blob: 284450f330bf63f7ba5a5ea5c3985d62a38e2ef4 [file] [log] [blame]
//===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/lldb-python.h"
#include "NativeProcessLinux.h"
// C Includes
#include <errno.h>
#include <poll.h>
#include <string.h>
#include <stdint.h>
#include <unistd.h>
#include <linux/unistd.h>
#include <sys/ptrace.h>
#include <sys/socket.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/user.h>
#include <sys/wait.h>
// C++ Includes
#include <fstream>
#include <string>
// Other libraries and framework includes
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Error.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/RegisterValue.h"
#include "lldb/Core/Scalar.h"
#include "lldb/Core/State.h"
#include "lldb/Host/Host.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Target/NativeRegisterContext.h"
#include "lldb/Target/ProcessLaunchInfo.h"
#include "lldb/Utility/PseudoTerminal.h"
#include "Host/common/NativeBreakpoint.h"
#include "Utility/StringExtractor.h"
#include "Plugins/Process/Utility/LinuxSignals.h"
#include "NativeThreadLinux.h"
#include "ProcFileReader.h"
#include "ProcessPOSIXLog.h"
#define DEBUG_PTRACE_MAXBYTES 20
// Support ptrace extensions even when compiled without required kernel support
#ifndef PT_GETREGS
#ifndef PTRACE_GETREGS
#define PTRACE_GETREGS 12
#endif
#endif
#ifndef PT_SETREGS
#ifndef PTRACE_SETREGS
#define PTRACE_SETREGS 13
#endif
#endif
#ifndef PT_GETFPREGS
#ifndef PTRACE_GETFPREGS
#define PTRACE_GETFPREGS 14
#endif
#endif
#ifndef PT_SETFPREGS
#ifndef PTRACE_SETFPREGS
#define PTRACE_SETFPREGS 15
#endif
#endif
#ifndef PTRACE_GETREGSET
#define PTRACE_GETREGSET 0x4204
#endif
#ifndef PTRACE_SETREGSET
#define PTRACE_SETREGSET 0x4205
#endif
#ifndef PTRACE_GET_THREAD_AREA
#define PTRACE_GET_THREAD_AREA 25
#endif
#ifndef PTRACE_ARCH_PRCTL
#define PTRACE_ARCH_PRCTL 30
#endif
#ifndef ARCH_GET_FS
#define ARCH_SET_GS 0x1001
#define ARCH_SET_FS 0x1002
#define ARCH_GET_FS 0x1003
#define ARCH_GET_GS 0x1004
#endif
// Support hardware breakpoints in case it has not been defined
#ifndef TRAP_HWBKPT
#define TRAP_HWBKPT 4
#endif
// Try to define a macro to encapsulate the tgkill syscall
// fall back on kill() if tgkill isn't available
#define tgkill(pid, tid, sig) syscall(SYS_tgkill, pid, tid, sig)
// We disable the tracing of ptrace calls for integration builds to
// avoid the additional indirection and checks.
#ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION
#define PTRACE(req, pid, addr, data, data_size) \
PtraceWrapper((req), (pid), (addr), (data), (data_size), #req, __FILE__, __LINE__)
#else
#define PTRACE(req, pid, addr, data, data_size) \
PtraceWrapper((req), (pid), (addr), (data), (data_size))
#endif
// Private bits we only need internally.
namespace
{
using namespace lldb;
using namespace lldb_private;
const UnixSignals&
GetUnixSignals ()
{
static process_linux::LinuxSignals signals;
return signals;
}
const char *
GetFilePath (const lldb_private::ProcessLaunchInfo::FileAction *file_action, const char *default_path)
{
const char *pts_name = "/dev/pts/";
const char *path = NULL;
if (file_action)
{
if (file_action->GetAction () == ProcessLaunchInfo::FileAction::eFileActionOpen)
{
path = file_action->GetPath ();
// By default the stdio paths passed in will be pseudo-terminal
// (/dev/pts). If so, convert to using a different default path
// instead to redirect I/O to the debugger console. This should
// also handle user overrides to /dev/null or a different file.
if (!path || ::strncmp (path, pts_name, ::strlen (pts_name)) == 0)
path = default_path;
}
}
return path;
}
Error
ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch)
{
// Grab process info for the running process.
ProcessInstanceInfo process_info;
if (!platform.GetProcessInfo (pid, process_info))
return lldb_private::Error("failed to get process info");
// Resolve the executable module.
ModuleSP exe_module_sp;
FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ());
Error error = platform.ResolveExecutable(
process_info.GetExecutableFile (),
platform.GetSystemArchitecture (),
exe_module_sp,
executable_search_paths.GetSize () ? &executable_search_paths : NULL);
if (!error.Success ())
return error;
// Check if we've got our architecture from the exe_module.
arch = exe_module_sp->GetArchitecture ();
if (arch.IsValid ())
return Error();
else
return Error("failed to retrieve a valid architecture from the exe module");
}
void
DisplayBytes (lldb_private::StreamString &s, void *bytes, uint32_t count)
{
uint8_t *ptr = (uint8_t *)bytes;
const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
for(uint32_t i=0; i<loop_count; i++)
{
s.Printf ("[%x]", *ptr);
ptr++;
}
}
void
PtraceDisplayBytes(int &req, void *data, size_t data_size)
{
StreamString buf;
Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
if (verbose_log)
{
switch(req)
{
case PTRACE_POKETEXT:
{
DisplayBytes(buf, &data, 8);
verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
break;
}
case PTRACE_POKEDATA:
{
DisplayBytes(buf, &data, 8);
verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
break;
}
case PTRACE_POKEUSER:
{
DisplayBytes(buf, &data, 8);
verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
break;
}
case PTRACE_SETREGS:
{
DisplayBytes(buf, data, data_size);
verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
break;
}
case PTRACE_SETFPREGS:
{
DisplayBytes(buf, data, data_size);
verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
break;
}
case PTRACE_SETSIGINFO:
{
DisplayBytes(buf, data, sizeof(siginfo_t));
verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
break;
}
case PTRACE_SETREGSET:
{
// Extract iov_base from data, which is a pointer to the struct IOVEC
DisplayBytes(buf, *(void **)data, data_size);
verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
break;
}
default:
{
}
}
}
}
// Wrapper for ptrace to catch errors and log calls.
// Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
long
PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size,
const char* reqName, const char* file, int line)
{
long int result;
Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
PtraceDisplayBytes(req, data, data_size);
errno = 0;
if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
else
result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
if (log)
log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d",
reqName, pid, addr, data, data_size, result, file, line);
PtraceDisplayBytes(req, data, data_size);
if (log && errno != 0)
{
const char* str;
switch (errno)
{
case ESRCH: str = "ESRCH"; break;
case EINVAL: str = "EINVAL"; break;
case EBUSY: str = "EBUSY"; break;
case EPERM: str = "EPERM"; break;
default: str = "<unknown>";
}
log->Printf("ptrace() failed; errno=%d (%s)", errno, str);
}
return result;
}
#ifdef LLDB_CONFIGURATION_BUILDANDINTEGRATION
// Wrapper for ptrace when logging is not required.
// Sets errno to 0 prior to calling ptrace.
long
PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size)
{
long result = 0;
errno = 0;
if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
else
result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
return result;
}
#endif
//------------------------------------------------------------------------------
// Static implementations of NativeProcessLinux::ReadMemory and
// NativeProcessLinux::WriteMemory. This enables mutual recursion between these
// functions without needed to go thru the thread funnel.
static lldb::addr_t
DoReadMemory (
lldb::pid_t pid,
lldb::addr_t vm_addr,
void *buf,
lldb::addr_t size,
Error &error)
{
// ptrace word size is determined by the host, not the child
static const unsigned word_size = sizeof(void*);
unsigned char *dst = static_cast<unsigned char*>(buf);
lldb::addr_t bytes_read;
lldb::addr_t remainder;
long data;
Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
if (log)
ProcessPOSIXLog::IncNestLevel();
if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__,
pid, word_size, (void*)vm_addr, buf, size);
assert(sizeof(data) >= word_size);
for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
{
errno = 0;
data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, NULL, 0);
if (errno)
{
error.SetErrorToErrno();
if (log)
ProcessPOSIXLog::DecNestLevel();
return bytes_read;
}
remainder = size - bytes_read;
remainder = remainder > word_size ? word_size : remainder;
// Copy the data into our buffer
for (unsigned i = 0; i < remainder; ++i)
dst[i] = ((data >> i*8) & 0xFF);
if (log && ProcessPOSIXLog::AtTopNestLevel() &&
(log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
(log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
{
uintptr_t print_dst = 0;
// Format bytes from data by moving into print_dst for log output
for (unsigned i = 0; i < remainder; ++i)
print_dst |= (((data >> i*8) & 0xFF) << i*8);
log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
(void*)vm_addr, print_dst, (unsigned long)data);
}
vm_addr += word_size;
dst += word_size;
}
if (log)
ProcessPOSIXLog::DecNestLevel();
return bytes_read;
}
static lldb::addr_t
DoWriteMemory(
lldb::pid_t pid,
lldb::addr_t vm_addr,
const void *buf,
lldb::addr_t size,
Error &error)
{
// ptrace word size is determined by the host, not the child
static const unsigned word_size = sizeof(void*);
const unsigned char *src = static_cast<const unsigned char*>(buf);
lldb::addr_t bytes_written = 0;
lldb::addr_t remainder;
Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
if (log)
ProcessPOSIXLog::IncNestLevel();
if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__,
pid, word_size, (void*)vm_addr, buf, size);
for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
{
remainder = size - bytes_written;
remainder = remainder > word_size ? word_size : remainder;
if (remainder == word_size)
{
unsigned long data = 0;
assert(sizeof(data) >= word_size);
for (unsigned i = 0; i < word_size; ++i)
data |= (unsigned long)src[i] << i*8;
if (log && ProcessPOSIXLog::AtTopNestLevel() &&
(log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
(log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
(void*)vm_addr, *(unsigned long*)src, data);
if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0))
{
error.SetErrorToErrno();
if (log)
ProcessPOSIXLog::DecNestLevel();
return bytes_written;
}
}
else
{
unsigned char buff[8];
if (DoReadMemory(pid, vm_addr,
buff, word_size, error) != word_size)
{
if (log)
ProcessPOSIXLog::DecNestLevel();
return bytes_written;
}
memcpy(buff, src, remainder);
if (DoWriteMemory(pid, vm_addr,
buff, word_size, error) != word_size)
{
if (log)
ProcessPOSIXLog::DecNestLevel();
return bytes_written;
}
if (log && ProcessPOSIXLog::AtTopNestLevel() &&
(log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
(log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
(void*)vm_addr, *(unsigned long*)src, *(unsigned long*)buff);
}
vm_addr += word_size;
src += word_size;
}
if (log)
ProcessPOSIXLog::DecNestLevel();
return bytes_written;
}
//------------------------------------------------------------------------------
/// @class Operation
/// @brief Represents a NativeProcessLinux operation.
///
/// Under Linux, it is not possible to ptrace() from any other thread but the
/// one that spawned or attached to the process from the start. Therefore, when
/// a NativeProcessLinux is asked to deliver or change the state of an inferior
/// process the operation must be "funneled" to a specific thread to perform the
/// task. The Operation class provides an abstract base for all services the
/// NativeProcessLinux must perform via the single virtual function Execute, thus
/// encapsulating the code that needs to run in the privileged context.
class Operation
{
public:
Operation () : m_error() { }
virtual
~Operation() {}
virtual void
Execute (NativeProcessLinux *process) = 0;
const Error &
GetError () const { return m_error; }
protected:
Error m_error;
};
//------------------------------------------------------------------------------
/// @class ReadOperation
/// @brief Implements NativeProcessLinux::ReadMemory.
class ReadOperation : public Operation
{
public:
ReadOperation (
lldb::addr_t addr,
void *buff,
lldb::addr_t size,
lldb::addr_t &result) :
Operation (),
m_addr (addr),
m_buff (buff),
m_size (size),
m_result (result)
{
}
void Execute (NativeProcessLinux *process) override;
private:
lldb::addr_t m_addr;
void *m_buff;
lldb::addr_t m_size;
lldb::addr_t &m_result;
};
void
ReadOperation::Execute (NativeProcessLinux *process)
{
m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
}
//------------------------------------------------------------------------------
/// @class WriteOperation
/// @brief Implements NativeProcessLinux::WriteMemory.
class WriteOperation : public Operation
{
public:
WriteOperation (
lldb::addr_t addr,
const void *buff,
lldb::addr_t size,
lldb::addr_t &result) :
Operation (),
m_addr (addr),
m_buff (buff),
m_size (size),
m_result (result)
{
}
void Execute (NativeProcessLinux *process) override;
private:
lldb::addr_t m_addr;
const void *m_buff;
lldb::addr_t m_size;
lldb::addr_t &m_result;
};
void
WriteOperation::Execute(NativeProcessLinux *process)
{
m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
}
//------------------------------------------------------------------------------
/// @class ReadRegOperation
/// @brief Implements NativeProcessLinux::ReadRegisterValue.
class ReadRegOperation : public Operation
{
public:
ReadRegOperation(lldb::tid_t tid, uint32_t offset, const char *reg_name,
RegisterValue &value, bool &result)
: m_tid(tid), m_offset(static_cast<uintptr_t> (offset)), m_reg_name(reg_name),
m_value(value), m_result(result)
{ }
void Execute(NativeProcessLinux *monitor);
private:
lldb::tid_t m_tid;
uintptr_t m_offset;
const char *m_reg_name;
RegisterValue &m_value;
bool &m_result;
};
void
ReadRegOperation::Execute(NativeProcessLinux *monitor)
{
Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
// Set errno to zero so that we can detect a failed peek.
errno = 0;
lldb::addr_t data = PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, NULL, 0);
if (errno)
m_result = false;
else
{
m_value = data;
m_result = true;
}
if (log)
log->Printf ("NativeProcessLinux::%s() reg %s: 0x%" PRIx64, __FUNCTION__,
m_reg_name, data);
}
//------------------------------------------------------------------------------
/// @class WriteRegOperation
/// @brief Implements NativeProcessLinux::WriteRegisterValue.
class WriteRegOperation : public Operation
{
public:
WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name,
const RegisterValue &value, bool &result)
: m_tid(tid), m_offset(offset), m_reg_name(reg_name),
m_value(value), m_result(result)
{ }
void Execute(NativeProcessLinux *monitor);
private:
lldb::tid_t m_tid;
uintptr_t m_offset;
const char *m_reg_name;
const RegisterValue &m_value;
bool &m_result;
};
void
WriteRegOperation::Execute(NativeProcessLinux *monitor)
{
void* buf;
Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
buf = (void*) m_value.GetAsUInt64();
if (log)
log->Printf ("NativeProcessLinux::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf);
if (PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0))
m_result = false;
else
m_result = true;
}
//------------------------------------------------------------------------------
/// @class ReadGPROperation
/// @brief Implements NativeProcessLinux::ReadGPR.
class ReadGPROperation : public Operation
{
public:
ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result)
: m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result)
{ }
void Execute(NativeProcessLinux *monitor);
private:
lldb::tid_t m_tid;
void *m_buf;
size_t m_buf_size;
bool &m_result;
};
void
ReadGPROperation::Execute(NativeProcessLinux *monitor)
{
if (PTRACE(PTRACE_GETREGS, m_tid, NULL, m_buf, m_buf_size) < 0)
m_result = false;
else
m_result = true;
}
//------------------------------------------------------------------------------
/// @class ReadFPROperation
/// @brief Implements NativeProcessLinux::ReadFPR.
class ReadFPROperation : public Operation
{
public:
ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result)
: m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result)
{ }
void Execute(NativeProcessLinux *monitor);
private:
lldb::tid_t m_tid;
void *m_buf;
size_t m_buf_size;
bool &m_result;
};
void
ReadFPROperation::Execute(NativeProcessLinux *monitor)
{
if (PTRACE(PTRACE_GETFPREGS, m_tid, NULL, m_buf, m_buf_size) < 0)
m_result = false;
else
m_result = true;
}
//------------------------------------------------------------------------------
/// @class ReadRegisterSetOperation
/// @brief Implements NativeProcessLinux::ReadRegisterSet.
class ReadRegisterSetOperation : public Operation
{
public:
ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset, bool &result)
: m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset), m_result(result)
{ }
void Execute(NativeProcessLinux *monitor);
private:
lldb::tid_t m_tid;
void *m_buf;
size_t m_buf_size;
const unsigned int m_regset;
bool &m_result;
};
void
ReadRegisterSetOperation::Execute(NativeProcessLinux *monitor)
{
if (PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size) < 0)
m_result = false;
else
m_result = true;
}
//------------------------------------------------------------------------------
/// @class WriteGPROperation
/// @brief Implements NativeProcessLinux::WriteGPR.
class WriteGPROperation : public Operation
{
public:
WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result)
: m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result)
{ }
void Execute(NativeProcessLinux *monitor);
private:
lldb::tid_t m_tid;
void *m_buf;
size_t m_buf_size;
bool &m_result;
};
void
WriteGPROperation::Execute(NativeProcessLinux *monitor)
{
if (PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size) < 0)
m_result = false;
else
m_result = true;
}
//------------------------------------------------------------------------------
/// @class WriteFPROperation
/// @brief Implements NativeProcessLinux::WriteFPR.
class WriteFPROperation : public Operation
{
public:
WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result)
: m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result)
{ }
void Execute(NativeProcessLinux *monitor);
private:
lldb::tid_t m_tid;
void *m_buf;
size_t m_buf_size;
bool &m_result;
};
void
WriteFPROperation::Execute(NativeProcessLinux *monitor)
{
if (PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size) < 0)
m_result = false;
else
m_result = true;
}
//------------------------------------------------------------------------------
/// @class WriteRegisterSetOperation
/// @brief Implements NativeProcessLinux::WriteRegisterSet.
class WriteRegisterSetOperation : public Operation
{
public:
WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset, bool &result)
: m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset), m_result(result)
{ }
void Execute(NativeProcessLinux *monitor);
private:
lldb::tid_t m_tid;
void *m_buf;
size_t m_buf_size;
const unsigned int m_regset;
bool &m_result;
};
void
WriteRegisterSetOperation::Execute(NativeProcessLinux *monitor)
{
if (PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size) < 0)
m_result = false;
else
m_result = true;
}
//------------------------------------------------------------------------------
/// @class ResumeOperation
/// @brief Implements NativeProcessLinux::Resume.
class ResumeOperation : public Operation
{
public:
ResumeOperation(lldb::tid_t tid, uint32_t signo, bool &result) :
m_tid(tid), m_signo(signo), m_result(result) { }
void Execute(NativeProcessLinux *monitor);
private:
lldb::tid_t m_tid;
uint32_t m_signo;
bool &m_result;
};
void
ResumeOperation::Execute(NativeProcessLinux *monitor)
{
intptr_t data = 0;
if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
data = m_signo;
if (PTRACE(PTRACE_CONT, m_tid, NULL, (void*)data, 0))
{
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("ResumeOperation (%" PRIu64 ") failed: %s", m_tid, strerror(errno));
m_result = false;
}
else
m_result = true;
}
//------------------------------------------------------------------------------
/// @class SingleStepOperation
/// @brief Implements NativeProcessLinux::SingleStep.
class SingleStepOperation : public Operation
{
public:
SingleStepOperation(lldb::tid_t tid, uint32_t signo, bool &result)
: m_tid(tid), m_signo(signo), m_result(result) { }
void Execute(NativeProcessLinux *monitor);
private:
lldb::tid_t m_tid;
uint32_t m_signo;
bool &m_result;
};
void
SingleStepOperation::Execute(NativeProcessLinux *monitor)
{
intptr_t data = 0;
if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
data = m_signo;
if (PTRACE(PTRACE_SINGLESTEP, m_tid, NULL, (void*)data, 0))
m_result = false;
else
m_result = true;
}
//------------------------------------------------------------------------------
/// @class SiginfoOperation
/// @brief Implements NativeProcessLinux::GetSignalInfo.
class SiginfoOperation : public Operation
{
public:
SiginfoOperation(lldb::tid_t tid, void *info, bool &result, int &ptrace_err)
: m_tid(tid), m_info(info), m_result(result), m_err(ptrace_err) { }
void Execute(NativeProcessLinux *monitor);
private:
lldb::tid_t m_tid;
void *m_info;
bool &m_result;
int &m_err;
};
void
SiginfoOperation::Execute(NativeProcessLinux *monitor)
{
if (PTRACE(PTRACE_GETSIGINFO, m_tid, NULL, m_info, 0)) {
m_result = false;
m_err = errno;
}
else
m_result = true;
}
//------------------------------------------------------------------------------
/// @class EventMessageOperation
/// @brief Implements NativeProcessLinux::GetEventMessage.
class EventMessageOperation : public Operation
{
public:
EventMessageOperation(lldb::tid_t tid, unsigned long *message, bool &result)
: m_tid(tid), m_message(message), m_result(result) { }
void Execute(NativeProcessLinux *monitor);
private:
lldb::tid_t m_tid;
unsigned long *m_message;
bool &m_result;
};
void
EventMessageOperation::Execute(NativeProcessLinux *monitor)
{
if (PTRACE(PTRACE_GETEVENTMSG, m_tid, NULL, m_message, 0))
m_result = false;
else
m_result = true;
}
class DetachOperation : public Operation
{
public:
DetachOperation(lldb::tid_t tid, Error &result) : m_tid(tid), m_error(result) { }
void Execute(NativeProcessLinux *monitor);
private:
lldb::tid_t m_tid;
Error &m_error;
};
void
DetachOperation::Execute(NativeProcessLinux *monitor)
{
if (ptrace(PT_DETACH, m_tid, NULL, 0) < 0)
m_error.SetErrorToErrno();
}
}
using namespace lldb_private;
// Simple helper function to ensure flags are enabled on the given file
// descriptor.
static bool
EnsureFDFlags(int fd, int flags, Error &error)
{
int status;
if ((status = fcntl(fd, F_GETFL)) == -1)
{
error.SetErrorToErrno();
return false;
}
if (fcntl(fd, F_SETFL, status | flags) == -1)
{
error.SetErrorToErrno();
return false;
}
return true;
}
NativeProcessLinux::OperationArgs::OperationArgs(NativeProcessLinux *monitor)
: m_monitor(monitor)
{
sem_init(&m_semaphore, 0, 0);
}
NativeProcessLinux::OperationArgs::~OperationArgs()
{
sem_destroy(&m_semaphore);
}
NativeProcessLinux::LaunchArgs::LaunchArgs(NativeProcessLinux *monitor,
lldb_private::Module *module,
char const **argv,
char const **envp,
const char *stdin_path,
const char *stdout_path,
const char *stderr_path,
const char *working_dir)
: OperationArgs(monitor),
m_module(module),
m_argv(argv),
m_envp(envp),
m_stdin_path(stdin_path),
m_stdout_path(stdout_path),
m_stderr_path(stderr_path),
m_working_dir(working_dir) { }
NativeProcessLinux::LaunchArgs::~LaunchArgs()
{ }
NativeProcessLinux::AttachArgs::AttachArgs(NativeProcessLinux *monitor,
lldb::pid_t pid)
: OperationArgs(monitor), m_pid(pid) { }
NativeProcessLinux::AttachArgs::~AttachArgs()
{ }
// -----------------------------------------------------------------------------
// Public Static Methods
// -----------------------------------------------------------------------------
lldb_private::Error
NativeProcessLinux::LaunchProcess (
lldb_private::Module *exe_module,
lldb_private::ProcessLaunchInfo &launch_info,
lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate,
NativeProcessProtocolSP &native_process_sp)
{
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
Error error;
// Verify the working directory is valid if one was specified.
const char* working_dir = launch_info.GetWorkingDirectory ();
if (working_dir)
{
FileSpec working_dir_fs (working_dir, true);
if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory)
{
error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir);
return error;
}
}
const lldb_private::ProcessLaunchInfo::FileAction *file_action;
// Default of NULL will mean to use existing open file descriptors.
const char *stdin_path = NULL;
const char *stdout_path = NULL;
const char *stderr_path = NULL;
file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
stdin_path = GetFilePath (file_action, stdin_path);
file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
stdout_path = GetFilePath (file_action, stdout_path);
file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
stderr_path = GetFilePath (file_action, stderr_path);
// Create the NativeProcessLinux in launch mode.
native_process_sp.reset (new NativeProcessLinux ());
if (log)
{
int i = 0;
for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
{
log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
++i;
}
}
if (!native_process_sp->RegisterNativeDelegate (native_delegate))
{
native_process_sp.reset ();
error.SetErrorStringWithFormat ("failed to register the native delegate");
return error;
}
reinterpret_cast<NativeProcessLinux*> (native_process_sp.get ())->LaunchInferior (
exe_module,
launch_info.GetArguments ().GetConstArgumentVector (),
launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
stdin_path,
stdout_path,
stderr_path,
working_dir,
error);
if (error.Fail ())
{
native_process_sp.reset ();
if (log)
log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
return error;
}
launch_info.SetProcessID (native_process_sp->GetID ());
return error;
}
lldb_private::Error
NativeProcessLinux::AttachToProcess (
lldb::pid_t pid,
lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate,
NativeProcessProtocolSP &native_process_sp)
{
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
// Grab the current platform architecture. This should be Linux,
// since this code is only intended to run on a Linux host.
PlatformSP platform_sp (Platform::GetDefaultPlatform ());
if (!platform_sp)
return Error("failed to get a valid default platform");
// Retrieve the architecture for the running process.
ArchSpec process_arch;
Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch);
if (!error.Success ())
return error;
native_process_sp.reset (new NativeProcessLinux ());
if (!native_process_sp->RegisterNativeDelegate (native_delegate))
{
native_process_sp.reset (new NativeProcessLinux ());
error.SetErrorStringWithFormat ("failed to register the native delegate");
return error;
}
reinterpret_cast<NativeProcessLinux*> (native_process_sp.get ())->AttachToInferior (pid, error);
if (!error.Success ())
{
native_process_sp.reset ();
return error;
}
return error;
}
// -----------------------------------------------------------------------------
// Public Instance Methods
// -----------------------------------------------------------------------------
NativeProcessLinux::NativeProcessLinux () :
NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
m_arch (),
m_operation_thread (LLDB_INVALID_HOST_THREAD),
m_monitor_thread (LLDB_INVALID_HOST_THREAD),
m_operation (nullptr),
m_operation_mutex (),
m_operation_pending (),
m_operation_done (),
m_wait_for_stop_tids (),
m_wait_for_stop_tids_mutex (),
m_supports_mem_region (eLazyBoolCalculate),
m_mem_region_cache (),
m_mem_region_cache_mutex ()
{
}
//------------------------------------------------------------------------------
/// The basic design of the NativeProcessLinux is built around two threads.
///
/// One thread (@see SignalThread) simply blocks on a call to waitpid() looking
/// for changes in the debugee state. When a change is detected a
/// ProcessMessage is sent to the associated ProcessLinux instance. This thread
/// "drives" state changes in the debugger.
///
/// The second thread (@see OperationThread) is responsible for two things 1)
/// launching or attaching to the inferior process, and then 2) servicing
/// operations such as register reads/writes, stepping, etc. See the comments
/// on the Operation class for more info as to why this is needed.
void
NativeProcessLinux::LaunchInferior (
Module *module,
const char *argv[],
const char *envp[],
const char *stdin_path,
const char *stdout_path,
const char *stderr_path,
const char *working_dir,
lldb_private::Error &error)
{
if (module)
m_arch = module->GetArchitecture ();
SetState(eStateLaunching);
std::unique_ptr<LaunchArgs> args(
new LaunchArgs(
this, module, argv, envp,
stdin_path, stdout_path, stderr_path,
working_dir));
sem_init(&m_operation_pending, 0, 0);
sem_init(&m_operation_done, 0, 0);
StartLaunchOpThread(args.get(), error);
if (!error.Success())
return;
WAIT_AGAIN:
// Wait for the operation thread to initialize.
if (sem_wait(&args->m_semaphore))
{
if (errno == EINTR)
goto WAIT_AGAIN;
else
{
error.SetErrorToErrno();
return;
}
}
// Check that the launch was a success.
if (!args->m_error.Success())
{
StopOpThread();
error = args->m_error;
return;
}
// Finally, start monitoring the child process for change in state.
m_monitor_thread = Host::StartMonitoringChildProcess(
NativeProcessLinux::MonitorCallback, this, GetID(), true);
if (!IS_VALID_LLDB_HOST_THREAD(m_monitor_thread))
{
error.SetErrorToGenericError();
error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback.");
return;
}
}
void
NativeProcessLinux::AttachToInferior (lldb::pid_t pid, lldb_private::Error &error)
{
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
// We can use the Host for everything except the ResolveExecutable portion.
PlatformSP platform_sp = Platform::GetDefaultPlatform ();
if (!platform_sp)
{
if (log)
log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid);
error.SetErrorString ("no default platform available");
}
// Gather info about the process.
ProcessInstanceInfo process_info;
platform_sp->GetProcessInfo (pid, process_info);
// Resolve the executable module
ModuleSP exe_module_sp;
FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths());
error = platform_sp->ResolveExecutable(process_info.GetExecutableFile(),
Host::GetArchitecture(),
exe_module_sp,
executable_search_paths.GetSize() ? &executable_search_paths : NULL);
if (!error.Success())
return;
// Set the architecture to the exe architecture.
m_arch = exe_module_sp->GetArchitecture();
if (log)
log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
m_pid = pid;
SetState(eStateAttaching);
sem_init (&m_operation_pending, 0, 0);
sem_init (&m_operation_done, 0, 0);
std::unique_ptr<AttachArgs> args (new AttachArgs (this, pid));
StartAttachOpThread(args.get (), error);
if (!error.Success ())
return;
WAIT_AGAIN:
// Wait for the operation thread to initialize.
if (sem_wait (&args->m_semaphore))
{
if (errno == EINTR)
goto WAIT_AGAIN;
else
{
error.SetErrorToErrno ();
return;
}
}
// Check that the attach was a success.
if (!args->m_error.Success ())
{
StopOpThread ();
error = args->m_error;
return;
}
// Finally, start monitoring the child process for change in state.
m_monitor_thread = Host::StartMonitoringChildProcess (
NativeProcessLinux::MonitorCallback, this, GetID (), true);
if (!IS_VALID_LLDB_HOST_THREAD (m_monitor_thread))
{
error.SetErrorToGenericError ();
error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback.");
return;
}
}
NativeProcessLinux::~NativeProcessLinux()
{
StopMonitor();
}
//------------------------------------------------------------------------------
// Thread setup and tear down.
void
NativeProcessLinux::StartLaunchOpThread(LaunchArgs *args, Error &error)
{
static const char *g_thread_name = "lldb.process.nativelinux.operation";
if (IS_VALID_LLDB_HOST_THREAD (m_operation_thread))
return;
m_operation_thread =
Host::ThreadCreate (g_thread_name, LaunchOpThread, args, &error);
}
void *
NativeProcessLinux::LaunchOpThread(void *arg)
{
LaunchArgs *args = static_cast<LaunchArgs*>(arg);
if (!Launch(args)) {
sem_post(&args->m_semaphore);
return NULL;
}
ServeOperation(args);
return NULL;
}
bool
NativeProcessLinux::Launch(LaunchArgs *args)
{
NativeProcessLinux *monitor = args->m_monitor;
assert (monitor && "monitor is NULL");
if (!monitor)
return false;
const char **argv = args->m_argv;
const char **envp = args->m_envp;
const char *stdin_path = args->m_stdin_path;
const char *stdout_path = args->m_stdout_path;
const char *stderr_path = args->m_stderr_path;
const char *working_dir = args->m_working_dir;
lldb_utility::PseudoTerminal terminal;
const size_t err_len = 1024;
char err_str[err_len];
lldb::pid_t pid;
NativeThreadProtocolSP thread_sp;
lldb::ThreadSP inferior;
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
// Propagate the environment if one is not supplied.
if (envp == NULL || envp[0] == NULL)
envp = const_cast<const char **>(environ);
if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
{
args->m_error.SetErrorToGenericError();
args->m_error.SetErrorString("Process fork failed.");
goto FINISH;
}
// Recognized child exit status codes.
enum {
ePtraceFailed = 1,
eDupStdinFailed,
eDupStdoutFailed,
eDupStderrFailed,
eChdirFailed,
eExecFailed,
eSetGidFailed
};
// Child process.
if (pid == 0)
{
if (log)
log->Printf ("NativeProcessLinux::%s inferior process preparing to fork", __FUNCTION__);
// Trace this process.
if (log)
log->Printf ("NativeProcessLinux::%s inferior process issuing PTRACE_TRACEME", __FUNCTION__);
if (PTRACE(PTRACE_TRACEME, 0, NULL, NULL, 0) < 0)
{
if (log)
log->Printf ("NativeProcessLinux::%s inferior process PTRACE_TRACEME failed", __FUNCTION__);
exit(ePtraceFailed);
}
// Do not inherit setgid powers.
if (log)
log->Printf ("NativeProcessLinux::%s inferior process resetting gid", __FUNCTION__);
if (setgid(getgid()) != 0)
{
if (log)
log->Printf ("NativeProcessLinux::%s inferior process setgid() failed", __FUNCTION__);
exit(eSetGidFailed);
}
// Attempt to have our own process group.
// TODO verify if we really want this.
if (log)
log->Printf ("NativeProcessLinux::%s inferior process resetting process group", __FUNCTION__);
if (setpgid(0, 0) != 0)
{
if (log)
{
const int error_code = errno;
log->Printf ("NativeProcessLinux::%s inferior setpgid() failed, errno=%d (%s), continuing with existing proccess group %" PRIu64,
__FUNCTION__,
error_code,
strerror (error_code),
static_cast<lldb::pid_t> (getpgid (0)));
}
// Don't allow this to prevent an inferior exec.
}
// Dup file descriptors if needed.
//
// FIXME: If two or more of the paths are the same we needlessly open
// the same file multiple times.
if (stdin_path != NULL && stdin_path[0])
if (!DupDescriptor(stdin_path, STDIN_FILENO, O_RDONLY))
exit(eDupStdinFailed);
if (stdout_path != NULL && stdout_path[0])
if (!DupDescriptor(stdout_path, STDOUT_FILENO, O_WRONLY | O_CREAT))
exit(eDupStdoutFailed);
if (stderr_path != NULL && stderr_path[0])
if (!DupDescriptor(stderr_path, STDERR_FILENO, O_WRONLY | O_CREAT))
exit(eDupStderrFailed);
// Change working directory
if (working_dir != NULL && working_dir[0])
if (0 != ::chdir(working_dir))
exit(eChdirFailed);
// Execute. We should never return.
execve(argv[0],
const_cast<char *const *>(argv),
const_cast<char *const *>(envp));
exit(eExecFailed);
}
// Wait for the child process to trap on its call to execve.
::pid_t wpid;
int status;
if ((wpid = waitpid(pid, &status, 0)) < 0)
{
args->m_error.SetErrorToErrno();
if (log)
log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", __FUNCTION__, args->m_error.AsCString ());
// Mark the inferior as invalid.
// FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid.
monitor->SetState (StateType::eStateInvalid);
goto FINISH;
}
else if (WIFEXITED(status))
{
// open, dup or execve likely failed for some reason.
args->m_error.SetErrorToGenericError();
switch (WEXITSTATUS(status))
{
case ePtraceFailed:
args->m_error.SetErrorString("Child ptrace failed.");
break;
case eDupStdinFailed:
args->m_error.SetErrorString("Child open stdin failed.");
break;
case eDupStdoutFailed:
args->m_error.SetErrorString("Child open stdout failed.");
break;
case eDupStderrFailed:
args->m_error.SetErrorString("Child open stderr failed.");
break;
case eChdirFailed:
args->m_error.SetErrorString("Child failed to set working directory.");
break;
case eExecFailed:
args->m_error.SetErrorString("Child exec failed.");
break;
case eSetGidFailed:
args->m_error.SetErrorString("Child setgid failed.");
break;
default:
args->m_error.SetErrorString("Child returned unknown exit status.");
break;
}
if (log)
{
log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
__FUNCTION__,
WEXITSTATUS(status));
}
// Mark the inferior as invalid.
// FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid.
monitor->SetState (StateType::eStateInvalid);
goto FINISH;
}
assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
"Could not sync with inferior process.");
if (log)
log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
if (!SetDefaultPtraceOpts(pid))
{
args->m_error.SetErrorToErrno();
if (log)
log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
__FUNCTION__,
args->m_error.AsCString ());
// Mark the inferior as invalid.
// FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid.
monitor->SetState (StateType::eStateInvalid);
goto FINISH;
}
// Release the master terminal descriptor and pass it off to the
// NativeProcessLinux instance. Similarly stash the inferior pid.
monitor->m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
monitor->m_pid = pid;
// Set the terminal fd to be in non blocking mode (it simplifies the
// implementation of ProcessLinux::GetSTDOUT to have a non-blocking
// descriptor to read from).
if (!EnsureFDFlags(monitor->m_terminal_fd, O_NONBLOCK, args->m_error))
{
if (log)
log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
__FUNCTION__,
args->m_error.AsCString ());
// Mark the inferior as invalid.
// FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid.
monitor->SetState (StateType::eStateInvalid);
goto FINISH;
}
if (log)
log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
thread_sp = monitor->AddThread (static_cast<lldb::tid_t> (pid));
assert (thread_sp && "AddThread() returned a nullptr thread");
reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGSTOP);
monitor->SetCurrentThreadID (thread_sp->GetID ());
// Let our process instance know the thread has stopped.
monitor->SetState (StateType::eStateStopped);
FINISH:
if (log)
{
if (args->m_error.Success ())
{
log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
}
else
{
log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
__FUNCTION__,
args->m_error.AsCString ());
}
}
return args->m_error.Success();
}
void
NativeProcessLinux::StartAttachOpThread(AttachArgs *args, lldb_private::Error &error)
{
static const char *g_thread_name = "lldb.process.linux.operation";
if (IS_VALID_LLDB_HOST_THREAD(m_operation_thread))
return;
m_operation_thread =
Host::ThreadCreate(g_thread_name, AttachOpThread, args, &error);
}
void *
NativeProcessLinux::AttachOpThread(void *arg)
{
AttachArgs *args = static_cast<AttachArgs*>(arg);
if (!Attach(args)) {
sem_post(&args->m_semaphore);
return NULL;
}
ServeOperation(args);
return NULL;
}
bool
NativeProcessLinux::Attach(AttachArgs *args)
{
lldb::pid_t pid = args->m_pid;
NativeProcessLinux *monitor = args->m_monitor;
lldb::ThreadSP inferior;
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
// Use a map to keep track of the threads which we have attached/need to attach.
Host::TidMap tids_to_attach;
if (pid <= 1)
{
args->m_error.SetErrorToGenericError();
args->m_error.SetErrorString("Attaching to process 1 is not allowed.");
goto FINISH;
}
while (Host::FindProcessThreads(pid, tids_to_attach))
{
for (Host::TidMap::iterator it = tids_to_attach.begin();
it != tids_to_attach.end();)
{
if (it->second == false)
{
lldb::tid_t tid = it->first;
// Attach to the requested process.
// An attach will cause the thread to stop with a SIGSTOP.
if (PTRACE(PTRACE_ATTACH, tid, NULL, NULL, 0) < 0)
{
// No such thread. The thread may have exited.
// More error handling may be needed.
if (errno == ESRCH)
{
it = tids_to_attach.erase(it);
continue;
}
else
{
args->m_error.SetErrorToErrno();
goto FINISH;
}
}
int status;
// Need to use __WALL otherwise we receive an error with errno=ECHLD
// At this point we should have a thread stopped if waitpid succeeds.
if ((status = waitpid(tid, NULL, __WALL)) < 0)
{
// No such thread. The thread may have exited.
// More error handling may be needed.
if (errno == ESRCH)
{
it = tids_to_attach.erase(it);
continue;
}
else
{
args->m_error.SetErrorToErrno();
goto FINISH;
}
}
if (!SetDefaultPtraceOpts(tid))
{
args->m_error.SetErrorToErrno();
goto FINISH;
}
if (log)
log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
it->second = true;
// Create the thread, mark it as stopped.
NativeThreadProtocolSP thread_sp (monitor->AddThread (static_cast<lldb::tid_t> (tid)));
assert (thread_sp && "AddThread() returned a nullptr");
reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGSTOP);
monitor->SetCurrentThreadID (thread_sp->GetID ());
}
// move the loop forward
++it;
}
}
if (tids_to_attach.size() > 0)
{
monitor->m_pid = pid;
// Let our process instance know the thread has stopped.
monitor->SetState (StateType::eStateStopped);
}
else
{
args->m_error.SetErrorToGenericError();
args->m_error.SetErrorString("No such process.");
}
FINISH:
return args->m_error.Success();
}
bool
NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
{
long ptrace_opts = 0;
// Have the child raise an event on exit. This is used to keep the child in
// limbo until it is destroyed.
ptrace_opts |= PTRACE_O_TRACEEXIT;
// Have the tracer trace threads which spawn in the inferior process.
// TODO: if we want to support tracing the inferiors' child, add the
// appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
ptrace_opts |= PTRACE_O_TRACECLONE;
// Have the tracer notify us before execve returns
// (needed to disable legacy SIGTRAP generation)
ptrace_opts |= PTRACE_O_TRACEEXEC;
return PTRACE(PTRACE_SETOPTIONS, pid, NULL, (void*)ptrace_opts, 0) >= 0;
}
static ExitType convert_pid_status_to_exit_type (int status)
{
if (WIFEXITED (status))
return ExitType::eExitTypeExit;
else if (WIFSIGNALED (status))
return ExitType::eExitTypeSignal;
else if (WIFSTOPPED (status))
return ExitType::eExitTypeStop;
else
{
// We don't know what this is.
return ExitType::eExitTypeInvalid;
}
}
static int convert_pid_status_to_return_code (int status)
{
if (WIFEXITED (status))
return WEXITSTATUS (status);
else if (WIFSIGNALED (status))
return WTERMSIG (status);
else if (WIFSTOPPED (status))
return WSTOPSIG (status);
else
{
// We don't know what this is.
return ExitType::eExitTypeInvalid;
}
}
// Main process monitoring waitpid-loop handler.
bool
NativeProcessLinux::MonitorCallback(void *callback_baton,
lldb::pid_t pid,
bool exited,
int signal,
int status)
{
Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
NativeProcessLinux *const process = static_cast<NativeProcessLinux*>(callback_baton);
assert (process && "process is null");
if (!process)
{
if (log)
log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " callback_baton was null, can't determine process to use", __FUNCTION__, pid);
return true;
}
// Certain activities differ based on whether the pid is the tid of the main thread.
const bool is_main_thread = (pid == process->GetID ());
// Assume we keep monitoring by default.
bool stop_monitoring = false;
// Handle when the thread exits.
if (exited)
{
if (log)
log->Printf ("NativeProcessLinux::%s() got exit signal, tid = %" PRIu64 " (%s main thread)", __FUNCTION__, pid, is_main_thread ? "is" : "is not");
// This is a thread that exited. Ensure we're not tracking it anymore.
const bool thread_found = process->StopTrackingThread (pid);
if (is_main_thread)
{
// We only set the exit status and notify the delegate if we haven't already set the process
// state to an exited state. We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
// for the main thread.
const bool already_notified = (process->GetState() == StateType::eStateExited) | (process->GetState () == StateType::eStateCrashed);
if (!already_notified)
{
if (log)
log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (process->GetState ()));
// The main thread exited. We're done monitoring. Report to delegate.
process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
// Notify delegate that our process has exited.
process->SetState (StateType::eStateExited, true);
}
else
{
if (log)
log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
}
return true;
}
else
{
// Do we want to report to the delegate in this case? I think not. If this was an orderly
// thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
// and we would have done an all-stop then.
if (log)
log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
// Not the main thread, we keep going.
return false;
}
}
// Get details on the signal raised.
siginfo_t info;
int ptrace_err = 0;
if (!process->GetSignalInfo (pid, &info, ptrace_err))
{
if (ptrace_err == EINVAL)
{
// This is the first part of the Linux ptrace group-stop mechanism.
// The tracer (i.e. NativeProcessLinux) is expected to inject the signal
// into the tracee (i.e. inferior) at this point.
if (log)
log->Printf ("NativeProcessLinux::%s() resuming from group-stop", __FUNCTION__);
// The inferior process is in 'group-stop', so deliver the stopping signal.
const bool signal_delivered = process->Resume (pid, info.si_signo);
if (log)
log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " group-stop signal delivery of signal 0x%x (%s) - %s", __FUNCTION__, pid, info.si_signo, GetUnixSignals ().GetSignalAsCString (info.si_signo), signal_delivered ? "success" : "failed");
assert(signal_delivered && "SIGSTOP delivery failed while in 'group-stop' state");
stop_monitoring = false;
}
else
{
// ptrace(GETSIGINFO) failed (but not due to group-stop).
// A return value of ESRCH means the thread/process is no longer on the system,
// so it was killed somehow outside of our control. Either way, we can't do anything
// with it anymore.
// We stop monitoring if it was the main thread.
stop_monitoring = is_main_thread;
// Stop tracking the metadata for the thread since it's entirely off the system now.
const bool thread_found = process->StopTrackingThread (pid);
if (log)
log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
__FUNCTION__, strerror(ptrace_err), pid, signal, status, ptrace_err == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
if (is_main_thread)
{
// Notify the delegate - our process is not available but appears to have been killed outside
// our control. Is eStateExited the right exit state in this case?
process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
process->SetState (StateType::eStateExited, true);
}
else
{
// This thread was pulled out from underneath us. Anything to do here? Do we want to do an all stop?
if (log)
log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, process->GetID (), pid);
}
}
}
else
{
// We have retrieved the signal info. Dispatch appropriately.
if (info.si_signo == SIGTRAP)
process->MonitorSIGTRAP(&info, pid);
else
process->MonitorSignal(&info, pid, exited);
stop_monitoring = false;
}
return stop_monitoring;
}
void
NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid)
{
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
const bool is_main_thread = (pid == GetID ());
assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!");
if (!info)
return;
// See if we can find a thread for this signal.
NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
if (!thread_sp)
{
if (log)
log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
}
switch (info->si_code)
{
// TODO: these two cases are required if we want to support tracing of the inferiors' children. We'd need this to debug a monitor.
// case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
// case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
{
lldb::tid_t tid = LLDB_INVALID_THREAD_ID;
unsigned long event_message = 0;
if (GetEventMessage(pid, &event_message))
tid = static_cast<lldb::tid_t> (event_message);
if (log)
log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event for tid %" PRIu64, __FUNCTION__, pid, tid);
// If we don't track the thread yet: create it, mark as stopped.
// If we do track it, this is the wait we needed. Now resume the new thread.
// In all cases, resume the current (i.e. main process) thread.
bool already_tracked = false;
thread_sp = GetOrCreateThread (tid, already_tracked);
assert (thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread");
// If the thread was already tracked, it means the created thread already received its SI_USER notification of creation.
if (already_tracked)
{
// FIXME loops like we want to stop all theads here.
// StopAllThreads
// We can now resume the newly created thread since it is fully created.
reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
Resume (tid, LLDB_INVALID_SIGNAL_NUMBER);
}
else
{
// Mark the thread as currently launching. Need to wait for SIGTRAP clone on the main thread before
// this thread is ready to go.
reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetLaunching ();
}
// In all cases, we can resume the main thread here.
Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
break;
}
case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
if (log)
log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP);
// FIXME stop all threads, mark thread stop reason as ThreadStopInfo.reason = eStopReasonExec;
break;
case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
{
// The inferior process or one of its threads is about to exit.
// Maintain the process or thread in a state of "limbo" until we are
// explicitly commanded to detach, destroy, resume, etc.
unsigned long data = 0;
if (!GetEventMessage(pid, &data))
data = -1;
if (log)
{
log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
__FUNCTION__,
data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
pid,
is_main_thread ? "is main thread" : "not main thread");
}
// Set the thread to exited.
if (thread_sp)
reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetExited ();
else
{
if (log)
log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " failed to retrieve thread for tid %" PRIu64", cannot set thread state", __FUNCTION__, GetID (), pid);
}
if (is_main_thread)
{
SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
// Resume the thread so it completely exits.
Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
}
else
{
// FIXME figure out the path where we plan to reap the metadata for the thread.
}
break;
}
case 0:
case TRAP_TRACE:
// We receive this on single stepping.
if (log)
log->Printf ("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", __FUNCTION__, pid);
if (thread_sp)
{
reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP);
SetCurrentThreadID (thread_sp->GetID ());
}
else
{
if (log)
log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 " single stepping received trace but thread not found", __FUNCTION__, GetID (), pid);
}
// Tell the process we have a stop (from single stepping).
SetState (StateType::eStateStopped, true);
break;
case SI_KERNEL:
case TRAP_BRKPT:
if (log)
log->Printf ("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, __FUNCTION__, pid);
// Mark the thread as stopped at breakpoint.
if (thread_sp)
{
reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP);
Error error = FixupBreakpointPCAsNeeded (thread_sp);
if (error.Fail ())
{
if (log)
log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", __FUNCTION__, pid, error.AsCString ());
}
}
else
{
if (log)
log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": warning, cannot process software breakpoint since no thread metadata", __FUNCTION__, pid);
}
// Tell the process we have a stop from this thread.
SetCurrentThreadID (pid);
SetState (StateType::eStateStopped, true);
break;
case TRAP_HWBKPT:
if (log)
log->Printf ("NativeProcessLinux::%s() received watchpoint event, pid = %" PRIu64, __FUNCTION__, pid);
// Mark the thread as stopped at watchpoint.
// The address is at (lldb::addr_t)info->si_addr if we need it.
if (thread_sp)
reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP);
else
{
if (log)
log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ": warning, cannot process hardware breakpoint since no thread metadata", __FUNCTION__, GetID (), pid);
}
// Tell the process we have a stop from this thread.
SetCurrentThreadID (pid);
SetState (StateType::eStateStopped, true);
break;
case SIGTRAP:
case (SIGTRAP | 0x80):
if (log)
log->Printf ("NativeProcessLinux::%s() received system call stop event, pid %" PRIu64 "tid %" PRIu64, __FUNCTION__, GetID (), pid);
// Ignore these signals until we know more about them.
Resume(pid, 0);
break;
default:
assert(false && "Unexpected SIGTRAP code!");
if (log)
log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%" PRIx64, __FUNCTION__, GetID (), pid, static_cast<uint64_t> (SIGTRAP | (PTRACE_EVENT_CLONE << 8)));
break;
}
}
void
NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited)
{
int signo = info->si_signo;
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
// POSIX says that process behaviour is undefined after it ignores a SIGFPE,
// SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
// kill(2) or raise(3). Similarly for tgkill(2) on Linux.
//
// IOW, user generated signals never generate what we consider to be a
// "crash".
//
// Similarly, ACK signals generated by this monitor.
// See if we can find a thread for this signal.
NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
if (!thread_sp)
{
if (log)
log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
}
// Handle the signal.
if (info->si_code == SI_TKILL || info->si_code == SI_USER)
{
if (log)
log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
__FUNCTION__,
GetUnixSignals ().GetSignalAsCString (signo),
signo,
(info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
info->si_pid,
(info->si_pid == getpid ()) ? "is monitor" : "is not monitor",
pid);
if ((info->si_pid == 0) && info->si_code == SI_USER)
{
// A new thread creation is being signaled. This is one of two parts that come in
// a non-deterministic order. pid is the thread id.
if (log)
log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification",
__FUNCTION__, GetID (), pid);
// Did we already create the thread?
bool already_tracked = false;
thread_sp = GetOrCreateThread (pid, already_tracked);
assert (thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread");
// If the thread was already tracked, it means the main thread already received its SIGTRAP for the create.
if (already_tracked)
{
// We can now resume this thread up since it is fully created.
reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
Resume (thread_sp->GetID (), LLDB_INVALID_SIGNAL_NUMBER);
}
else
{
// Mark the thread as currently launching. Need to wait for SIGTRAP clone on the main thread before
// this thread is ready to go.
reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetLaunching ();
}
}
else if (info->si_pid == getpid () && (signo == SIGSTOP))
{
// This is a tgkill()-based stop.
if (thread_sp)
{
// An inferior thread just stopped. Mark it as such.
reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (signo);
SetCurrentThreadID (thread_sp->GetID ());
// Remove this tid from the wait-for-stop set.
Mutex::Locker locker (m_wait_for_stop_tids_mutex);
auto removed_count = m_wait_for_stop_tids.erase (thread_sp->GetID ());
if (removed_count < 1)
{
log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": tgkill()-stopped thread not in m_wait_for_stop_tids",
__FUNCTION__, GetID (), thread_sp->GetID ());
}
// If this is the last thread in the m_wait_for_stop_tids, we need to notify
// the delegate that a stop has occurred now that every thread that was supposed
// to stop has stopped.
if (m_wait_for_stop_tids.empty ())
{
if (log)
{
log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", setting process state to stopped now that all tids marked for stop have completed",
__FUNCTION__,
GetID (),
pid);
}
SetState (StateType::eStateStopped, true);
}
}
}
else
{
// Hmm, not sure what to do with this.
if (log)
log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " unsure how to handle SI_KILL or SI_USER signal", __FUNCTION__, GetID ());
}
return;
}
if (log)
log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo));
switch (signo)
{
case SIGSEGV:
{
lldb::addr_t fault_addr = reinterpret_cast<lldb::addr_t>(info->si_addr);
// FIXME figure out how to propagate this properly. Seems like it
// should go in ThreadStopInfo.
// We can get more details on the exact nature of the crash here.
// ProcessMessage::CrashReason reason = GetCrashReasonForSIGSEGV(info);
if (!exited)
{
// This is just a pre-signal-delivery notification of the incoming signal.
// Send a stop to the debugger.
if (thread_sp)
{
reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (signo);
SetCurrentThreadID (thread_sp->GetID ());
}
SetState (StateType::eStateStopped, true);
}
else
{
if (thread_sp)
{
// FIXME figure out what type this is.
const uint64_t exception_type = static_cast<uint64_t> (SIGSEGV);
reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetCrashedWithException (exception_type, fault_addr);
}
SetState (StateType::eStateCrashed, true);
}
}
break;
case SIGILL:
{
// lldb::addr_t fault_addr = reinterpret_cast<lldb::addr_t>(info->si_addr);
// Can get the reason from here.
// ProcessMessage::CrashReason reason = GetCrashReasonForSIGILL(info);
// FIXME save the crash reason
SetState (StateType::eStateCrashed, true);
}
break;
case SIGFPE:
{
// lldb::addr_t fault_addr = reinterpret_cast<lldb::addr_t>(info->si_addr);
// Can get the crash reason from below.
// ProcessMessage::CrashReason reason = GetCrashReasonForSIGFPE(info);
// FIXME save the crash reason
SetState (StateType::eStateCrashed, true);
}
break;
case SIGBUS:
{
// lldb::addr_t fault_addr = reinterpret_cast<lldb::addr_t>(info->si_addr);
// Can get the crash reason from below.
// ProcessMessage::CrashReason reason = GetCrashReasonForSIGBUS(info);
// FIXME save the crash reason
SetState (StateType::eStateCrashed);
}
break;
default:
// FIXME Stop all threads here.
break;
}
}
Error
NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
{
Error error;
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
if (log)
log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
int run_thread_count = 0;
int stop_thread_count = 0;
int step_thread_count = 0;
std::vector<NativeThreadProtocolSP> new_stop_threads;
Mutex::Locker locker (m_threads_mutex);
for (auto thread_sp : m_threads)
{
assert (thread_sp && "thread list should not contain NULL threads");
NativeThreadLinux *const linux_thread_p = reinterpret_cast<NativeThreadLinux*> (thread_sp.get ());
const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
assert (action && "NULL ResumeAction returned for thread during Resume ()");
if (log)
{
log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
__FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
}
switch (action->state)
{
case eStateRunning:
// Run the thread, possibly feeding it the signal.
linux_thread_p->SetRunning ();
if (action->signal > 0)
{
// Resume the thread and deliver the given signal,
// then mark as delivered.
Resume (thread_sp->GetID (), action->signal);
resume_actions.SetSignalHandledForThread (thread_sp->GetID ());
}
else
{
// Just resume the thread with no signal.
Resume (thread_sp->GetID (), LLDB_INVALID_SIGNAL_NUMBER);
}
++run_thread_count;
break;
case eStateStepping:
// Note: if we have multiple threads, we may need to stop
// the other threads first, then step this one.
linux_thread_p->SetStepping ();
if (SingleStep (thread_sp->GetID (), 0))
{
if (log)
log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " single step succeeded",
__FUNCTION__, GetID (), thread_sp->GetID ());
}
else
{
if (log)
log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " single step failed",
__FUNCTION__, GetID (), thread_sp->GetID ());
}
++step_thread_count;
break;
case eStateSuspended:
case eStateStopped:
if (!StateIsStoppedState (linux_thread_p->GetState (), false))
new_stop_threads.push_back (thread_sp);
else
{
if (log)
log->Printf ("NativeProcessLinux::%s no need to stop pid %" PRIu64 " tid %" PRIu64 ", thread state already %s",
__FUNCTION__, GetID (), thread_sp->GetID (), StateAsCString (linux_thread_p->GetState ()));
}
++stop_thread_count;
break;
default:
return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
__FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
}
}
// If any thread was set to run, notify the process state as running.
if (run_thread_count > 0)
SetState (StateType::eStateRunning, true);
// Now do a tgkill SIGSTOP on each thread we want to stop.
if (!new_stop_threads.empty ())
{
// Lock the m_wait_for_stop_tids set so we can fill it with every thread we expect to have stopped.
Mutex::Locker stop_thread_id_locker (m_wait_for_stop_tids_mutex);
for (auto thread_sp : new_stop_threads)
{
// Send a stop signal to the thread.
const int result = tgkill (GetID (), thread_sp->GetID (), SIGSTOP);
if (result != 0)
{
// tgkill failed.
if (log)
log->Printf ("NativeProcessLinux::%s error: tgkill SIGSTOP for pid %" PRIu64 " tid %" PRIu64 "failed, retval %d",
__FUNCTION__, GetID (), thread_sp->GetID (), result);
}
else
{
// tgkill succeeded. Don't mark the thread state, though. Let the signal
// handling mark it.
if (log)
log->Printf ("NativeProcessLinux::%s tgkill SIGSTOP for pid %" PRIu64 " tid %" PRIu64 " succeeded",
__FUNCTION__, GetID (), thread_sp->GetID ());
// Add it to the set of threads we expect to signal a stop.
// We won't tell the delegate about it until this list drains to empty.
m_wait_for_stop_tids.insert (thread_sp->GetID ());
}
}
}
return error;
}
Error
NativeProcessLinux::Halt ()
{
Error error;
// FIXME check if we're already stopped
const bool is_stopped = false;
if (is_stopped)
return error;
if (kill (GetID (), SIGSTOP) != 0)
error.SetErrorToErrno ();
return error;
}
Error
NativeProcessLinux::Detach ()
{
Error error;
// Tell ptrace to detach from the process.
if (GetID () != LLDB_INVALID_PROCESS_ID)
error = Detach (GetID ());
// Stop monitoring the inferior.
StopMonitor ();
// No error.
return error;
}
Error
NativeProcessLinux::Signal (int signo)
{
Error error;
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
__FUNCTION__, signo, GetUnixSignals ().GetSignalAsCString (signo), GetID ());
if (kill(GetID(), signo))
error.SetErrorToErrno();
return error;
}
Error
NativeProcessLinux::Kill ()
{
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
Error error;
switch (m_state)
{
case StateType::eStateInvalid:
case StateType::eStateExited:
case StateType::eStateCrashed:
case StateType::eStateDetached:
case StateType::eStateUnloaded:
// Nothing to do - the process is already dead.
if (log)
log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
return error;
case StateType::eStateConnected:
case StateType::eStateAttaching:
case StateType::eStateLaunching:
case StateType::eStateStopped:
case StateType::eStateRunning:
case StateType::eStateStepping:
case StateType::eStateSuspended:
// We can try to kill a process in these states.
break;
}
if (kill (GetID (), SIGKILL) != 0)
{
error.SetErrorToErrno ();
return error;
}
return error;
}
static Error
ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
{
memory_region_info.Clear();
StringExtractor line_extractor (maps_line.c_str ());
// Format: {address_start_hex}-{address_end_hex} perms offset dev inode pathname
// perms: rwxp (letter is present if set, '-' if not, final character is p=private, s=shared).
// Parse out the starting address
lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
// Parse out hyphen separating start and end address from range.
if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
// Parse out the ending address
lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
// Parse out the space after the address.
if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
return Error ("malformed /proc/{pid}/maps entry, missing space after range");
// Save the range.
memory_region_info.GetRange ().SetRangeBase (start_address);
memory_region_info.GetRange ().SetRangeEnd (end_address);
// Parse out each permission entry.
if (line_extractor.GetBytesLeft () < 4)
return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
// Handle read permission.
const char read_perm_char = line_extractor.GetChar ();
if (read_perm_char == 'r')
memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
else
{
assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
}
// Handle write permission.
const char write_perm_char = line_extractor.GetChar ();
if (write_perm_char == 'w')
memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
else
{
assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
}
// Handle execute permission.
const char exec_perm_char = line_extractor.GetChar ();
if (exec_perm_char == 'x')
memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
else
{
assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
}
return Error ();
}
Error
NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
{
// FIXME review that the final memory region returned extends to the end of the virtual address space,
// with no perms if it is not mapped.
// Use an approach that reads memory regions from /proc/{pid}/maps.
// Assume proc maps entries are in ascending order.
// FIXME assert if we find differently.
Mutex::Locker locker (m_mem_region_cache_mutex);
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
Error error;
if (m_supports_mem_region == LazyBool::eLazyBoolNo)
{
// We're done.
error.SetErrorString ("unsupported");
return error;
}
// If our cache is empty, pull the latest. There should always be at least one memory region
// if memory region handling is supported.
if (m_mem_region_cache.empty ())
{
error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
[&] (const std::string &line) -> bool
{
MemoryRegionInfo info;
const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
if (parse_error.Success ())
{
m_mem_region_cache.push_back (info);
return true;
}
else
{
if (log)
log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
return false;
}
});
// If we had an error, we'll mark unsupported.
if (error.Fail ())
{
m_supports_mem_region = LazyBool::eLazyBoolNo;
return error;
}
else if (m_mem_region_cache.empty ())
{
// No entries after attempting to read them. This shouldn't happen if /proc/{pid}/maps
// is supported. Assume we don't support map entries via procfs.
if (log)
log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
m_supports_mem_region = LazyBool::eLazyBoolNo;
error.SetErrorString ("not supported");
return error;
}
if (log)
log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
// We support memory retrieval, remember that.
m_supports_mem_region = LazyBool::eLazyBoolYes;
}
else
{
if (log)
log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
}
lldb::addr_t prev_base_address = 0;
// FIXME start by finding the last region that is <= target address using binary search. Data is sorted.
// There can be a ton of regions on pthreads apps with lots of threads.
for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
{
MemoryRegionInfo &proc_entry_info = *it;
// Sanity check assumption that /proc/{pid}/maps entries are ascending.
assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
// If the target address comes before this entry, indicate distance to next region.
if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
{
range_info.GetRange ().SetRangeBase (load_addr);
range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
return error;
}
else if (proc_entry_info.GetRange ().Contains (load_addr))
{
// The target address is within the memory region we're processing here.
range_info = proc_entry_info;
return error;
}
// The target memory address comes somewhere after the region we just parsed.
}
// If we made it here, we didn't find an entry that contained the given address.
error.SetErrorString ("address comes after final region");
if (log)
log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ());
return error;
}
void
NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
{
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
{
Mutex::Locker locker (m_mem_region_cache_mutex);
if (log)
log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
m_mem_region_cache.clear ();
}
}
Error
NativeProcessLinux::AllocateMemory (
lldb::addr_t size,
uint32_t permissions,
lldb::addr_t &addr)
{
// FIXME implementing this requires the equivalent of
// InferiorCallPOSIX::InferiorCallMmap, which depends on
// functional ThreadPlans working with Native*Protocol.
#if 1
return Error ("not implemented yet");
#else
addr = LLDB_INVALID_ADDRESS;
unsigned prot = 0;
if (permissions & lldb::ePermissionsReadable)
prot |= eMmapProtRead;
if (permissions & lldb::ePermissionsWritable)
prot |= eMmapProtWrite;
if (permissions & lldb::ePermissionsExecutable)
prot |= eMmapProtExec;
// TODO implement this directly in NativeProcessLinux
// (and lift to NativeProcessPOSIX if/when that class is
// refactored out).
if (InferiorCallMmap(this, addr, 0, size, prot,
eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
m_addr_to_mmap_size[addr] = size;
return Error ();
} else {
addr = LLDB_INVALID_ADDRESS;
return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
}
#endif
}
Error
NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
{
// FIXME see comments in AllocateMemory - required lower-level
// bits not in place yet (ThreadPlans)
return Error ("not implemented");
}
lldb::addr_t
NativeProcessLinux::GetSharedLibraryInfoAddress ()
{
#if 1
// punt on this for now
return LLDB_INVALID_ADDRESS;
#else
// Return the image info address for the exe module
#if 1
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
ModuleSP module_sp;
Error error = GetExeModuleSP (module_sp);
if (error.Fail ())
{
if (log)
log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ());
return LLDB_INVALID_ADDRESS;
}
if (module_sp == nullptr)
{
if (log)
log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__);
return LLDB_INVALID_ADDRESS;
}
ObjectFileSP object_file_sp = module_sp->GetObjectFile ();
if (object_file_sp == nullptr)
{
if (log)
log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__);
return LLDB_INVALID_ADDRESS;
}
return obj_file_sp->GetImageInfoAddress();
#else
Target *target = &GetTarget();
ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
Address addr = obj_file->GetImageInfoAddress(target);
if (addr.IsValid())
return addr.GetLoadAddress(target);
return LLDB_INVALID_ADDRESS;
#endif
#endif // punt on this for now
}
size_t
NativeProcessLinux::UpdateThreads ()
{
// The NativeProcessLinux monitoring threads are always up to date
// with respect to thread state and they keep the thread list
// populated properly. All this method needs to do is return the
// thread count.
Mutex::Locker locker (m_threads_mutex);
return m_threads.size ();
}
bool
NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
{
arch = m_arch;
return true;
}
Error
NativeProcessLinux::GetSoftwareBreakpointSize (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size)
{
// FIXME put this behind a breakpoint protocol class that can be
// set per architecture. Need ARM, MIPS support here.
static const uint8_t g_i386_opcode [] = { 0xCC };
switch (m_arch.GetMachine ())
{
case llvm::Triple::x86:
case llvm::Triple::x86_64:
actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
return Error ();
default:
assert(false && "CPU type not supported!");
return Error ("CPU type not supported");
}
}
Error
NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
{
if (hardware)
return Error ("NativeProcessLinux does not support hardware breakpoints");
else
return SetSoftwareBreakpoint (addr, size);
}
Error
NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, size_t &actual_opcode_size, const uint8_t *&trap_opcode_bytes)
{
// FIXME put this behind a breakpoint protocol class that can be
// set per architecture. Need ARM, MIPS support here.
static const uint8_t g_i386_opcode [] = { 0xCC };
switch (m_arch.GetMachine ())
{
case llvm::Triple::x86:
case llvm::Triple::x86_64:
trap_opcode_bytes = g_i386_opcode;
actual_opcode_size = sizeof(g_i386_opcode);
return Error ();
default:
assert(false && "CPU type not supported!");
return Error ("CPU type not supported");
}
}
#if 0
ProcessMessage::CrashReason
NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
{
ProcessMessage::CrashReason reason;
assert(info->si_signo == SIGSEGV);
reason = ProcessMessage::eInvalidCrashReason;
switch (info->si_code)
{
default:
assert(false && "unexpected si_code for SIGSEGV");
break;
case SI_KERNEL:
// Linux will occasionally send spurious SI_KERNEL codes.
// (this is poorly documented in sigaction)
// One way to get this is via unaligned SIMD loads.
reason = ProcessMessage::eInvalidAddress; // for lack of anything better
break;
case SEGV_MAPERR:
reason = ProcessMessage::eInvalidAddress;
break;
case SEGV_ACCERR:
reason = ProcessMessage::ePrivilegedAddress;
break;
}
return reason;
}
#endif
#if 0
ProcessMessage::CrashReason
NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
{
ProcessMessage::CrashReason reason;
assert(info->si_signo == SIGILL);
reason = ProcessMessage::eInvalidCrashReason;
switch (info->si_code)
{
default:
assert(false && "unexpected si_code for SIGILL");
break;
case ILL_ILLOPC:
reason = ProcessMessage::eIllegalOpcode;
break;
case ILL_ILLOPN:
reason = ProcessMessage::eIllegalOperand;
break;
case ILL_ILLADR:
reason = ProcessMessage::eIllegalAddressingMode;
break;
case ILL_ILLTRP:
reason = ProcessMessage::eIllegalTrap;
break;
case ILL_PRVOPC:
reason = ProcessMessage::ePrivilegedOpcode;
break;
case ILL_PRVREG:
reason = ProcessMessage::ePrivilegedRegister;
break;
case ILL_COPROC:
reason = ProcessMessage::eCoprocessorError;
break;
case ILL_BADSTK:
reason = ProcessMessage::eInternalStackError;
break;
}
return reason;
}
#endif
#if 0
ProcessMessage::CrashReason
NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
{
ProcessMessage::CrashReason reason;
assert(info->si_signo == SIGFPE);
reason = ProcessMessage::eInvalidCrashReason;
switch (info->si_code)
{
default:
assert(false && "unexpected si_code for SIGFPE");
break;
case FPE_INTDIV:
reason = ProcessMessage::eIntegerDivideByZero;
break;
case FPE_INTOVF:
reason = ProcessMessage::eIntegerOverflow;
break;
case FPE_FLTDIV:
reason = ProcessMessage::eFloatDivideByZero;
break;
case FPE_FLTOVF:
reason = ProcessMessage::eFloatOverflow;
break;
case FPE_FLTUND:
reason = ProcessMessage::eFloatUnderflow;
break;
case FPE_FLTRES:
reason = ProcessMessage::eFloatInexactResult;
break;
case FPE_FLTINV:
reason = ProcessMessage::eFloatInvalidOperation;
break;
case FPE_FLTSUB:
reason = ProcessMessage::eFloatSubscriptRange;
break;
}
return reason;
}
#endif
#if 0
ProcessMessage::CrashReason
NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
{
ProcessMessage::CrashReason reason;
assert(info->si_signo == SIGBUS);
reason = ProcessMessage::eInvalidCrashReason;
switch (info->si_code)
{
default:
assert(false && "unexpected si_code for SIGBUS");
break;
case BUS_ADRALN:
reason = ProcessMessage::eIllegalAlignment;
break;
case BUS_ADRERR:
reason = ProcessMessage::eIllegalAddress;
break;
case BUS_OBJERR:
reason = ProcessMessage::eHardwareError;
break;
}
return reason;
}
#endif
void
NativeProcessLinux::ServeOperation(OperationArgs *args)
{
NativeProcessLinux *monitor = args->m_monitor;
// We are finised with the arguments and are ready to go. Sync with the
// parent thread and start serving operations on the inferior.
sem_post(&args->m_semaphore);
for(;;)
{
// wait for next pending operation
if (sem_wait(&monitor->m_operation_pending))
{
if (errno == EINTR)
continue;
assert(false && "Unexpected errno from sem_wait");
}
reinterpret_cast<Operation*>(monitor->m_operation)->Execute(monitor);
// notify calling thread that operation is complete
sem_post(&monitor->m_operation_done);
}
}
void
NativeProcessLinux::DoOperation(void *op)
{
Mutex::Locker lock(m_operation_mutex);
m_operation = op;
// notify operation thread that an operation is ready to be processed
sem_post(&m_operation_pending);
// wait for operation to complete
while (sem_wait(&m_operation_done))
{
if (errno == EINTR)
continue;
assert(false && "Unexpected errno from sem_wait");
}
}
Error
NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, lldb::addr_t size, lldb::addr_t &bytes_read)
{
ReadOperation op(addr, buf, size, bytes_read);
DoOperation(&op);
return op.GetError ();
}
Error
NativeProcessLinux::WriteMemory (lldb::addr_t addr, const void *buf, lldb::addr_t size, lldb::addr_t &bytes_written)
{
WriteOperation op(addr, buf, size, bytes_written);
DoOperation(&op);
return op.GetError ();
}
bool
NativeProcessLinux::ReadRegisterValue(lldb::tid_t tid, uint32_t offset, const char* reg_name,
uint32_t size, RegisterValue &value)
{
bool result;
ReadRegOperation op(tid, offset, reg_name, value, result);
DoOperation(&op);
return result;
}
bool
NativeProcessLinux::WriteRegisterValue(lldb::tid_t tid, unsigned offset,
const char* reg_name, const RegisterValue &value)
{
bool result;
WriteRegOperation op(tid, offset, reg_name, value, result);
DoOperation(&op);
return result;
}
bool
NativeProcessLinux::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size)
{
bool result;
ReadGPROperation op(tid, buf, buf_size, result);
DoOperation(&op);
return result;
}
bool
NativeProcessLinux::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size)
{
bool result;
ReadFPROperation op(tid, buf, buf_size, result);
DoOperation(&op);
return result;
}
bool
NativeProcessLinux::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
{
bool result;
ReadRegisterSetOperation op(tid, buf, buf_size, regset, result);
DoOperation(&op);
return result;
}
bool
NativeProcessLinux::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size)
{
bool result;
WriteGPROperation op(tid, buf, buf_size, result);
DoOperation(&op);
return result;
}
bool
NativeProcessLinux::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size)
{
bool result;
WriteFPROperation op(tid, buf, buf_size, result);
DoOperation(&op);
return result;
}
bool
NativeProcessLinux::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
{
bool result;
WriteRegisterSetOperation op(tid, buf, buf_size, regset, result);
DoOperation(&op);
return result;
}
bool
NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo)
{
bool result;
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " with signal %s", __FUNCTION__, tid,
GetUnixSignals().GetSignalAsCString (signo));
ResumeOperation op (tid, signo, result);
DoOperation (&op);
if (log)
log->Printf ("NativeProcessLinux::%s() resuming result = %s", __FUNCTION__, result ? "true" : "false");
return result;
}
bool
NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo)
{
bool result;
SingleStepOperation op(tid, signo, result);
DoOperation(&op);
return result;
}
bool
NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo, int &ptrace_err)
{
bool result;
SiginfoOperation op(tid, siginfo, result, ptrace_err);
DoOperation(&op);
return result;
}
bool
NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
{
bool result;
EventMessageOperation op(tid, message, result);
DoOperation(&op);
return result;
}
lldb_private::Error
NativeProcessLinux::Detach(lldb::tid_t tid)
{
lldb_private::Error error;
if (tid != LLDB_INVALID_THREAD_ID)
{
DetachOperation op(tid, error);
DoOperation(&op);
}
return error;
}
bool
NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags)
{
int target_fd = open(path, flags, 0666);
if (target_fd == -1)
return false;
return (dup2(target_fd, fd) == -1) ? false : true;
}
void
NativeProcessLinux::StopMonitoringChildProcess()
{
lldb::thread_result_t thread_result;
if (IS_VALID_LLDB_HOST_THREAD(m_monitor_thread))
{
Host::ThreadCancel(m_monitor_thread, NULL);
Host::ThreadJoin(m_monitor_thread, &thread_result, NULL);
m_monitor_thread = LLDB_INVALID_HOST_THREAD;
}
}
void
NativeProcessLinux::StopMonitor()
{
StopMonitoringChildProcess();
StopOpThread();
sem_destroy(&m_operation_pending);
sem_destroy(&m_operation_done);
// TODO: validate whether this still holds, fix up comment.
// Note: ProcessPOSIX passes the m_terminal_fd file descriptor to
// Process::SetSTDIOFileDescriptor, which in turn transfers ownership of
// the descriptor to a ConnectionFileDescriptor object. Consequently
// even though still has the file descriptor, we shouldn't close it here.
}
void
NativeProcessLinux::StopOpThread()
{
lldb::thread_result_t result;
if (!IS_VALID_LLDB_HOST_THREAD(m_operation_thread))
return;
Host::ThreadCancel(m_operation_thread, NULL);
Host::ThreadJoin(m_operation_thread, &result, NULL);
m_operation_thread = LLDB_INVALID_HOST_THREAD;
}
bool
NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
{
for (auto thread_sp : m_threads)
{
assert (thread_sp && "thread list should not contain NULL threads");
if (thread_sp->GetID () == thread_id)
{
// We have this thread.
return true;
}
}
// We don't have this thread.
return false;
}
NativeThreadProtocolSP
NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id)
{
// CONSIDER organize threads by map - we can do better than linear.
for (auto thread_sp : m_threads)
{
if (thread_sp->GetID () == thread_id)
return thread_sp;
}
// We don't have this thread.
return NativeThreadProtocolSP ();
}
bool
NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
{
Mutex::Locker locker (m_threads_mutex);
for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
{
if (*it && ((*it)->GetID () == thread_id))
{
m_threads.erase (it);
return true;
}
}
// Didn't find it.
return false;
}
NativeThreadProtocolSP
NativeProcessLinux::AddThread (lldb::tid_t thread_id)
{
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
Mutex::Locker locker (m_threads_mutex);
if (log)
{
log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
__FUNCTION__,
GetID (),
thread_id);
}
assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
// If this is the first thread, save it as the current thread
if (m_threads.empty ())
SetCurrentThreadID (thread_id);
NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id));
m_threads.push_back (thread_sp);
return thread_sp;
}
NativeThreadProtocolSP
NativeProcessLinux::GetOrCreateThread (lldb::tid_t thread_id, bool &created)
{
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
Mutex::Locker locker (m_threads_mutex);
if (log)
{
log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " get/create thread with tid %" PRIu64,
__FUNCTION__,
GetID (),
thread_id);
}
// Retrieve the thread if it is already getting tracked.
NativeThreadProtocolSP thread_sp = MaybeGetThreadNoLock (thread_id);
if (thread_sp)
{
if (log)
log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread already tracked, returning",
__FUNCTION__,
GetID (),
thread_id);
created = false;
return thread_sp;
}
// Create the thread metadata since it isn't being tracked.
if (log)
log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread didn't exist, tracking now",
__FUNCTION__,
GetID (),
thread_id);
thread_sp.reset (new NativeThreadLinux (this, thread_id));
m_threads.push_back (thread_sp);
created = true;
return thread_sp;
}
Error
NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp)
{
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
Error error;
// Get a linux thread pointer.
if (!thread_sp)
{
error.SetErrorString ("null thread_sp");
if (log)
log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
return error;
}
NativeThreadLinux *const linux_thread_p = reinterpret_cast<NativeThreadLinux*> (thread_sp.get());
// Find out the size of a breakpoint (might depend on where we are in the code).
NativeRegisterContextSP context_sp = linux_thread_p->GetRegisterContext ();
if (!context_sp)
{
error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
if (log)
log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
return error;
}
uint32_t breakpoint_size = 0;
error = GetSoftwareBreakpointSize (context_sp, breakpoint_size);
if (error.Fail ())
{
if (log)
log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
return error;
}
else
{
if (log)
log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
}
// First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
const lldb::addr_t initial_pc_addr = context_sp->GetPC ();
lldb::addr_t breakpoint_addr = initial_pc_addr;
if (breakpoint_size > static_cast<lldb::addr_t> (0))
{
// Do not allow breakpoint probe to wrap around.
if (breakpoint_addr >= static_cast<lldb::addr_t> (breakpoint_size))
breakpoint_addr -= static_cast<lldb::addr_t> (breakpoint_size);
}
// Check if we stopped because of a breakpoint.
NativeBreakpointSP breakpoint_sp;
error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
if (!error.Success () || !breakpoint_sp)
{
// We didn't find one at a software probe location. Nothing to do.
if (log)
log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
return Error ();
}
// If the breakpoint is not a software breakpoint, nothing to do.
if (!breakpoint_sp->IsSoftwareBreakpoint ())
{
if (log)
log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
return Error ();
}
//
// We have a software breakpoint and need to adjust the PC.
//
// Sanity check.
if (breakpoint_size == 0)
{
// Nothing to do! How did we get here?
if (log)
log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
return Error ();
}
// Change the program counter.
if (log)
log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_p->GetID (), initial_pc_addr, breakpoint_addr);
error = context_sp->SetPC (breakpoint_addr);
if (error.Fail ())
{
if (log)
log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_p->GetID (), error.AsCString ());
return error;
}
return error;
}