blob: da948e8a9fcda059f1e40a59b89b16ff717bc811 [file] [log] [blame]
//===-- DNBArchImpl.cpp -----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/25/07.
//
//===----------------------------------------------------------------------===//
#if defined (__arm__) || defined (__arm64__) || defined (__aarch64__)
#include "MacOSX/arm/DNBArchImpl.h"
#include "MacOSX/MachProcess.h"
#include "MacOSX/MachThread.h"
#include "DNBBreakpoint.h"
#include "DNBLog.h"
#include "DNBRegisterInfo.h"
#include "DNB.h"
#include "ARM_GCC_Registers.h"
#include "ARM_DWARF_Registers.h"
#include <inttypes.h>
#include <sys/sysctl.h>
// BCR address match type
#define BCR_M_IMVA_MATCH ((uint32_t)(0u << 21))
#define BCR_M_CONTEXT_ID_MATCH ((uint32_t)(1u << 21))
#define BCR_M_IMVA_MISMATCH ((uint32_t)(2u << 21))
#define BCR_M_RESERVED ((uint32_t)(3u << 21))
// Link a BVR/BCR or WVR/WCR pair to another
#define E_ENABLE_LINKING ((uint32_t)(1u << 20))
// Byte Address Select
#define BAS_IMVA_PLUS_0 ((uint32_t)(1u << 5))
#define BAS_IMVA_PLUS_1 ((uint32_t)(1u << 6))
#define BAS_IMVA_PLUS_2 ((uint32_t)(1u << 7))
#define BAS_IMVA_PLUS_3 ((uint32_t)(1u << 8))
#define BAS_IMVA_0_1 ((uint32_t)(3u << 5))
#define BAS_IMVA_2_3 ((uint32_t)(3u << 7))
#define BAS_IMVA_ALL ((uint32_t)(0xfu << 5))
// Break only in privileged or user mode
#define S_RSVD ((uint32_t)(0u << 1))
#define S_PRIV ((uint32_t)(1u << 1))
#define S_USER ((uint32_t)(2u << 1))
#define S_PRIV_USER ((S_PRIV) | (S_USER))
#define BCR_ENABLE ((uint32_t)(1u))
#define WCR_ENABLE ((uint32_t)(1u))
// Watchpoint load/store
#define WCR_LOAD ((uint32_t)(1u << 3))
#define WCR_STORE ((uint32_t)(1u << 4))
// Definitions for the Debug Status and Control Register fields:
// [5:2] => Method of debug entry
//#define WATCHPOINT_OCCURRED ((uint32_t)(2u))
// I'm seeing this, instead.
#define WATCHPOINT_OCCURRED ((uint32_t)(10u))
static const uint8_t g_arm_breakpoint_opcode[] = { 0xFE, 0xDE, 0xFF, 0xE7 };
static const uint8_t g_thumb_breakpoint_opcode[] = { 0xFE, 0xDE };
// A watchpoint may need to be implemented using two watchpoint registers.
// e.g. watching an 8-byte region when the device can only watch 4-bytes.
//
// This stores the lo->hi mappings. It's safe to initialize to all 0's
// since hi > lo and therefore LoHi[i] cannot be 0.
static uint32_t LoHi[16] = { 0 };
// ARM constants used during decoding
#define REG_RD 0
#define LDM_REGLIST 1
#define PC_REG 15
#define PC_REGLIST_BIT 0x8000
// ARM conditions
#define COND_EQ 0x0
#define COND_NE 0x1
#define COND_CS 0x2
#define COND_HS 0x2
#define COND_CC 0x3
#define COND_LO 0x3
#define COND_MI 0x4
#define COND_PL 0x5
#define COND_VS 0x6
#define COND_VC 0x7
#define COND_HI 0x8
#define COND_LS 0x9
#define COND_GE 0xA
#define COND_LT 0xB
#define COND_GT 0xC
#define COND_LE 0xD
#define COND_AL 0xE
#define COND_UNCOND 0xF
#define MASK_CPSR_T (1u << 5)
#define MASK_CPSR_J (1u << 24)
#define MNEMONIC_STRING_SIZE 32
#define OPERAND_STRING_SIZE 128
void
DNBArchMachARM::Initialize()
{
DNBArchPluginInfo arch_plugin_info =
{
CPU_TYPE_ARM,
DNBArchMachARM::Create,
DNBArchMachARM::GetRegisterSetInfo,
DNBArchMachARM::SoftwareBreakpointOpcode
};
// Register this arch plug-in with the main protocol class
DNBArchProtocol::RegisterArchPlugin (arch_plugin_info);
}
DNBArchProtocol *
DNBArchMachARM::Create (MachThread *thread)
{
DNBArchMachARM *obj = new DNBArchMachARM (thread);
return obj;
}
const uint8_t * const
DNBArchMachARM::SoftwareBreakpointOpcode (nub_size_t byte_size)
{
switch (byte_size)
{
case 2: return g_thumb_breakpoint_opcode;
case 4: return g_arm_breakpoint_opcode;
}
return NULL;
}
uint32_t
DNBArchMachARM::GetCPUType()
{
return CPU_TYPE_ARM;
}
uint64_t
DNBArchMachARM::GetPC(uint64_t failValue)
{
// Get program counter
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.context.gpr.__pc;
return failValue;
}
kern_return_t
DNBArchMachARM::SetPC(uint64_t value)
{
// Get program counter
kern_return_t err = GetGPRState(false);
if (err == KERN_SUCCESS)
{
m_state.context.gpr.__pc = (uint32_t) value;
err = SetGPRState();
}
return err == KERN_SUCCESS;
}
uint64_t
DNBArchMachARM::GetSP(uint64_t failValue)
{
// Get stack pointer
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.context.gpr.__sp;
return failValue;
}
kern_return_t
DNBArchMachARM::GetGPRState(bool force)
{
int set = e_regSetGPR;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
// Read the registers from our thread
mach_msg_type_number_t count = ARM_THREAD_STATE_COUNT;
kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_THREAD_STATE, (thread_state_t)&m_state.context.gpr, &count);
uint32_t *r = &m_state.context.gpr.__r[0];
DNBLogThreadedIf(LOG_THREAD, "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count = %u) regs r0=%8.8x r1=%8.8x r2=%8.8x r3=%8.8x r4=%8.8x r5=%8.8x r6=%8.8x r7=%8.8x r8=%8.8x r9=%8.8x r10=%8.8x r11=%8.8x s12=%8.8x sp=%8.8x lr=%8.8x pc=%8.8x cpsr=%8.8x",
m_thread->MachPortNumber(),
ARM_THREAD_STATE,
ARM_THREAD_STATE_COUNT,
kret,
count,
r[0],
r[1],
r[2],
r[3],
r[4],
r[5],
r[6],
r[7],
r[8],
r[9],
r[10],
r[11],
r[12],
r[13],
r[14],
r[15],
r[16]);
m_state.SetError(set, Read, kret);
return kret;
}
kern_return_t
DNBArchMachARM::GetVFPState(bool force)
{
int set = e_regSetVFP;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
// Read the registers from our thread
mach_msg_type_number_t count = ARM_VFP_STATE_COUNT;
kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_VFP_STATE, (thread_state_t)&m_state.context.vfp, &count);
if (DNBLogEnabledForAny (LOG_THREAD))
{
uint32_t *r = &m_state.context.vfp.__r[0];
DNBLogThreaded ("thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count => %u)",
m_thread->MachPortNumber(),
ARM_THREAD_STATE,
ARM_THREAD_STATE_COUNT,
kret,
count);
DNBLogThreaded(" s0=%8.8x s1=%8.8x s2=%8.8x s3=%8.8x s4=%8.8x s5=%8.8x s6=%8.8x s7=%8.8x",r[ 0],r[ 1],r[ 2],r[ 3],r[ 4],r[ 5],r[ 6],r[ 7]);
DNBLogThreaded(" s8=%8.8x s9=%8.8x s10=%8.8x s11=%8.8x s12=%8.8x s13=%8.8x s14=%8.8x s15=%8.8x",r[ 8],r[ 9],r[10],r[11],r[12],r[13],r[14],r[15]);
DNBLogThreaded(" s16=%8.8x s17=%8.8x s18=%8.8x s19=%8.8x s20=%8.8x s21=%8.8x s22=%8.8x s23=%8.8x",r[16],r[17],r[18],r[19],r[20],r[21],r[22],r[23]);
DNBLogThreaded(" s24=%8.8x s25=%8.8x s26=%8.8x s27=%8.8x s28=%8.8x s29=%8.8x s30=%8.8x s31=%8.8x",r[24],r[25],r[26],r[27],r[28],r[29],r[30],r[31]);
DNBLogThreaded(" s32=%8.8x s33=%8.8x s34=%8.8x s35=%8.8x s36=%8.8x s37=%8.8x s38=%8.8x s39=%8.8x",r[32],r[33],r[34],r[35],r[36],r[37],r[38],r[39]);
DNBLogThreaded(" s40=%8.8x s41=%8.8x s42=%8.8x s43=%8.8x s44=%8.8x s45=%8.8x s46=%8.8x s47=%8.8x",r[40],r[41],r[42],r[43],r[44],r[45],r[46],r[47]);
DNBLogThreaded(" s48=%8.8x s49=%8.8x s50=%8.8x s51=%8.8x s52=%8.8x s53=%8.8x s54=%8.8x s55=%8.8x",r[48],r[49],r[50],r[51],r[52],r[53],r[54],r[55]);
DNBLogThreaded(" s56=%8.8x s57=%8.8x s58=%8.8x s59=%8.8x s60=%8.8x s61=%8.8x s62=%8.8x s63=%8.8x fpscr=%8.8x",r[56],r[57],r[58],r[59],r[60],r[61],r[62],r[63],r[64]);
}
m_state.SetError(set, Read, kret);
return kret;
}
kern_return_t
DNBArchMachARM::GetEXCState(bool force)
{
int set = e_regSetEXC;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
// Read the registers from our thread
mach_msg_type_number_t count = ARM_EXCEPTION_STATE_COUNT;
kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, &count);
m_state.SetError(set, Read, kret);
return kret;
}
static void
DumpDBGState(const DNBArchMachARM::DBG& dbg)
{
uint32_t i = 0;
for (i=0; i<16; i++)
{
DNBLogThreadedIf(LOG_STEP, "BVR%-2u/BCR%-2u = { 0x%8.8x, 0x%8.8x } WVR%-2u/WCR%-2u = { 0x%8.8x, 0x%8.8x }",
i, i, dbg.__bvr[i], dbg.__bcr[i],
i, i, dbg.__wvr[i], dbg.__wcr[i]);
}
}
kern_return_t
DNBArchMachARM::GetDBGState(bool force)
{
int set = e_regSetDBG;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
// Read the registers from our thread
#if defined (ARM_DEBUG_STATE32) && (defined (__arm64__) || defined (__aarch64__))
mach_msg_type_number_t count = ARM_DEBUG_STATE32_COUNT;
kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE32, (thread_state_t)&m_state.dbg, &count);
#else
mach_msg_type_number_t count = ARM_DEBUG_STATE_COUNT;
kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, &count);
#endif
m_state.SetError(set, Read, kret);
return kret;
}
kern_return_t
DNBArchMachARM::SetGPRState()
{
int set = e_regSetGPR;
kern_return_t kret = ::thread_set_state(m_thread->MachPortNumber(), ARM_THREAD_STATE, (thread_state_t)&m_state.context.gpr, ARM_THREAD_STATE_COUNT);
m_state.SetError(set, Write, kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
return kret; // Return the error code
}
kern_return_t
DNBArchMachARM::SetVFPState()
{
int set = e_regSetVFP;
kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_VFP_STATE, (thread_state_t)&m_state.context.vfp, ARM_VFP_STATE_COUNT);
m_state.SetError(set, Write, kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
return kret; // Return the error code
}
kern_return_t
DNBArchMachARM::SetEXCState()
{
int set = e_regSetEXC;
kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, ARM_EXCEPTION_STATE_COUNT);
m_state.SetError(set, Write, kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
return kret; // Return the error code
}
kern_return_t
DNBArchMachARM::SetDBGState(bool also_set_on_task)
{
int set = e_regSetDBG;
#if defined (ARM_DEBUG_STATE32) && (defined (__arm64__) || defined (__aarch64__))
kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_DEBUG_STATE32, (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE32_COUNT);
if (also_set_on_task)
{
kern_return_t task_kret = ::task_set_state (m_thread->Process()->Task().TaskPort(), ARM_DEBUG_STATE32, (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE32_COUNT);
if (task_kret != KERN_SUCCESS)
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::SetDBGState failed to set debug control register state: 0x%8.8x.", kret);
}
#else
kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE_COUNT);
if (also_set_on_task)
{
kern_return_t task_kret = ::task_set_state (m_thread->Process()->Task().TaskPort(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE_COUNT);
if (task_kret != KERN_SUCCESS)
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::SetDBGState failed to set debug control register state: 0x%8.8x.", kret);
}
#endif
m_state.SetError(set, Write, kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
return kret; // Return the error code
}
void
DNBArchMachARM::ThreadWillResume()
{
// Do we need to step this thread? If so, let the mach thread tell us so.
if (m_thread->IsStepping())
{
// This is the primary thread, let the arch do anything it needs
if (NumSupportedHardwareBreakpoints() > 0)
{
if (EnableHardwareSingleStep(true) != KERN_SUCCESS)
{
DNBLogThreaded("DNBArchMachARM::ThreadWillResume() failed to enable hardware single step");
}
}
}
// Disable the triggered watchpoint temporarily before we resume.
// Plus, we try to enable hardware single step to execute past the instruction which triggered our watchpoint.
if (m_watchpoint_did_occur)
{
if (m_watchpoint_hw_index >= 0)
{
kern_return_t kret = GetDBGState(false);
if (kret == KERN_SUCCESS && !IsWatchpointEnabled(m_state.dbg, m_watchpoint_hw_index)) {
// The watchpoint might have been disabled by the user. We don't need to do anything at all
// to enable hardware single stepping.
m_watchpoint_did_occur = false;
m_watchpoint_hw_index = -1;
return;
}
DisableHardwareWatchpoint(m_watchpoint_hw_index, false);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() DisableHardwareWatchpoint(%d) called",
m_watchpoint_hw_index);
// Enable hardware single step to move past the watchpoint-triggering instruction.
m_watchpoint_resume_single_step_enabled = (EnableHardwareSingleStep(true) == KERN_SUCCESS);
// If we are not able to enable single step to move past the watchpoint-triggering instruction,
// at least we should reset the two watchpoint member variables so that the next time around
// this callback function is invoked, the enclosing logical branch is skipped.
if (!m_watchpoint_resume_single_step_enabled) {
// Reset the two watchpoint member variables.
m_watchpoint_did_occur = false;
m_watchpoint_hw_index = -1;
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() failed to enable single step");
}
else
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() succeeded to enable single step");
}
}
}
bool
DNBArchMachARM::ThreadDidStop()
{
bool success = true;
m_state.InvalidateRegisterSetState (e_regSetALL);
if (m_watchpoint_resume_single_step_enabled)
{
// Great! We now disable the hardware single step as well as re-enable the hardware watchpoint.
// See also ThreadWillResume().
if (EnableHardwareSingleStep(false) == KERN_SUCCESS)
{
if (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0)
{
ReenableHardwareWatchpoint(m_watchpoint_hw_index);
m_watchpoint_resume_single_step_enabled = false;
m_watchpoint_did_occur = false;
m_watchpoint_hw_index = -1;
}
else
{
DNBLogError("internal error detected: m_watchpoint_resume_step_enabled is true but (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0) does not hold!");
}
}
else
{
DNBLogError("internal error detected: m_watchpoint_resume_step_enabled is true but unable to disable single step!");
}
}
// Are we stepping a single instruction?
if (GetGPRState(true) == KERN_SUCCESS)
{
// We are single stepping, was this the primary thread?
if (m_thread->IsStepping())
{
success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
}
else
{
// The MachThread will automatically restore the suspend count
// in ThreadDidStop(), so we don't need to do anything here if
// we weren't the primary thread the last time
}
}
return success;
}
bool
DNBArchMachARM::NotifyException(MachException::Data& exc)
{
switch (exc.exc_type)
{
default:
break;
case EXC_BREAKPOINT:
if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_DA_DEBUG)
{
// The data break address is passed as exc_data[1].
nub_addr_t addr = exc.exc_data[1];
// Find the hardware index with the side effect of possibly massaging the
// addr to return the starting address as seen from the debugger side.
uint32_t hw_index = GetHardwareWatchpointHit(addr);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::NotifyException watchpoint %d was hit on address 0x%llx", hw_index, (uint64_t) addr);
const int num_watchpoints = NumSupportedHardwareWatchpoints ();
for (int i = 0; i < num_watchpoints; i++)
{
if (LoHi[i] != 0
&& LoHi[i] == hw_index
&& LoHi[i] != i
&& GetWatchpointAddressByIndex (i) != INVALID_NUB_ADDRESS)
{
addr = GetWatchpointAddressByIndex (i);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::NotifyException It is a linked watchpoint; rewritten to index %d addr 0x%llx", LoHi[i], (uint64_t) addr);
}
}
if (hw_index != INVALID_NUB_HW_INDEX)
{
m_watchpoint_did_occur = true;
m_watchpoint_hw_index = hw_index;
exc.exc_data[1] = addr;
// Piggyback the hw_index in the exc.data.
exc.exc_data.push_back(hw_index);
}
return true;
}
break;
}
return false;
}
bool
DNBArchMachARM::StepNotComplete ()
{
if (m_hw_single_chained_step_addr != INVALID_NUB_ADDRESS)
{
kern_return_t kret = KERN_INVALID_ARGUMENT;
kret = GetGPRState(false);
if (kret == KERN_SUCCESS)
{
if (m_state.context.gpr.__pc == m_hw_single_chained_step_addr)
{
DNBLogThreadedIf(LOG_STEP, "Need to step some more at 0x%8.8llx", (uint64_t) m_hw_single_chained_step_addr);
return true;
}
}
}
m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
return false;
}
// Set the single step bit in the processor status register.
kern_return_t
DNBArchMachARM::EnableHardwareSingleStep (bool enable)
{
DNBError err;
DNBLogThreadedIf(LOG_STEP, "%s( enable = %d )", __FUNCTION__, enable);
err = GetGPRState(false);
if (err.Fail())
{
err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__);
return err.Error();
}
err = GetDBGState(false);
if (err.Fail())
{
err.LogThreaded("%s: failed to read the DBG registers", __FUNCTION__);
return err.Error();
}
// The use of __arm64__ here is not ideal. If debugserver is running on
// an armv8 device, regardless of whether it was built for arch arm or arch arm64,
// it needs to use the MDSCR_EL1 SS bit to single instruction step.
#if defined (__arm64__) || defined (__aarch64__)
if (enable)
{
DNBLogThreadedIf(LOG_STEP, "%s: Setting MDSCR_EL1 Single Step bit at pc 0x%llx", __FUNCTION__, (uint64_t) m_state.context.gpr.__pc);
m_state.dbg.__mdscr_el1 |= 1; // Set bit 0 (single step, SS) in the MDSCR_EL1.
}
else
{
DNBLogThreadedIf(LOG_STEP, "%s: Clearing MDSCR_EL1 Single Step bit at pc 0x%llx", __FUNCTION__, (uint64_t) m_state.context.gpr.__pc);
m_state.dbg.__mdscr_el1 &= ~(1ULL); // Clear bit 0 (single step, SS) in the MDSCR_EL1.
}
#else
const uint32_t i = 0;
if (enable)
{
m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
// Save our previous state
m_dbg_save = m_state.dbg;
// Set a breakpoint that will stop when the PC doesn't match the current one!
m_state.dbg.__bvr[i] = m_state.context.gpr.__pc & 0xFFFFFFFCu; // Set the current PC as the breakpoint address
m_state.dbg.__bcr[i] = BCR_M_IMVA_MISMATCH | // Stop on address mismatch
S_USER | // Stop only in user mode
BCR_ENABLE; // Enable this breakpoint
if (m_state.context.gpr.__cpsr & 0x20)
{
// Thumb breakpoint
if (m_state.context.gpr.__pc & 2)
m_state.dbg.__bcr[i] |= BAS_IMVA_2_3;
else
m_state.dbg.__bcr[i] |= BAS_IMVA_0_1;
uint16_t opcode;
if (sizeof(opcode) == m_thread->Process()->Task().ReadMemory(m_state.context.gpr.__pc, sizeof(opcode), &opcode))
{
if (((opcode & 0xE000) == 0xE000) && opcode & 0x1800)
{
// 32 bit thumb opcode...
if (m_state.context.gpr.__pc & 2)
{
// We can't take care of a 32 bit thumb instruction single step
// with just IVA mismatching. We will need to chain an extra
// hardware single step in order to complete this single step...
m_hw_single_chained_step_addr = m_state.context.gpr.__pc + 2;
}
else
{
// Extend the number of bits to ignore for the mismatch
m_state.dbg.__bcr[i] |= BAS_IMVA_ALL;
}
}
}
}
else
{
// ARM breakpoint
m_state.dbg.__bcr[i] |= BAS_IMVA_ALL; // Stop when any address bits change
}
DNBLogThreadedIf(LOG_STEP, "%s: BVR%u=0x%8.8x BCR%u=0x%8.8x", __FUNCTION__, i, m_state.dbg.__bvr[i], i, m_state.dbg.__bcr[i]);
for (uint32_t j=i+1; j<16; ++j)
{
// Disable all others
m_state.dbg.__bvr[j] = 0;
m_state.dbg.__bcr[j] = 0;
}
}
else
{
// Just restore the state we had before we did single stepping
m_state.dbg = m_dbg_save;
}
#endif
return SetDBGState(false);
}
// return 1 if bit "BIT" is set in "value"
static inline uint32_t bit(uint32_t value, uint32_t bit)
{
return (value >> bit) & 1u;
}
// return the bitfield "value[msbit:lsbit]".
static inline uint32_t bits(uint32_t value, uint32_t msbit, uint32_t lsbit)
{
assert(msbit >= lsbit);
uint32_t shift_left = sizeof(value) * 8 - 1 - msbit;
value <<= shift_left; // shift anything above the msbit off of the unsigned edge
value >>= (shift_left + lsbit); // shift it back again down to the lsbit (including undoing any shift from above)
return value; // return our result
}
bool
DNBArchMachARM::ConditionPassed(uint8_t condition, uint32_t cpsr)
{
uint32_t cpsr_n = bit(cpsr, 31); // Negative condition code flag
uint32_t cpsr_z = bit(cpsr, 30); // Zero condition code flag
uint32_t cpsr_c = bit(cpsr, 29); // Carry condition code flag
uint32_t cpsr_v = bit(cpsr, 28); // Overflow condition code flag
switch (condition) {
case COND_EQ: // (0x0)
if (cpsr_z == 1) return true;
break;
case COND_NE: // (0x1)
if (cpsr_z == 0) return true;
break;
case COND_CS: // (0x2)
if (cpsr_c == 1) return true;
break;
case COND_CC: // (0x3)
if (cpsr_c == 0) return true;
break;
case COND_MI: // (0x4)
if (cpsr_n == 1) return true;
break;
case COND_PL: // (0x5)
if (cpsr_n == 0) return true;
break;
case COND_VS: // (0x6)
if (cpsr_v == 1) return true;
break;
case COND_VC: // (0x7)
if (cpsr_v == 0) return true;
break;
case COND_HI: // (0x8)
if ((cpsr_c == 1) && (cpsr_z == 0)) return true;
break;
case COND_LS: // (0x9)
if ((cpsr_c == 0) || (cpsr_z == 1)) return true;
break;
case COND_GE: // (0xA)
if (cpsr_n == cpsr_v) return true;
break;
case COND_LT: // (0xB)
if (cpsr_n != cpsr_v) return true;
break;
case COND_GT: // (0xC)
if ((cpsr_z == 0) && (cpsr_n == cpsr_v)) return true;
break;
case COND_LE: // (0xD)
if ((cpsr_z == 1) || (cpsr_n != cpsr_v)) return true;
break;
default:
return true;
break;
}
return false;
}
uint32_t
DNBArchMachARM::NumSupportedHardwareBreakpoints()
{
// Set the init value to something that will let us know that we need to
// autodetect how many breakpoints are supported dynamically...
static uint32_t g_num_supported_hw_breakpoints = UINT_MAX;
if (g_num_supported_hw_breakpoints == UINT_MAX)
{
// Set this to zero in case we can't tell if there are any HW breakpoints
g_num_supported_hw_breakpoints = 0;
size_t len;
uint32_t n = 0;
len = sizeof (n);
if (::sysctlbyname("hw.optional.breakpoint", &n, &len, NULL, 0) == 0)
{
g_num_supported_hw_breakpoints = n;
DNBLogThreadedIf(LOG_THREAD, "hw.optional.breakpoint=%u", n);
}
else
{
#if !defined (__arm64__) && !defined (__aarch64__)
// Read the DBGDIDR to get the number of available hardware breakpoints
// However, in some of our current armv7 processors, hardware
// breakpoints/watchpoints were not properly connected. So detect those
// cases using a field in a sysctl. For now we are using "hw.cpusubtype"
// field to distinguish CPU architectures. This is a hack until we can
// get <rdar://problem/6372672> fixed, at which point we will switch to
// using a different sysctl string that will tell us how many BRPs
// are available to us directly without having to read DBGDIDR.
uint32_t register_DBGDIDR;
asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR));
uint32_t numBRPs = bits(register_DBGDIDR, 27, 24);
// Zero is reserved for the BRP count, so don't increment it if it is zero
if (numBRPs > 0)
numBRPs++;
DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number BRP pairs = %u)", register_DBGDIDR, numBRPs);
if (numBRPs > 0)
{
uint32_t cpusubtype;
len = sizeof(cpusubtype);
// TODO: remove this hack and change to using hw.optional.xx when implmented
if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0)
{
DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=%d", cpusubtype);
if (cpusubtype == CPU_SUBTYPE_ARM_V7)
DNBLogThreadedIf(LOG_THREAD, "Hardware breakpoints disabled for armv7 (rdar://problem/6372672)");
else
g_num_supported_hw_breakpoints = numBRPs;
}
}
#endif
}
}
return g_num_supported_hw_breakpoints;
}
uint32_t
DNBArchMachARM::NumSupportedHardwareWatchpoints()
{
// Set the init value to something that will let us know that we need to
// autodetect how many watchpoints are supported dynamically...
static uint32_t g_num_supported_hw_watchpoints = UINT_MAX;
if (g_num_supported_hw_watchpoints == UINT_MAX)
{
// Set this to zero in case we can't tell if there are any HW breakpoints
g_num_supported_hw_watchpoints = 0;
size_t len;
uint32_t n = 0;
len = sizeof (n);
if (::sysctlbyname("hw.optional.watchpoint", &n, &len, NULL, 0) == 0)
{
g_num_supported_hw_watchpoints = n;
DNBLogThreadedIf(LOG_THREAD, "hw.optional.watchpoint=%u", n);
}
else
{
#if !defined (__arm64__) && !defined (__aarch64__)
// Read the DBGDIDR to get the number of available hardware breakpoints
// However, in some of our current armv7 processors, hardware
// breakpoints/watchpoints were not properly connected. So detect those
// cases using a field in a sysctl. For now we are using "hw.cpusubtype"
// field to distinguish CPU architectures. This is a hack until we can
// get <rdar://problem/6372672> fixed, at which point we will switch to
// using a different sysctl string that will tell us how many WRPs
// are available to us directly without having to read DBGDIDR.
uint32_t register_DBGDIDR;
asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR));
uint32_t numWRPs = bits(register_DBGDIDR, 31, 28) + 1;
DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number WRP pairs = %u)", register_DBGDIDR, numWRPs);
if (numWRPs > 0)
{
uint32_t cpusubtype;
size_t len;
len = sizeof(cpusubtype);
// TODO: remove this hack and change to using hw.optional.xx when implmented
if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0)
{
DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=0x%d", cpusubtype);
if (cpusubtype == CPU_SUBTYPE_ARM_V7)
DNBLogThreadedIf(LOG_THREAD, "Hardware watchpoints disabled for armv7 (rdar://problem/6372672)");
else
g_num_supported_hw_watchpoints = numWRPs;
}
}
#endif
}
}
return g_num_supported_hw_watchpoints;
}
uint32_t
DNBArchMachARM::EnableHardwareBreakpoint (nub_addr_t addr, nub_size_t size)
{
// Make sure our address isn't bogus
if (addr & 1)
return INVALID_NUB_HW_INDEX;
kern_return_t kret = GetDBGState(false);
if (kret == KERN_SUCCESS)
{
const uint32_t num_hw_breakpoints = NumSupportedHardwareBreakpoints();
uint32_t i;
for (i=0; i<num_hw_breakpoints; ++i)
{
if ((m_state.dbg.__bcr[i] & BCR_ENABLE) == 0)
break; // We found an available hw breakpoint slot (in i)
}
// See if we found an available hw breakpoint slot above
if (i < num_hw_breakpoints)
{
// Make sure bits 1:0 are clear in our address
m_state.dbg.__bvr[i] = addr & ~((nub_addr_t)3);
if (size == 2 || addr & 2)
{
uint32_t byte_addr_select = (addr & 2) ? BAS_IMVA_2_3 : BAS_IMVA_0_1;
// We have a thumb breakpoint
// We have an ARM breakpoint
m_state.dbg.__bcr[i] = BCR_M_IMVA_MATCH | // Stop on address mismatch
byte_addr_select | // Set the correct byte address select so we only trigger on the correct opcode
S_USER | // Which modes should this breakpoint stop in?
BCR_ENABLE; // Enable this hardware breakpoint
DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint( addr = 0x%8.8llx, size = %llu ) - BVR%u/BCR%u = 0x%8.8x / 0x%8.8x (Thumb)",
(uint64_t)addr,
(uint64_t)size,
i,
i,
m_state.dbg.__bvr[i],
m_state.dbg.__bcr[i]);
}
else if (size == 4)
{
// We have an ARM breakpoint
m_state.dbg.__bcr[i] = BCR_M_IMVA_MATCH | // Stop on address mismatch
BAS_IMVA_ALL | // Stop on any of the four bytes following the IMVA
S_USER | // Which modes should this breakpoint stop in?
BCR_ENABLE; // Enable this hardware breakpoint
DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint( addr = 0x%8.8llx, size = %llu ) - BVR%u/BCR%u = 0x%8.8x / 0x%8.8x (ARM)",
(uint64_t)addr,
(uint64_t)size,
i,
i,
m_state.dbg.__bvr[i],
m_state.dbg.__bcr[i]);
}
kret = SetDBGState(false);
DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint() SetDBGState() => 0x%8.8x.", kret);
if (kret == KERN_SUCCESS)
return i;
}
else
{
DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint(addr = 0x%8.8llx, size = %llu) => all hardware breakpoint resources are being used.", (uint64_t)addr, (uint64_t)size);
}
}
return INVALID_NUB_HW_INDEX;
}
bool
DNBArchMachARM::DisableHardwareBreakpoint (uint32_t hw_index)
{
kern_return_t kret = GetDBGState(false);
const uint32_t num_hw_points = NumSupportedHardwareBreakpoints();
if (kret == KERN_SUCCESS)
{
if (hw_index < num_hw_points)
{
m_state.dbg.__bcr[hw_index] = 0;
DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::SetHardwareBreakpoint( %u ) - BVR%u = 0x%8.8x BCR%u = 0x%8.8x",
hw_index,
hw_index,
m_state.dbg.__bvr[hw_index],
hw_index,
m_state.dbg.__bcr[hw_index]);
kret = SetDBGState(false);
if (kret == KERN_SUCCESS)
return true;
}
}
return false;
}
// ARM v7 watchpoints may be either word-size or double-word-size.
// It's implementation defined which they can handle. It looks like on an
// armv8 device, armv7 processes can watch dwords. But on a genuine armv7
// device I tried, only word watchpoints are supported.
#if defined (__arm64__) || defined (__aarch64__)
#define WATCHPOINTS_ARE_DWORD 1
#else
#undef WATCHPOINTS_ARE_DWORD
#endif
uint32_t
DNBArchMachARM::EnableHardwareWatchpoint (nub_addr_t addr, nub_size_t size, bool read, bool write, bool also_set_on_task)
{
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(addr = 0x%8.8llx, size = %zu, read = %u, write = %u)", (uint64_t)addr, size, read, write);
const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
// Can't watch zero bytes
if (size == 0)
return INVALID_NUB_HW_INDEX;
// We must watch for either read or write
if (read == false && write == false)
return INVALID_NUB_HW_INDEX;
// Otherwise, can't watch more than 8 bytes per WVR/WCR pair
if (size > 8)
return INVALID_NUB_HW_INDEX;
// Treat arm watchpoints as having an 8-byte alignment requirement. You can put a watchpoint on a 4-byte
// offset address but you can only watch 4 bytes with that watchpoint.
// arm watchpoints on an 8-byte (double word) aligned addr can watch any bytes in that
// 8-byte long region of memory. They can watch the 1st byte, the 2nd byte, 3rd byte, etc, or any
// combination therein by setting the bits in the BAS [12:5] (Byte Address Select) field of
// the DBGWCRn_EL1 reg for the watchpoint.
// If the MASK [28:24] bits in the DBGWCRn_EL1 allow a single watchpoint to monitor a larger region
// of memory (16 bytes, 32 bytes, or 2GB) but the Byte Address Select bitfield then selects a larger
// range of bytes, instead of individual bytes. See the ARMv8 Debug Architecture manual for details.
// This implementation does not currently use the MASK bits; the largest single region watched by a single
// watchpoint right now is 8-bytes.
#if defined (WATCHPOINTS_ARE_DWORD)
nub_addr_t aligned_wp_address = addr & ~0x7;
uint32_t addr_dword_offset = addr & 0x7;
const int max_watchpoint_size = 8;
#else
nub_addr_t aligned_wp_address = addr & ~0x3;
uint32_t addr_dword_offset = addr & 0x3;
const int max_watchpoint_size = 4;
#endif
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint aligned_wp_address is 0x%llx and addr_dword_offset is 0x%x", (uint64_t)aligned_wp_address, addr_dword_offset);
// Do we need to split up this logical watchpoint into two hardware watchpoint
// registers?
// e.g. a watchpoint of length 4 on address 6. We need do this with
// one watchpoint on address 0 with bytes 6 & 7 being monitored
// one watchpoint on address 8 with bytes 0, 1, 2, 3 being monitored
if (addr_dword_offset + size > max_watchpoint_size)
{
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(addr = 0x%8.8llx, size = %zu) needs two hardware watchpoints slots to monitor", (uint64_t)addr, size);
int low_watchpoint_size = max_watchpoint_size - addr_dword_offset;
int high_watchpoint_size = addr_dword_offset + size - max_watchpoint_size;
uint32_t lo = EnableHardwareWatchpoint(addr, low_watchpoint_size, read, write, also_set_on_task);
if (lo == INVALID_NUB_HW_INDEX)
return INVALID_NUB_HW_INDEX;
uint32_t hi = EnableHardwareWatchpoint (aligned_wp_address + max_watchpoint_size, high_watchpoint_size, read, write, also_set_on_task);
if (hi == INVALID_NUB_HW_INDEX)
{
DisableHardwareWatchpoint (lo, also_set_on_task);
return INVALID_NUB_HW_INDEX;
}
// Tag this lo->hi mapping in our database.
LoHi[lo] = hi;
return lo;
}
// At this point
// 1 aligned_wp_address is the requested address rounded down to 8-byte alignment
// 2 addr_dword_offset is the offset into that double word (8-byte) region that we are watching
// 3 size is the number of bytes within that 8-byte region that we are watching
// Set the Byte Address Selects bits DBGWCRn_EL1 bits [12:5] based on the above.
// The bit shift and negation operation will give us 0b11 for 2, 0b1111 for 4, etc, up to 0b11111111 for 8.
// then we shift those bits left by the offset into this dword that we are interested in.
// e.g. if we are watching bytes 4,5,6,7 in a dword we want a BAS of 0b11110000.
uint32_t byte_address_select = ((1 << size) - 1) << addr_dword_offset;
// Read the debug state
kern_return_t kret = GetDBGState(true);
if (kret == KERN_SUCCESS)
{
// Check to make sure we have the needed hardware support
uint32_t i = 0;
for (i=0; i<num_hw_watchpoints; ++i)
{
if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0)
break; // We found an available hw watchpoint slot (in i)
}
// See if we found an available hw watchpoint slot above
if (i < num_hw_watchpoints)
{
//DumpDBGState(m_state.dbg);
// Clear any previous LoHi joined-watchpoint that may have been in use
LoHi[i] = 0;
// shift our Byte Address Select bits up to the correct bit range for the DBGWCRn_EL1
byte_address_select = byte_address_select << 5;
// Make sure bits 1:0 are clear in our address
m_state.dbg.__wvr[i] = aligned_wp_address; // DVA (Data Virtual Address)
m_state.dbg.__wcr[i] = byte_address_select | // Which bytes that follow the DVA that we will watch
S_USER | // Stop only in user mode
(read ? WCR_LOAD : 0) | // Stop on read access?
(write ? WCR_STORE : 0) | // Stop on write access?
WCR_ENABLE; // Enable this watchpoint;
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() adding watchpoint on address 0x%llx with control register value 0x%x", (uint64_t) m_state.dbg.__wvr[i], (uint32_t) m_state.dbg.__wcr[i]);
// The kernel will set the MDE_ENABLE bit in the MDSCR_EL1 for us automatically, don't need to do it here.
kret = SetDBGState(also_set_on_task);
//DumpDBGState(m_state.dbg);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() SetDBGState() => 0x%8.8x.", kret);
if (kret == KERN_SUCCESS)
return i;
}
else
{
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(): All hardware resources (%u) are in use.", num_hw_watchpoints);
}
}
return INVALID_NUB_HW_INDEX;
}
bool
DNBArchMachARM::ReenableHardwareWatchpoint (uint32_t hw_index)
{
// If this logical watchpoint # is actually implemented using
// two hardware watchpoint registers, re-enable both of them.
if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index])
{
return ReenableHardwareWatchpoint_helper (hw_index) && ReenableHardwareWatchpoint_helper (LoHi[hw_index]);
}
else
{
return ReenableHardwareWatchpoint_helper (hw_index);
}
}
bool
DNBArchMachARM::ReenableHardwareWatchpoint_helper (uint32_t hw_index)
{
kern_return_t kret = GetDBGState(false);
if (kret != KERN_SUCCESS)
return false;
const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
if (hw_index >= num_hw_points)
return false;
m_state.dbg.__wvr[hw_index] = m_disabled_watchpoints[hw_index].addr;
m_state.dbg.__wcr[hw_index] = m_disabled_watchpoints[hw_index].control;
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint( %u ) - WVR%u = 0x%8.8llx WCR%u = 0x%8.8llx",
hw_index,
hw_index,
(uint64_t) m_state.dbg.__wvr[hw_index],
hw_index,
(uint64_t) m_state.dbg.__wcr[hw_index]);
// The kernel will set the MDE_ENABLE bit in the MDSCR_EL1 for us automatically, don't need to do it here.
kret = SetDBGState(false);
return (kret == KERN_SUCCESS);
}
bool
DNBArchMachARM::DisableHardwareWatchpoint (uint32_t hw_index, bool also_set_on_task)
{
if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index])
{
return DisableHardwareWatchpoint_helper (hw_index, also_set_on_task) && DisableHardwareWatchpoint_helper (LoHi[hw_index], also_set_on_task);
}
else
{
return DisableHardwareWatchpoint_helper (hw_index, also_set_on_task);
}
}
bool
DNBArchMachARM::DisableHardwareWatchpoint_helper (uint32_t hw_index, bool also_set_on_task)
{
kern_return_t kret = GetDBGState(false);
if (kret != KERN_SUCCESS)
return false;
const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
if (hw_index >= num_hw_points)
return false;
m_disabled_watchpoints[hw_index].addr = m_state.dbg.__wvr[hw_index];
m_disabled_watchpoints[hw_index].control = m_state.dbg.__wcr[hw_index];
m_state.dbg.__wvr[hw_index] = 0;
m_state.dbg.__wcr[hw_index] = 0;
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::DisableHardwareWatchpoint( %u ) - WVR%u = 0x%8.8llx WCR%u = 0x%8.8llx",
hw_index,
hw_index,
(uint64_t) m_state.dbg.__wvr[hw_index],
hw_index,
(uint64_t) m_state.dbg.__wcr[hw_index]);
kret = SetDBGState(also_set_on_task);
return (kret == KERN_SUCCESS);
}
// Returns -1 if the trailing bit patterns are not one of:
// { 0b???1, 0b??10, 0b?100, 0b1000 }.
static inline
int32_t
LowestBitSet(uint32_t val)
{
for (unsigned i = 0; i < 4; ++i) {
if (bit(val, i))
return i;
}
return -1;
}
// Iterate through the debug registers; return the index of the first watchpoint whose address matches.
// As a side effect, the starting address as understood by the debugger is returned which could be
// different from 'addr' passed as an in/out argument.
uint32_t
DNBArchMachARM::GetHardwareWatchpointHit(nub_addr_t &addr)
{
// Read the debug state
kern_return_t kret = GetDBGState(true);
//DumpDBGState(m_state.dbg);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x.", kret);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::GetHardwareWatchpointHit() addr = 0x%llx", (uint64_t)addr);
// This is the watchpoint value to match against, i.e., word address.
#if defined (WATCHPOINTS_ARE_DWORD)
nub_addr_t wp_val = addr & ~((nub_addr_t)7);
#else
nub_addr_t wp_val = addr & ~((nub_addr_t)3);
#endif
if (kret == KERN_SUCCESS)
{
DBG &debug_state = m_state.dbg;
uint32_t i, num = NumSupportedHardwareWatchpoints();
for (i = 0; i < num; ++i)
{
nub_addr_t wp_addr = GetWatchAddress(debug_state, i);
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM::GetHardwareWatchpointHit() slot: %u (addr = 0x%llx).",
i, (uint64_t)wp_addr);
if (wp_val == wp_addr) {
#if defined (WATCHPOINTS_ARE_DWORD)
uint32_t byte_mask = bits(debug_state.__wcr[i], 12, 5);
#else
uint32_t byte_mask = bits(debug_state.__wcr[i], 8, 5);
#endif
// Sanity check the byte_mask, first.
if (LowestBitSet(byte_mask) < 0)
continue;
// Compute the starting address (from the point of view of the debugger).
addr = wp_addr + LowestBitSet(byte_mask);
return i;
}
}
}
return INVALID_NUB_HW_INDEX;
}
nub_addr_t
DNBArchMachARM::GetWatchpointAddressByIndex (uint32_t hw_index)
{
kern_return_t kret = GetDBGState(true);
if (kret != KERN_SUCCESS)
return INVALID_NUB_ADDRESS;
const uint32_t num = NumSupportedHardwareWatchpoints();
if (hw_index >= num)
return INVALID_NUB_ADDRESS;
if (IsWatchpointEnabled (m_state.dbg, hw_index))
return GetWatchAddress (m_state.dbg, hw_index);
return INVALID_NUB_ADDRESS;
}
bool
DNBArchMachARM::IsWatchpointEnabled(const DBG &debug_state, uint32_t hw_index)
{
// Watchpoint Control Registers, bitfield definitions
// ...
// Bits Value Description
// [0] 0 Watchpoint disabled
// 1 Watchpoint enabled.
return (debug_state.__wcr[hw_index] & 1u);
}
nub_addr_t
DNBArchMachARM::GetWatchAddress(const DBG &debug_state, uint32_t hw_index)
{
// Watchpoint Value Registers, bitfield definitions
// Bits Description
// [31:2] Watchpoint value (word address, i.e., 4-byte aligned)
// [1:0] RAZ/SBZP
return bits(debug_state.__wvr[hw_index], 31, 0);
}
//----------------------------------------------------------------------
// Register information definitions for 32 bit ARMV7.
//----------------------------------------------------------------------
enum gpr_regnums
{
gpr_r0 = 0,
gpr_r1,
gpr_r2,
gpr_r3,
gpr_r4,
gpr_r5,
gpr_r6,
gpr_r7,
gpr_r8,
gpr_r9,
gpr_r10,
gpr_r11,
gpr_r12,
gpr_sp,
gpr_lr,
gpr_pc,
gpr_cpsr
};
enum
{
vfp_s0 = 0,
vfp_s1,
vfp_s2,
vfp_s3,
vfp_s4,
vfp_s5,
vfp_s6,
vfp_s7,
vfp_s8,
vfp_s9,
vfp_s10,
vfp_s11,
vfp_s12,
vfp_s13,
vfp_s14,
vfp_s15,
vfp_s16,
vfp_s17,
vfp_s18,
vfp_s19,
vfp_s20,
vfp_s21,
vfp_s22,
vfp_s23,
vfp_s24,
vfp_s25,
vfp_s26,
vfp_s27,
vfp_s28,
vfp_s29,
vfp_s30,
vfp_s31,
vfp_d0,
vfp_d1,
vfp_d2,
vfp_d3,
vfp_d4,
vfp_d5,
vfp_d6,
vfp_d7,
vfp_d8,
vfp_d9,
vfp_d10,
vfp_d11,
vfp_d12,
vfp_d13,
vfp_d14,
vfp_d15,
vfp_d16,
vfp_d17,
vfp_d18,
vfp_d19,
vfp_d20,
vfp_d21,
vfp_d22,
vfp_d23,
vfp_d24,
vfp_d25,
vfp_d26,
vfp_d27,
vfp_d28,
vfp_d29,
vfp_d30,
vfp_d31,
vfp_q0,
vfp_q1,
vfp_q2,
vfp_q3,
vfp_q4,
vfp_q5,
vfp_q6,
vfp_q7,
vfp_q8,
vfp_q9,
vfp_q10,
vfp_q11,
vfp_q12,
vfp_q13,
vfp_q14,
vfp_q15,
vfp_fpscr
};
enum
{
exc_exception,
exc_fsr,
exc_far,
};
#define GPR_OFFSET_IDX(idx) (offsetof (DNBArchMachARM::GPR, __r[idx]))
#define GPR_OFFSET_NAME(reg) (offsetof (DNBArchMachARM::GPR, __##reg))
#define EXC_OFFSET(reg) (offsetof (DNBArchMachARM::EXC, __##reg) + offsetof (DNBArchMachARM::Context, exc))
// These macros will auto define the register name, alt name, register size,
// register offset, encoding, format and native register. This ensures that
// the register state structures are defined correctly and have the correct
// sizes and offsets.
#define DEFINE_GPR_IDX(idx, reg, alt, gen) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_IDX(idx), gcc_##reg, dwarf_##reg, gen, INVALID_NUB_REGNUM, NULL, NULL}
#define DEFINE_GPR_NAME(reg, alt, gen, inval) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_NAME(reg), gcc_##reg, dwarf_##reg, gen, INVALID_NUB_REGNUM, NULL, inval}
// In case we are debugging to a debug target that the ability to
// change into the protected modes with folded registers (ABT, IRQ,
// FIQ, SYS, USR, etc..), we should invalidate r8-r14 if the CPSR
// gets modified.
const char * g_invalidate_cpsr[] = { "r8", "r9", "r10", "r11", "r12", "sp", "lr", NULL };
// General purpose registers
const DNBRegisterInfo
DNBArchMachARM::g_gpr_registers[] =
{
DEFINE_GPR_IDX ( 0, r0,"arg1", GENERIC_REGNUM_ARG1 ),
DEFINE_GPR_IDX ( 1, r1,"arg2", GENERIC_REGNUM_ARG2 ),
DEFINE_GPR_IDX ( 2, r2,"arg3", GENERIC_REGNUM_ARG3 ),
DEFINE_GPR_IDX ( 3, r3,"arg4", GENERIC_REGNUM_ARG4 ),
DEFINE_GPR_IDX ( 4, r4, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX ( 5, r5, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX ( 6, r6, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX ( 7, r7, "fp", GENERIC_REGNUM_FP ),
DEFINE_GPR_IDX ( 8, r8, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX ( 9, r9, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (10, r10, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (11, r11, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (12, r12, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_NAME (sp, "r13", GENERIC_REGNUM_SP, NULL),
DEFINE_GPR_NAME (lr, "r14", GENERIC_REGNUM_RA, NULL),
DEFINE_GPR_NAME (pc, "r15", GENERIC_REGNUM_PC, NULL),
DEFINE_GPR_NAME (cpsr, "flags", GENERIC_REGNUM_FLAGS, g_invalidate_cpsr)
};
const char *g_contained_q0 [] { "q0", NULL };
const char *g_contained_q1 [] { "q1", NULL };
const char *g_contained_q2 [] { "q2", NULL };
const char *g_contained_q3 [] { "q3", NULL };
const char *g_contained_q4 [] { "q4", NULL };
const char *g_contained_q5 [] { "q5", NULL };
const char *g_contained_q6 [] { "q6", NULL };
const char *g_contained_q7 [] { "q7", NULL };
const char *g_contained_q8 [] { "q8", NULL };
const char *g_contained_q9 [] { "q9", NULL };
const char *g_contained_q10[] { "q10", NULL };
const char *g_contained_q11[] { "q11", NULL };
const char *g_contained_q12[] { "q12", NULL };
const char *g_contained_q13[] { "q13", NULL };
const char *g_contained_q14[] { "q14", NULL };
const char *g_contained_q15[] { "q15", NULL };
const char *g_invalidate_q0[] { "q0", "d0" , "d1" , "s0" , "s1" , "s2" , "s3" , NULL };
const char *g_invalidate_q1[] { "q1", "d2" , "d3" , "s4" , "s5" , "s6" , "s7" , NULL };
const char *g_invalidate_q2[] { "q2", "d4" , "d5" , "s8" , "s9" , "s10", "s11", NULL };
const char *g_invalidate_q3[] { "q3", "d6" , "d7" , "s12", "s13", "s14", "s15", NULL };
const char *g_invalidate_q4[] { "q4", "d8" , "d9" , "s16", "s17", "s18", "s19", NULL };
const char *g_invalidate_q5[] { "q5", "d10", "d11", "s20", "s21", "s22", "s23", NULL };
const char *g_invalidate_q6[] { "q6", "d12", "d13", "s24", "s25", "s26", "s27", NULL };
const char *g_invalidate_q7[] { "q7", "d14", "d15", "s28", "s29", "s30", "s31", NULL };
const char *g_invalidate_q8[] { "q8", "d16", "d17", NULL };
const char *g_invalidate_q9[] { "q9", "d18", "d19", NULL };
const char *g_invalidate_q10[] { "q10", "d20", "d21", NULL };
const char *g_invalidate_q11[] { "q11", "d22", "d23", NULL };
const char *g_invalidate_q12[] { "q12", "d24", "d25", NULL };
const char *g_invalidate_q13[] { "q13", "d26", "d27", NULL };
const char *g_invalidate_q14[] { "q14", "d28", "d29", NULL };
const char *g_invalidate_q15[] { "q15", "d30", "d31", NULL };
#define VFP_S_OFFSET_IDX(idx) (((idx) % 4) * 4) // offset into q reg: 0, 4, 8, 12
#define VFP_D_OFFSET_IDX(idx) (((idx) % 2) * 8) // offset into q reg: 0, 8
#define VFP_Q_OFFSET_IDX(idx) (VFP_S_OFFSET_IDX ((idx) * 4))
#define VFP_OFFSET_NAME(reg) (offsetof (DNBArchMachARM::FPU, __##reg) + offsetof (DNBArchMachARM::Context, vfp))
#define FLOAT_FORMAT Float
#define DEFINE_VFP_S_IDX(idx) e_regSetVFP, vfp_s##idx, "s" #idx, NULL, IEEE754, FLOAT_FORMAT, 4, VFP_S_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_s##idx, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
#define DEFINE_VFP_D_IDX(idx) e_regSetVFP, vfp_d##idx, "d" #idx, NULL, IEEE754, FLOAT_FORMAT, 8, VFP_D_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_d##idx, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
#define DEFINE_VFP_Q_IDX(idx) e_regSetVFP, vfp_q##idx, "q" #idx, NULL, Vector, VectorOfUInt8, 16, VFP_Q_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_q##idx, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
// Floating point registers
const DNBRegisterInfo
DNBArchMachARM::g_vfp_registers[] =
{
{ DEFINE_VFP_S_IDX ( 0), g_contained_q0, g_invalidate_q0 },
{ DEFINE_VFP_S_IDX ( 1), g_contained_q0, g_invalidate_q0 },
{ DEFINE_VFP_S_IDX ( 2), g_contained_q0, g_invalidate_q0 },
{ DEFINE_VFP_S_IDX ( 3), g_contained_q0, g_invalidate_q0 },
{ DEFINE_VFP_S_IDX ( 4), g_contained_q1, g_invalidate_q1 },
{ DEFINE_VFP_S_IDX ( 5), g_contained_q1, g_invalidate_q1 },
{ DEFINE_VFP_S_IDX ( 6), g_contained_q1, g_invalidate_q1 },
{ DEFINE_VFP_S_IDX ( 7), g_contained_q1, g_invalidate_q1 },
{ DEFINE_VFP_S_IDX ( 8), g_contained_q2, g_invalidate_q2 },
{ DEFINE_VFP_S_IDX ( 9), g_contained_q2, g_invalidate_q2 },
{ DEFINE_VFP_S_IDX (10), g_contained_q2, g_invalidate_q2 },
{ DEFINE_VFP_S_IDX (11), g_contained_q2, g_invalidate_q2 },
{ DEFINE_VFP_S_IDX (12), g_contained_q3, g_invalidate_q3 },
{ DEFINE_VFP_S_IDX (13), g_contained_q3, g_invalidate_q3 },
{ DEFINE_VFP_S_IDX (14), g_contained_q3, g_invalidate_q3 },
{ DEFINE_VFP_S_IDX (15), g_contained_q3, g_invalidate_q3 },
{ DEFINE_VFP_S_IDX (16), g_contained_q4, g_invalidate_q4 },
{ DEFINE_VFP_S_IDX (17), g_contained_q4, g_invalidate_q4 },
{ DEFINE_VFP_S_IDX (18), g_contained_q4, g_invalidate_q4 },
{ DEFINE_VFP_S_IDX (19), g_contained_q4, g_invalidate_q4 },
{ DEFINE_VFP_S_IDX (20), g_contained_q5, g_invalidate_q5 },
{ DEFINE_VFP_S_IDX (21), g_contained_q5, g_invalidate_q5 },
{ DEFINE_VFP_S_IDX (22), g_contained_q5, g_invalidate_q5 },
{ DEFINE_VFP_S_IDX (23), g_contained_q5, g_invalidate_q5 },
{ DEFINE_VFP_S_IDX (24), g_contained_q6, g_invalidate_q6 },
{ DEFINE_VFP_S_IDX (25), g_contained_q6, g_invalidate_q6 },
{ DEFINE_VFP_S_IDX (26), g_contained_q6, g_invalidate_q6 },
{ DEFINE_VFP_S_IDX (27), g_contained_q6, g_invalidate_q6 },
{ DEFINE_VFP_S_IDX (28), g_contained_q7, g_invalidate_q7 },
{ DEFINE_VFP_S_IDX (29), g_contained_q7, g_invalidate_q7 },
{ DEFINE_VFP_S_IDX (30), g_contained_q7, g_invalidate_q7 },
{ DEFINE_VFP_S_IDX (31), g_contained_q7, g_invalidate_q7 },
{ DEFINE_VFP_D_IDX (0), g_contained_q0, g_invalidate_q0 },
{ DEFINE_VFP_D_IDX (1), g_contained_q0, g_invalidate_q0 },
{ DEFINE_VFP_D_IDX (2), g_contained_q1, g_invalidate_q1 },
{ DEFINE_VFP_D_IDX (3), g_contained_q1, g_invalidate_q1 },
{ DEFINE_VFP_D_IDX (4), g_contained_q2, g_invalidate_q2 },
{ DEFINE_VFP_D_IDX (5), g_contained_q2, g_invalidate_q2 },
{ DEFINE_VFP_D_IDX (6), g_contained_q3, g_invalidate_q3 },
{ DEFINE_VFP_D_IDX (7), g_contained_q3, g_invalidate_q3 },
{ DEFINE_VFP_D_IDX (8), g_contained_q4, g_invalidate_q4 },
{ DEFINE_VFP_D_IDX (9), g_contained_q4, g_invalidate_q4 },
{ DEFINE_VFP_D_IDX (10), g_contained_q5, g_invalidate_q5 },
{ DEFINE_VFP_D_IDX (11), g_contained_q5, g_invalidate_q5 },
{ DEFINE_VFP_D_IDX (12), g_contained_q6, g_invalidate_q6 },
{ DEFINE_VFP_D_IDX (13), g_contained_q6, g_invalidate_q6 },
{ DEFINE_VFP_D_IDX (14), g_contained_q7, g_invalidate_q7 },
{ DEFINE_VFP_D_IDX (15), g_contained_q7, g_invalidate_q7 },
{ DEFINE_VFP_D_IDX (16), g_contained_q8, g_invalidate_q8 },
{ DEFINE_VFP_D_IDX (17), g_contained_q8, g_invalidate_q8 },
{ DEFINE_VFP_D_IDX (18), g_contained_q9, g_invalidate_q9 },
{ DEFINE_VFP_D_IDX (19), g_contained_q9, g_invalidate_q9 },
{ DEFINE_VFP_D_IDX (20), g_contained_q10, g_invalidate_q10 },
{ DEFINE_VFP_D_IDX (21), g_contained_q10, g_invalidate_q10 },
{ DEFINE_VFP_D_IDX (22), g_contained_q11, g_invalidate_q11 },
{ DEFINE_VFP_D_IDX (23), g_contained_q11, g_invalidate_q11 },
{ DEFINE_VFP_D_IDX (24), g_contained_q12, g_invalidate_q12 },
{ DEFINE_VFP_D_IDX (25), g_contained_q12, g_invalidate_q12 },
{ DEFINE_VFP_D_IDX (26), g_contained_q13, g_invalidate_q13 },
{ DEFINE_VFP_D_IDX (27), g_contained_q13, g_invalidate_q13 },
{ DEFINE_VFP_D_IDX (28), g_contained_q14, g_invalidate_q14 },
{ DEFINE_VFP_D_IDX (29), g_contained_q14, g_invalidate_q14 },
{ DEFINE_VFP_D_IDX (30), g_contained_q15, g_invalidate_q15 },
{ DEFINE_VFP_D_IDX (31), g_contained_q15, g_invalidate_q15 },
{ DEFINE_VFP_Q_IDX (0), NULL, g_invalidate_q0 },
{ DEFINE_VFP_Q_IDX (1), NULL, g_invalidate_q1 },
{ DEFINE_VFP_Q_IDX (2), NULL, g_invalidate_q2 },
{ DEFINE_VFP_Q_IDX (3), NULL, g_invalidate_q3 },
{ DEFINE_VFP_Q_IDX (4), NULL, g_invalidate_q4 },
{ DEFINE_VFP_Q_IDX (5), NULL, g_invalidate_q5 },
{ DEFINE_VFP_Q_IDX (6), NULL, g_invalidate_q6 },
{ DEFINE_VFP_Q_IDX (7), NULL, g_invalidate_q7 },
{ DEFINE_VFP_Q_IDX (8), NULL, g_invalidate_q8 },
{ DEFINE_VFP_Q_IDX (9), NULL, g_invalidate_q9 },
{ DEFINE_VFP_Q_IDX (10), NULL, g_invalidate_q10 },
{ DEFINE_VFP_Q_IDX (11), NULL, g_invalidate_q11 },
{ DEFINE_VFP_Q_IDX (12), NULL, g_invalidate_q12 },
{ DEFINE_VFP_Q_IDX (13), NULL, g_invalidate_q13 },
{ DEFINE_VFP_Q_IDX (14), NULL, g_invalidate_q14 },
{ DEFINE_VFP_Q_IDX (15), NULL, g_invalidate_q15 },
{ e_regSetVFP, vfp_fpscr, "fpscr", NULL, Uint, Hex, 4, VFP_OFFSET_NAME(fpscr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL }
};
// Exception registers
const DNBRegisterInfo
DNBArchMachARM::g_exc_registers[] =
{
{ e_regSetVFP, exc_exception , "exception" , NULL, Uint, Hex, 4, EXC_OFFSET(exception) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM },
{ e_regSetVFP, exc_fsr , "fsr" , NULL, Uint, Hex, 4, EXC_OFFSET(fsr) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM },
{ e_regSetVFP, exc_far , "far" , NULL, Uint, Hex, 4, EXC_OFFSET(far) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM }
};
// Number of registers in each register set
const size_t DNBArchMachARM::k_num_gpr_registers = sizeof(g_gpr_registers)/sizeof(DNBRegisterInfo);
const size_t DNBArchMachARM::k_num_vfp_registers = sizeof(g_vfp_registers)/sizeof(DNBRegisterInfo);
const size_t DNBArchMachARM::k_num_exc_registers = sizeof(g_exc_registers)/sizeof(DNBRegisterInfo);
const size_t DNBArchMachARM::k_num_all_registers = k_num_gpr_registers + k_num_vfp_registers + k_num_exc_registers;
//----------------------------------------------------------------------
// Register set definitions. The first definitions at register set index
// of zero is for all registers, followed by other registers sets. The
// register information for the all register set need not be filled in.
//----------------------------------------------------------------------
const DNBRegisterSetInfo
DNBArchMachARM::g_reg_sets[] =
{
{ "ARM Registers", NULL, k_num_all_registers },
{ "General Purpose Registers", g_gpr_registers, k_num_gpr_registers },
{ "Floating Point Registers", g_vfp_registers, k_num_vfp_registers },
{ "Exception State Registers", g_exc_registers, k_num_exc_registers }
};
// Total number of register sets for this architecture
const size_t DNBArchMachARM::k_num_register_sets = sizeof(g_reg_sets)/sizeof(DNBRegisterSetInfo);
const DNBRegisterSetInfo *
DNBArchMachARM::GetRegisterSetInfo(nub_size_t *num_reg_sets)
{
*num_reg_sets = k_num_register_sets;
return g_reg_sets;
}
bool
DNBArchMachARM::GetRegisterValue(int set, int reg, DNBRegisterValue *value)
{
if (set == REGISTER_SET_GENERIC)
{
switch (reg)
{
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = gpr_pc;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = gpr_sp;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
set = e_regSetGPR;
reg = gpr_r7; // is this the right reg?
break;
case GENERIC_REGNUM_RA: // Return Address
set = e_regSetGPR;
reg = gpr_lr;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = gpr_cpsr;
break;
default:
return false;
}
}
if (GetRegisterState(set, false) != KERN_SUCCESS)
return false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo)
{
value->info = *regInfo;
switch (set)
{
case e_regSetGPR:
if (reg < k_num_gpr_registers)
{
value->value.uint32 = m_state.context.gpr.__r[reg];
return true;
}
break;
case e_regSetVFP:
// "reg" is an index into the floating point register set at this point.
// We need to translate it up so entry 0 in the fp reg set is the same as vfp_s0
// in the enumerated values for case statement below.
if (reg >= vfp_s0 && reg <= vfp_s31)
{
value->value.uint32 = m_state.context.vfp.__r[reg];
return true;
}
else if (reg >= vfp_d0 && reg <= vfp_d31)
{
uint32_t d_reg_idx = reg - vfp_d0;
uint32_t s_reg_idx = d_reg_idx * 2;
value->value.v_sint32[0] = m_state.context.vfp.__r[s_reg_idx + 0];
value->value.v_sint32[1] = m_state.context.vfp.__r[s_reg_idx + 1];
return true;
}
else if (reg >= vfp_q0 && reg <= vfp_q15)
{
uint32_t s_reg_idx = (reg - vfp_q0) * 4;
memcpy (&value->value.v_uint8, (uint8_t *) &m_state.context.vfp.__r[s_reg_idx], 16);
return true;
}
else if (reg == vfp_fpscr)
{
value->value.uint32 = m_state.context.vfp.__fpscr;
return true;
}
break;
case e_regSetEXC:
if (reg < k_num_exc_registers)
{
value->value.uint32 = (&m_state.context.exc.__exception)[reg];
return true;
}
break;
}
}
return false;
}
bool
DNBArchMachARM::SetRegisterValue(int set, int reg, const DNBRegisterValue *value)
{
if (set == REGISTER_SET_GENERIC)
{
switch (reg)
{
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = gpr_pc;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = gpr_sp;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
set = e_regSetGPR;
reg = gpr_r7;
break;
case GENERIC_REGNUM_RA: // Return Address
set = e_regSetGPR;
reg = gpr_lr;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = gpr_cpsr;
break;
default:
return false;
}
}
if (GetRegisterState(set, false) != KERN_SUCCESS)
return false;
bool success = false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo)
{
switch (set)
{
case e_regSetGPR:
if (reg < k_num_gpr_registers)
{
m_state.context.gpr.__r[reg] = value->value.uint32;
success = true;
}
break;
case e_regSetVFP:
// "reg" is an index into the floating point register set at this point.
// We need to translate it up so entry 0 in the fp reg set is the same as vfp_s0
// in the enumerated values for case statement below.
if (reg >= vfp_s0 && reg <= vfp_s31)
{
m_state.context.vfp.__r[reg] = value->value.uint32;
success = true;
}
else if (reg >= vfp_d0 && reg <= vfp_d31)
{
uint32_t d_reg_idx = reg - vfp_d0;
uint32_t s_reg_idx = d_reg_idx * 2;
m_state.context.vfp.__r[s_reg_idx + 0] = value->value.v_sint32[0];
m_state.context.vfp.__r[s_reg_idx + 1] = value->value.v_sint32[1];
success = true;
}
else if (reg >= vfp_q0 && reg <= vfp_q15)
{
uint32_t s_reg_idx = (reg - vfp_q0) * 4;
memcpy ((uint8_t *) &m_state.context.vfp.__r[s_reg_idx], &value->value.v_uint8, 16);
return true;
}
else if (reg == vfp_fpscr)
{
m_state.context.vfp.__fpscr = value->value.uint32;
success = true;
}
break;
case e_regSetEXC:
if (reg < k_num_exc_registers)
{
(&m_state.context.exc.__exception)[reg] = value->value.uint32;
success = true;
}
break;
}
}
if (success)
return SetRegisterState(set) == KERN_SUCCESS;
return false;
}
kern_return_t
DNBArchMachARM::GetRegisterState(int set, bool force)
{
switch (set)
{
case e_regSetALL: return GetGPRState(force) |
GetVFPState(force) |
GetEXCState(force) |
GetDBGState(force);
case e_regSetGPR: return GetGPRState(force);
case e_regSetVFP: return GetVFPState(force);
case e_regSetEXC: return GetEXCState(force);
case e_regSetDBG: return GetDBGState(force);
default: break;
}
return KERN_INVALID_ARGUMENT;
}
kern_return_t
DNBArchMachARM::SetRegisterState(int set)
{
// Make sure we have a valid context to set.
kern_return_t err = GetRegisterState(set, false);
if (err != KERN_SUCCESS)
return err;
switch (set)
{
case e_regSetALL: return SetGPRState() |
SetVFPState() |
SetEXCState() |
SetDBGState(false);
case e_regSetGPR: return SetGPRState();
case e_regSetVFP: return SetVFPState();
case e_regSetEXC: return SetEXCState();
case e_regSetDBG: return SetDBGState(false);
default: break;
}
return KERN_INVALID_ARGUMENT;
}
bool
DNBArchMachARM::RegisterSetStateIsValid (int set) const
{
return m_state.RegsAreValid(set);
}
nub_size_t
DNBArchMachARM::GetRegisterContext (void *buf, nub_size_t buf_len)
{
nub_size_t size = sizeof (m_state.context.gpr) +
sizeof (m_state.context.vfp) +
sizeof (m_state.context.exc);
if (buf && buf_len)
{
if (size > buf_len)
size = buf_len;
bool force = false;
if (GetGPRState(force) | GetVFPState(force) | GetEXCState(force))
return 0;
// Copy each struct individually to avoid any padding that might be between the structs in m_state.context
uint8_t *p = (uint8_t *)buf;
::memcpy (p, &m_state.context.gpr, sizeof(m_state.context.gpr));
p += sizeof(m_state.context.gpr);
::memcpy (p, &m_state.context.vfp, sizeof(m_state.context.vfp));
p += sizeof(m_state.context.vfp);
::memcpy (p, &m_state.context.exc, sizeof(m_state.context.exc));
p += sizeof(m_state.context.exc);
size_t bytes_written = p - (uint8_t *)buf;
assert (bytes_written == size);
}
DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::GetRegisterContext (buf = %p, len = %llu) => %llu", buf, (uint64_t)buf_len, (uint64_t)size);
// Return the size of the register context even if NULL was passed in
return size;
}
nub_size_t
DNBArchMachARM::SetRegisterContext (const void *buf, nub_size_t buf_len)
{
nub_size_t size = sizeof (m_state.context.gpr) +
sizeof (m_state.context.vfp) +
sizeof (m_state.context.exc);
if (buf == NULL || buf_len == 0)
size = 0;
if (size)
{
if (size > buf_len)
size = buf_len;
// Copy each struct individually to avoid any padding that might be between the structs in m_state.context
uint8_t *p = (uint8_t *)buf;
::memcpy (&m_state.context.gpr, p, sizeof(m_state.context.gpr));
p += sizeof(m_state.context.gpr);
::memcpy (&m_state.context.vfp, p, sizeof(m_state.context.vfp));
p += sizeof(m_state.context.vfp);
::memcpy (&m_state.context.exc, p, sizeof(m_state.context.exc));
p += sizeof(m_state.context.exc);
size_t bytes_written = p - (uint8_t *)buf;
assert (bytes_written == size);
if (SetGPRState() | SetVFPState() | SetEXCState())
return 0;
}
DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::SetRegisterContext (buf = %p, len = %llu) => %llu", buf, (uint64_t)buf_len, (uint64_t)size);
return size;
}
uint32_t
DNBArchMachARM::SaveRegisterState ()
{
kern_return_t kret = ::thread_abort_safely(m_thread->MachPortNumber());
DNBLogThreadedIf (LOG_THREAD, "thread = 0x%4.4x calling thread_abort_safely (tid) => %u (SetGPRState() for stop_count = %u)", m_thread->MachPortNumber(), kret, m_thread->Process()->StopCount());
// Always re-read the registers because above we call thread_abort_safely();
bool force = true;
if ((kret = GetGPRState(force)) != KERN_SUCCESS)
{
DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::SaveRegisterState () error: GPR regs failed to read: %u ", kret);
}
else if ((kret = GetVFPState(force)) != KERN_SUCCESS)
{
DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::SaveRegisterState () error: %s regs failed to read: %u", "VFP", kret);
}
else
{
const uint32_t save_id = GetNextRegisterStateSaveID ();
m_saved_register_states[save_id] = m_state.context;
return save_id;
}
return UINT32_MAX;
}
bool
DNBArchMachARM::RestoreRegisterState (uint32_t save_id)
{
SaveRegisterStates::iterator pos = m_saved_register_states.find(save_id);
if (pos != m_saved_register_states.end())
{
m_state.context.gpr = pos->second.gpr;
m_state.context.vfp = pos->second.vfp;
kern_return_t kret;
bool success = true;
if ((kret = SetGPRState()) != KERN_SUCCESS)
{
DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::RestoreRegisterState (save_id = %u) error: GPR regs failed to write: %u", save_id, kret);
success = false;
}
else if ((kret = SetVFPState()) != KERN_SUCCESS)
{
DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::RestoreRegisterState (save_id = %u) error: %s regs failed to write: %u", save_id, "VFP", kret);
success = false;
}
m_saved_register_states.erase(pos);
return success;
}
return false;
}
#endif // #if defined (__arm__)