::EnableHardwareWatchpoint() adding watchpoint on address 0x%llx with control register value 0x%x", (uint64_t) m_state.dbg.__wvr[i], (uint32_t) m_state.dbg.__wcr[i]);
// The kernel will set the MDE_ENABLE bit in the MDSCR_EL1 for us automatically, don't need to do it here.
kret = SetDBGState(also_set_on_task);
//DumpDBGState(m_state.dbg);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::EnableHardwareWatchpoint() SetDBGState() => 0x%8.8x.", kret);
if (kret == KERN_SUCCESS)
return i;
}
else
{
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::EnableHardwareWatchpoint(): All hardware resources (%u) are in use.", num_hw_watchpoints);
}
}
return INVALID_NUB_HW_INDEX;
}
bool
DNBArchMachARM64::ReenableHardwareWatchpoint (uint32_t hw_index)
{
// If this logical watchpoint # is actually implemented using
// two hardware watchpoint registers, re-enable both of them.
if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index])
{
return ReenableHardwareWatchpoint_helper (hw_index) && ReenableHardwareWatchpoint_helper (LoHi[hw_index]);
}
else
{
return ReenableHardwareWatchpoint_helper (hw_index);
}
}
bool
DNBArchMachARM64::ReenableHardwareWatchpoint_helper (uint32_t hw_index)
{
kern_return_t kret = GetDBGState(false);
if (kret != KERN_SUCCESS)
return false;
const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
if (hw_index >= num_hw_points)
return false;
m_state.dbg.__wvr[hw_index] = m_disabled_watchpoints[hw_index].addr;
m_state.dbg.__wcr[hw_index] = m_disabled_watchpoints[hw_index].control;
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::EnableHardwareWatchpoint( %u ) - WVR%u = 0x%8.8llx WCR%u = 0x%8.8llx",
hw_index,
hw_index,
(uint64_t) m_state.dbg.__wvr[hw_index],
hw_index,
(uint64_t) m_state.dbg.__wcr[hw_index]);
// The kernel will set the MDE_ENABLE bit in the MDSCR_EL1 for us automatically, don't need to do it here.
kret = SetDBGState(false);
return (kret == KERN_SUCCESS);
}
bool
DNBArchMachARM64::DisableHardwareWatchpoint (uint32_t hw_index, bool also_set_on_task)
{
if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index])
{
return DisableHardwareWatchpoint_helper (hw_index, also_set_on_task) && DisableHardwareWatchpoint_helper (LoHi[hw_index], also_set_on_task);
}
else
{
return DisableHardwareWatchpoint_helper (hw_index, also_set_on_task);
}
}
bool
DNBArchMachARM64::DisableHardwareWatchpoint_helper (uint32_t hw_index, bool also_set_on_task)
{
kern_return_t kret = GetDBGState(false);
if (kret != KERN_SUCCESS)
return false;
const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
if (hw_index >= num_hw_points)
return false;
m_disabled_watchpoints[hw_index].addr = m_state.dbg.__wvr[hw_index];
m_disabled_watchpoints[hw_index].control = m_state.dbg.__wcr[hw_index];
m_state.dbg.__wcr[hw_index] &= ~((nub_addr_t)WCR_ENABLE);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::DisableHardwareWatchpoint( %u ) - WVR%u = 0x%8.8llx WCR%u = 0x%8.8llx",
hw_index,
hw_index,
(uint64_t) m_state.dbg.__wvr[hw_index],
hw_index,
(uint64_t) m_state.dbg.__wcr[hw_index]);
kret = SetDBGState(also_set_on_task);
return (kret == KERN_SUCCESS);
}
// This is for checking the Byte Address Select bits in the DBRWCRn_EL1 control register.
// Returns -1 if the trailing bit patterns are not one of:
// { 0b???????1, 0b??????10, 0b?????100, 0b????1000, 0b???10000, 0b??100000, 0b?1000000, 0b10000000 }.
static inline
int32_t
LowestBitSet(uint32_t val)
{
for (unsigned i = 0; i < 8; ++i) {
if (bit(val, i))
return i;
}
return -1;
}
// Iterate through the debug registers; return the index of the first watchpoint whose address matches.
// As a side effect, the starting address as understood by the debugger is returned which could be
// different from 'addr' passed as an in/out argument.
uint32_t
DNBArchMachARM64::GetHardwareWatchpointHit(nub_addr_t &addr)
{
// Read the debug state
kern_return_t kret = GetDBGState(true);
//DumpDBGState(m_state.dbg);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x.", kret);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::GetHardwareWatchpointHit() addr = 0x%llx", (uint64_t)addr);
// This is the watchpoint value to match against, i.e., word address.
nub_addr_t wp_val = addr & ~((nub_addr_t)3);
if (kret == KERN_SUCCESS)
{
DBG &debug_state = m_state.dbg;
uint32_t i, num = NumSupportedHardwareWatchpoints();
for (i = 0; i < num; ++i)
{
nub_addr_t wp_addr = GetWatchAddress(debug_state, i);
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM64::GetHardwareWatchpointHit() slot: %u (addr = 0x%llx).",
i, (uint64_t)wp_addr);
if (wp_val == wp_addr) {
uint32_t byte_mask = bits(debug_state.__wcr[i], 12, 5);
// Sanity check the byte_mask, first.
if (LowestBitSet(byte_mask) < 0)
continue;
// Check that the watchpoint is enabled.
if (!IsWatchpointEnabled(debug_state, i))
continue;
// Compute the starting address (from the point of view of the debugger).
addr = wp_addr + LowestBitSet(byte_mask);
return i;
}
}
}
return INVALID_NUB_HW_INDEX;
}
nub_addr_t
DNBArchMachARM64::GetWatchpointAddressByIndex (uint32_t hw_index)
{
kern_return_t kret = GetDBGState(true);
if (kret != KERN_SUCCESS)
return INVALID_NUB_ADDRESS;
const uint32_t num = NumSupportedHardwareWatchpoints();
if (hw_index >= num)
return INVALID_NUB_ADDRESS;
if (IsWatchpointEnabled (m_state.dbg, hw_index))
return GetWatchAddress (m_state.dbg, hw_index);
return INVALID_NUB_ADDRESS;
}
bool
DNBArchMachARM64::IsWatchpointEnabled(const DBG &debug_state, uint32_t hw_index)
{
// Watchpoint Control Registers, bitfield definitions
// ...
// Bits Value Description
// [0] 0 Watchpoint disabled
// 1 Watchpoint enabled.
return (debug_state.__wcr[hw_index] & 1u);
}
nub_addr_t
DNBArchMachARM64::GetWatchAddress(const DBG &debug_state, uint32_t hw_index)
{
// Watchpoint Value Registers, bitfield definitions
// Bits Description
// [31:2] Watchpoint value (word address, i.e., 4-byte aligned)
// [1:0] RAZ/SBZP
return bits(debug_state.__wvr[hw_index], 63, 0);
}
//----------------------------------------------------------------------
// Register information definitions for 64 bit ARMv8.
//----------------------------------------------------------------------
enum gpr_regnums
{
gpr_x0 = 0,
gpr_x1,
gpr_x2,
gpr_x3,
gpr_x4,
gpr_x5,
gpr_x6,
gpr_x7,
gpr_x8,
gpr_x9,
gpr_x10,
gpr_x11,
gpr_x12,
gpr_x13,
gpr_x14,
gpr_x15,
gpr_x16,
gpr_x17,
gpr_x18,
gpr_x19,
gpr_x20,
gpr_x21,
gpr_x22,
gpr_x23,
gpr_x24,
gpr_x25,
gpr_x26,
gpr_x27,
gpr_x28,
gpr_fp, gpr_x29 = gpr_fp,
gpr_lr, gpr_x30 = gpr_lr,
gpr_sp, gpr_x31 = gpr_sp,
gpr_pc,
gpr_cpsr,
gpr_w0,
gpr_w1,
gpr_w2,
gpr_w3,
gpr_w4,
gpr_w5,
gpr_w6,
gpr_w7,
gpr_w8,
gpr_w9,
gpr_w10,
gpr_w11,
gpr_w12,
gpr_w13,
gpr_w14,
gpr_w15,
gpr_w16,
gpr_w17,
gpr_w18,
gpr_w19,
gpr_w20,
gpr_w21,
gpr_w22,
gpr_w23,
gpr_w24,
gpr_w25,
gpr_w26,
gpr_w27,
gpr_w28
};
enum
{
vfp_v0 = 0,
vfp_v1,
vfp_v2,
vfp_v3,
vfp_v4,
vfp_v5,
vfp_v6,
vfp_v7,
vfp_v8,
vfp_v9,
vfp_v10,
vfp_v11,
vfp_v12,
vfp_v13,
vfp_v14,
vfp_v15,
vfp_v16,
vfp_v17,
vfp_v18,
vfp_v19,
vfp_v20,
vfp_v21,
vfp_v22,
vfp_v23,
vfp_v24,
vfp_v25,
vfp_v26,
vfp_v27,
vfp_v28,
vfp_v29,
vfp_v30,
vfp_v31,
vfp_fpsr,
vfp_fpcr,
// lower 32 bits of the corresponding vfp_v<n> reg.
vfp_s0,
vfp_s1,
vfp_s2,
vfp_s3,
vfp_s4,
vfp_s5,
vfp_s6,
vfp_s7,
vfp_s8,
vfp_s9,
vfp_s10,
vfp_s11,
vfp_s12,
vfp_s13,
vfp_s14,
vfp_s15,
vfp_s16,
vfp_s17,
vfp_s18,
vfp_s19,
vfp_s20,
vfp_s21,
vfp_s22,
vfp_s23,
vfp_s24,
vfp_s25,
vfp_s26,
vfp_s27,
vfp_s28,
vfp_s29,
vfp_s30,
vfp_s31,
// lower 64 bits of the corresponding vfp_v<n> reg.
vfp_d0,
vfp_d1,
vfp_d2,
vfp_d3,
vfp_d4,
vfp_d5,
vfp_d6,
vfp_d7,
vfp_d8,
vfp_d9,
vfp_d10,
vfp_d11,
vfp_d12,
vfp_d13,
vfp_d14,
vfp_d15,
vfp_d16,
vfp_d17,
vfp_d18,
vfp_d19,
vfp_d20,
vfp_d21,
vfp_d22,
vfp_d23,
vfp_d24,
vfp_d25,
vfp_d26,
vfp_d27,
vfp_d28,
vfp_d29,
vfp_d30,
vfp_d31
};
enum
{
exc_far = 0,
exc_esr,
exc_exception
};
// These numbers from the "DWARF for the ARM 64-bit Architecture (AArch64)" document.
enum
{
dwarf_x0 = 0,
dwarf_x1,
dwarf_x2,
dwarf_x3,
dwarf_x4,
dwarf_x5,
dwarf_x6,
dwarf_x7,
dwarf_x8,
dwarf_x9,
dwarf_x10,
dwarf_x11,
dwarf_x12,
dwarf_x13,
dwarf_x14,
dwarf_x15,
dwarf_x16,
dwarf_x17,
dwarf_x18,
dwarf_x19,
dwarf_x20,
dwarf_x21,
dwarf_x22,
dwarf_x23,
dwarf_x24,
dwarf_x25,
dwarf_x26,
dwarf_x27,
dwarf_x28,
dwarf_x29,
dwarf_x30,
dwarf_x31,
dwarf_pc = 32,
dwarf_elr_mode = 33,
dwarf_fp = dwarf_x29,
dwarf_lr = dwarf_x30,
dwarf_sp = dwarf_x31,
// 34-63 reserved
// V0-V31 (128 bit vector registers)
dwarf_v0 = 64,
dwarf_v1,
dwarf_v2,
dwarf_v3,
dwarf_v4,
dwarf_v5,
dwarf_v6,
dwarf_v7,
dwarf_v8,
dwarf_v9,
dwarf_v10,
dwarf_v11,
dwarf_v12,
dwarf_v13,
dwarf_v14,
dwarf_v15,
dwarf_v16,
dwarf_v17,
dwarf_v18,
dwarf_v19,
dwarf_v20,
dwarf_v21,
dwarf_v22,
dwarf_v23,
dwarf_v24,
dwarf_v25,
dwarf_v26,
dwarf_v27,
dwarf_v28,
dwarf_v29,
dwarf_v30,
dwarf_v31
// 96-127 reserved
};
enum
{
gdb_gpr_x0 = 0,
gdb_gpr_x1,
gdb_gpr_x2,
gdb_gpr_x3,
gdb_gpr_x4,
gdb_gpr_x5,
gdb_gpr_x6,
gdb_gpr_x7,
gdb_gpr_x8,
gdb_gpr_x9,
gdb_gpr_x10,
gdb_gpr_x11,
gdb_gpr_x12,
gdb_gpr_x13,
gdb_gpr_x14,
gdb_gpr_x15,
gdb_gpr_x16,
gdb_gpr_x17,
gdb_gpr_x18,
gdb_gpr_x19,
gdb_gpr_x20,
gdb_gpr_x21,
gdb_gpr_x22,
gdb_gpr_x23,
gdb_gpr_x24,
gdb_gpr_x25,
gdb_gpr_x26,
gdb_gpr_x27,
gdb_gpr_x28,
gdb_gpr_fp, // x29
gdb_gpr_lr, // x30
gdb_gpr_sp, // sp aka xsp
gdb_gpr_pc,
gdb_gpr_cpsr,
gdb_vfp_v0,
gdb_vfp_v1,
gdb_vfp_v2,
gdb_vfp_v3,
gdb_vfp_v4,
gdb_vfp_v5,
gdb_vfp_v6,
gdb_vfp_v7,
gdb_vfp_v8,
gdb_vfp_v9,
gdb_vfp_v10,
gdb_vfp_v11,
gdb_vfp_v12,
gdb_vfp_v13,
gdb_vfp_v14,
gdb_vfp_v15,
gdb_vfp_v16,
gdb_vfp_v17,
gdb_vfp_v18,
gdb_vfp_v19,
gdb_vfp_v20,
gdb_vfp_v21,
gdb_vfp_v22,
gdb_vfp_v23,
gdb_vfp_v24,
gdb_vfp_v25,
gdb_vfp_v26,
gdb_vfp_v27,
gdb_vfp_v28,
gdb_vfp_v29,
gdb_vfp_v30,
gdb_vfp_v31,
gdb_vfp_fpsr,
gdb_vfp_fpcr
};
const char *g_contained_x0[] {"x0", NULL };
const char *g_contained_x1[] {"x1", NULL };
const char *g_contained_x2[] {"x2", NULL };
const char *g_contained_x3[] {"x3", NULL };
const char *g_contained_x4[] {"x4", NULL };
const char *g_contained_x5[] {"x5", NULL };
const char *g_contained_x6[] {"x6", NULL };
const char *g_contained_x7[] {"x7", NULL };
const char *g_contained_x8[] {"x8", NULL };
const char *g_contained_x9[] {"x9", NULL };
const char *g_contained_x10[] {"x10", NULL };
const char *g_contained_x11[] {"x11", NULL };
const char *g_contained_x12[] {"x12", NULL };
const char *g_contained_x13[] {"x13", NULL };
const char *g_contained_x14[] {"x14", NULL };
const char *g_contained_x15[] {"x15", NULL };
const char *g_contained_x16[] {"x16", NULL };
const char *g_contained_x17[] {"x17", NULL };
const char *g_contained_x18[] {"x18", NULL };
const char *g_contained_x19[] {"x19", NULL };
const char *g_contained_x20[] {"x20", NULL };
const char *g_contained_x21[] {"x21", NULL };
const char *g_contained_x22[] {"x22", NULL };
const char *g_contained_x23[] {"x23", NULL };
const char *g_contained_x24[] {"x24", NULL };
const char *g_contained_x25[] {"x25", NULL };
const char *g_contained_x26[] {"x26", NULL };
const char *g_contained_x27[] {"x27", NULL };
const char *g_contained_x28[] {"x28", NULL };
const char *g_invalidate_x0[] {"x0", "w0", NULL };
const char *g_invalidate_x1[] {"x1", "w1", NULL };
const char *g_invalidate_x2[] {"x2", "w2", NULL };
const char *g_invalidate_x3[] {"x3", "w3", NULL };
const char *g_invalidate_x4[] {"x4", "w4", NULL };
const char *g_invalidate_x5[] {"x5", "w5", NULL };
const char *g_invalidate_x6[] {"x6", "w6", NULL };
const char *g_invalidate_x7[] {"x7", "w7", NULL };
const char *g_invalidate_x8[] {"x8", "w8", NULL };
const char *g_invalidate_x9[] {"x9", "w9", NULL };
const char *g_invalidate_x10[] {"x10", "w10", NULL };
const char *g_invalidate_x11[] {"x11", "w11", NULL };
const char *g_invalidate_x12[] {"x12", "w12", NULL };
const char *g_invalidate_x13[] {"x13", "w13", NULL };
const char *g_invalidate_x14[] {"x14", "w14", NULL };
const char *g_invalidate_x15[] {"x15", "w15", NULL };
const char *g_invalidate_x16[] {"x16", "w16", NULL };
const char *g_invalidate_x17[] {"x17", "w17", NULL };
const char *g_invalidate_x18[] {"x18", "w18", NULL };
const char *g_invalidate_x19[] {"x19", "w19", NULL };
const char *g_invalidate_x20[] {"x20", "w20", NULL };
const char *g_invalidate_x21[] {"x21", "w21", NULL };
const char *g_invalidate_x22[] {"x22", "w22", NULL };
const char *g_invalidate_x23[] {"x23", "w23", NULL };
const char *g_invalidate_x24[] {"x24", "w24", NULL };
const char *g_invalidate_x25[] {"x25", "w25", NULL };
const char *g_invalidate_x26[] {"x26", "w26", NULL };
const char *g_invalidate_x27[] {"x27", "w27", NULL };
const char *g_invalidate_x28[] {"x28", "w28", NULL };
#define GPR_OFFSET_IDX(idx) (offsetof (DNBArchMachARM64::GPR, __x[idx]))
#define GPR_OFFSET_NAME(reg) (offsetof (DNBArchMachARM64::GPR , __##reg))
// These macros will auto define the register name, alt name, register size,
// register offset, encoding, format and native register. This ensures that
// the register state structures are defined correctly and have the correct
// sizes and offsets.
#define DEFINE_GPR_IDX(idx, reg, alt, gen) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 8, GPR_OFFSET_IDX(idx) , dwarf_##reg, dwarf_##reg, gen, gdb_gpr_##reg, NULL, g_invalidate_x##idx }
#define DEFINE_GPR_NAME(reg, alt, gen) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 8, GPR_OFFSET_NAME(reg), dwarf_##reg, dwarf_##reg, gen, gdb_gpr_##reg, NULL, NULL }
#define DEFINE_PSEUDO_GPR_IDX(idx, reg) { e_regSetGPR, gpr_##reg, #reg, NULL, Uint, Hex, 4, 0, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, g_contained_x##idx, g_invalidate_x##idx }
//_STRUCT_ARM_THREAD_STATE64
//{
// uint64_t x[29]; /* General purpose registers x0-x28 */
// uint64_t fp; /* Frame pointer x29 */
// uint64_t lr; /* Link register x30 */
// uint64_t sp; /* Stack pointer x31 */
// uint64_t pc; /* Program counter */
// uint32_t cpsr; /* Current program status register */
//};
// General purpose registers
const DNBRegisterInfo
DNBArchMachARM64::g_gpr_registers[] =
{
DEFINE_GPR_IDX ( 0, x0, "arg1", GENERIC_REGNUM_ARG1 ),
DEFINE_GPR_IDX ( 1, x1, "arg2", GENERIC_REGNUM_ARG2 ),
DEFINE_GPR_IDX ( 2, x2, "arg3", GENERIC_REGNUM_ARG3 ),
DEFINE_GPR_IDX ( 3, x3, "arg4", GENERIC_REGNUM_ARG4 ),
DEFINE_GPR_IDX ( 4, x4, "arg5", GENERIC_REGNUM_ARG5 ),
DEFINE_GPR_IDX ( 5, x5, "arg6", GENERIC_REGNUM_ARG6 ),
DEFINE_GPR_IDX ( 6, x6, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX ( 7, x7, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX ( 8, x8, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX ( 9, x9, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (10, x10, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (11, x11, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (12, x12, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (13, x13, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (14, x14, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (15, x15, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (16, x16, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (17, x17, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (18, x18, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (19, x19, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (20, x20, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (21, x21, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (22, x22, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (23, x23, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (24, x24, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (25, x25, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (26, x26, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (27, x27, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (28, x28, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_NAME (fp, "x29", GENERIC_REGNUM_FP),
DEFINE_GPR_NAME (lr, "x30", GENERIC_REGNUM_RA),
DEFINE_GPR_NAME (sp, "xsp", GENERIC_REGNUM_SP),
DEFINE_GPR_NAME (pc, NULL, GENERIC_REGNUM_PC),
// in armv7 we specify that writing to the CPSR should invalidate r8-12, sp, lr.
// this should be specified for arm64 too even though debugserver is only used for
// userland debugging.
{ e_regSetGPR, gpr_cpsr, "cpsr", "flags", Uint, Hex, 4, GPR_OFFSET_NAME(cpsr), dwarf_elr_mode, dwarf_elr_mode, INVALID_NUB_REGNUM, gdb_gpr_cpsr, NULL, NULL },
DEFINE_PSEUDO_GPR_IDX ( 0, w0),
DEFINE_PSEUDO_GPR_IDX ( 1, w1),
DEFINE_PSEUDO_GPR_IDX ( 2, w2),
DEFINE_PSEUDO_GPR_IDX ( 3, w3),
DEFINE_PSEUDO_GPR_IDX ( 4, w4),
DEFINE_PSEUDO_GPR_IDX ( 5, w5),
DEFINE_PSEUDO_GPR_IDX ( 6, w6),
DEFINE_PSEUDO_GPR_IDX ( 7, w7),
DEFINE_PSEUDO_GPR_IDX ( 8, w8),
DEFINE_PSEUDO_GPR_IDX ( 9, w9),
DEFINE_PSEUDO_GPR_IDX (10, w10),
DEFINE_PSEUDO_GPR_IDX (11, w11),
DEFINE_PSEUDO_GPR_IDX (12, w12),
DEFINE_PSEUDO_GPR_IDX (13, w13),
DEFINE_PSEUDO_GPR_IDX (14, w14),
DEFINE_PSEUDO_GPR_IDX (15, w15),
DEFINE_PSEUDO_GPR_IDX (16, w16),
DEFINE_PSEUDO_GPR_IDX (17, w17),
DEFINE_PSEUDO_GPR_IDX (18, w18),
DEFINE_PSEUDO_GPR_IDX (19, w19),
DEFINE_PSEUDO_GPR_IDX (20, w20),
DEFINE_PSEUDO_GPR_IDX (21, w21),
DEFINE_PSEUDO_GPR_IDX (22, w22),
DEFINE_PSEUDO_GPR_IDX (23, w23),
DEFINE_PSEUDO_GPR_IDX (24, w24),
DEFINE_PSEUDO_GPR_IDX (25, w25),
DEFINE_PSEUDO_GPR_IDX (26, w26),
DEFINE_PSEUDO_GPR_IDX (27, w27),
DEFINE_PSEUDO_GPR_IDX (28, w28)
};
const char *g_contained_v0[] {"v0", NULL };
const char *g_contained_v1[] {"v1", NULL };
const char *g_contained_v2[] {"v2", NULL };
const char *g_contained_v3[] {"v3", NULL };
const char *g_contained_v4[] {"v4", NULL };
const char *g_contained_v5[] {"v5", NULL };
const char *g_contained_v6[] {"v6", NULL };
const char *g_contained_v7[] {"v7", NULL };
const char *g_contained_v8[] {"v8", NULL };
const char *g_contained_v9[] {"v9", NULL };
const char *g_contained_v10[] {"v10", NULL };
const char *g_contained_v11[] {"v11", NULL };
const char *g_contained_v12[] {"v12", NULL };
const char *g_contained_v13[] {"v13", NULL };
const char *g_contained_v14[] {"v14", NULL };
const char *g_contained_v15[] {"v15", NULL };
const char *g_contained_v16[] {"v16", NULL };
const char *g_contained_v17[] {"v17", NULL };
const char *g_contained_v18[] {"v18", NULL };
const char *g_contained_v19[] {"v19", NULL };
const char *g_contained_v20[] {"v20", NULL };
const char *g_contained_v21[] {"v21", NULL };
const char *g_contained_v22[] {"v22", NULL };
const char *g_contained_v23[] {"v23", NULL };
const char *g_contained_v24[] {"v24", NULL };
const char *g_contained_v25[] {"v25", NULL };
const char *g_contained_v26[] {"v26", NULL };
const char *g_contained_v27[] {"v27", NULL };
const char *g_contained_v28[] {"v28", NULL };
const char *g_contained_v29[] {"v29", NULL };
const char *g_contained_v30[] {"v30", NULL };
const char *g_contained_v31[] {"v31", NULL };
const char *g_invalidate_v0[] {"v0", "d0", "s0", NULL };
const char *g_invalidate_v1[] {"v1", "d1", "s1", NULL };
const char *g_invalidate_v2[] {"v2", "d2", "s2", NULL };
const char *g_invalidate_v3[] {"v3", "d3", "s3", NULL };
const char *g_invalidate_v4[] {"v4", "d4", "s4", NULL };
const char *g_invalidate_v5[] {"v5", "d5", "s5", NULL };
const char *g_invalidate_v6[] {"v6", "d6", "s6", NULL };
const char *g_invalidate_v7[] {"v7", "d7", "s7", NULL };
const char *g_invalidate_v8[] {"v8", "d8", "s8", NULL };
const char *g_invalidate_v9[] {"v9", "d9", "s9", NULL };
const char *g_invalidate_v10[] {"v10", "d10", "s10", NULL };
const char *g_invalidate_v11[] {"v11", "d11", "s11", NULL };
const char *g_invalidate_v12[] {"v12", "d12", "s12", NULL };
const char *g_invalidate_v13[] {"v13", "d13", "s13", NULL };
const char *g_invalidate_v14[] {"v14", "d14", "s14", NULL };
const char *g_invalidate_v15[] {"v15", "d15", "s15", NULL };
const char *g_invalidate_v16[] {"v16", "d16", "s16", NULL };
const char *g_invalidate_v17[] {"v17", "d17", "s17", NULL };
const char *g_invalidate_v18[] {"v18", "d18", "s18", NULL };
const char *g_invalidate_v19[] {"v19", "d19", "s19", NULL };
const char *g_invalidate_v20[] {"v20", "d20", "s20", NULL };
const char *g_invalidate_v21[] {"v21", "d21", "s21", NULL };
const char *g_invalidate_v22[] {"v22", "d22", "s22", NULL };
const char *g_invalidate_v23[] {"v23", "d23", "s23", NULL };
const char *g_invalidate_v24[] {"v24", "d24", "s24", NULL };
const char *g_invalidate_v25[] {"v25", "d25", "s25", NULL };
const char *g_invalidate_v26[] {"v26", "d26", "s26", NULL };
const char *g_invalidate_v27[] {"v27", "d27", "s27", NULL };
const char *g_invalidate_v28[] {"v28", "d28", "s28", NULL };
const char *g_invalidate_v29[] {"v29", "d29", "s29", NULL };
const char *g_invalidate_v30[] {"v30", "d30", "s30", NULL };
const char *g_invalidate_v31[] {"v31", "d31", "s31", NULL };
#if defined (__arm64__) || defined (__aarch64__)
#define VFP_V_OFFSET_IDX(idx) (offsetof (DNBArchMachARM64::FPU, __v) + (idx * 16) + offsetof (DNBArchMachARM64::Context, vfp))
#else
#define VFP_V_OFFSET_IDX(idx) (offsetof (DNBArchMachARM64::FPU, opaque) + (idx * 16) + offsetof (DNBArchMachARM64::Context, vfp))
#endif
#define VFP_OFFSET_NAME(reg) (offsetof (DNBArchMachARM64::FPU, reg) + offsetof (DNBArchMachARM64::Context, vfp))
#define EXC_OFFSET(reg) (offsetof (DNBArchMachARM64::EXC, reg) + offsetof (DNBArchMachARM64::Context, exc))
//#define FLOAT_FORMAT Float
#define DEFINE_VFP_V_IDX(idx) { e_regSetVFP, vfp_v##idx, "v" #idx, "q" #idx, Vector, VectorOfUInt8, 16, VFP_V_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_v##idx, INVALID_NUB_REGNUM, gdb_vfp_v##idx, NULL, g_invalidate_v##idx }
#define DEFINE_PSEUDO_VFP_S_IDX(idx) { e_regSetVFP, vfp_s##idx, "s" #idx, NULL, IEEE754, Float, 4, 0, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, g_contained_v##idx, g_invalidate_v##idx }
#define DEFINE_PSEUDO_VFP_D_IDX(idx) { e_regSetVFP, vfp_d##idx, "d" #idx, NULL, IEEE754, Float, 8, 0, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, g_contained_v##idx, g_invalidate_v##idx }
// Floating point registers
const DNBRegisterInfo
DNBArchMachARM64::g_vfp_registers[] =
{
DEFINE_VFP_V_IDX ( 0),
DEFINE_VFP_V_IDX ( 1),
DEFINE_VFP_V_IDX ( 2),
DEFINE_VFP_V_IDX ( 3),
DEFINE_VFP_V_IDX ( 4),
DEFINE_VFP_V_IDX ( 5),
DEFINE_VFP_V_IDX ( 6),
DEFINE_VFP_V_IDX ( 7),
DEFINE_VFP_V_IDX ( 8),
DEFINE_VFP_V_IDX ( 9),
DEFINE_VFP_V_IDX (10),
DEFINE_VFP_V_IDX (11),
DEFINE_VFP_V_IDX (12),
DEFINE_VFP_V_IDX (13),
DEFINE_VFP_V_IDX (14),
DEFINE_VFP_V_IDX (15),
DEFINE_VFP_V_IDX (16),
DEFINE_VFP_V_IDX (17),
DEFINE_VFP_V_IDX (18),
DEFINE_VFP_V_IDX (19),
DEFINE_VFP_V_IDX (20),
DEFINE_VFP_V_IDX (21),
DEFINE_VFP_V_IDX (22),
DEFINE_VFP_V_IDX (23),
DEFINE_VFP_V_IDX (24),
DEFINE_VFP_V_IDX (25),
DEFINE_VFP_V_IDX (26),
DEFINE_VFP_V_IDX (27),
DEFINE_VFP_V_IDX (28),
DEFINE_VFP_V_IDX (29),
DEFINE_VFP_V_IDX (30),
DEFINE_VFP_V_IDX (31),
{ e_regSetVFP, vfp_fpsr, "fpsr", NULL, Uint, Hex, 4, VFP_V_OFFSET_IDX (32) + 0, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL },
{ e_regSetVFP, vfp_fpcr, "fpcr", NULL, Uint, Hex, 4, VFP_V_OFFSET_IDX (32) + 4, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL },
DEFINE_PSEUDO_VFP_S_IDX (0),
DEFINE_PSEUDO_VFP_S_IDX (1),
DEFINE_PSEUDO_VFP_S_IDX (2),
DEFINE_PSEUDO_VFP_S_IDX (3),
DEFINE_PSEUDO_VFP_S_IDX (4),
DEFINE_PSEUDO_VFP_S_IDX (5),
DEFINE_PSEUDO_VFP_S_IDX (6),
DEFINE_PSEUDO_VFP_S_IDX (7),
DEFINE_PSEUDO_VFP_S_IDX (8),
DEFINE_PSEUDO_VFP_S_IDX (9),
DEFINE_PSEUDO_VFP_S_IDX (10),
DEFINE_PSEUDO_VFP_S_IDX (11),
DEFINE_PSEUDO_VFP_S_IDX (12),
DEFINE_PSEUDO_VFP_S_IDX (13),
DEFINE_PSEUDO_VFP_S_IDX (14),
DEFINE_PSEUDO_VFP_S_IDX (15),
DEFINE_PSEUDO_VFP_S_IDX (16),
DEFINE_PSEUDO_VFP_S_IDX (17),
DEFINE_PSEUDO_VFP_S_IDX (18),
DEFINE_PSEUDO_VFP_S_IDX (19),
DEFINE_PSEUDO_VFP_S_IDX (20),
DEFINE_PSEUDO_VFP_S_IDX (21),
DEFINE_PSEUDO_VFP_S_IDX (22),
DEFINE_PSEUDO_VFP_S_IDX (23),
DEFINE_PSEUDO_VFP_S_IDX (24),
DEFINE_PSEUDO_VFP_S_IDX (25),
DEFINE_PSEUDO_VFP_S_IDX (26),
DEFINE_PSEUDO_VFP_S_IDX (27),
DEFINE_PSEUDO_VFP_S_IDX (28),
DEFINE_PSEUDO_VFP_S_IDX (29),
DEFINE_PSEUDO_VFP_S_IDX (30),
DEFINE_PSEUDO_VFP_S_IDX (31),
DEFINE_PSEUDO_VFP_D_IDX (0),
DEFINE_PSEUDO_VFP_D_IDX (1),
DEFINE_PSEUDO_VFP_D_IDX (2),
DEFINE_PSEUDO_VFP_D_IDX (3),
DEFINE_PSEUDO_VFP_D_IDX (4),
DEFINE_PSEUDO_VFP_D_IDX (5),
DEFINE_PSEUDO_VFP_D_IDX (6),
DEFINE_PSEUDO_VFP_D_IDX (7),
DEFINE_PSEUDO_VFP_D_IDX (8),
DEFINE_PSEUDO_VFP_D_IDX (9),
DEFINE_PSEUDO_VFP_D_IDX (10),
DEFINE_PSEUDO_VFP_D_IDX (11),
DEFINE_PSEUDO_VFP_D_IDX (12),
DEFINE_PSEUDO_VFP_D_IDX (13),
DEFINE_PSEUDO_VFP_D_IDX (14),
DEFINE_PSEUDO_VFP_D_IDX (15),
DEFINE_PSEUDO_VFP_D_IDX (16),
DEFINE_PSEUDO_VFP_D_IDX (17),
DEFINE_PSEUDO_VFP_D_IDX (18),
DEFINE_PSEUDO_VFP_D_IDX (19),
DEFINE_PSEUDO_VFP_D_IDX (20),
DEFINE_PSEUDO_VFP_D_IDX (21),
DEFINE_PSEUDO_VFP_D_IDX (22),
DEFINE_PSEUDO_VFP_D_IDX (23),
DEFINE_PSEUDO_VFP_D_IDX (24),
DEFINE_PSEUDO_VFP_D_IDX (25),
DEFINE_PSEUDO_VFP_D_IDX (26),
DEFINE_PSEUDO_VFP_D_IDX (27),
DEFINE_PSEUDO_VFP_D_IDX (28),
DEFINE_PSEUDO_VFP_D_IDX (29),
DEFINE_PSEUDO_VFP_D_IDX (30),
DEFINE_PSEUDO_VFP_D_IDX (31)
};
//_STRUCT_ARM_EXCEPTION_STATE64
//{
// uint64_t far; /* Virtual Fault Address */
// uint32_t esr; /* Exception syndrome */
// uint32_t exception; /* number of arm exception taken */
//};
// Exception registers
const DNBRegisterInfo
DNBArchMachARM64::g_exc_registers[] =
{
{ e_regSetEXC, exc_far , "far" , NULL, Uint, Hex, 8, EXC_OFFSET(__far) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL },
{ e_regSetEXC, exc_esr , "esr" , NULL, Uint, Hex, 4, EXC_OFFSET(__esr) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL },
{ e_regSetEXC, exc_exception , "exception" , NULL, Uint, Hex, 4, EXC_OFFSET(__exception) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL }
};
// Number of registers in each register set
const size_t DNBArchMachARM64::k_num_gpr_registers = sizeof(g_gpr_registers)/sizeof(DNBRegisterInfo);
const size_t DNBArchMachARM64::k_num_vfp_registers = sizeof(g_vfp_registers)/sizeof(DNBRegisterInfo);
const size_t DNBArchMachARM64::k_num_exc_registers = sizeof(g_exc_registers)/sizeof(DNBRegisterInfo);
const size_t DNBArchMachARM64::k_num_all_registers = k_num_gpr_registers + k_num_vfp_registers + k_num_exc_registers;
//----------------------------------------------------------------------
// Register set definitions. The first definitions at register set index
// of zero is for all registers, followed by other registers sets. The
// register information for the all register set need not be filled in.
//----------------------------------------------------------------------
const DNBRegisterSetInfo
DNBArchMachARM64::g_reg_sets[] =
{
{ "ARM64 Registers", NULL, k_num_all_registers },
{ "General Purpose Registers", g_gpr_registers, k_num_gpr_registers },
{ "Floating Point Registers", g_vfp_registers, k_num_vfp_registers },
{ "Exception State Registers", g_exc_registers, k_num_exc_registers }
};
// Total number of register sets for this architecture
const size_t DNBArchMachARM64::k_num_register_sets = sizeof(g_reg_sets)/sizeof(DNBRegisterSetInfo);
const DNBRegisterSetInfo *
DNBArchMachARM64::GetRegisterSetInfo(nub_size_t *num_reg_sets)
{
*num_reg_sets = k_num_register_sets;
return g_reg_sets;
}
bool
DNBArchMachARM64::FixGenericRegisterNumber (int &set, int &reg)
{
if (set == REGISTER_SET_GENERIC)
{
switch (reg)
{
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = gpr_pc;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = gpr_sp;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
set = e_regSetGPR;
reg = gpr_fp;
break;
case GENERIC_REGNUM_RA: // Return Address
set = e_regSetGPR;
reg = gpr_lr;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = gpr_cpsr;
break;
case GENERIC_REGNUM_ARG1:
case GENERIC_REGNUM_ARG2:
case GENERIC_REGNUM_ARG3:
case GENERIC_REGNUM_ARG4:
case GENERIC_REGNUM_ARG5:
case GENERIC_REGNUM_ARG6:
set = e_regSetGPR;
reg = gpr_x0 + reg - GENERIC_REGNUM_ARG1;
break;
default:
return false;
}
}
return true;
}
bool
DNBArchMachARM64::GetRegisterValue(int set, int reg, DNBRegisterValue *value)
{
if (!FixGenericRegisterNumber (set, reg))
return false;
if (GetRegisterState(set, false) != KERN_SUCCESS)
return false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo)
{
value->info = *regInfo;
switch (set)
{
case e_regSetGPR:
if (reg <= gpr_pc)
{
value->value.uint64 = m_state.context.gpr.__x[reg];
return true;
}
else if (reg == gpr_cpsr)
{
value->value.uint32 = m_state.context.gpr.__cpsr;
return true;
}
break;
case e_regSetVFP:
if (reg >= vfp_v0 && reg <= vfp_v31)
{
#if defined (__arm64__) || defined (__aarch64__)
memcpy (&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_v0], 16);
#else
memcpy (&value->value.v_uint8, ((uint8_t *) &m_state.context.vfp.opaque) + ((reg - vfp_v0) * 16), 16);
#endif
return true;
}
else if (reg == vfp_fpsr)
{
#if defined (__arm64__) || defined (__aarch64__)
memcpy (&value->value.uint32, &m_state.context.vfp.__fpsr, 4);
#else
memcpy (&value->value.uint32, ((uint8_t *) &m_state.context.vfp.opaque) + (32 * 16) + 0, 4);
#endif
return true;
}
else if (reg == vfp_fpcr)
{
#if defined (__arm64__) || defined (__aarch64__)
memcpy (&value->value.uint32, &m_state.context.vfp.__fpcr, 4);
#else
memcpy (&value->value.uint32, ((uint8_t *) &m_state.context.vfp.opaque) + (32 * 16) + 4, 4);
#endif
return true;
}
else if (reg >= vfp_s0 && reg <= vfp_s31)
{
#if defined (__arm64__) || defined (__aarch64__)
memcpy (&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_s0], 4);
#else
memcpy (&value->value.v_uint8, ((uint8_t *) &m_state.context.vfp.opaque) + ((reg - vfp_s0) * 16), 4);
#endif
return true;
}
else if (reg >= vfp_d0 && reg <= vfp_d31)
{
#if defined (__arm64__) || defined (__aarch64__)
memcpy (&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_d0], 8);
#else
memcpy (&value->value.v_uint8, ((uint8_t *) &m_state.context.vfp.opaque) + ((reg - vfp_d0) * 16), 8);
#endif
return true;
}
break;
case e_regSetEXC:
if (reg == exc_far)
{
value->value.uint64 = m_state.context.exc.__far;
return true;
}
else if (reg == exc_esr)
{
value->value.uint32 = m_state.context.exc.__esr;
return true;
}
else if (reg == exc_exception)
{
value->value.uint32 = m_state.context.exc.__exception;
return true;
}
break;
}
}
return false;
}
bool
DNBArchMachARM64::SetRegisterValue(int set, int reg, const DNBRegisterValue *value)
{
if (!FixGenericRegisterNumber (set, reg))
return false;
if (GetRegisterState(set, false) != KERN_SUCCESS)
return false;
bool success = false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo)
{
switch (set)
{
case e_regSetGPR:
if (reg <= gpr_pc)
{
m_state.context.gpr.__x[reg] = value->value.uint64;
success = true;
}
else if (reg == gpr_cpsr)
{
m_state.context.gpr.__cpsr = value->value.uint32;
success = true;
}
break;
case e_regSetVFP:
if (reg >= vfp_v0 && reg <= vfp_v31)
{
#if defined (__arm64__) || defined (__aarch64__)
memcpy (&m_state.context.vfp.__v[reg - vfp_v0], &value->value.v_uint8, 16);
#else
memcpy (((uint8_t *) &m_state.context.vfp.opaque) + ((reg - vfp_v0) * 16), &value->value.v_uint8, 16);
#endif
success = true;
}
else if (reg == vfp_fpsr)
{
#if defined (__arm64__) || defined (__aarch64__)
memcpy (&m_state.context.vfp.__fpsr, &value->value.uint32, 4);
#else
memcpy (((uint8_t *) &m_state.context.vfp.opaque) + (32 * 16) + 0, &value->value.uint32, 4);
#endif
success = true;
}
else if (reg == vfp_fpcr)
{
#if defined (__arm64__) || defined (__aarch64__)
memcpy (&m_state.context.vfp.__fpcr, &value->value.uint32, 4);
#else
memcpy (((uint8_t *) m_state.context.vfp.opaque) + (32 * 16) + 4, &value->value.uint32, 4);
#endif
success = true;
}
else if (reg >= vfp_s0 && reg <= vfp_s31)
{
#if defined (__arm64__) || defined (__aarch64__)
memcpy (&m_state.context.vfp.__v[reg - vfp_s0], &value->value.v_uint8, 4);
#else
memcpy (((uint8_t *) &m_state.context.vfp.opaque) + ((reg - vfp_s0) * 16), &value->value.v_uint8, 4);
#endif
success = true;
}
else if (reg >= vfp_d0 && reg <= vfp_d31)
{
#if defined (__arm64__) || defined (__aarch64__)
memcpy (&m_state.context.vfp.__v[reg - vfp_d0], &value->value.v_uint8, 8);
#else
memcpy (((uint8_t *) &m_state.context.vfp.opaque) + ((reg - vfp_d0) * 16), &value->value.v_uint8, 8);
#endif
success = true;
}
break;
case e_regSetEXC:
if (reg == exc_far)
{
m_state.context.exc.__far = value->value.uint64;
success = true;
}
else if (reg == exc_esr)
{
m_state.context.exc.__esr = value->value.uint32;
success = true;
}
else if (reg == exc_exception)
{
m_state.context.exc.__exception = value->value.uint32;
success = true;
}
break;
}
}
if (success)
return SetRegisterState(set) == KERN_SUCCESS;
return false;
}
kern_return_t
DNBArchMachARM64::GetRegisterState(int set, bool force)
{
switch (set)
{
case e_regSetALL: return GetGPRState(force) |
GetVFPState(force) |
GetEXCState(force) |
GetDBGState(force);
case e_regSetGPR: return GetGPRState(force);
case e_regSetVFP: return GetVFPState(force);
case e_regSetEXC: return GetEXCState(force);
case e_regSetDBG: return GetDBGState(force);
default: break;
}
return KERN_INVALID_ARGUMENT;
}
kern_return_t
DNBArchMachARM64::SetRegisterState(int set)
{
// Make sure we have a valid context to set.
kern_return_t err = GetRegisterState(set, false);
if (err != KERN_SUCCESS)
return err;
switch (set)
{
case e_regSetALL: return SetGPRState() |
SetVFPState() |
SetEXCState() |
SetDBGState(false);
case e_regSetGPR: return SetGPRState();
case e_regSetVFP: return SetVFPState();
case e_regSetEXC: return SetEXCState();
case e_regSetDBG: return SetDBGState(false);
default: break;
}
return KERN_INVALID_ARGUMENT;
}
bool
DNBArchMachARM64::RegisterSetStateIsValid (int set) const
{
return m_state.RegsAreValid(set);
}
nub_size_t
DNBArchMachARM64::GetRegisterContext (void *buf, nub_size_t buf_len)
{
nub_size_t size = sizeof (m_state.context.gpr) +
sizeof (m_state.context.vfp) +
sizeof (m_state.context.exc);
if (buf && buf_len)
{
if (size > buf_len)
size = buf_len;
bool force = false;
if (GetGPRState(force) | GetVFPState(force) | GetEXCState(force))
return 0;
// Copy each struct individually to avoid any padding that might be between the structs in m_state.context
uint8_t *p = (uint8_t *)buf;
::memcpy (p, &m_state.context.gpr, sizeof(m_state.context.gpr));
p += sizeof(m_state.context.gpr);
::memcpy (p, &m_state.context.vfp, sizeof(m_state.context.vfp));
p += sizeof(m_state.context.vfp);
::memcpy (p, &m_state.context.exc, sizeof(m_state.context.exc));
p += sizeof(m_state.context.exc);
size_t bytes_written = p - (uint8_t *)buf;
assert (bytes_written == size);
}
DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM64::GetRegisterContext (buf = %p, len = %zu) => %zu", buf, buf_len, size);
// Return the size of the register context even if NULL was passed in
return size;
}
nub_size_t
DNBArchMachARM64::SetRegisterContext (const void *buf, nub_size_t buf_len)
{
nub_size_t size = sizeof (m_state.context.gpr) +
sizeof (m_state.context.vfp) +
sizeof (m_state.context.exc);
if (buf == NULL || buf_len == 0)
size = 0;
if (size)
{
if (size > buf_len)
size = buf_len;
// Copy each struct individually to avoid any padding that might be between the structs in m_state.context
uint8_t *p = (uint8_t *)buf;
::memcpy (&m_state.context.gpr, p, sizeof(m_state.context.gpr));
p += sizeof(m_state.context.gpr);
::memcpy (&m_state.context.vfp, p, sizeof(m_state.context.vfp));
p += sizeof(m_state.context.vfp);
::memcpy (&m_state.context.exc, p, sizeof(m_state.context.exc));
p += sizeof(m_state.context.exc);
size_t bytes_written = p - (uint8_t *)buf;
assert (bytes_written == size);
SetGPRState();
SetVFPState();
SetEXCState();
}
DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM64::SetRegisterContext (buf = %p, len = %zu) => %zu", buf, buf_len, size);
return size;
}
uint32_t
DNBArchMachARM64::SaveRegisterState ()
{
kern_return_t kret = ::thread_abort_safely(m_thread->MachPortNumber());
DNBLogThreadedIf (LOG_THREAD, "thread = 0x%4.4x calling thread_abort_safely (tid) => %u (SetGPRState() for stop_count = %u)", m_thread->MachPortNumber(), kret, m_thread->Process()->StopCount());
// Always re-read the registers because above we call thread_abort_safely();
bool force = true;
if ((kret = GetGPRState(force)) != KERN_SUCCESS)
{
DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM64::SaveRegisterState () error: GPR regs failed to read: %u ", kret);
}
else if ((kret = GetVFPState(force)) != KERN_SUCCESS)
{
DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM64::SaveRegisterState () error: %s regs failed to read: %u", "VFP", kret);
}
else
{
const uint32_t save_id = GetNextRegisterStateSaveID ();
m_saved_register_states[save_id] = m_state.context;
return save_id;
}
return UINT32_MAX;
}
bool
DNBArchMachARM64::RestoreRegisterState (uint32_t save_id)
{
SaveRegisterStates::iterator pos = m_saved_register_states.find(save_id);
if (pos != m_saved_register_states.end())
{
m_state.context.gpr = pos->second.gpr;
m_state.context.vfp = pos->second.vfp;
kern_return_t kret;
bool success = true;
if ((kret = SetGPRState()) != KERN_SUCCESS)
{
DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM64::RestoreRegisterState (save_id = %u) error: GPR regs failed to write: %u", save_id, kret);
success = false;
}
else if ((kret = SetVFPState()) != KERN_SUCCESS)
{
DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM64::RestoreRegisterState (save_id = %u) error: %s regs failed to write: %u", save_id, "VFP", kret);
success = false;
}
m_saved_register_states.erase(pos);
return success;
}
return false;
}
#endif // #if defined (ARM_THREAD_STATE64_COUNT)
#endif // #if defined (__arm__) || defined (__arm64__) || defined (__aarch64__)