blob: d3c9a87a89ae81e4227e7653bc06c439c6f8fff7 [file] [log] [blame]
//===-- MachThreadList.cpp --------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/19/07.
//
//===----------------------------------------------------------------------===//
#include "MachThreadList.h"
#include <inttypes.h>
#include <sys/sysctl.h>
#include "DNBLog.h"
#include "DNBThreadResumeActions.h"
#include "MachProcess.h"
MachThreadList::MachThreadList() :
m_threads(),
m_threads_mutex(PTHREAD_MUTEX_RECURSIVE),
m_is_64_bit(false)
{
}
MachThreadList::~MachThreadList()
{
}
nub_state_t
MachThreadList::GetState(nub_thread_t tid)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetState();
return eStateInvalid;
}
const char *
MachThreadList::GetName (nub_thread_t tid)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetName();
return NULL;
}
ThreadInfo::QoS
MachThreadList::GetRequestedQoS (nub_thread_t tid, nub_addr_t tsd, uint64_t dti_qos_class_index)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetRequestedQoS(tsd, dti_qos_class_index);
return ThreadInfo::QoS();
}
nub_addr_t
MachThreadList::GetPThreadT (nub_thread_t tid)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetPThreadT();
return INVALID_NUB_ADDRESS;
}
nub_addr_t
MachThreadList::GetDispatchQueueT (nub_thread_t tid)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetDispatchQueueT();
return INVALID_NUB_ADDRESS;
}
nub_addr_t
MachThreadList::GetTSDAddressForThread (nub_thread_t tid, uint64_t plo_pthread_tsd_base_address_offset, uint64_t plo_pthread_tsd_base_offset, uint64_t plo_pthread_tsd_entry_size)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetTSDAddressForThread(plo_pthread_tsd_base_address_offset, plo_pthread_tsd_base_offset, plo_pthread_tsd_entry_size);
return INVALID_NUB_ADDRESS;
}
nub_thread_t
MachThreadList::SetCurrentThread(nub_thread_t tid)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
{
m_current_thread = thread_sp;
return tid;
}
return INVALID_NUB_THREAD;
}
bool
MachThreadList::GetThreadStoppedReason(nub_thread_t tid, struct DNBThreadStopInfo *stop_info) const
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetStopException().GetStopInfo(stop_info);
return false;
}
bool
MachThreadList::GetIdentifierInfo (nub_thread_t tid, thread_identifier_info_data_t *ident_info)
{
thread_t mach_port_number = GetMachPortNumberByThreadID (tid);
mach_msg_type_number_t count = THREAD_IDENTIFIER_INFO_COUNT;
return ::thread_info (mach_port_number, THREAD_IDENTIFIER_INFO, (thread_info_t)ident_info, &count) == KERN_SUCCESS;
}
void
MachThreadList::DumpThreadStoppedReason (nub_thread_t tid) const
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
thread_sp->GetStopException().DumpStopReason();
}
const char *
MachThreadList::GetThreadInfo (nub_thread_t tid) const
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetBasicInfoAsString();
return NULL;
}
MachThreadSP
MachThreadList::GetThreadByID (nub_thread_t tid) const
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
MachThreadSP thread_sp;
const size_t num_threads = m_threads.size();
for (size_t idx = 0; idx < num_threads; ++idx)
{
if (m_threads[idx]->ThreadID() == tid)
{
thread_sp = m_threads[idx];
break;
}
}
return thread_sp;
}
MachThreadSP
MachThreadList::GetThreadByMachPortNumber (thread_t mach_port_number) const
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
MachThreadSP thread_sp;
const size_t num_threads = m_threads.size();
for (size_t idx = 0; idx < num_threads; ++idx)
{
if (m_threads[idx]->MachPortNumber() == mach_port_number)
{
thread_sp = m_threads[idx];
break;
}
}
return thread_sp;
}
nub_thread_t
MachThreadList::GetThreadIDByMachPortNumber (thread_t mach_port_number) const
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
MachThreadSP thread_sp;
const size_t num_threads = m_threads.size();
for (size_t idx = 0; idx < num_threads; ++idx)
{
if (m_threads[idx]->MachPortNumber() == mach_port_number)
{
return m_threads[idx]->ThreadID();
}
}
return INVALID_NUB_THREAD;
}
thread_t
MachThreadList::GetMachPortNumberByThreadID (nub_thread_t globally_unique_id) const
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
MachThreadSP thread_sp;
const size_t num_threads = m_threads.size();
for (size_t idx = 0; idx < num_threads; ++idx)
{
if (m_threads[idx]->ThreadID() == globally_unique_id)
{
return m_threads[idx]->MachPortNumber();
}
}
return 0;
}
bool
MachThreadList::GetRegisterValue (nub_thread_t tid, uint32_t reg_set_idx, uint32_t reg_idx, DNBRegisterValue *reg_value ) const
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetRegisterValue(reg_set_idx, reg_idx, reg_value);
return false;
}
bool
MachThreadList::SetRegisterValue (nub_thread_t tid, uint32_t reg_set_idx, uint32_t reg_idx, const DNBRegisterValue *reg_value ) const
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->SetRegisterValue(reg_set_idx, reg_idx, reg_value);
return false;
}
nub_size_t
MachThreadList::GetRegisterContext (nub_thread_t tid, void *buf, size_t buf_len)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetRegisterContext (buf, buf_len);
return 0;
}
nub_size_t
MachThreadList::SetRegisterContext (nub_thread_t tid, const void *buf, size_t buf_len)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->SetRegisterContext (buf, buf_len);
return 0;
}
uint32_t
MachThreadList::SaveRegisterState (nub_thread_t tid)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->SaveRegisterState ();
return 0;
}
bool
MachThreadList::RestoreRegisterState (nub_thread_t tid, uint32_t save_id)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->RestoreRegisterState (save_id);
return 0;
}
nub_size_t
MachThreadList::NumThreads () const
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
return m_threads.size();
}
nub_thread_t
MachThreadList::ThreadIDAtIndex (nub_size_t idx) const
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
if (idx < m_threads.size())
return m_threads[idx]->ThreadID();
return INVALID_NUB_THREAD;
}
nub_thread_t
MachThreadList::CurrentThreadID ( )
{
MachThreadSP thread_sp;
CurrentThread(thread_sp);
if (thread_sp.get())
return thread_sp->ThreadID();
return INVALID_NUB_THREAD;
}
bool
MachThreadList::NotifyException(MachException::Data& exc)
{
MachThreadSP thread_sp (GetThreadByMachPortNumber (exc.thread_port));
if (thread_sp)
{
thread_sp->NotifyException(exc);
return true;
}
return false;
}
void
MachThreadList::Clear()
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
m_threads.clear();
}
uint32_t
MachThreadList::UpdateThreadList(MachProcess *process, bool update, MachThreadList::collection *new_threads)
{
// locker will keep a mutex locked until it goes out of scope
DNBLogThreadedIf (LOG_THREAD, "MachThreadList::UpdateThreadList (pid = %4.4x, update = %u) process stop count = %u", process->ProcessID(), update, process->StopCount());
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
if (process->StopCount() == 0)
{
int mib[4] = { CTL_KERN, KERN_PROC, KERN_PROC_PID, process->ProcessID() };
struct kinfo_proc processInfo;
size_t bufsize = sizeof(processInfo);
if (sysctl(mib, (unsigned)(sizeof(mib)/sizeof(int)), &processInfo, &bufsize, NULL, 0) == 0 && bufsize > 0)
{
if (processInfo.kp_proc.p_flag & P_LP64)
m_is_64_bit = true;
}
#if defined (__i386__) || defined (__x86_64__)
if (m_is_64_bit)
DNBArchProtocol::SetArchitecture(CPU_TYPE_X86_64);
else
DNBArchProtocol::SetArchitecture(CPU_TYPE_I386);
#elif defined (__arm__) || defined (__arm64__) || defined (__aarch64__)
if (m_is_64_bit)
DNBArchProtocol::SetArchitecture(CPU_TYPE_ARM64);
else
DNBArchProtocol::SetArchitecture(CPU_TYPE_ARM);
#endif
}
if (m_threads.empty() || update)
{
thread_array_t thread_list = NULL;
mach_msg_type_number_t thread_list_count = 0;
task_t task = process->Task().TaskPort();
DNBError err(::task_threads (task, &thread_list, &thread_list_count), DNBError::MachKernel);
if (DNBLogCheckLogBit(LOG_THREAD) || err.Fail())
err.LogThreaded("::task_threads ( task = 0x%4.4x, thread_list => %p, thread_list_count => %u )", task, thread_list, thread_list_count);
if (err.Error() == KERN_SUCCESS && thread_list_count > 0)
{
MachThreadList::collection currThreads;
size_t idx;
// Iterator through the current thread list and see which threads
// we already have in our list (keep them), which ones we don't
// (add them), and which ones are not around anymore (remove them).
for (idx = 0; idx < thread_list_count; ++idx)
{
const thread_t mach_port_num = thread_list[idx];
uint64_t unique_thread_id = MachThread::GetGloballyUniqueThreadIDForMachPortID (mach_port_num);
MachThreadSP thread_sp (GetThreadByID (unique_thread_id));
if (thread_sp)
{
// Keep the existing thread class
currThreads.push_back(thread_sp);
}
else
{
// We don't have this thread, lets add it.
thread_sp.reset(new MachThread(process, m_is_64_bit, unique_thread_id, mach_port_num));
// Add the new thread regardless of its is user ready state...
// Make sure the thread is ready to be displayed and shown to users
// before we add this thread to our list...
if (thread_sp->IsUserReady())
{
if (new_threads)
new_threads->push_back(thread_sp);
currThreads.push_back(thread_sp);
}
}
}
m_threads.swap(currThreads);
m_current_thread.reset();
// Free the vm memory given to us by ::task_threads()
vm_size_t thread_list_size = (vm_size_t) (thread_list_count * sizeof (thread_t));
::vm_deallocate (::mach_task_self(),
(vm_address_t)thread_list,
thread_list_size);
}
}
return m_threads.size();
}
void
MachThreadList::CurrentThread (MachThreadSP& thread_sp)
{
// locker will keep a mutex locked until it goes out of scope
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
if (m_current_thread.get() == NULL)
{
// Figure out which thread is going to be our current thread.
// This is currently done by finding the first thread in the list
// that has a valid exception.
const uint32_t num_threads = m_threads.size();
for (uint32_t idx = 0; idx < num_threads; ++idx)
{
if (m_threads[idx]->GetStopException().IsValid())
{
m_current_thread = m_threads[idx];
break;
}
}
}
thread_sp = m_current_thread;
}
void
MachThreadList::Dump() const
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
const uint32_t num_threads = m_threads.size();
for (uint32_t idx = 0; idx < num_threads; ++idx)
{
m_threads[idx]->Dump(idx);
}
}
void
MachThreadList::ProcessWillResume(MachProcess *process, const DNBThreadResumeActions &thread_actions)
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
// Update our thread list, because sometimes libdispatch or the kernel
// will spawn threads while a task is suspended.
MachThreadList::collection new_threads;
// First figure out if we were planning on running only one thread, and if so force that thread to resume.
bool run_one_thread;
nub_thread_t solo_thread = INVALID_NUB_THREAD;
if (thread_actions.GetSize() > 0
&& thread_actions.NumActionsWithState(eStateStepping) + thread_actions.NumActionsWithState (eStateRunning) == 1)
{
run_one_thread = true;
const DNBThreadResumeAction *action_ptr = thread_actions.GetFirst();
size_t num_actions = thread_actions.GetSize();
for (size_t i = 0; i < num_actions; i++, action_ptr++)
{
if (action_ptr->state == eStateStepping || action_ptr->state == eStateRunning)
{
solo_thread = action_ptr->tid;
break;
}
}
}
else
run_one_thread = false;
UpdateThreadList(process, true, &new_threads);
DNBThreadResumeAction resume_new_threads = { -1U, eStateRunning, 0, INVALID_NUB_ADDRESS };
// If we are planning to run only one thread, any new threads should be suspended.
if (run_one_thread)
resume_new_threads.state = eStateSuspended;
const uint32_t num_new_threads = new_threads.size();
const uint32_t num_threads = m_threads.size();
for (uint32_t idx = 0; idx < num_threads; ++idx)
{
MachThread *thread = m_threads[idx].get();
bool handled = false;
for (uint32_t new_idx = 0; new_idx < num_new_threads; ++new_idx)
{
if (thread == new_threads[new_idx].get())
{
thread->ThreadWillResume(&resume_new_threads);
handled = true;
break;
}
}
if (!handled)
{
const DNBThreadResumeAction *thread_action = thread_actions.GetActionForThread (thread->ThreadID(), true);
// There must always be a thread action for every thread.
assert (thread_action);
bool others_stopped = false;
if (solo_thread == thread->ThreadID())
others_stopped = true;
thread->ThreadWillResume (thread_action, others_stopped);
}
}
if (new_threads.size())
{
for (uint32_t idx = 0; idx < num_new_threads; ++idx)
{
DNBLogThreadedIf (LOG_THREAD, "MachThreadList::ProcessWillResume (pid = %4.4x) stop-id=%u, resuming newly discovered thread: 0x%8.8" PRIx64 ", thread-is-user-ready=%i)",
process->ProcessID(),
process->StopCount(),
new_threads[idx]->ThreadID(),
new_threads[idx]->IsUserReady());
}
}
}
uint32_t
MachThreadList::ProcessDidStop(MachProcess *process)
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
// Update our thread list
const uint32_t num_threads = UpdateThreadList(process, true);
for (uint32_t idx = 0; idx < num_threads; ++idx)
{
m_threads[idx]->ThreadDidStop();
}
return num_threads;
}
//----------------------------------------------------------------------
// Check each thread in our thread list to see if we should notify our
// client of the current halt in execution.
//
// Breakpoints can have callback functions associated with them than
// can return true to stop, or false to continue executing the inferior.
//
// RETURNS
// true if we should stop and notify our clients
// false if we should resume our child process and skip notification
//----------------------------------------------------------------------
bool
MachThreadList::ShouldStop(bool &step_more)
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
uint32_t should_stop = false;
const uint32_t num_threads = m_threads.size();
for (uint32_t idx = 0; !should_stop && idx < num_threads; ++idx)
{
should_stop = m_threads[idx]->ShouldStop(step_more);
}
return should_stop;
}
void
MachThreadList::NotifyBreakpointChanged (const DNBBreakpoint *bp)
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
const uint32_t num_threads = m_threads.size();
for (uint32_t idx = 0; idx < num_threads; ++idx)
{
m_threads[idx]->NotifyBreakpointChanged(bp);
}
}
uint32_t
MachThreadList::EnableHardwareBreakpoint (const DNBBreakpoint* bp) const
{
if (bp != NULL)
{
const uint32_t num_threads = m_threads.size();
for (uint32_t idx = 0; idx < num_threads; ++idx)
m_threads[idx]->EnableHardwareBreakpoint(bp);
}
return INVALID_NUB_HW_INDEX;
}
bool
MachThreadList::DisableHardwareBreakpoint (const DNBBreakpoint* bp) const
{
if (bp != NULL)
{
const uint32_t num_threads = m_threads.size();
for (uint32_t idx = 0; idx < num_threads; ++idx)
m_threads[idx]->DisableHardwareBreakpoint(bp);
}
return false;
}
// DNBWatchpointSet() -> MachProcess::CreateWatchpoint() -> MachProcess::EnableWatchpoint()
// -> MachThreadList::EnableHardwareWatchpoint().
uint32_t
MachThreadList::EnableHardwareWatchpoint (const DNBBreakpoint* wp) const
{
uint32_t hw_index = INVALID_NUB_HW_INDEX;
if (wp != NULL)
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
const uint32_t num_threads = m_threads.size();
// On Mac OS X we have to prime the control registers for new threads. We do this
// using the control register data for the first thread, for lack of a better way of choosing.
bool also_set_on_task = true;
for (uint32_t idx = 0; idx < num_threads; ++idx)
{
if ((hw_index = m_threads[idx]->EnableHardwareWatchpoint(wp, also_set_on_task)) == INVALID_NUB_HW_INDEX)
{
// We know that idx failed for some reason. Let's rollback the transaction for [0, idx).
for (uint32_t i = 0; i < idx; ++i)
m_threads[i]->RollbackTransForHWP();
return INVALID_NUB_HW_INDEX;
}
also_set_on_task = false;
}
// Notify each thread to commit the pending transaction.
for (uint32_t idx = 0; idx < num_threads; ++idx)
m_threads[idx]->FinishTransForHWP();
}
return hw_index;
}
bool
MachThreadList::DisableHardwareWatchpoint (const DNBBreakpoint* wp) const
{
if (wp != NULL)
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
const uint32_t num_threads = m_threads.size();
// On Mac OS X we have to prime the control registers for new threads. We do this
// using the control register data for the first thread, for lack of a better way of choosing.
bool also_set_on_task = true;
for (uint32_t idx = 0; idx < num_threads; ++idx)
{
if (!m_threads[idx]->DisableHardwareWatchpoint(wp, also_set_on_task))
{
// We know that idx failed for some reason. Let's rollback the transaction for [0, idx).
for (uint32_t i = 0; i < idx; ++i)
m_threads[i]->RollbackTransForHWP();
return false;
}
also_set_on_task = false;
}
// Notify each thread to commit the pending transaction.
for (uint32_t idx = 0; idx < num_threads; ++idx)
m_threads[idx]->FinishTransForHWP();
return true;
}
return false;
}
uint32_t
MachThreadList::NumSupportedHardwareWatchpoints () const
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
const uint32_t num_threads = m_threads.size();
// Use an arbitrary thread to retrieve the number of supported hardware watchpoints.
if (num_threads)
return m_threads[0]->NumSupportedHardwareWatchpoints();
return 0;
}
uint32_t
MachThreadList::GetThreadIndexForThreadStoppedWithSignal (const int signo) const
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
uint32_t should_stop = false;
const uint32_t num_threads = m_threads.size();
for (uint32_t idx = 0; !should_stop && idx < num_threads; ++idx)
{
if (m_threads[idx]->GetStopException().SoftSignal () == signo)
return idx;
}
return UINT32_MAX;
}