blob: fa8681ed69fea7d126c8a51cc9f1a409f4f70e0f [file] [log] [blame]
//===-- EmulateInstructionARM.cpp -------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include <stdlib.h>
#include "EmulateInstructionARM.h"
#include "EmulationStateARM.h"
#include "lldb/Core/ArchSpec.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/ConstString.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Stream.h"
#include "lldb/Interpreter/OptionValueArray.h"
#include "lldb/Interpreter/OptionValueDictionary.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "Plugins/Process/Utility/ARMDefines.h"
#include "Plugins/Process/Utility/ARMUtils.h"
#include "Utility/ARM_DWARF_Registers.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/MathExtras.h" // for SignExtend32 template function
// and countTrailingZeros function
using namespace lldb;
using namespace lldb_private;
// Convenient macro definitions.
#define APSR_C Bit32(m_opcode_cpsr, CPSR_C_POS)
#define APSR_V Bit32(m_opcode_cpsr, CPSR_V_POS)
#define AlignPC(pc_val) (pc_val & 0xFFFFFFFC)
//----------------------------------------------------------------------
//
// ITSession implementation
//
//----------------------------------------------------------------------
// A8.6.50
// Valid return values are {1, 2, 3, 4}, with 0 signifying an error condition.
static uint32_t
CountITSize (uint32_t ITMask) {
// First count the trailing zeros of the IT mask.
uint32_t TZ = llvm::countTrailingZeros(ITMask);
if (TZ > 3)
{
#ifdef LLDB_CONFIGURATION_DEBUG
printf("Encoding error: IT Mask '0000'\n");
#endif
return 0;
}
return (4 - TZ);
}
// Init ITState. Note that at least one bit is always 1 in mask.
bool ITSession::InitIT(uint32_t bits7_0)
{
ITCounter = CountITSize(Bits32(bits7_0, 3, 0));
if (ITCounter == 0)
return false;
// A8.6.50 IT
unsigned short FirstCond = Bits32(bits7_0, 7, 4);
if (FirstCond == 0xF)
{
#ifdef LLDB_CONFIGURATION_DEBUG
printf("Encoding error: IT FirstCond '1111'\n");
#endif
return false;
}
if (FirstCond == 0xE && ITCounter != 1)
{
#ifdef LLDB_CONFIGURATION_DEBUG
printf("Encoding error: IT FirstCond '1110' && Mask != '1000'\n");
#endif
return false;
}
ITState = bits7_0;
return true;
}
// Update ITState if necessary.
void ITSession::ITAdvance()
{
//assert(ITCounter);
--ITCounter;
if (ITCounter == 0)
ITState = 0;
else
{
unsigned short NewITState4_0 = Bits32(ITState, 4, 0) << 1;
SetBits32(ITState, 4, 0, NewITState4_0);
}
}
// Return true if we're inside an IT Block.
bool ITSession::InITBlock()
{
return ITCounter != 0;
}
// Return true if we're the last instruction inside an IT Block.
bool ITSession::LastInITBlock()
{
return ITCounter == 1;
}
// Get condition bits for the current thumb instruction.
uint32_t ITSession::GetCond()
{
if (InITBlock())
return Bits32(ITState, 7, 4);
else
return COND_AL;
}
// ARM constants used during decoding
#define REG_RD 0
#define LDM_REGLIST 1
#define SP_REG 13
#define LR_REG 14
#define PC_REG 15
#define PC_REGLIST_BIT 0x8000
#define ARMv4 (1u << 0)
#define ARMv4T (1u << 1)
#define ARMv5T (1u << 2)
#define ARMv5TE (1u << 3)
#define ARMv5TEJ (1u << 4)
#define ARMv6 (1u << 5)
#define ARMv6K (1u << 6)
#define ARMv6T2 (1u << 7)
#define ARMv7 (1u << 8)
#define ARMv7S (1u << 9)
#define ARMv8 (1u << 10)
#define ARMvAll (0xffffffffu)
#define ARMV4T_ABOVE (ARMv4T|ARMv5T|ARMv5TE|ARMv5TEJ|ARMv6|ARMv6K|ARMv6T2|ARMv7|ARMv7S|ARMv8)
#define ARMV5_ABOVE (ARMv5T|ARMv5TE|ARMv5TEJ|ARMv6|ARMv6K|ARMv6T2|ARMv7|ARMv7S|ARMv8)
#define ARMV5TE_ABOVE (ARMv5TE|ARMv5TEJ|ARMv6|ARMv6K|ARMv6T2|ARMv7|ARMv7S|ARMv8)
#define ARMV5J_ABOVE (ARMv5TEJ|ARMv6|ARMv6K|ARMv6T2|ARMv7|ARMv7S|ARMv8)
#define ARMV6_ABOVE (ARMv6|ARMv6K|ARMv6T2|ARMv7|ARMv7S|ARMv8)
#define ARMV6T2_ABOVE (ARMv6T2|ARMv7|ARMv7S|ARMv8)
#define ARMV7_ABOVE (ARMv7|ARMv7S|ARMv8)
#define No_VFP 0
#define VFPv1 (1u << 1)
#define VFPv2 (1u << 2)
#define VFPv3 (1u << 3)
#define AdvancedSIMD (1u << 4)
#define VFPv1_ABOVE (VFPv1 | VFPv2 | VFPv3 | AdvancedSIMD)
#define VFPv2_ABOVE (VFPv2 | VFPv3 | AdvancedSIMD)
#define VFPv2v3 (VFPv2 | VFPv3)
//----------------------------------------------------------------------
//
// EmulateInstructionARM implementation
//
//----------------------------------------------------------------------
void
EmulateInstructionARM::Initialize ()
{
PluginManager::RegisterPlugin (GetPluginNameStatic (),
GetPluginDescriptionStatic (),
CreateInstance);
}
void
EmulateInstructionARM::Terminate ()
{
PluginManager::UnregisterPlugin (CreateInstance);
}
ConstString
EmulateInstructionARM::GetPluginNameStatic ()
{
static ConstString g_name("arm");
return g_name;
}
const char *
EmulateInstructionARM::GetPluginDescriptionStatic ()
{
return "Emulate instructions for the ARM architecture.";
}
EmulateInstruction *
EmulateInstructionARM::CreateInstance (const ArchSpec &arch, InstructionType inst_type)
{
if (EmulateInstructionARM::SupportsEmulatingInstructionsOfTypeStatic(inst_type))
{
if (arch.GetTriple().getArch() == llvm::Triple::arm)
{
std::unique_ptr<EmulateInstructionARM> emulate_insn_ap (new EmulateInstructionARM (arch));
if (emulate_insn_ap.get())
return emulate_insn_ap.release();
}
else if (arch.GetTriple().getArch() == llvm::Triple::thumb)
{
std::unique_ptr<EmulateInstructionARM> emulate_insn_ap (new EmulateInstructionARM (arch));
if (emulate_insn_ap.get())
return emulate_insn_ap.release();
}
}
return NULL;
}
bool
EmulateInstructionARM::SetTargetTriple (const ArchSpec &arch)
{
if (arch.GetTriple().getArch () == llvm::Triple::arm)
return true;
else if (arch.GetTriple().getArch () == llvm::Triple::thumb)
return true;
return false;
}
// Write "bits (32) UNKNOWN" to memory address "address". Helper function for many ARM instructions.
bool
EmulateInstructionARM::WriteBits32UnknownToMemory (addr_t address)
{
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextWriteMemoryRandomBits;
context.SetNoArgs ();
uint32_t random_data = rand ();
const uint32_t addr_byte_size = GetAddressByteSize();
if (!MemAWrite (context, address, random_data, addr_byte_size))
return false;
return true;
}
// Write "bits (32) UNKNOWN" to register n. Helper function for many ARM instructions.
bool
EmulateInstructionARM::WriteBits32Unknown (int n)
{
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextWriteRegisterRandomBits;
context.SetNoArgs ();
bool success;
uint32_t data = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
if (!success)
return false;
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, data))
return false;
return true;
}
bool
EmulateInstructionARM::GetRegisterInfo (lldb::RegisterKind reg_kind, uint32_t reg_num, RegisterInfo &reg_info)
{
if (reg_kind == eRegisterKindGeneric)
{
switch (reg_num)
{
case LLDB_REGNUM_GENERIC_PC: reg_kind = eRegisterKindDWARF; reg_num = dwarf_pc; break;
case LLDB_REGNUM_GENERIC_SP: reg_kind = eRegisterKindDWARF; reg_num = dwarf_sp; break;
case LLDB_REGNUM_GENERIC_FP: reg_kind = eRegisterKindDWARF; reg_num = dwarf_r7; break;
case LLDB_REGNUM_GENERIC_RA: reg_kind = eRegisterKindDWARF; reg_num = dwarf_lr; break;
case LLDB_REGNUM_GENERIC_FLAGS: reg_kind = eRegisterKindDWARF; reg_num = dwarf_cpsr; break;
default: return false;
}
}
if (reg_kind == eRegisterKindDWARF)
return GetARMDWARFRegisterInfo(reg_num, reg_info);
return false;
}
uint32_t
EmulateInstructionARM::GetFramePointerRegisterNumber () const
{
bool is_apple = false;
if (m_arch.GetTriple().getVendor() == llvm::Triple::Apple)
is_apple = true;
switch (m_arch.GetTriple().getOS())
{
case llvm::Triple::Darwin:
case llvm::Triple::MacOSX:
case llvm::Triple::IOS:
is_apple = true;
break;
default:
break;
}
/* On Apple iOS et al, the frame pointer register is always r7.
* Typically on other ARM systems, thumb code uses r7; arm code uses r11.
*/
uint32_t fp_regnum = 11;
if (is_apple)
fp_regnum = 7;
if (m_opcode_mode == eModeThumb)
fp_regnum = 7;
return fp_regnum;
}
uint32_t
EmulateInstructionARM::GetFramePointerDWARFRegisterNumber () const
{
bool is_apple = false;
if (m_arch.GetTriple().getVendor() == llvm::Triple::Apple)
is_apple = true;
switch (m_arch.GetTriple().getOS())
{
case llvm::Triple::Darwin:
case llvm::Triple::MacOSX:
case llvm::Triple::IOS:
is_apple = true;
break;
default:
break;
}
/* On Apple iOS et al, the frame pointer register is always r7.
* Typically on other ARM systems, thumb code uses r7; arm code uses r11.
*/
uint32_t fp_regnum = dwarf_r11;
if (is_apple)
fp_regnum = dwarf_r7;
if (m_opcode_mode == eModeThumb)
fp_regnum = dwarf_r7;
return fp_regnum;
}
// Push Multiple Registers stores multiple registers to the stack, storing to
// consecutive memory locations ending just below the address in SP, and updates
// SP to point to the start of the stored data.
bool
EmulateInstructionARM::EmulatePUSH (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
NullCheckIfThumbEE(13);
address = SP - 4*BitCount(registers);
for (i = 0 to 14)
{
if (registers<i> == '1')
{
if i == 13 && i != LowestSetBit(registers) // Only possible for encoding A1
MemA[address,4] = bits(32) UNKNOWN;
else
MemA[address,4] = R[i];
address = address + 4;
}
}
if (registers<15> == '1') // Only possible for encoding A1 or A2
MemA[address,4] = PCStoreValue();
SP = SP - 4*BitCount(registers);
}
#endif
bool conditional = false;
bool success = false;
if (ConditionPassed(opcode, &conditional))
{
const uint32_t addr_byte_size = GetAddressByteSize();
const addr_t sp = ReadCoreReg (SP_REG, &success);
if (!success)
return false;
uint32_t registers = 0;
uint32_t Rt; // the source register
switch (encoding) {
case eEncodingT1:
registers = Bits32(opcode, 7, 0);
// The M bit represents LR.
if (Bit32(opcode, 8))
registers |= (1u << 14);
// if BitCount(registers) < 1 then UNPREDICTABLE;
if (BitCount(registers) < 1)
return false;
break;
case eEncodingT2:
// Ignore bits 15 & 13.
registers = Bits32(opcode, 15, 0) & ~0xa000;
// if BitCount(registers) < 2 then UNPREDICTABLE;
if (BitCount(registers) < 2)
return false;
break;
case eEncodingT3:
Rt = Bits32(opcode, 15, 12);
// if BadReg(t) then UNPREDICTABLE;
if (BadReg(Rt))
return false;
registers = (1u << Rt);
break;
case eEncodingA1:
registers = Bits32(opcode, 15, 0);
// Instead of return false, let's handle the following case as well,
// which amounts to pushing one reg onto the full descending stacks.
// if BitCount(register_list) < 2 then SEE STMDB / STMFD;
break;
case eEncodingA2:
Rt = Bits32(opcode, 15, 12);
// if t == 13 then UNPREDICTABLE;
if (Rt == dwarf_sp)
return false;
registers = (1u << Rt);
break;
default:
return false;
}
addr_t sp_offset = addr_byte_size * BitCount (registers);
addr_t addr = sp - sp_offset;
uint32_t i;
EmulateInstruction::Context context;
if (conditional)
context.type = EmulateInstruction::eContextRegisterStore;
else
context.type = EmulateInstruction::eContextPushRegisterOnStack;
RegisterInfo reg_info;
RegisterInfo sp_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_sp, sp_reg);
for (i=0; i<15; ++i)
{
if (BitIsSet (registers, i))
{
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + i, reg_info);
context.SetRegisterToRegisterPlusOffset (reg_info, sp_reg, addr - sp);
uint32_t reg_value = ReadCoreReg(i, &success);
if (!success)
return false;
if (!MemAWrite (context, addr, reg_value, addr_byte_size))
return false;
addr += addr_byte_size;
}
}
if (BitIsSet (registers, 15))
{
GetRegisterInfo (eRegisterKindDWARF, dwarf_pc, reg_info);
context.SetRegisterToRegisterPlusOffset (reg_info, sp_reg, addr - sp);
const uint32_t pc = ReadCoreReg(PC_REG, &success);
if (!success)
return false;
if (!MemAWrite (context, addr, pc, addr_byte_size))
return false;
}
context.type = EmulateInstruction::eContextAdjustStackPointer;
context.SetImmediateSigned (-sp_offset);
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, sp - sp_offset))
return false;
}
return true;
}
// Pop Multiple Registers loads multiple registers from the stack, loading from
// consecutive memory locations staring at the address in SP, and updates
// SP to point just above the loaded data.
bool
EmulateInstructionARM::EmulatePOP (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations(); NullCheckIfThumbEE(13);
address = SP;
for i = 0 to 14
if registers<i> == '1' then
R[i] = if UnalignedAllowed then MemU[address,4] else MemA[address,4]; address = address + 4;
if registers<15> == '1' then
if UnalignedAllowed then
LoadWritePC(MemU[address,4]);
else
LoadWritePC(MemA[address,4]);
if registers<13> == '0' then SP = SP + 4*BitCount(registers);
if registers<13> == '1' then SP = bits(32) UNKNOWN;
}
#endif
bool success = false;
bool conditional = false;
if (ConditionPassed(opcode, &conditional))
{
const uint32_t addr_byte_size = GetAddressByteSize();
const addr_t sp = ReadCoreReg (SP_REG, &success);
if (!success)
return false;
uint32_t registers = 0;
uint32_t Rt; // the destination register
switch (encoding) {
case eEncodingT1:
registers = Bits32(opcode, 7, 0);
// The P bit represents PC.
if (Bit32(opcode, 8))
registers |= (1u << 15);
// if BitCount(registers) < 1 then UNPREDICTABLE;
if (BitCount(registers) < 1)
return false;
break;
case eEncodingT2:
// Ignore bit 13.
registers = Bits32(opcode, 15, 0) & ~0x2000;
// if BitCount(registers) < 2 || (P == '1' && M == '1') then UNPREDICTABLE;
if (BitCount(registers) < 2 || (Bit32(opcode, 15) && Bit32(opcode, 14)))
return false;
// if registers<15> == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
if (BitIsSet(registers, 15) && InITBlock() && !LastInITBlock())
return false;
break;
case eEncodingT3:
Rt = Bits32(opcode, 15, 12);
// if t == 13 || (t == 15 && InITBlock() && !LastInITBlock()) then UNPREDICTABLE;
if (Rt == 13)
return false;
if (Rt == 15 && InITBlock() && !LastInITBlock())
return false;
registers = (1u << Rt);
break;
case eEncodingA1:
registers = Bits32(opcode, 15, 0);
// Instead of return false, let's handle the following case as well,
// which amounts to popping one reg from the full descending stacks.
// if BitCount(register_list) < 2 then SEE LDM / LDMIA / LDMFD;
// if registers<13> == '1' && ArchVersion() >= 7 then UNPREDICTABLE;
if (BitIsSet(opcode, 13) && ArchVersion() >= ARMv7)
return false;
break;
case eEncodingA2:
Rt = Bits32(opcode, 15, 12);
// if t == 13 then UNPREDICTABLE;
if (Rt == dwarf_sp)
return false;
registers = (1u << Rt);
break;
default:
return false;
}
addr_t sp_offset = addr_byte_size * BitCount (registers);
addr_t addr = sp;
uint32_t i, data;
EmulateInstruction::Context context;
if (conditional)
context.type = EmulateInstruction::eContextRegisterLoad;
else
context.type = EmulateInstruction::eContextPopRegisterOffStack;
RegisterInfo sp_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_sp, sp_reg);
for (i=0; i<15; ++i)
{
if (BitIsSet (registers, i))
{
context.SetRegisterPlusOffset (sp_reg, addr - sp);
data = MemARead(context, addr, 4, 0, &success);
if (!success)
return false;
if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + i, data))
return false;
addr += addr_byte_size;
}
}
if (BitIsSet (registers, 15))
{
context.SetRegisterPlusOffset (sp_reg, addr - sp);
data = MemARead(context, addr, 4, 0, &success);
if (!success)
return false;
// In ARMv5T and above, this is an interworking branch.
if (!LoadWritePC(context, data))
return false;
//addr += addr_byte_size;
}
context.type = EmulateInstruction::eContextAdjustStackPointer;
context.SetImmediateSigned (sp_offset);
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, sp + sp_offset))
return false;
}
return true;
}
// Set r7 or ip to point to saved value residing within the stack.
// ADD (SP plus immediate)
bool
EmulateInstructionARM::EmulateADDRdSPImm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
(result, carry, overflow) = AddWithCarry(SP, imm32, '0');
if d == 15 then
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
}
#endif
bool success = false;
if (ConditionPassed(opcode))
{
const addr_t sp = ReadCoreReg (SP_REG, &success);
if (!success)
return false;
uint32_t Rd; // the destination register
uint32_t imm32;
switch (encoding) {
case eEncodingT1:
Rd = 7;
imm32 = Bits32(opcode, 7, 0) << 2; // imm32 = ZeroExtend(imm8:'00', 32)
break;
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
break;
default:
return false;
}
addr_t sp_offset = imm32;
addr_t addr = sp + sp_offset; // a pointer to the stack area
EmulateInstruction::Context context;
context.type = eContextSetFramePointer;
RegisterInfo sp_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_sp, sp_reg);
context.SetRegisterPlusOffset (sp_reg, sp_offset);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + Rd, addr))
return false;
}
return true;
}
// Set r7 or ip to the current stack pointer.
// MOV (register)
bool
EmulateInstructionARM::EmulateMOVRdSP (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
result = R[m];
if d == 15 then
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
// APSR.C unchanged
// APSR.V unchanged
}
#endif
bool success = false;
if (ConditionPassed(opcode))
{
const addr_t sp = ReadCoreReg (SP_REG, &success);
if (!success)
return false;
uint32_t Rd; // the destination register
switch (encoding) {
case eEncodingT1:
Rd = 7;
break;
case eEncodingA1:
Rd = 12;
break;
default:
return false;
}
EmulateInstruction::Context context;
if (Rd == GetFramePointerRegisterNumber())
context.type = EmulateInstruction::eContextSetFramePointer;
else
context.type = EmulateInstruction::eContextRegisterPlusOffset;
RegisterInfo sp_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_sp, sp_reg);
context.SetRegisterPlusOffset (sp_reg, 0);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + Rd, sp))
return false;
}
return true;
}
// Move from high register (r8-r15) to low register (r0-r7).
// MOV (register)
bool
EmulateInstructionARM::EmulateMOVLowHigh (const uint32_t opcode, const ARMEncoding encoding)
{
return EmulateMOVRdRm (opcode, encoding);
}
// Move from register to register.
// MOV (register)
bool
EmulateInstructionARM::EmulateMOVRdRm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
result = R[m];
if d == 15 then
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
// APSR.C unchanged
// APSR.V unchanged
}
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t Rm; // the source register
uint32_t Rd; // the destination register
bool setflags;
switch (encoding) {
case eEncodingT1:
Rd = Bit32(opcode, 7) << 3 | Bits32(opcode, 2, 0);
Rm = Bits32(opcode, 6, 3);
setflags = false;
if (Rd == 15 && InITBlock() && !LastInITBlock())
return false;
break;
case eEncodingT2:
Rd = Bits32(opcode, 2, 0);
Rm = Bits32(opcode, 5, 3);
setflags = true;
if (InITBlock())
return false;
break;
case eEncodingT3:
Rd = Bits32(opcode, 11, 8);
Rm = Bits32(opcode, 3, 0);
setflags = BitIsSet(opcode, 20);
// if setflags && (BadReg(d) || BadReg(m)) then UNPREDICTABLE;
if (setflags && (BadReg(Rd) || BadReg(Rm)))
return false;
// if !setflags && (d == 15 || m == 15 || (d == 13 && m == 13)) then UNPREDICTABLE;
if (!setflags && (Rd == 15 || Rm == 15 || (Rd == 13 && Rm == 13)))
return false;
break;
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
Rm = Bits32(opcode, 3, 0);
setflags = BitIsSet(opcode, 20);
// if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
if (Rd == 15 && setflags)
return EmulateSUBSPcLrEtc (opcode, encoding);
break;
default:
return false;
}
uint32_t result = ReadCoreReg(Rm, &success);
if (!success)
return false;
// The context specifies that Rm is to be moved into Rd.
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextRegisterLoad;
RegisterInfo dwarf_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + Rm, dwarf_reg);
context.SetRegister (dwarf_reg);
if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags))
return false;
}
return true;
}
// Move (immediate) writes an immediate value to the destination register. It
// can optionally update the condition flags based on the value.
// MOV (immediate)
bool
EmulateInstructionARM::EmulateMOVRdImm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
result = imm32;
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged
}
#endif
if (ConditionPassed(opcode))
{
uint32_t Rd; // the destination register
uint32_t imm32; // the immediate value to be written to Rd
uint32_t carry = 0; // the carry bit after ThumbExpandImm_C or ARMExpandImm_C.
// for setflags == false, this value is a don't care
// initialized to 0 to silence the static analyzer
bool setflags;
switch (encoding) {
case eEncodingT1:
Rd = Bits32(opcode, 10, 8);
setflags = !InITBlock();
imm32 = Bits32(opcode, 7, 0); // imm32 = ZeroExtend(imm8, 32)
carry = APSR_C;
break;
case eEncodingT2:
Rd = Bits32(opcode, 11, 8);
setflags = BitIsSet(opcode, 20);
imm32 = ThumbExpandImm_C(opcode, APSR_C, carry);
if (BadReg(Rd))
return false;
break;
case eEncodingT3:
{
// d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm4:i:imm3:imm8, 32);
Rd = Bits32 (opcode, 11, 8);
setflags = false;
uint32_t imm4 = Bits32 (opcode, 19, 16);
uint32_t imm3 = Bits32 (opcode, 14, 12);
uint32_t i = Bit32 (opcode, 26);
uint32_t imm8 = Bits32 (opcode, 7, 0);
imm32 = (imm4 << 12) | (i << 11) | (imm3 << 8) | imm8;
// if BadReg(d) then UNPREDICTABLE;
if (BadReg (Rd))
return false;
}
break;
case eEncodingA1:
// d = UInt(Rd); setflags = (S == Ô1Õ); (imm32, carry) = ARMExpandImm_C(imm12, APSR.C);
Rd = Bits32 (opcode, 15, 12);
setflags = BitIsSet (opcode, 20);
imm32 = ARMExpandImm_C (opcode, APSR_C, carry);
// if Rd == Ô1111Õ && S == Ô1Õ then SEE SUBS PC, LR and related instructions;
if ((Rd == 15) && setflags)
return EmulateSUBSPcLrEtc (opcode, encoding);
break;
case eEncodingA2:
{
// d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm4:imm12, 32);
Rd = Bits32 (opcode, 15, 12);
setflags = false;
uint32_t imm4 = Bits32 (opcode, 19, 16);
uint32_t imm12 = Bits32 (opcode, 11, 0);
imm32 = (imm4 << 12) | imm12;
// if d == 15 then UNPREDICTABLE;
if (Rd == 15)
return false;
}
break;
default:
return false;
}
uint32_t result = imm32;
// The context specifies that an immediate is to be moved into Rd.
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
return false;
}
return true;
}
// MUL multiplies two register values. The least significant 32 bits of the result are written to the destination
// register. These 32 bits do not depend on whether the source register values are considered to be signed values or
// unsigned values.
//
// Optionally, it can update the condition flags based on the result. In the Thumb instruction set, this option is
// limited to only a few forms of the instruction.
bool
EmulateInstructionARM::EmulateMUL (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations();
operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
result = operand1 * operand2;
R[d] = result<31:0>;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
if ArchVersion() == 4 then
APSR.C = bit UNKNOWN;
// else APSR.C unchanged
// APSR.V always unchanged
#endif
if (ConditionPassed(opcode))
{
uint32_t d;
uint32_t n;
uint32_t m;
bool setflags;
// EncodingSpecificOperations();
switch (encoding)
{
case eEncodingT1:
// d = UInt(Rdm); n = UInt(Rn); m = UInt(Rdm); setflags = !InITBlock();
d = Bits32 (opcode, 2, 0);
n = Bits32 (opcode, 5, 3);
m = Bits32 (opcode, 2, 0);
setflags = !InITBlock();
// if ArchVersion() < 6 && d == n then UNPREDICTABLE;
if ((ArchVersion() < ARMv6) && (d == n))
return false;
break;
case eEncodingT2:
// d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
d = Bits32 (opcode, 11, 8);
n = Bits32 (opcode, 19, 16);
m = Bits32 (opcode, 3, 0);
setflags = false;
// if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;
if (BadReg (d) || BadReg (n) || BadReg (m))
return false;
break;
case eEncodingA1:
// d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
d = Bits32 (opcode, 19, 16);
n = Bits32 (opcode, 3, 0);
m = Bits32 (opcode, 11, 8);
setflags = BitIsSet (opcode, 20);
// if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if ((d == 15) || (n == 15) || (m == 15))
return false;
// if ArchVersion() < 6 && d == n then UNPREDICTABLE;
if ((ArchVersion() < ARMv6) && (d == n))
return false;
break;
default:
return false;
}
bool success = false;
// operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
uint64_t operand1 = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
if (!success)
return false;
// operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
uint64_t operand2 = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
if (!success)
return false;
// result = operand1 * operand2;
uint64_t result = operand1 * operand2;
// R[d] = result<31:0>;
RegisterInfo op1_reg;
RegisterInfo op2_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, op1_reg);
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, op2_reg);
EmulateInstruction::Context context;
context.type = eContextArithmetic;
context.SetRegisterRegisterOperands (op1_reg, op2_reg);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + d, (0x0000ffff & result)))
return false;
// if setflags then
if (setflags)
{
// APSR.N = result<31>;
// APSR.Z = IsZeroBit(result);
m_new_inst_cpsr = m_opcode_cpsr;
SetBit32 (m_new_inst_cpsr, CPSR_N_POS, Bit32 (result, 31));
SetBit32 (m_new_inst_cpsr, CPSR_Z_POS, result == 0 ? 1 : 0);
if (m_new_inst_cpsr != m_opcode_cpsr)
{
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS, m_new_inst_cpsr))
return false;
}
// if ArchVersion() == 4 then
// APSR.C = bit UNKNOWN;
}
}
return true;
}
// Bitwise NOT (immediate) writes the bitwise inverse of an immediate value to the destination register.
// It can optionally update the condition flags based on the value.
bool
EmulateInstructionARM::EmulateMVNImm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
result = NOT(imm32);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged
}
#endif
if (ConditionPassed(opcode))
{
uint32_t Rd; // the destination register
uint32_t imm32; // the output after ThumbExpandImm_C or ARMExpandImm_C
uint32_t carry; // the carry bit after ThumbExpandImm_C or ARMExpandImm_C
bool setflags;
switch (encoding) {
case eEncodingT1:
Rd = Bits32(opcode, 11, 8);
setflags = BitIsSet(opcode, 20);
imm32 = ThumbExpandImm_C(opcode, APSR_C, carry);
break;
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
setflags = BitIsSet(opcode, 20);
imm32 = ARMExpandImm_C(opcode, APSR_C, carry);
// if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
if (Rd == 15 && setflags)
return EmulateSUBSPcLrEtc (opcode, encoding);
break;
default:
return false;
}
uint32_t result = ~imm32;
// The context specifies that an immediate is to be moved into Rd.
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
return false;
}
return true;
}
// Bitwise NOT (register) writes the bitwise inverse of a register value to the destination register.
// It can optionally update the condition flags based on the result.
bool
EmulateInstructionARM::EmulateMVNReg (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = NOT(shifted);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged
}
#endif
if (ConditionPassed(opcode))
{
uint32_t Rm; // the source register
uint32_t Rd; // the destination register
ARM_ShifterType shift_t;
uint32_t shift_n; // the shift applied to the value read from Rm
bool setflags;
uint32_t carry; // the carry bit after the shift operation
switch (encoding) {
case eEncodingT1:
Rd = Bits32(opcode, 2, 0);
Rm = Bits32(opcode, 5, 3);
setflags = !InITBlock();
shift_t = SRType_LSL;
shift_n = 0;
if (InITBlock())
return false;
break;
case eEncodingT2:
Rd = Bits32(opcode, 11, 8);
Rm = Bits32(opcode, 3, 0);
setflags = BitIsSet(opcode, 20);
shift_n = DecodeImmShiftThumb(opcode, shift_t);
// if (BadReg(d) || BadReg(m)) then UNPREDICTABLE;
if (BadReg(Rd) || BadReg(Rm))
return false;
break;
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
Rm = Bits32(opcode, 3, 0);
setflags = BitIsSet(opcode, 20);
shift_n = DecodeImmShiftARM(opcode, shift_t);
break;
default:
return false;
}
bool success = false;
uint32_t value = ReadCoreReg(Rm, &success);
if (!success)
return false;
uint32_t shifted = Shift_C(value, shift_t, shift_n, APSR_C, carry, &success);
if (!success)
return false;
uint32_t result = ~shifted;
// The context specifies that an immediate is to be moved into Rd.
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
return false;
}
return true;
}
// PC relative immediate load into register, possibly followed by ADD (SP plus register).
// LDR (literal)
bool
EmulateInstructionARM::EmulateLDRRtPCRelative (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations(); NullCheckIfThumbEE(15);
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
data = MemU[address,4];
if t == 15 then
if address<1:0> == '00' then LoadWritePC(data); else UNPREDICTABLE;
elsif UnalignedSupport() || address<1:0> = '00' then
R[t] = data;
else // Can only apply before ARMv7
if CurrentInstrSet() == InstrSet_ARM then
R[t] = ROR(data, 8*UInt(address<1:0>));
else
R[t] = bits(32) UNKNOWN;
}
#endif
if (ConditionPassed(opcode))
{
bool success = false;
const uint32_t pc = ReadCoreReg(PC_REG, &success);
if (!success)
return false;
// PC relative immediate load context
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextRegisterPlusOffset;
RegisterInfo pc_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_pc, pc_reg);
context.SetRegisterPlusOffset (pc_reg, 0);
uint32_t Rt; // the destination register
uint32_t imm32; // immediate offset from the PC
bool add; // +imm32 or -imm32?
addr_t base; // the base address
addr_t address; // the PC relative address
uint32_t data; // the literal data value from the PC relative load
switch (encoding) {
case eEncodingT1:
Rt = Bits32(opcode, 10, 8);
imm32 = Bits32(opcode, 7, 0) << 2; // imm32 = ZeroExtend(imm8:'00', 32);
add = true;
break;
case eEncodingT2:
Rt = Bits32(opcode, 15, 12);
imm32 = Bits32(opcode, 11, 0) << 2; // imm32 = ZeroExtend(imm12, 32);
add = BitIsSet(opcode, 23);
if (Rt == 15 && InITBlock() && !LastInITBlock())
return false;
break;
default:
return false;
}
base = Align(pc, 4);
if (add)
address = base + imm32;
else
address = base - imm32;
context.SetRegisterPlusOffset(pc_reg, address - base);
data = MemURead(context, address, 4, 0, &success);
if (!success)
return false;
if (Rt == 15)
{
if (Bits32(address, 1, 0) == 0)
{
// In ARMv5T and above, this is an interworking branch.
if (!LoadWritePC(context, data))
return false;
}
else
return false;
}
else if (UnalignedSupport() || Bits32(address, 1, 0) == 0)
{
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + Rt, data))
return false;
}
else // We don't handle ARM for now.
return false;
}
return true;
}
// An add operation to adjust the SP.
// ADD (SP plus immediate)
bool
EmulateInstructionARM::EmulateADDSPImm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
(result, carry, overflow) = AddWithCarry(SP, imm32, '0');
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
}
#endif
bool success = false;
if (ConditionPassed(opcode))
{
const addr_t sp = ReadCoreReg (SP_REG, &success);
if (!success)
return false;
uint32_t imm32; // the immediate operand
uint32_t d;
//bool setflags = false; // Add this back if/when support eEncodingT3 eEncodingA1
switch (encoding)
{
case eEncodingT1:
// d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm8:'00', 32);
d = Bits32 (opcode, 10, 8);
imm32 = (Bits32 (opcode, 7, 0) << 2);
break;
case eEncodingT2:
// d = 13; setflags = FALSE; imm32 = ZeroExtend(imm7:'00', 32);
d = 13;
imm32 = ThumbImm7Scaled(opcode); // imm32 = ZeroExtend(imm7:'00', 32)
break;
default:
return false;
}
addr_t sp_offset = imm32;
addr_t addr = sp + sp_offset; // the adjusted stack pointer value
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextAdjustStackPointer;
RegisterInfo sp_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_sp, sp_reg);
context.SetRegisterPlusOffset (sp_reg, sp_offset);
if (d == 15)
{
if (!ALUWritePC (context, addr))
return false;
}
else
{
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + d, addr))
return false;
// Add this back if/when support eEncodingT3 eEncodingA1
//if (setflags)
//{
// APSR.N = result<31>;
// APSR.Z = IsZeroBit(result);
// APSR.C = carry;
// APSR.V = overflow;
//}
}
}
return true;
}
// An add operation to adjust the SP.
// ADD (SP plus register)
bool
EmulateInstructionARM::EmulateADDSPRm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddWithCarry(SP, shifted, '0');
if d == 15 then
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
}
#endif
bool success = false;
if (ConditionPassed(opcode))
{
const addr_t sp = ReadCoreReg (SP_REG, &success);
if (!success)
return false;
uint32_t Rm; // the second operand
switch (encoding) {
case eEncodingT2:
Rm = Bits32(opcode, 6, 3);
break;
default:
return false;
}
int32_t reg_value = ReadCoreReg(Rm, &success);
if (!success)
return false;
addr_t addr = (int32_t)sp + reg_value; // the adjusted stack pointer value
EmulateInstruction::Context context;
context.type = eContextArithmetic;
RegisterInfo sp_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_sp, sp_reg);
RegisterInfo other_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + Rm, other_reg);
context.SetRegisterRegisterOperands (sp_reg, other_reg);
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, addr))
return false;
}
return true;
}
// Branch with Link and Exchange Instruction Sets (immediate) calls a subroutine
// at a PC-relative address, and changes instruction set from ARM to Thumb, or
// from Thumb to ARM.
// BLX (immediate)
bool
EmulateInstructionARM::EmulateBLXImmediate (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
if CurrentInstrSet() == InstrSet_ARM then
LR = PC - 4;
else
LR = PC<31:1> : '1';
if targetInstrSet == InstrSet_ARM then
targetAddress = Align(PC,4) + imm32;
else
targetAddress = PC + imm32;
SelectInstrSet(targetInstrSet);
BranchWritePC(targetAddress);
}
#endif
bool success = true;
if (ConditionPassed(opcode))
{
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextRelativeBranchImmediate;
const uint32_t pc = ReadCoreReg(PC_REG, &success);
if (!success)
return false;
addr_t lr; // next instruction address
addr_t target; // target address
int32_t imm32; // PC-relative offset
switch (encoding) {
case eEncodingT1:
{
lr = pc | 1u; // return address
uint32_t S = Bit32(opcode, 26);
uint32_t imm10 = Bits32(opcode, 25, 16);
uint32_t J1 = Bit32(opcode, 13);
uint32_t J2 = Bit32(opcode, 11);
uint32_t imm11 = Bits32(opcode, 10, 0);
uint32_t I1 = !(J1 ^ S);
uint32_t I2 = !(J2 ^ S);
uint32_t imm25 = (S << 24) | (I1 << 23) | (I2 << 22) | (imm10 << 12) | (imm11 << 1);
imm32 = llvm::SignExtend32<25>(imm25);
target = pc + imm32;
context.SetISAAndImmediateSigned (eModeThumb, 4 + imm32);
if (InITBlock() && !LastInITBlock())
return false;
break;
}
case eEncodingT2:
{
lr = pc | 1u; // return address
uint32_t S = Bit32(opcode, 26);
uint32_t imm10H = Bits32(opcode, 25, 16);
uint32_t J1 = Bit32(opcode, 13);
uint32_t J2 = Bit32(opcode, 11);
uint32_t imm10L = Bits32(opcode, 10, 1);
uint32_t I1 = !(J1 ^ S);
uint32_t I2 = !(J2 ^ S);
uint32_t imm25 = (S << 24) | (I1 << 23) | (I2 << 22) | (imm10H << 12) | (imm10L << 2);
imm32 = llvm::SignExtend32<25>(imm25);
target = Align(pc, 4) + imm32;
context.SetISAAndImmediateSigned (eModeARM, 4 + imm32);
if (InITBlock() && !LastInITBlock())
return false;
break;
}
case eEncodingA1:
lr = pc - 4; // return address
imm32 = llvm::SignExtend32<26>(Bits32(opcode, 23, 0) << 2);
target = Align(pc, 4) + imm32;
context.SetISAAndImmediateSigned (eModeARM, 8 + imm32);
break;
case eEncodingA2:
lr = pc - 4; // return address
imm32 = llvm::SignExtend32<26>(Bits32(opcode, 23, 0) << 2 | Bits32(opcode, 24, 24) << 1);
target = pc + imm32;
context.SetISAAndImmediateSigned (eModeThumb, 8 + imm32);
break;
default:
return false;
}
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA, lr))
return false;
if (!BranchWritePC(context, target))
return false;
}
return true;
}
// Branch with Link and Exchange (register) calls a subroutine at an address and
// instruction set specified by a register.
// BLX (register)
bool
EmulateInstructionARM::EmulateBLXRm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
target = R[m];
if CurrentInstrSet() == InstrSet_ARM then
next_instr_addr = PC - 4;
LR = next_instr_addr;
else
next_instr_addr = PC - 2;
LR = next_instr_addr<31:1> : '1';
BXWritePC(target);
}
#endif
bool success = false;
if (ConditionPassed(opcode))
{
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextAbsoluteBranchRegister;
const uint32_t pc = ReadCoreReg(PC_REG, &success);
addr_t lr; // next instruction address
if (!success)
return false;
uint32_t Rm; // the register with the target address
switch (encoding) {
case eEncodingT1:
lr = (pc - 2) | 1u; // return address
Rm = Bits32(opcode, 6, 3);
// if m == 15 then UNPREDICTABLE;
if (Rm == 15)
return false;
if (InITBlock() && !LastInITBlock())
return false;
break;
case eEncodingA1:
lr = pc - 4; // return address
Rm = Bits32(opcode, 3, 0);
// if m == 15 then UNPREDICTABLE;
if (Rm == 15)
return false;
break;
default:
return false;
}
addr_t target = ReadCoreReg (Rm, &success);
if (!success)
return false;
RegisterInfo dwarf_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + Rm, dwarf_reg);
context.SetRegister (dwarf_reg);
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA, lr))
return false;
if (!BXWritePC(context, target))
return false;
}
return true;
}
// Branch and Exchange causes a branch to an address and instruction set specified by a register.
bool
EmulateInstructionARM::EmulateBXRm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
BXWritePC(R[m]);
}
#endif
if (ConditionPassed(opcode))
{
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextAbsoluteBranchRegister;
uint32_t Rm; // the register with the target address
switch (encoding) {
case eEncodingT1:
Rm = Bits32(opcode, 6, 3);
if (InITBlock() && !LastInITBlock())
return false;
break;
case eEncodingA1:
Rm = Bits32(opcode, 3, 0);
break;
default:
return false;
}
bool success = false;
addr_t target = ReadCoreReg (Rm, &success);
if (!success)
return false;
RegisterInfo dwarf_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + Rm, dwarf_reg);
context.SetRegister (dwarf_reg);
if (!BXWritePC(context, target))
return false;
}
return true;
}
// Branch and Exchange Jazelle attempts to change to Jazelle state. If the attempt fails, it branches to an
// address and instruction set specified by a register as though it were a BX instruction.
//
// TODO: Emulate Jazelle architecture?
// We currently assume that switching to Jazelle state fails, thus treating BXJ as a BX operation.
bool
EmulateInstructionARM::EmulateBXJRm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
if JMCR.JE == '0' || CurrentInstrSet() == InstrSet_ThumbEE then
BXWritePC(R[m]);
else
if JazelleAcceptsExecution() then
SwitchToJazelleExecution();
else
SUBARCHITECTURE_DEFINED handler call;
}
#endif
if (ConditionPassed(opcode))
{
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextAbsoluteBranchRegister;
uint32_t Rm; // the register with the target address
switch (encoding) {
case eEncodingT1:
Rm = Bits32(opcode, 19, 16);
if (BadReg(Rm))
return false;
if (InITBlock() && !LastInITBlock())
return false;
break;
case eEncodingA1:
Rm = Bits32(opcode, 3, 0);
if (Rm == 15)
return false;
break;
default:
return false;
}
bool success = false;
addr_t target = ReadCoreReg (Rm, &success);
if (!success)
return false;
RegisterInfo dwarf_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + Rm, dwarf_reg);
context.SetRegister (dwarf_reg);
if (!BXWritePC(context, target))
return false;
}
return true;
}
// Set r7 to point to some ip offset.
// SUB (immediate)
bool
EmulateInstructionARM::EmulateSUBR7IPImm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
(result, carry, overflow) = AddWithCarry(SP, NOT(imm32), '1');
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
}
#endif
if (ConditionPassed(opcode))
{
bool success = false;
const addr_t ip = ReadCoreReg (12, &success);
if (!success)
return false;
uint32_t imm32;
switch (encoding) {
case eEncodingA1:
imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
break;
default:
return false;
}
addr_t ip_offset = imm32;
addr_t addr = ip - ip_offset; // the adjusted ip value
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextRegisterPlusOffset;
RegisterInfo dwarf_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r12, dwarf_reg);
context.SetRegisterPlusOffset (dwarf_reg, -ip_offset);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r7, addr))
return false;
}
return true;
}
// Set ip to point to some stack offset.
// SUB (SP minus immediate)
bool
EmulateInstructionARM::EmulateSUBIPSPImm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
(result, carry, overflow) = AddWithCarry(SP, NOT(imm32), '1');
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
}
#endif
if (ConditionPassed(opcode))
{
bool success = false;
const addr_t sp = ReadCoreReg (SP_REG, &success);
if (!success)
return false;
uint32_t imm32;
switch (encoding) {
case eEncodingA1:
imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
break;
default:
return false;
}
addr_t sp_offset = imm32;
addr_t addr = sp - sp_offset; // the adjusted stack pointer value
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextRegisterPlusOffset;
RegisterInfo dwarf_reg;
GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, dwarf_reg);
context.SetRegisterPlusOffset (dwarf_reg, -sp_offset);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r12, addr))
return false;
}
return true;
}
// This instruction subtracts an immediate value from the SP value, and writes
// the result to the destination register.
//
// If Rd == 13 => A sub operation to adjust the SP -- allocate space for local storage.
bool
EmulateInstructionARM::EmulateSUBSPImm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
(result, carry, overflow) = AddWithCarry(SP, NOT(imm32), '1');
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
}
#endif
bool success = false;
if (ConditionPassed(opcode))
{
const addr_t sp = ReadCoreReg (SP_REG, &success);
if (!success)
return false;
uint32_t Rd;
bool setflags;
uint32_t imm32;
switch (encoding) {
case eEncodingT1:
Rd = 13;
setflags = false;
imm32 = ThumbImm7Scaled(opcode); // imm32 = ZeroExtend(imm7:'00', 32)
break;
case eEncodingT2:
Rd = Bits32(opcode, 11, 8);
setflags = BitIsSet(opcode, 20);
imm32 = ThumbExpandImm(opcode); // imm32 = ThumbExpandImm(i:imm3:imm8)
if (Rd == 15 && setflags)
return EmulateCMPImm(opcode, eEncodingT2);
if (Rd == 15 && !setflags)
return false;
break;
case eEncodingT3:
Rd = Bits32(opcode, 11, 8);
setflags = false;
imm32 = ThumbImm12(opcode); // imm32 = ZeroExtend(i:imm3:imm8, 32)
if (Rd == 15)
return false;
break;
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
setflags = BitIsSet(opcode, 20);
imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
// if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
if (Rd == 15 && setflags)
return EmulateSUBSPcLrEtc (opcode, encoding);
break;
default:
return false;
}
AddWithCarryResult res = AddWithCarry(sp, ~imm32, 1);
EmulateInstruction::Context context;
if (Rd == 13)
{
uint64_t imm64 = imm32; // Need to expand it to 64 bits before attempting to negate it, or the wrong
// value gets passed down to context.SetImmediateSigned.
context.type = EmulateInstruction::eContextAdjustStackPointer;
context.SetImmediateSigned (-imm64); // the stack pointer offset
}
else
{
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
}
if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags, res.carry_out, res.overflow))
return false;
}
return true;
}
// A store operation to the stack that also updates the SP.
bool
EmulateInstructionARM::EmulateSTRRtSP (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
MemU[address,4] = if t == 15 then PCStoreValue() else R[t];
if wback then R[n] = offset_addr;
}
#endif
bool conditional = false;
bool success = false;
if (ConditionPassed(opcode, &conditional))
{
const uint32_t addr_byte_size = GetAddressByteSize();
const addr_t sp = ReadCoreReg (SP_REG, &success);
if (!success)
return false;
uint32_t Rt; // the source register
uint32_t imm12;
uint32_t Rn; // This function assumes Rn is the SP, but we should verify that.
bool index;
bool add;
bool wback;
switch (encoding) {
case eEncodingA1:
Rt = Bits32(opcode, 15, 12);
imm12 = Bits32(opcode, 11, 0);
Rn = Bits32 (opcode, 19, 16);
if (Rn != 13) // 13 is the SP reg on ARM. Verify that Rn == SP.
return false;
index = BitIsSet (opcode, 24);
add = BitIsSet (opcode, 23);
wback = (BitIsClear (opcode, 24) || BitIsSet (opcode, 21));
if (wback && ((Rn == 15) || (Rn == Rt)))
return false;
break;
default:
return false;
}
addr_t offset_addr;
if (add)
offset_addr = sp + imm12;
else
offset_addr = sp - imm12;
addr_t addr;
if (index)
addr = offset_addr;
else
addr = sp;
EmulateInstruction::Context context;
if (conditional)
context.type = EmulateInstruction::eContextRegisterStore;
else
context.type = EmulateInstruction::eContextPushRegisterOnStack;
RegisterInfo sp_reg;
RegisterInfo dwarf_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_sp, sp_reg);
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + Rt, dwarf_reg);
context.SetRegisterToRegisterPlusOffset ( dwarf_reg, sp_reg, addr - sp);
if (Rt != 15)
{
uint32_t reg_value = ReadCoreReg(Rt, &success);
if (!success)
return false;
if (!MemUWrite (context, addr, reg_value, addr_byte_size))
return false;
}
else
{
const uint32_t pc = ReadCoreReg(PC_REG, &success);
if (!success)
return false;
if (!MemUWrite (context, addr, pc, addr_byte_size))
return false;
}
if (wback)
{
context.type = EmulateInstruction::eContextAdjustStackPointer;
context.SetImmediateSigned (addr - sp);
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, offset_addr))
return false;
}
}
return true;
}
// Vector Push stores multiple extension registers to the stack.
// It also updates SP to point to the start of the stored data.
bool
EmulateInstructionARM::EmulateVPUSH (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(13);
address = SP - imm32;
SP = SP - imm32;
if single_regs then
for r = 0 to regs-1
MemA[address,4] = S[d+r]; address = address+4;
else
for r = 0 to regs-1
// Store as two word-aligned words in the correct order for current endianness.
MemA[address,4] = if BigEndian() then D[d+r]<63:32> else D[d+r]<31:0>;
MemA[address+4,4] = if BigEndian() then D[d+r]<31:0> else D[d+r]<63:32>;
address = address+8;
}
#endif
bool success = false;
bool conditional = false;
if (ConditionPassed(opcode, &conditional))
{
const uint32_t addr_byte_size = GetAddressByteSize();
const addr_t sp = ReadCoreReg (SP_REG, &success);
if (!success)
return false;
bool single_regs;
uint32_t d; // UInt(D:Vd) or UInt(Vd:D) starting register
uint32_t imm32; // stack offset
uint32_t regs; // number of registers
switch (encoding) {
case eEncodingT1:
case eEncodingA1:
single_regs = false;
d = Bit32(opcode, 22) << 4 | Bits32(opcode, 15, 12);
imm32 = Bits32(opcode, 7, 0) * addr_byte_size;
// If UInt(imm8) is odd, see "FSTMX".
regs = Bits32(opcode, 7, 0) / 2;
// if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
if (regs == 0 || regs > 16 || (d + regs) > 32)
return false;
break;
case eEncodingT2:
case eEncodingA2:
single_regs = true;
d = Bits32(opcode, 15, 12) << 1 | Bit32(opcode, 22);
imm32 = Bits32(opcode, 7, 0) * addr_byte_size;
regs = Bits32(opcode, 7, 0);
// if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
if (regs == 0 || regs > 16 || (d + regs) > 32)
return false;
break;
default:
return false;
}
uint32_t start_reg = single_regs ? dwarf_s0 : dwarf_d0;
uint32_t reg_byte_size = single_regs ? addr_byte_size : addr_byte_size * 2;
addr_t sp_offset = imm32;
addr_t addr = sp - sp_offset;
uint32_t i;
EmulateInstruction::Context context;
if (conditional)
context.type = EmulateInstruction::eContextRegisterStore;
else
context.type = EmulateInstruction::eContextPushRegisterOnStack;
RegisterInfo dwarf_reg;
RegisterInfo sp_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_sp, sp_reg);
for (i=0; i<regs; ++i)
{
GetRegisterInfo (eRegisterKindDWARF, start_reg + d + i, dwarf_reg);
context.SetRegisterToRegisterPlusOffset ( dwarf_reg, sp_reg, addr - sp);
// uint64_t to accommodate 64-bit registers.
uint64_t reg_value = ReadRegisterUnsigned (&dwarf_reg, 0, &success);
if (!success)
return false;
if (!MemAWrite (context, addr, reg_value, reg_byte_size))
return false;
addr += reg_byte_size;
}
context.type = EmulateInstruction::eContextAdjustStackPointer;
context.SetImmediateSigned (-sp_offset);
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, sp - sp_offset))
return false;
}
return true;
}
// Vector Pop loads multiple extension registers from the stack.
// It also updates SP to point just above the loaded data.
bool
EmulateInstructionARM::EmulateVPOP (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(13);
address = SP;
SP = SP + imm32;
if single_regs then
for r = 0 to regs-1
S[d+r] = MemA[address,4]; address = address+4;
else
for r = 0 to regs-1
word1 = MemA[address,4]; word2 = MemA[address+4,4]; address = address+8;
// Combine the word-aligned words in the correct order for current endianness.
D[d+r] = if BigEndian() then word1:word2 else word2:word1;
}
#endif
bool success = false;
bool conditional = false;
if (ConditionPassed(opcode, &conditional))
{
const uint32_t addr_byte_size = GetAddressByteSize();
const addr_t sp = ReadCoreReg (SP_REG, &success);
if (!success)
return false;
bool single_regs;
uint32_t d; // UInt(D:Vd) or UInt(Vd:D) starting register
uint32_t imm32; // stack offset
uint32_t regs; // number of registers
switch (encoding) {
case eEncodingT1:
case eEncodingA1:
single_regs = false;
d = Bit32(opcode, 22) << 4 | Bits32(opcode, 15, 12);
imm32 = Bits32(opcode, 7, 0) * addr_byte_size;
// If UInt(imm8) is odd, see "FLDMX".
regs = Bits32(opcode, 7, 0) / 2;
// if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
if (regs == 0 || regs > 16 || (d + regs) > 32)
return false;
break;
case eEncodingT2:
case eEncodingA2:
single_regs = true;
d = Bits32(opcode, 15, 12) << 1 | Bit32(opcode, 22);
imm32 = Bits32(opcode, 7, 0) * addr_byte_size;
regs = Bits32(opcode, 7, 0);
// if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
if (regs == 0 || regs > 16 || (d + regs) > 32)
return false;
break;
default:
return false;
}
uint32_t start_reg = single_regs ? dwarf_s0 : dwarf_d0;
uint32_t reg_byte_size = single_regs ? addr_byte_size : addr_byte_size * 2;
addr_t sp_offset = imm32;
addr_t addr = sp;
uint32_t i;
uint64_t data; // uint64_t to accommodate 64-bit registers.
EmulateInstruction::Context context;
if (conditional)
context.type = EmulateInstruction::eContextRegisterLoad;
else
context.type = EmulateInstruction::eContextPopRegisterOffStack;
RegisterInfo dwarf_reg;
RegisterInfo sp_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_sp, sp_reg);
for (i=0; i<regs; ++i)
{
GetRegisterInfo (eRegisterKindDWARF, start_reg + d + i, dwarf_reg);
context.SetRegisterPlusOffset (sp_reg, addr - sp);
data = MemARead(context, addr, reg_byte_size, 0, &success);
if (!success)
return false;
if (!WriteRegisterUnsigned(context, &dwarf_reg, data))
return false;
addr += reg_byte_size;
}
context.type = EmulateInstruction::eContextAdjustStackPointer;
context.SetImmediateSigned (sp_offset);
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, sp + sp_offset))
return false;
}
return true;
}
// SVC (previously SWI)
bool
EmulateInstructionARM::EmulateSVC (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
CallSupervisor();
}
#endif
bool success = false;
if (ConditionPassed(opcode))
{
const uint32_t pc = ReadCoreReg(PC_REG, &success);
addr_t lr; // next instruction address
if (!success)
return false;
uint32_t imm32; // the immediate constant
uint32_t mode; // ARM or Thumb mode
switch (encoding) {
case eEncodingT1:
lr = (pc + 2) | 1u; // return address
imm32 = Bits32(opcode, 7, 0);
mode = eModeThumb;
break;
case eEncodingA1:
lr = pc + 4; // return address
imm32 = Bits32(opcode, 23, 0);
mode = eModeARM;
break;
default:
return false;
}
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextSupervisorCall;
context.SetISAAndImmediate (mode, imm32);
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA, lr))
return false;
}
return true;
}
// If Then makes up to four following instructions (the IT block) conditional.
bool
EmulateInstructionARM::EmulateIT (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
EncodingSpecificOperations();
ITSTATE.IT<7:0> = firstcond:mask;
#endif
m_it_session.InitIT(Bits32(opcode, 7, 0));
return true;
}
bool
EmulateInstructionARM::EmulateNop (const uint32_t opcode, const ARMEncoding encoding)
{
// NOP, nothing to do...
return true;
}
// Branch causes a branch to a target address.
bool
EmulateInstructionARM::EmulateB (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations();
BranchWritePC(PC + imm32);
}
#endif
bool success = false;
if (ConditionPassed(opcode))
{
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextRelativeBranchImmediate;
const uint32_t pc = ReadCoreReg(PC_REG, &success);
if (!success)
return false;
addr_t target; // target address
int32_t imm32; // PC-relative offset
switch (encoding) {
case eEncodingT1:
// The 'cond' field is handled in EmulateInstructionARM::CurrentCond().
imm32 = llvm::SignExtend32<9>(Bits32(opcode, 7, 0) << 1);
target = pc + imm32;
context.SetISAAndImmediateSigned (eModeThumb, 4 + imm32);
break;
case eEncodingT2:
imm32 = llvm::SignExtend32<12>(Bits32(opcode, 10, 0));
target = pc + imm32;
context.SetISAAndImmediateSigned (eModeThumb, 4 + imm32);
break;
case eEncodingT3:
// The 'cond' field is handled in EmulateInstructionARM::CurrentCond().
{
uint32_t S = Bit32(opcode, 26);
uint32_t imm6 = Bits32(opcode, 21, 16);
uint32_t J1 = Bit32(opcode, 13);
uint32_t J2 = Bit32(opcode, 11);
uint32_t imm11 = Bits32(opcode, 10, 0);
uint32_t imm21 = (S << 20) | (J2 << 19) | (J1 << 18) | (imm6 << 12) | (imm11 << 1);
imm32 = llvm::SignExtend32<21>(imm21);
target = pc + imm32;
context.SetISAAndImmediateSigned (eModeThumb, 4 + imm32);
break;
}
case eEncodingT4:
{
uint32_t S = Bit32(opcode, 26);
uint32_t imm10 = Bits32(opcode, 25, 16);
uint32_t J1 = Bit32(opcode, 13);
uint32_t J2 = Bit32(opcode, 11);
uint32_t imm11 = Bits32(opcode, 10, 0);
uint32_t I1 = !(J1 ^ S);
uint32_t I2 = !(J2 ^ S);
uint32_t imm25 = (S << 24) | (I1 << 23) | (I2 << 22) | (imm10 << 12) | (imm11 << 1);
imm32 = llvm::SignExtend32<25>(imm25);
target = pc + imm32;
context.SetISAAndImmediateSigned (eModeThumb, 4 + imm32);
break;
}
case eEncodingA1:
imm32 = llvm::SignExtend32<26>(Bits32(opcode, 23, 0) << 2);
target = pc + imm32;
context.SetISAAndImmediateSigned (eModeARM, 8 + imm32);
break;
default:
return false;
}
if (!BranchWritePC(context, target))
return false;
}
return true;
}
// Compare and Branch on Nonzero and Compare and Branch on Zero compare the value in a register with
// zero and conditionally branch forward a constant value. They do not affect the condition flags.
// CBNZ, CBZ
bool
EmulateInstructionARM::EmulateCB (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
EncodingSpecificOperations();
if nonzero ^ IsZero(R[n]) then
BranchWritePC(PC + imm32);
#endif
bool success = false;
// Read the register value from the operand register Rn.
uint32_t reg_val = ReadCoreReg(Bits32(opcode, 2, 0), &success);
if (!success)
return false;
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextRelativeBranchImmediate;
const uint32_t pc = ReadCoreReg(PC_REG, &success);
if (!success)
return false;
addr_t target; // target address
uint32_t imm32; // PC-relative offset to branch forward
bool nonzero;
switch (encoding) {
case eEncodingT1:
imm32 = Bit32(opcode, 9) << 6 | Bits32(opcode, 7, 3) << 1;
nonzero = BitIsSet(opcode, 11);
target = pc + imm32;
context.SetISAAndImmediateSigned (eModeThumb, 4 + imm32);
break;
default:
return false;
}
if (nonzero ^ (reg_val == 0))
if (!BranchWritePC(context, target))
return false;
return true;
}
// Table Branch Byte causes a PC-relative forward branch using a table of single byte offsets.
// A base register provides a pointer to the table, and a second register supplies an index into the table.
// The branch length is twice the value of the byte returned from the table.
//
// Table Branch Halfword causes a PC-relative forward branch using a table of single halfword offsets.
// A base register provides a pointer to the table, and a second register supplies an index into the table.
// The branch length is twice the value of the halfword returned from the table.
// TBB, TBH
bool
EmulateInstructionARM::EmulateTB (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
if is_tbh then
halfwords = UInt(MemU[R[n]+LSL(R[m],1), 2]);
else
halfwords = UInt(MemU[R[n]+R[m], 1]);
BranchWritePC(PC + 2*halfwords);
#endif
bool success = false;
uint32_t Rn; // the base register which contains the address of the table of branch lengths
uint32_t Rm; // the index register which contains an integer pointing to a byte/halfword in the table
bool is_tbh; // true if table branch halfword
switch (encoding) {
case eEncodingT1:
Rn = Bits32(opcode, 19, 16);
Rm = Bits32(opcode, 3, 0);
is_tbh = BitIsSet(opcode, 4);
if (Rn == 13 || BadReg(Rm))
return false;
if (InITBlock() && !LastInITBlock())
return false;
break;
default:
return false;
}
// Read the address of the table from the operand register Rn.
// The PC can be used, in which case the table immediately follows this instruction.
uint32_t base = ReadCoreReg(Rm, &success);
if (!success)
return false;
// the table index
uint32_t index = ReadCoreReg(Rm, &success);
if (!success)
return false;
// the offsetted table address
addr_t addr = base + (is_tbh ? index*2 : index);
// PC-relative offset to branch forward
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextTableBranchReadMemory;
uint32_t offset = MemURead(context, addr, is_tbh ? 2 : 1, 0, &success) * 2;
if (!success)
return false;
const uint32_t pc = ReadCoreReg(PC_REG, &success);
if (!success)
return false;
// target address
addr_t target = pc + offset;
context.type = EmulateInstruction::eContextRelativeBranchImmediate;
context.SetISAAndImmediateSigned (eModeThumb, 4 + offset);
if (!BranchWritePC(context, target))
return false;
return true;
}
// This instruction adds an immediate value to a register value, and writes the result to the destination register.
// It can optionally update the condition flags based on the result.
bool
EmulateInstructionARM::EmulateADDImmThumb (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddWithCarry(R[n], imm32, '0');
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t d;
uint32_t n;
bool setflags;
uint32_t imm32;
uint32_t carry_out;
//EncodingSpecificOperations();
switch (encoding)
{
case eEncodingT1:
// d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = ZeroExtend(imm3, 32);
d = Bits32 (opcode, 2, 0);
n = Bits32 (opcode, 5, 3);
setflags = !InITBlock();
imm32 = Bits32 (opcode, 8,6);
break;
case eEncodingT2:
// d = UInt(Rdn); n = UInt(Rdn); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32);
d = Bits32 (opcode, 10, 8);
n = Bits32 (opcode, 10, 8);
setflags = !InITBlock();
imm32 = Bits32 (opcode, 7, 0);
break;
case eEncodingT3:
// if Rd == '1111' && S == '1' then SEE CMN (immediate);
// if Rn == '1101' then SEE ADD (SP plus immediate);
// d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = ThumbExpandImm(i:imm3:imm8);
d = Bits32 (opcode, 11, 8);
n = Bits32 (opcode, 19, 16);
setflags = BitIsSet (opcode, 20);
imm32 = ThumbExpandImm_C (opcode, APSR_C, carry_out);
// if BadReg(d) || n == 15 then UNPREDICTABLE;
if (BadReg (d) || (n == 15))
return false;
break;
case eEncodingT4:
{
// if Rn == '1111' then SEE ADR;
// if Rn == '1101' then SEE ADD (SP plus immediate);
// d = UInt(Rd); n = UInt(Rn); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
d = Bits32 (opcode, 11, 8);
n = Bits32 (opcode, 19, 16);
setflags = false;
uint32_t i = Bit32 (opcode, 26);
uint32_t imm3 = Bits32 (opcode, 14, 12);
uint32_t imm8 = Bits32 (opcode, 7, 0);
imm32 = (i << 11) | (imm3 << 8) | imm8;
// if BadReg(d) then UNPREDICTABLE;
if (BadReg (d))
return false;
break;
}
default:
return false;
}
uint64_t Rn = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
if (!success)
return false;
//(result, carry, overflow) = AddWithCarry(R[n], imm32, '0');
AddWithCarryResult res = AddWithCarry (Rn, imm32, 0);
RegisterInfo reg_n;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, reg_n);
EmulateInstruction::Context context;
context.type = eContextArithmetic;
context.SetRegisterPlusOffset (reg_n, imm32);
//R[d] = result;
//if setflags then
//APSR.N = result<31>;
//APSR.Z = IsZeroBit(result);
//APSR.C = carry;
//APSR.V = overflow;
if (!WriteCoreRegOptionalFlags (context, res.result, d, setflags, res.carry_out, res.overflow))
return false;
}
return true;
}
// This instruction adds an immediate value to a register value, and writes the result to the destination
// register. It can optionally update the condition flags based on the result.
bool
EmulateInstructionARM::EmulateADDImmARM (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddWithCarry(R[n], imm32, '0');
if d == 15 then
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t Rd, Rn;
uint32_t imm32; // the immediate value to be added to the value obtained from Rn
bool setflags;
switch (encoding)
{
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
Rn = Bits32(opcode, 19, 16);
setflags = BitIsSet(opcode, 20);
imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
break;
default:
return false;
}
// Read the first operand.
uint32_t val1 = ReadCoreReg(Rn, &success);
if (!success)
return false;
AddWithCarryResult res = AddWithCarry(val1, imm32, 0);
EmulateInstruction::Context context;
context.type = eContextArithmetic;
RegisterInfo dwarf_reg;
GetRegisterInfo (eRegisterKindDWARF, Rn, dwarf_reg);
context.SetRegisterPlusOffset (dwarf_reg, imm32);
if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags, res.carry_out, res.overflow))
return false;
}
return true;
}
// This instruction adds a register value and an optionally-shifted register value, and writes the result
// to the destination register. It can optionally update the condition flags based on the result.
bool
EmulateInstructionARM::EmulateADDReg (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddWithCarry(R[n], shifted, '0');
if d == 15 then
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t Rd, Rn, Rm;
ARM_ShifterType shift_t;
uint32_t shift_n; // the shift applied to the value read from Rm
bool setflags;
switch (encoding)
{
case eEncodingT1:
Rd = Bits32(opcode, 2, 0);
Rn = Bits32(opcode, 5, 3);
Rm = Bits32(opcode, 8, 6);
setflags = !InITBlock();
shift_t = SRType_LSL;
shift_n = 0;
break;
case eEncodingT2:
Rd = Rn = Bit32(opcode, 7) << 3 | Bits32(opcode, 2, 0);
Rm = Bits32(opcode, 6, 3);
setflags = false;
shift_t = SRType_LSL;
shift_n = 0;
if (Rn == 15 && Rm == 15)
return false;
if (Rd == 15 && InITBlock() && !LastInITBlock())
return false;
break;
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
Rn = Bits32(opcode, 19, 16);
Rm = Bits32(opcode, 3, 0);
setflags = BitIsSet(opcode, 20);
shift_n = DecodeImmShiftARM(opcode, shift_t);
break;
default:
return false;
}
// Read the first operand.
uint32_t val1 = ReadCoreReg(Rn, &success);
if (!success)
return false;
// Read the second operand.
uint32_t val2 = ReadCoreReg(Rm, &success);
if (!success)
return false;
uint32_t shifted = Shift(val2, shift_t, shift_n, APSR_C, &success);
if (!success)
return false;
AddWithCarryResult res = AddWithCarry(val1, shifted, 0);
EmulateInstruction::Context context;
context.type = eContextArithmetic;
RegisterInfo op1_reg;
RegisterInfo op2_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + Rn, op1_reg);
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + Rm, op2_reg);
context.SetRegisterRegisterOperands (op1_reg, op2_reg);
if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags, res.carry_out, res.overflow))
return false;
}
return true;
}
// Compare Negative (immediate) adds a register value and an immediate value.
// It updates the condition flags based on the result, and discards the result.
bool
EmulateInstructionARM::EmulateCMNImm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddWithCarry(R[n], imm32, '0');
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
#endif
bool success = false;
uint32_t Rn; // the first operand
uint32_t imm32; // the immediate value to be compared with
switch (encoding) {
case eEncodingT1:
Rn = Bits32(opcode, 19, 16);
imm32 = ThumbExpandImm(opcode); // imm32 = ThumbExpandImm(i:imm3:imm8)
if (Rn == 15)
return false;
break;
case eEncodingA1:
Rn = Bits32(opcode, 19, 16);
imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
break;
default:
return false;
}
// Read the register value from the operand register Rn.
uint32_t reg_val = ReadCoreReg(Rn, &success);
if (!success)
return false;
AddWithCarryResult res = AddWithCarry(reg_val, imm32, 0);
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteFlags(context, res.result, res.carry_out, res.overflow))
return false;
return true;
}
// Compare Negative (register) adds a register value and an optionally-shifted register value.
// It updates the condition flags based on the result, and discards the result.
bool
EmulateInstructionARM::EmulateCMNReg (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddWithCarry(R[n], shifted, '0');
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
#endif
bool success = false;
uint32_t Rn; // the first operand
uint32_t Rm; // the second operand
ARM_ShifterType shift_t;
uint32_t shift_n; // the shift applied to the value read from Rm
switch (encoding) {
case eEncodingT1:
Rn = Bits32(opcode, 2, 0);
Rm = Bits32(opcode, 5, 3);
shift_t = SRType_LSL;
shift_n = 0;
break;
case eEncodingT2:
Rn = Bits32(opcode, 19, 16);
Rm = Bits32(opcode, 3, 0);
shift_n = DecodeImmShiftThumb(opcode, shift_t);
// if n == 15 || BadReg(m) then UNPREDICTABLE;
if (Rn == 15 || BadReg(Rm))
return false;
break;
case eEncodingA1:
Rn = Bits32(opcode, 19, 16);
Rm = Bits32(opcode, 3, 0);
shift_n = DecodeImmShiftARM(opcode, shift_t);
break;
default:
return false;
}
// Read the register value from register Rn.
uint32_t val1 = ReadCoreReg(Rn, &success);
if (!success)
return false;
// Read the register value from register Rm.
uint32_t val2 = ReadCoreReg(Rm, &success);
if (!success)
return false;
uint32_t shifted = Shift(val2, shift_t, shift_n, APSR_C, &success);
if (!success)
return false;
AddWithCarryResult res = AddWithCarry(val1, shifted, 0);
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs();
if (!WriteFlags(context, res.result, res.carry_out, res.overflow))
return false;
return true;
}
// Compare (immediate) subtracts an immediate value from a register value.
// It updates the condition flags based on the result, and discards the result.
bool
EmulateInstructionARM::EmulateCMPImm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), '1');
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
#endif
bool success = false;
uint32_t Rn; // the first operand
uint32_t imm32; // the immediate value to be compared with
switch (encoding) {
case eEncodingT1:
Rn = Bits32(opcode, 10, 8);
imm32 = Bits32(opcode, 7, 0);
break;
case eEncodingT2:
Rn = Bits32(opcode, 19, 16);
imm32 = ThumbExpandImm(opcode); // imm32 = ThumbExpandImm(i:imm3:imm8)
if (Rn == 15)
return false;
break;
case eEncodingA1:
Rn = Bits32(opcode, 19, 16);
imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
break;
default:
return false;
}
// Read the register value from the operand register Rn.
uint32_t reg_val = ReadCoreReg(Rn, &success);
if (!success)
return false;
AddWithCarryResult res = AddWithCarry(reg_val, ~imm32, 1);
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteFlags(context, res.result, res.carry_out, res.overflow))
return false;
return true;
}
// Compare (register) subtracts an optionally-shifted register value from a register value.
// It updates the condition flags based on the result, and discards the result.
bool
EmulateInstructionARM::EmulateCMPReg (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), '1');
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
#endif
bool success = false;
uint32_t Rn; // the first operand
uint32_t Rm; // the second operand
ARM_ShifterType shift_t;
uint32_t shift_n; // the shift applied to the value read from Rm
switch (encoding) {
case eEncodingT1:
Rn = Bits32(opcode, 2, 0);
Rm = Bits32(opcode, 5, 3);
shift_t = SRType_LSL;
shift_n = 0;
break;
case eEncodingT2:
Rn = Bit32(opcode, 7) << 3 | Bits32(opcode, 2, 0);
Rm = Bits32(opcode, 6, 3);
shift_t = SRType_LSL;
shift_n = 0;
if (Rn < 8 && Rm < 8)
return false;
if (Rn == 15 || Rm == 15)
return false;
break;
case eEncodingA1:
Rn = Bits32(opcode, 19, 16);
Rm = Bits32(opcode, 3, 0);
shift_n = DecodeImmShiftARM(opcode, shift_t);
break;
default:
return false;
}
// Read the register value from register Rn.
uint32_t val1 = ReadCoreReg(Rn, &success);
if (!success)
return false;
// Read the register value from register Rm.
uint32_t val2 = ReadCoreReg(Rm, &success);
if (!success)
return false;
uint32_t shifted = Shift(val2, shift_t, shift_n, APSR_C, &success);
if (!success)
return false;
AddWithCarryResult res = AddWithCarry(val1, ~shifted, 1);
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs();
if (!WriteFlags(context, res.result, res.carry_out, res.overflow))
return false;
return true;
}
// Arithmetic Shift Right (immediate) shifts a register value right by an immediate number of bits,
// shifting in copies of its sign bit, and writes the result to the destination register. It can
// optionally update the condition flags based on the result.
bool
EmulateInstructionARM::EmulateASRImm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
(result, carry) = Shift_C(R[m], SRType_ASR, shift_n, APSR.C);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged
#endif
return EmulateShiftImm (opcode, encoding, SRType_ASR);
}
// Arithmetic Shift Right (register) shifts a register value right by a variable number of bits,
// shifting in copies of its sign bit, and writes the result to the destination register.
// The variable number of bits is read from the bottom byte of a register. It can optionally update
// the condition flags based on the result.
bool
EmulateInstructionARM::EmulateASRReg (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[m]<7:0>);
(result, carry) = Shift_C(R[m], SRType_ASR, shift_n, APSR.C);
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged
#endif
return EmulateShiftReg (opcode, encoding, SRType_ASR);
}
// Logical Shift Left (immediate) shifts a register value left by an immediate number of bits,
// shifting in zeros, and writes the result to the destination register. It can optionally
// update the condition flags based on the result.
bool
EmulateInstructionARM::EmulateLSLImm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
(result, carry) = Shift_C(R[m], SRType_LSL, shift_n, APSR.C);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged
#endif
return EmulateShiftImm (opcode, encoding, SRType_LSL);
}
// Logical Shift Left (register) shifts a register value left by a variable number of bits,
// shifting in zeros, and writes the result to the destination register. The variable number
// of bits is read from the bottom byte of a register. It can optionally update the condition
// flags based on the result.
bool
EmulateInstructionARM::EmulateLSLReg (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[m]<7:0>);
(result, carry) = Shift_C(R[m], SRType_LSL, shift_n, APSR.C);
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged
#endif
return EmulateShiftReg (opcode, encoding, SRType_LSL);
}
// Logical Shift Right (immediate) shifts a register value right by an immediate number of bits,
// shifting in zeros, and writes the result to the destination register. It can optionally
// update the condition flags based on the result.
bool
EmulateInstructionARM::EmulateLSRImm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
(result, carry) = Shift_C(R[m], SRType_LSR, shift_n, APSR.C);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged
#endif
return EmulateShiftImm (opcode, encoding, SRType_LSR);
}
// Logical Shift Right (register) shifts a register value right by a variable number of bits,
// shifting in zeros, and writes the result to the destination register. The variable number
// of bits is read from the bottom byte of a register. It can optionally update the condition
// flags based on the result.
bool
EmulateInstructionARM::EmulateLSRReg (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[m]<7:0>);
(result, carry) = Shift_C(R[m], SRType_LSR, shift_n, APSR.C);
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged
#endif
return EmulateShiftReg (opcode, encoding, SRType_LSR);
}
// Rotate Right (immediate) provides the value of the contents of a register rotated by a constant value.
// The bits that are rotated off the right end are inserted into the vacated bit positions on the left.
// It can optionally update the condition flags based on the result.
bool
EmulateInstructionARM::EmulateRORImm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
(result, carry) = Shift_C(R[m], SRType_ROR, shift_n, APSR.C);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged
#endif
return EmulateShiftImm (opcode, encoding, SRType_ROR);
}
// Rotate Right (register) provides the value of the contents of a register rotated by a variable number of bits.
// The bits that are rotated off the right end are inserted into the vacated bit positions on the left.
// The variable number of bits is read from the bottom byte of a register. It can optionally update the condition
// flags based on the result.
bool
EmulateInstructionARM::EmulateRORReg (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[m]<7:0>);
(result, carry) = Shift_C(R[m], SRType_ROR, shift_n, APSR.C);
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged
#endif
return EmulateShiftReg (opcode, encoding, SRType_ROR);
}
// Rotate Right with Extend provides the value of the contents of a register shifted right by one place,
// with the carry flag shifted into bit [31].
//
// RRX can optionally update the condition flags based on the result.
// In that case, bit [0] is shifted into the carry flag.
bool
EmulateInstructionARM::EmulateRRX (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
(result, carry) = Shift_C(R[m], SRType_RRX, 1, APSR.C);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged
#endif
return EmulateShiftImm (opcode, encoding, SRType_RRX);
}
bool
EmulateInstructionARM::EmulateShiftImm (const uint32_t opcode, const ARMEncoding encoding, ARM_ShifterType shift_type)
{
// assert(shift_type == SRType_ASR
// || shift_type == SRType_LSL
// || shift_type == SRType_LSR
// || shift_type == SRType_ROR
// || shift_type == SRType_RRX);
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t Rd; // the destination register
uint32_t Rm; // the first operand register
uint32_t imm5; // encoding for the shift amount
uint32_t carry; // the carry bit after the shift operation
bool setflags;
// Special case handling!
// A8.6.139 ROR (immediate) -- Encoding T1
ARMEncoding use_encoding = encoding;
if (shift_type == SRType_ROR && use_encoding == eEncodingT1)
{
// Morph the T1 encoding from the ARM Architecture Manual into T2 encoding to
// have the same decoding of bit fields as the other Thumb2 shift operations.
use_encoding = eEncodingT2;
}
switch (use_encoding) {
case eEncodingT1:
// Due to the above special case handling!
if (shift_type == SRType_ROR)
return false;
Rd = Bits32(opcode, 2, 0);
Rm = Bits32(opcode, 5, 3);
setflags = !InITBlock();
imm5 = Bits32(opcode, 10, 6);
break;
case eEncodingT2:
// A8.6.141 RRX
// There's no imm form of RRX instructions.
if (shift_type == SRType_RRX)
return false;
Rd = Bits32(opcode, 11, 8);
Rm = Bits32(opcode, 3, 0);
setflags = BitIsSet(opcode, 20);
imm5 = Bits32(opcode, 14, 12) << 2 | Bits32(opcode, 7, 6);
if (BadReg(Rd) || BadReg(Rm))
return false;
break;
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
Rm = Bits32(opcode, 3, 0);
setflags = BitIsSet(opcode, 20);
imm5 = Bits32(opcode, 11, 7);
break;
default:
return false;
}
// A8.6.139 ROR (immediate)
if (shift_type == SRType_ROR && imm5 == 0)
shift_type = SRType_RRX;
// Get the first operand.
uint32_t value = ReadCoreReg (Rm, &success);
if (!success)
return false;
// Decode the shift amount if not RRX.
uint32_t amt = (shift_type == SRType_RRX ? 1 : DecodeImmShift(shift_type, imm5));
uint32_t result = Shift_C(value, shift_type, amt, APSR_C, carry, &success);
if (!success)
return false;
// The context specifies that an immediate is to be moved into Rd.
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
return false;
}
return true;
}
bool
EmulateInstructionARM::EmulateShiftReg (const uint32_t opcode, const ARMEncoding encoding, ARM_ShifterType shift_type)
{
// assert(shift_type == SRType_ASR
// || shift_type == SRType_LSL
// || shift_type == SRType_LSR
// || shift_type == SRType_ROR);
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t Rd; // the destination register
uint32_t Rn; // the first operand register
uint32_t Rm; // the register whose bottom byte contains the amount to shift by
uint32_t carry; // the carry bit after the shift operation
bool setflags;
switch (encoding) {
case eEncodingT1:
Rd = Bits32(opcode, 2, 0);
Rn = Rd;
Rm = Bits32(opcode, 5, 3);
setflags = !InITBlock();
break;
case eEncodingT2:
Rd = Bits32(opcode, 11, 8);
Rn = Bits32(opcode, 19, 16);
Rm = Bits32(opcode, 3, 0);
setflags = BitIsSet(opcode, 20);
if (BadReg(Rd) || BadReg(Rn) || BadReg(Rm))
return false;
break;
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
Rn = Bits32(opcode, 3, 0);
Rm = Bits32(opcode, 11, 8);
setflags = BitIsSet(opcode, 20);
if (Rd == 15 || Rn == 15 || Rm == 15)
return false;
break;
default:
return false;
}
// Get the first operand.
uint32_t value = ReadCoreReg (Rn, &success);
if (!success)
return false;
// Get the Rm register content.
uint32_t val = ReadCoreReg (Rm, &success);
if (!success)
return false;
// Get the shift amount.
uint32_t amt = Bits32(val, 7, 0);
uint32_t result = Shift_C(value, shift_type, amt, APSR_C, carry, &success);
if (!success)
return false;
// The context specifies that an immediate is to be moved into Rd.
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
return false;
}
return true;
}
// LDM loads multiple registers from consecutive memory locations, using an
// address from a base register. Optionally the address just above the highest of those locations
// can be written back to the base register.
bool
EmulateInstructionARM::EmulateLDM (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed()
EncodingSpecificOperations(); NullCheckIfThumbEE (n);
address = R[n];
for i = 0 to 14
if registers<i> == '1' then
R[i] = MemA[address, 4]; address = address + 4;
if registers<15> == '1' then
LoadWritePC (MemA[address, 4]);
if wback && registers<n> == '0' then R[n] = R[n] + 4 * BitCount (registers);
if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN; // Only possible for encoding A1
#endif
bool success = false;
bool conditional = false;
if (ConditionPassed(opcode, &conditional))
{
uint32_t n;
uint32_t registers = 0;
bool wback;
const uint32_t addr_byte_size = GetAddressByteSize();
switch (encoding)
{
case eEncodingT1:
// n = UInt(Rn); registers = '00000000':register_list; wback = (registers<n> == '0');
n = Bits32 (opcode, 10, 8);
registers = Bits32 (opcode, 7, 0);
registers = registers & 0x00ff; // Make sure the top 8 bits are zeros.
wback = BitIsClear (registers, n);
// if BitCount(registers) < 1 then UNPREDICTABLE;
if (BitCount(registers) < 1)
return false;
break;
case eEncodingT2:
// if W == '1' && Rn == '1101' then SEE POP;
// n = UInt(Rn); registers = P:M:'0':register_list; wback = (W == '1');
n = Bits32 (opcode, 19, 16);
registers = Bits32 (opcode, 15, 0);
registers = registers & 0xdfff; // Make sure bit 13 is zero.
wback = BitIsSet (opcode, 21);
// if n == 15 || BitCount(registers) < 2 || (P == '1' && M == '1') then UNPREDICTABLE;
if ((n == 15)
|| (BitCount (registers) < 2)
|| (BitIsSet (opcode, 14) && BitIsSet (opcode, 15)))
return false;
// if registers<15> == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
if (BitIsSet (registers, 15) && InITBlock() && !LastInITBlock())
return false;
// if wback && registers<n> == '1' then UNPREDICTABLE;
if (wback
&& BitIsSet (registers, n))
return false;
break;
case eEncodingA1:
n = Bits32 (opcode, 19, 16);
registers = Bits32 (opcode, 15, 0);
wback = BitIsSet (opcode, 21);
if ((n == 15)
|| (BitCount (registers) < 1))
return false;
break;
default:
return false;
}
int32_t offset = 0;
const addr_t base_address = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
if (!success)
return false;
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextRegisterPlusOffset;
RegisterInfo dwarf_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, dwarf_reg);
context.SetRegisterPlusOffset (dwarf_reg, offset);
for (int i = 0; i < 14; ++i)
{
if (BitIsSet (registers, i))
{
context.type = EmulateInstruction::eContextRegisterPlusOffset;
context.SetRegisterPlusOffset (dwarf_reg, offset);
if (wback && (n == 13)) // Pop Instruction
{
if (conditional)
context.type = EmulateInstruction::eContextRegisterLoad;
else
context.type = EmulateInstruction::eContextPopRegisterOffStack;
}
// R[i] = MemA [address, 4]; address = address + 4;
uint32_t data = MemARead (context, base_address + offset, addr_byte_size, 0, &success);
if (!success)
return false;
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + i, data))
return false;
offset += addr_byte_size;
}
}
if (BitIsSet (registers, 15))
{
//LoadWritePC (MemA [address, 4]);
context.type = EmulateInstruction::eContextRegisterPlusOffset;
context.SetRegisterPlusOffset (dwarf_reg, offset);
uint32_t data = MemARead (context, base_address + offset, addr_byte_size, 0, &success);
if (!success)
return false;
// In ARMv5T and above, this is an interworking branch.
if (!LoadWritePC(context, data))
return false;
}
if (wback && BitIsClear (registers, n))
{
// R[n] = R[n] + 4 * BitCount (registers)
int32_t offset = addr_byte_size * BitCount (registers);
context.type = EmulateInstruction::eContextAdjustBaseRegister;
context.SetRegisterPlusOffset (dwarf_reg, offset);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, base_address + offset))
return false;
}
if (wback && BitIsSet (registers, n))
// R[n] bits(32) UNKNOWN;
return WriteBits32Unknown (n);
}
return true;
}
// LDMDA loads multiple registers from consecutive memory locations using an address from a base register.
// The consecutive memory locations end at this address and the address just below the lowest of those locations
// can optionally be written back to the base register.
bool
EmulateInstructionARM::EmulateLDMDA (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] - 4*BitCount(registers) + 4;
for i = 0 to 14
if registers<i> == '1' then
R[i] = MemA[address,4]; address = address + 4;
if registers<15> == '1' then
LoadWritePC(MemA[address,4]);
if wback && registers<n> == '0' then R[n] = R[n] - 4*BitCount(registers);
if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t n;
uint32_t registers = 0;
bool wback;
const uint32_t addr_byte_size = GetAddressByteSize();
// EncodingSpecificOperations();
switch (encoding)
{
case eEncodingA1:
// n = UInt(Rn); registers = register_list; wback = (W == '1');
n = Bits32 (opcode, 19, 16);
registers = Bits32 (opcode, 15, 0);
wback = BitIsSet (opcode, 21);
// if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
if ((n == 15) || (BitCount (registers) < 1))
return false;
break;
default:
return false;
}
// address = R[n] - 4*BitCount(registers) + 4;
int32_t offset = 0;
addr_t Rn = ReadCoreReg (n, &success);
if (!success)
return false;
addr_t address = Rn - (addr_byte_size * BitCount (registers)) + addr_byte_size;
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextRegisterPlusOffset;
RegisterInfo dwarf_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, dwarf_reg);
context.SetRegisterPlusOffset (dwarf_reg, offset);
// for i = 0 to 14
for (int i = 0; i < 14; ++i)
{
// if registers<i> == '1' then
if (BitIsSet (registers, i))
{
// R[i] = MemA[address,4]; address = address + 4;
context.SetRegisterPlusOffset (dwarf_reg, Rn - (address + offset));
uint32_t data = MemARead (context, address + offset, addr_byte_size, 0, &success);
if (!success)
return false;
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + i, data))
return false;
offset += addr_byte_size;
}
}
// if registers<15> == '1' then
// LoadWritePC(MemA[address,4]);
if (BitIsSet (registers, 15))
{
context.SetRegisterPlusOffset (dwarf_reg, offset);
uint32_t data = MemARead (context, address + offset, addr_byte_size, 0, &success);
if (!success)
return false;
// In ARMv5T and above, this is an interworking branch.
if (!LoadWritePC(context, data))
return false;
}
// if wback && registers<n> == '0' then R[n] = R[n] - 4*BitCount(registers);
if (wback && BitIsClear (registers, n))
{
if (!success)
return false;
offset = (addr_byte_size * BitCount (registers)) * -1;
context.type = EmulateInstruction::eContextAdjustBaseRegister;
context.SetImmediateSigned (offset);
addr_t addr = Rn + offset;
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, addr))
return false;
}
// if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;
if (wback && BitIsSet (registers, n))
return WriteBits32Unknown (n);
}
return true;
}
// LDMDB loads multiple registers from consecutive memory locations using an address from a base register. The
// consecutive memory locations end just below this address, and the address of the lowest of those locations can
// be optionally written back to the base register.
bool
EmulateInstructionARM::EmulateLDMDB (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
address = R[n] - 4*BitCount(registers);
for i = 0 to 14
if registers<i> == '1' then
R[i] = MemA[address,4]; address = address + 4;
if registers<15> == '1' then
LoadWritePC(MemA[address,4]);
if wback && registers<n> == '0' then R[n] = R[n] - 4*BitCount(registers);
if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN; // Only possible for encoding A1
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t n;
uint32_t registers = 0;
bool wback;
const uint32_t addr_byte_size = GetAddressByteSize();
switch (encoding)
{
case eEncodingT1:
// n = UInt(Rn); registers = P:M:'0':register_list; wback = (W == '1');
n = Bits32 (opcode, 19, 16);
registers = Bits32 (opcode, 15, 0);
registers = registers & 0xdfff; // Make sure bit 13 is a zero.
wback = BitIsSet (opcode, 21);
// if n == 15 || BitCount(registers) < 2 || (P == '1' && M == '1') then UNPREDICTABLE;
if ((n == 15)
|| (BitCount (registers) < 2)
|| (BitIsSet (opcode, 14) && BitIsSet (opcode, 15)))
return false;
// if registers<15> == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
if (BitIsSet (registers, 15) && InITBlock() && !LastInITBlock())
return false;
// if wback && registers<n> == '1' then UNPREDICTABLE;
if (wback && BitIsSet (registers, n))
return false;
break;
case eEncodingA1:
// n = UInt(Rn); registers = register_list; wback = (W == '1');
n = Bits32 (opcode, 19, 16);
registers = Bits32 (opcode, 15, 0);
wback = BitIsSet (opcode, 21);
// if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
if ((n == 15) || (BitCount (registers) < 1))
return false;
break;
default:
return false;
}
// address = R[n] - 4*BitCount(registers);
int32_t offset = 0;
addr_t Rn = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
if (!success)
return false;
addr_t address = Rn - (addr_byte_size * BitCount (registers));
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextRegisterPlusOffset;
RegisterInfo dwarf_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, dwarf_reg);
context.SetRegisterPlusOffset (dwarf_reg, Rn - address);
for (int i = 0; i < 14; ++i)
{
if (BitIsSet (registers, i))
{
// R[i] = MemA[address,4]; address = address + 4;
context.SetRegisterPlusOffset (dwarf_reg, Rn - (address + offset));
uint32_t data = MemARead (context, address + offset, addr_byte_size, 0, &success);
if (!success)
return false;
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + i, data))
return false;
offset += addr_byte_size;
}
}
// if registers<15> == '1' then
// LoadWritePC(MemA[address,4]);
if (BitIsSet (registers, 15))
{
context.SetRegisterPlusOffset (dwarf_reg, offset);
uint32_t data = MemARead (context, address + offset, addr_byte_size, 0, &success);
if (!success)
return false;
// In ARMv5T and above, this is an interworking branch.
if (!LoadWritePC(context, data))
return false;
}
// if wback && registers<n> == '0' then R[n] = R[n] - 4*BitCount(registers);
if (wback && BitIsClear (registers, n))
{
if (!success)
return false;
offset = (addr_byte_size * BitCount (registers)) * -1;
context.type = EmulateInstruction::eContextAdjustBaseRegister;
context.SetImmediateSigned (offset);
addr_t addr = Rn + offset;
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, addr))
return false;
}
// if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN; // Only possible for encoding A1
if (wback && BitIsSet (registers, n))
return WriteBits32Unknown (n);
}
return true;
}
// LDMIB loads multiple registers from consecutive memory locations using an address from a base register. The
// consecutive memory locations start just above this address, and thea ddress of the last of those locations can
// optinoally be written back to the base register.
bool
EmulateInstructionARM::EmulateLDMIB (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] + 4;
for i = 0 to 14
if registers<i> == '1' then
R[i] = MemA[address,4]; address = address + 4;
if registers<15> == '1' then
LoadWritePC(MemA[address,4]);
if wback && registers<n> == '0' then R[n] = R[n] + 4*BitCount(registers);
if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t n;
uint32_t registers = 0;
bool wback;
const uint32_t addr_byte_size = GetAddressByteSize();
switch (encoding)
{
case eEncodingA1:
// n = UInt(Rn); registers = register_list; wback = (W == '1');
n = Bits32 (opcode, 19, 16);
registers = Bits32 (opcode, 15, 0);
wback = BitIsSet (opcode, 21);
// if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
if ((n == 15) || (BitCount (registers) < 1))
return false;
break;
default:
return false;
}
// address = R[n] + 4;
int32_t offset = 0;
addr_t Rn = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
if (!success)
return false;
addr_t address = Rn + addr_byte_size;
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextRegisterPlusOffset;
RegisterInfo dwarf_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, dwarf_reg);
context.SetRegisterPlusOffset (dwarf_reg, offset);
for (int i = 0; i < 14; ++i)
{
if (BitIsSet (registers, i))
{
// R[i] = MemA[address,4]; address = address + 4;
context.SetRegisterPlusOffset (dwarf_reg, offset + addr_byte_size);
uint32_t data = MemARead (context, address + offset, addr_byte_size, 0, &success);
if (!success)
return false;
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + i, data))
return false;
offset += addr_byte_size;
}
}
// if registers<15> == '1' then
// LoadWritePC(MemA[address,4]);
if (BitIsSet (registers, 15))
{
context.SetRegisterPlusOffset (dwarf_reg, offset);
uint32_t data = MemARead (context, address + offset, addr_byte_size, 0, &success);
if (!success)
return false;
// In ARMv5T and above, this is an interworking branch.
if (!LoadWritePC(context, data))
return false;
}
// if wback && registers<n> == '0' then R[n] = R[n] + 4*BitCount(registers);
if (wback && BitIsClear (registers, n))
{
if (!success)
return false;
offset = addr_byte_size * BitCount (registers);
context.type = EmulateInstruction::eContextAdjustBaseRegister;
context.SetImmediateSigned (offset);
addr_t addr = Rn + offset;
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, addr))
return false;
}
// if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN; // Only possible for encoding A1
if (wback && BitIsSet (registers, n))
return WriteBits32Unknown (n);
}
return true;
}
// Load Register (immediate) calculates an address from a base register value and
// an immediate offset, loads a word from memory, and writes to a register.
// LDR (immediate, Thumb)
bool
EmulateInstructionARM::EmulateLDRRtRnImm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if (ConditionPassed())
{
EncodingSpecificOperations(); NullCheckIfThumbEE(15);
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
data = MemU[address,4];
if wback then R[n] = offset_addr;
if t == 15 then
if address<1:0> == '00' then LoadWritePC(data); else UNPREDICTABLE;
elsif UnalignedSupport() || address<1:0> = '00' then
R[t] = data;
else R[t] = bits(32) UNKNOWN; // Can only apply before ARMv7
}
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t Rt; // the destination register
uint32_t Rn; // the base register
uint32_t imm32; // the immediate offset used to form the address
addr_t offset_addr; // the offset address
addr_t address; // the calculated address
uint32_t data; // the literal data value from memory load
bool add, index, wback;
switch (encoding) {
case eEncodingT1:
Rt = Bits32(opcode, 2, 0);
Rn = Bits32(opcode, 5, 3);
imm32 = Bits32(opcode, 10, 6) << 2; // imm32 = ZeroExtend(imm5:'00', 32);
// index = TRUE; add = TRUE; wback = FALSE
add = true;
index = true;
wback = false;
break;
case eEncodingT2:
// t = UInt(Rt); n = 13; imm32 = ZeroExtend(imm8:'00', 32);
Rt = Bits32 (opcode, 10, 8);
Rn = 13;
imm32 = Bits32 (opcode, 7, 0) << 2;
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = true;
wback = false;
break;
case eEncodingT3:
// if Rn == '1111' then SEE LDR (literal);
// t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
Rt = Bits32 (opcode, 15, 12);
Rn = Bits32 (opcode, 19, 16);
imm32 = Bits32 (opcode, 11, 0);
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = true;
wback = false;
// if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
if ((Rt == 15) && InITBlock() && !LastInITBlock())
return false;
break;
case eEncodingT4:
// if Rn == '1111' then SEE LDR (literal);
// if P == '1' && U == '1' && W == '0' then SEE LDRT;
// if Rn == '1101' && P == '0' && U == '1' && W == '1' && imm8 == '00000100' then SEE POP;
// if P == '0' && W == '0' then UNDEFINED;
if (BitIsClear (opcode, 10) && BitIsClear (opcode, 8))
return false;
// t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
Rt = Bits32 (opcode, 15, 12);
Rn = Bits32 (opcode, 19, 16);
imm32 = Bits32 (opcode, 7, 0);
// index = (P == '1'); add = (U == '1'); wback = (W == '1');
index = BitIsSet (opcode, 10);
add = BitIsSet (opcode, 9);
wback = BitIsSet (opcode, 8);
// if (wback && n == t) || (t == 15 && InITBlock() && !LastInITBlock()) then UNPREDICTABLE;
if ((wback && (Rn == Rt)) || ((Rt == 15) && InITBlock() && !LastInITBlock()))
return false;
break;
default:
return false;
}
uint32_t base = ReadCoreReg (Rn, &success);
if (!success)
return false;
if (add)
offset_addr = base + imm32;
else
offset_addr = base - imm32;
address = (index ? offset_addr : base);
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + Rn, base_reg);
if (wback)
{
EmulateInstruction::Context ctx;
ctx.type = EmulateInstruction::eContextAdjustBaseRegister;
ctx.SetRegisterPlusOffset (base_reg, (int32_t) (offset_addr - base));
if (!WriteRegisterUnsigned (ctx, eRegisterKindDWARF, dwarf_r0 + Rn, offset_addr))
return false;
}
// Prepare to write to the Rt register.
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextRegisterLoad;
context.SetRegisterPlusOffset (base_reg, (int32_t) (offset_addr - base));
// Read memory from the address.
data = MemURead(context, address, 4, 0, &success);
if (!success)
return false;
if (Rt == 15)
{
if (Bits32(address, 1, 0) == 0)
{
if (!LoadWritePC(context, data))
return false;
}
else
return false;
}
else if (UnalignedSupport() || Bits32(address, 1, 0) == 0)
{
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + Rt, data))
return false;
}
else
WriteBits32Unknown (Rt);
}
return true;
}
// STM (Store Multiple Increment After) stores multiple registers to consecutive memory locations using an address
// from a base register. The consecutive memory locations start at this address, and the address just above the last
// of those locations can optionally be written back to the base register.
bool
EmulateInstructionARM::EmulateSTM (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
address = R[n];
for i = 0 to 14
if registers<i> == '1' then
if i == n && wback && i != LowestSetBit(registers) then
MemA[address,4] = bits(32) UNKNOWN; // Only possible for encodings T1 and A1
else
MemA[address,4] = R[i];
address = address + 4;
if registers<15> == '1' then // Only possible for encoding A1
MemA[address,4] = PCStoreValue();
if wback then R[n] = R[n] + 4*BitCount(registers);
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t n;
uint32_t registers = 0;
bool wback;
const uint32_t addr_byte_size = GetAddressByteSize();
// EncodingSpecificOperations(); NullCheckIfThumbEE(n);
switch (encoding)
{
case eEncodingT1:
// n = UInt(Rn); registers = '00000000':register_list; wback = TRUE;
n = Bits32 (opcode, 10, 8);
registers = Bits32 (opcode, 7, 0);
registers = registers & 0x00ff; // Make sure the top 8 bits are zeros.
wback = true;
// if BitCount(registers) < 1 then UNPREDICTABLE;
if (BitCount (registers) < 1)
return false;
break;
case eEncodingT2:
// n = UInt(Rn); registers = '0':M:'0':register_list; wback = (W == '1');
n = Bits32 (opcode, 19, 16);
registers = Bits32 (opcode, 15, 0);
registers = registers & 0x5fff; // Make sure bits 15 & 13 are zeros.
wback = BitIsSet (opcode, 21);
// if n == 15 || BitCount(registers) < 2 then UNPREDICTABLE;
if ((n == 15) || (BitCount (registers) < 2))
return false;
// if wback && registers<n> == '1' then UNPREDICTABLE;
if (wback && BitIsSet (registers, n))
return false;
break;
case eEncodingA1:
// n = UInt(Rn); registers = register_list; wback = (W == '1');
n = Bits32 (opcode, 19, 16);
registers = Bits32 (opcode, 15, 0);
wback = BitIsSet (opcode, 21);
// if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
if ((n == 15) || (BitCount (registers) < 1))
return false;
break;
default:
return false;
}
// address = R[n];
int32_t offset = 0;
const addr_t address = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
if (!success)
return false;
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextRegisterStore;
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
// for i = 0 to 14
uint32_t lowest_set_bit = 14;
for (uint32_t i = 0; i < 14; ++i)
{
// if registers<i> == '1' then
if (BitIsSet (registers, i))
{
if (i < lowest_set_bit)
lowest_set_bit = i;
// if i == n && wback && i != LowestSetBit(registers) then
if ((i == n) && wback && (i != lowest_set_bit))
// MemA[address,4] = bits(32) UNKNOWN; // Only possible for encodings T1 and A1
WriteBits32UnknownToMemory (address + offset);
else
{
// MemA[address,4] = R[i];
uint32_t data = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + i, 0, &success);
if (!success)
return false;
RegisterInfo data_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + i, data_reg);
context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, offset);
if (!MemAWrite (context, address + offset, data, addr_byte_size))
return false;
}
// address = address + 4;
offset += addr_byte_size;
}
}
// if registers<15> == '1' then // Only possible for encoding A1
// MemA[address,4] = PCStoreValue();
if (BitIsSet (registers, 15))
{
RegisterInfo pc_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_pc, pc_reg);
context.SetRegisterPlusOffset (pc_reg, 8);
const uint32_t pc = ReadCoreReg (PC_REG, &success);
if (!success)
return false;
if (!MemAWrite (context, address + offset, pc, addr_byte_size))
return false;
}
// if wback then R[n] = R[n] + 4*BitCount(registers);
if (wback)
{
offset = addr_byte_size * BitCount (registers);
context.type = EmulateInstruction::eContextAdjustBaseRegister;
context.SetImmediateSigned (offset);
addr_t data = address + offset;
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, data))
return false;
}
}
return true;
}
// STMDA (Store Multiple Decrement After) stores multiple registers to consecutive memory locations using an address
// from a base register. The consecutive memory locations end at this address, and the address just below the lowest
// of those locations can optionally be written back to the base register.
bool
EmulateInstructionARM::EmulateSTMDA (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] - 4*BitCount(registers) + 4;
for i = 0 to 14
if registers<i> == '1' then
if i == n && wback && i != LowestSetBit(registers) then
MemA[address,4] = bits(32) UNKNOWN;
else
MemA[address,4] = R[i];
address = address + 4;
if registers<15> == '1' then
MemA[address,4] = PCStoreValue();
if wback then R[n] = R[n] - 4*BitCount(registers);
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t n;
uint32_t registers = 0;
bool wback;
const uint32_t addr_byte_size = GetAddressByteSize();
// EncodingSpecificOperations();
switch (encoding)
{
case eEncodingA1:
// n = UInt(Rn); registers = register_list; wback = (W == '1');
n = Bits32 (opcode, 19, 16);
registers = Bits32 (opcode, 15, 0);
wback = BitIsSet (opcode, 21);
// if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
if ((n == 15) || (BitCount (registers) < 1))
return false;
break;
default:
return false;
}
// address = R[n] - 4*BitCount(registers) + 4;
int32_t offset = 0;
addr_t Rn = ReadCoreReg (n, &success);
if (!success)
return false;
addr_t address = Rn - (addr_byte_size * BitCount (registers)) + 4;
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextRegisterStore;
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
// for i = 0 to 14
uint32_t lowest_bit_set = 14;
for (uint32_t i = 0; i < 14; ++i)
{
// if registers<i> == '1' then
if (BitIsSet (registers, i))
{
if (i < lowest_bit_set)
lowest_bit_set = i;
//if i == n && wback && i != LowestSetBit(registers) then
if ((i == n) && wback && (i != lowest_bit_set))
// MemA[address,4] = bits(32) UNKNOWN;
WriteBits32UnknownToMemory (address + offset);
else
{
// MemA[address,4] = R[i];
uint32_t data = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + i, 0, &success);
if (!success)
return false;
RegisterInfo data_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + i, data_reg);
context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, Rn - (address + offset));
if (!MemAWrite (context, address + offset, data, addr_byte_size))
return false;
}
// address = address + 4;
offset += addr_byte_size;
}
}
// if registers<15> == '1' then
// MemA[address,4] = PCStoreValue();
if (BitIsSet (registers, 15))
{
RegisterInfo pc_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_pc, pc_reg);
context.SetRegisterPlusOffset (pc_reg, 8);
const uint32_t pc = ReadCoreReg (PC_REG, &success);
if (!success)
return false;
if (!MemAWrite (context, address + offset, pc, addr_byte_size))
return false;
}
// if wback then R[n] = R[n] - 4*BitCount(registers);
if (wback)
{
offset = (addr_byte_size * BitCount (registers)) * -1;
context.type = EmulateInstruction::eContextAdjustBaseRegister;
context.SetImmediateSigned (offset);
addr_t data = Rn + offset;
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, data))
return false;
}
}
return true;
}
// STMDB (Store Multiple Decrement Before) stores multiple registers to consecutive memory locations using an address
// from a base register. The consecutive memory locations end just below this address, and the address of the first of
// those locations can optionally be written back to the base register.
bool
EmulateInstructionARM::EmulateSTMDB (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
address = R[n] - 4*BitCount(registers);
for i = 0 to 14
if registers<i> == '1' then
if i == n && wback && i != LowestSetBit(registers) then
MemA[address,4] = bits(32) UNKNOWN; // Only possible for encoding A1
else
MemA[address,4] = R[i];
address = address + 4;
if registers<15> == '1' then // Only possible for encoding A1
MemA[address,4] = PCStoreValue();
if wback then R[n] = R[n] - 4*BitCount(registers);
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t n;
uint32_t registers = 0;
bool wback;
const uint32_t addr_byte_size = GetAddressByteSize();
// EncodingSpecificOperations(); NullCheckIfThumbEE(n);
switch (encoding)
{
case eEncodingT1:
// if W == '1' && Rn == '1101' then SEE PUSH;
if ((BitIsSet (opcode, 21)) && (Bits32 (opcode, 19, 16) == 13))
{
// See PUSH
}
// n = UInt(Rn); registers = '0':M:'0':register_list; wback = (W == '1');
n = Bits32 (opcode, 19, 16);
registers = Bits32 (opcode, 15, 0);
registers = registers & 0x5fff; // Make sure bits 15 & 13 are zeros.
wback = BitIsSet (opcode, 21);
// if n == 15 || BitCount(registers) < 2 then UNPREDICTABLE;
if ((n == 15) || BitCount (registers) < 2)
return false;
// if wback && registers<n> == '1' then UNPREDICTABLE;
if (wback && BitIsSet (registers, n))
return false;
break;
case eEncodingA1:
// if W == '1' && Rn == '1101Õ && BitCount(register_list) >= 2 then SEE PUSH;
if (BitIsSet (opcode, 21) && (Bits32 (opcode, 19, 16) == 13) && BitCount (Bits32 (opcode, 15, 0)) >= 2)
{
// See Push
}
// n = UInt(Rn); registers = register_list; wback = (W == '1');
n = Bits32 (opcode, 19, 16);
registers = Bits32 (opcode, 15, 0);
wback = BitIsSet (opcode, 21);
// if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
if ((n == 15) || BitCount (registers) < 1)
return false;
break;
default:
return false;
}
// address = R[n] - 4*BitCount(registers);
int32_t offset = 0;
addr_t Rn = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
if (!success)
return false;
addr_t address = Rn - (addr_byte_size * BitCount (registers));
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextRegisterStore;
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
// for i = 0 to 14
uint32_t lowest_set_bit = 14;
for (uint32_t i = 0; i < 14; ++i)
{
// if registers<i> == '1' then
if (BitIsSet (registers, i))
{
if (i < lowest_set_bit)
lowest_set_bit = i;
// if i == n && wback && i != LowestSetBit(registers) then
if ((i == n) && wback && (i != lowest_set_bit))
// MemA[address,4] = bits(32) UNKNOWN; // Only possible for encoding A1
WriteBits32UnknownToMemory (address + offset);
else
{
// MemA[address,4] = R[i];
uint32_t data = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + i, 0, &success);
if (!success)
return false;
RegisterInfo data_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + i, data_reg);
context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, Rn - (address + offset));
if (!MemAWrite (context, address + offset, data, addr_byte_size))
return false;
}
// address = address + 4;
offset += addr_byte_size;
}
}
// if registers<15> == '1' then // Only possible for encoding A1
// MemA[address,4] = PCStoreValue();
if (BitIsSet (registers, 15))
{
RegisterInfo pc_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_pc, pc_reg);
context.SetRegisterPlusOffset (pc_reg, 8);
const uint32_t pc = ReadCoreReg (PC_REG, &success);
if (!success)
return false;
if (!MemAWrite (context, address + offset, pc, addr_byte_size))
return false;
}
// if wback then R[n] = R[n] - 4*BitCount(registers);
if (wback)
{
offset = (addr_byte_size * BitCount (registers)) * -1;
context.type = EmulateInstruction::eContextAdjustBaseRegister;
context.SetImmediateSigned (offset);
addr_t data = Rn + offset;
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, data))
return false;
}
}
return true;
}
// STMIB (Store Multiple Increment Before) stores multiple registers to consecutive memory locations using an address
// from a base register. The consecutive memory locations start just above this address, and the address of the last
// of those locations can optionally be written back to the base register.
bool
EmulateInstructionARM::EmulateSTMIB (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] + 4;
for i = 0 to 14
if registers<i> == '1' then
if i == n && wback && i != LowestSetBit(registers) then
MemA[address,4] = bits(32) UNKNOWN;
else
MemA[address,4] = R[i];
address = address + 4;
if registers<15> == '1' then
MemA[address,4] = PCStoreValue();
if wback then R[n] = R[n] + 4*BitCount(registers);
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t n;
uint32_t registers = 0;
bool wback;
const uint32_t addr_byte_size = GetAddressByteSize();
// EncodingSpecificOperations();
switch (encoding)
{
case eEncodingA1:
// n = UInt(Rn); registers = register_list; wback = (W == '1');
n = Bits32 (opcode, 19, 16);
registers = Bits32 (opcode, 15, 0);
wback = BitIsSet (opcode, 21);
// if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
if ((n == 15) && (BitCount (registers) < 1))
return false;
break;
default:
return false;
}
// address = R[n] + 4;
int32_t offset = 0;
addr_t Rn = ReadCoreReg (n, &success);
if (!success)
return false;
addr_t address = Rn + addr_byte_size;
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextRegisterStore;
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
uint32_t lowest_set_bit = 14;
// for i = 0 to 14
for (uint32_t i = 0; i < 14; ++i)
{
// if registers<i> == '1' then
if (BitIsSet (registers, i))
{
if (i < lowest_set_bit)
lowest_set_bit = i;
// if i == n && wback && i != LowestSetBit(registers) then
if ((i == n) && wback && (i != lowest_set_bit))
// MemA[address,4] = bits(32) UNKNOWN;
WriteBits32UnknownToMemory (address + offset);
// else
else
{
// MemA[address,4] = R[i];
uint32_t data = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + i, 0, &success);
if (!success)
return false;
RegisterInfo data_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + i, data_reg);
context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, offset + addr_byte_size);
if (!MemAWrite (context, address + offset, data, addr_byte_size))
return false;
}
// address = address + 4;
offset += addr_byte_size;
}
}
// if registers<15> == '1' then
// MemA[address,4] = PCStoreValue();
if (BitIsSet (registers, 15))
{
RegisterInfo pc_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_pc, pc_reg);
context.SetRegisterPlusOffset (pc_reg, 8);
const uint32_t pc = ReadCoreReg (PC_REG, &success);
if (!success)
return false;
if (!MemAWrite (context, address + offset, pc, addr_byte_size))
return false;
}
// if wback then R[n] = R[n] + 4*BitCount(registers);
if (wback)
{
offset = addr_byte_size * BitCount (registers);
context.type = EmulateInstruction::eContextAdjustBaseRegister;
context.SetImmediateSigned (offset);
addr_t data = Rn + offset;
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, data))
return false;
}
}
return true;
}
// STR (store immediate) calculates an address from a base register value and an immediate offset, and stores a word
// from a register to memory. It can use offset, post-indexed, or pre-indexed addressing.
bool
EmulateInstructionARM::EmulateSTRThumb (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
if UnalignedSupport() || address<1:0> == '00' then
MemU[address,4] = R[t];
else // Can only occur before ARMv7
MemU[address,4] = bits(32) UNKNOWN;
if wback then R[n] = offset_addr;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
const uint32_t addr_byte_size = GetAddressByteSize();
uint32_t t;
uint32_t n;
uint32_t imm32;
bool index;
bool add;
bool wback;
// EncodingSpecificOperations (); NullCheckIfThumbEE(n);
switch (encoding)
{
case eEncodingT1:
// t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'00', 32);
t = Bits32 (opcode, 2, 0);
n = Bits32 (opcode, 5, 3);
imm32 = Bits32 (opcode, 10, 6) << 2;
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = false;
wback = false;
break;
case eEncodingT2:
// t = UInt(Rt); n = 13; imm32 = ZeroExtend(imm8:'00', 32);
t = Bits32 (opcode, 10, 8);
n = 13;
imm32 = Bits32 (opcode, 7, 0) << 2;
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = true;
wback = false;
break;
case eEncodingT3:
// if Rn == '1111' then UNDEFINED;
if (Bits32 (opcode, 19, 16) == 15)
return false;
// t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
imm32 = Bits32 (opcode, 11, 0);
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = true;
wback = false;
// if t == 15 then UNPREDICTABLE;
if (t == 15)
return false;
break;
case eEncodingT4:
// if P == '1' && U == '1' && W == '0' then SEE STRT;
// if Rn == '1101' && P == '1' && U == '0' && W == '1' && imm8 == '00000100' then SEE PUSH;
// if Rn == '1111' || (P == '0' && W == '0') then UNDEFINED;
if ((Bits32 (opcode, 19, 16) == 15)
|| (BitIsClear (opcode, 10) && BitIsClear (opcode, 8)))
return false;
// t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
imm32 = Bits32 (opcode, 7, 0);
// index = (P == '1'); add = (U == '1'); wback = (W == '1');
index = BitIsSet (opcode, 10);
add = BitIsSet (opcode, 9);
wback = BitIsSet (opcode, 8);
// if t == 15 || (wback && n == t) then UNPREDICTABLE;
if ((t == 15) || (wback && (n == t)))
return false;
break;
default:
return false;
}
addr_t offset_addr;
addr_t address;
// offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
uint32_t base_address = ReadCoreReg (n, &success);
if (!success)
return false;
if (add)
offset_addr = base_address + imm32;
else
offset_addr = base_address - imm32;
// address = if index then offset_addr else R[n];
if (index)
address = offset_addr;
else
address = base_address;
EmulateInstruction::Context context;
context.type = eContextRegisterStore;
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
// if UnalignedSupport() || address<1:0> == '00' then
if (UnalignedSupport () || (BitIsClear (address, 1) && BitIsClear (address, 0)))
{
// MemU[address,4] = R[t];
uint32_t data = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + t, 0, &success);
if (!success)
return false;
RegisterInfo data_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + t, data_reg);
int32_t offset = address - base_address;
context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, offset);
if (!MemUWrite (context, address, data, addr_byte_size))
return false;
}
else
{
// MemU[address,4] = bits(32) UNKNOWN;
WriteBits32UnknownToMemory (address);
}
// if wback then R[n] = offset_addr;
if (wback)
{
context.type = eContextRegisterLoad;
context.SetAddress (offset_addr);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
return false;
}
}
return true;
}
// STR (Store Register) calculates an address from a base register value and an offset register value, stores a
// word from a register to memory. The offset register value can optionally be shifted.
bool
EmulateInstructionARM::EmulateSTRRegister (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset = Shift(R[m], shift_t, shift_n, APSR.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
if t == 15 then // Only possible for encoding A1
data = PCStoreValue();
else
data = R[t];
if UnalignedSupport() || address<1:0> == '00' || CurrentInstrSet() == InstrSet_ARM then
MemU[address,4] = data;
else // Can only occur before ARMv7
MemU[address,4] = bits(32) UNKNOWN;
if wback then R[n] = offset_addr;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
const uint32_t addr_byte_size = GetAddressByteSize();
uint32_t t;
uint32_t n;
uint32_t m;
ARM_ShifterType shift_t;
uint32_t shift_n;
bool index;
bool add;
bool wback;
// EncodingSpecificOperations (); NullCheckIfThumbEE(n);
switch (encoding)
{
case eEncodingT1:
// if CurrentInstrSet() == InstrSet_ThumbEE then SEE "Modified operation in ThumbEE";
// t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
t = Bits32 (opcode, 2, 0);
n = Bits32 (opcode, 5, 3);
m = Bits32 (opcode, 8, 6);
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = true;
wback = false;
// (shift_t, shift_n) = (SRType_LSL, 0);
shift_t = SRType_LSL;
shift_n = 0;
break;
case eEncodingT2:
// if Rn == '1111' then UNDEFINED;
if (Bits32 (opcode, 19, 16) == 15)
return false;
// t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
m = Bits32 (opcode, 3, 0);
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = true;
wback = false;
// (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
shift_t = SRType_LSL;
shift_n = Bits32 (opcode, 5, 4);
// if t == 15 || BadReg(m) then UNPREDICTABLE;
if ((t == 15) || (BadReg (m)))
return false;
break;
case eEncodingA1:
{
// if P == '0' && W == '1' then SEE STRT;
// t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
m = Bits32 (opcode, 3, 0);
// index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
index = BitIsSet (opcode, 24);
add = BitIsSet (opcode, 23);
wback = (BitIsClear (opcode, 24) || BitIsSet (opcode, 21));
// (shift_t, shift_n) = DecodeImmShift(type, imm5);
uint32_t typ = Bits32 (opcode, 6, 5);
uint32_t imm5 = Bits32 (opcode, 11, 7);
shift_n = DecodeImmShift(typ, imm5, shift_t);
// if m == 15 then UNPREDICTABLE;
if (m == 15)
return false;
// if wback && (n == 15 || n == t) then UNPREDICTABLE;
if (wback && ((n == 15) || (n == t)))
return false;
break;
}
default:
return false;
}
addr_t offset_addr;
addr_t address;
int32_t offset = 0;
addr_t base_address = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
if (!success)
return false;
uint32_t Rm_data = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
if (!success)
return false;
// offset = Shift(R[m], shift_t, shift_n, APSR.C);
offset = Shift (Rm_data, shift_t, shift_n, APSR_C, &success);
if (!success)
return false;
// offset_addr = if add then (R[n] + offset) else (R[n] - offset);
if (add)
offset_addr = base_address + offset;
else
offset_addr = base_address - offset;
// address = if index then offset_addr else R[n];
if (index)
address = offset_addr;
else
address = base_address;
uint32_t data;
// if t == 15 then // Only possible for encoding A1
if (t == 15)
// data = PCStoreValue();
data = ReadCoreReg (PC_REG, &success);
else
// data = R[t];
data = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + t, 0, &success);
if (!success)
return false;
EmulateInstruction::Context context;
context.type = eContextRegisterStore;
// if UnalignedSupport() || address<1:0> == '00' || CurrentInstrSet() == InstrSet_ARM then
if (UnalignedSupport ()
|| (BitIsClear (address, 1) && BitIsClear (address, 0))
|| CurrentInstrSet() == eModeARM)
{
// MemU[address,4] = data;
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
RegisterInfo data_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + t, data_reg);
context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, address - base_address);
if (!MemUWrite (context, address, data, addr_byte_size))
return false;
}
else
// MemU[address,4] = bits(32) UNKNOWN;
WriteBits32UnknownToMemory (address);
// if wback then R[n] = offset_addr;
if (wback)
{
context.type = eContextRegisterLoad;
context.SetAddress (offset_addr);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
return false;
}
}
return true;
}
bool
EmulateInstructionARM::EmulateSTRBThumb (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
MemU[address,1] = R[t]<7:0>;
if wback then R[n] = offset_addr;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t t;
uint32_t n;
uint32_t imm32;
bool index;
bool add;
bool wback;
// EncodingSpecificOperations(); NullCheckIfThumbEE(n);
switch (encoding)
{
case eEncodingT1:
// t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5, 32);
t = Bits32 (opcode, 2, 0);
n = Bits32 (opcode, 5, 3);
imm32 = Bits32 (opcode, 10, 6);
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = true;
wback = false;
break;
case eEncodingT2:
// if Rn == '1111' then UNDEFINED;
if (Bits32 (opcode, 19, 16) == 15)
return false;
// t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
imm32 = Bits32 (opcode, 11, 0);
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = true;
wback = false;
// if BadReg(t) then UNPREDICTABLE;
if (BadReg (t))
return false;
break;
case eEncodingT3:
// if P == '1' && U == '1' && W == '0' then SEE STRBT;
// if Rn == '1111' || (P == '0' && W == '0') then UNDEFINED;
if (Bits32 (opcode, 19, 16) == 15)
return false;
// t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
imm32 = Bits32 (opcode, 7, 0);
// index = (P == '1'); add = (U == '1'); wback = (W == '1');
index = BitIsSet (opcode, 10);
add = BitIsSet (opcode, 9);
wback = BitIsSet (opcode, 8);
// if BadReg(t) || (wback && n == t) then UNPREDICTABLE
if ((BadReg (t)) || (wback && (n == t)))
return false;
break;
default:
return false;
}
addr_t offset_addr;
addr_t address;
addr_t base_address = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
if (!success)
return false;
// offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
if (add)
offset_addr = base_address + imm32;
else
offset_addr = base_address - imm32;
// address = if index then offset_addr else R[n];
if (index)
address = offset_addr;
else
address = base_address;
// MemU[address,1] = R[t]<7:0>
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
RegisterInfo data_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + t, data_reg);
EmulateInstruction::Context context;
context.type = eContextRegisterStore;
context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, address - base_address);
uint32_t data = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + t, 0, &success);
if (!success)
return false;
data = Bits32 (data, 7, 0);
if (!MemUWrite (context, address, data, 1))
return false;
// if wback then R[n] = offset_addr;
if (wback)
{
context.type = eContextRegisterLoad;
context.SetAddress (offset_addr);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
return false;
}
}
return true;
}
// STRH (register) calculates an address from a base register value and an offset register value, and stores a
// halfword from a register to memory. The offset register value can be shifted left by 0, 1, 2, or 3 bits.
bool
EmulateInstructionARM::EmulateSTRHRegister (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset = Shift(R[m], shift_t, shift_n, APSR.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
if UnalignedSupport() || address<0> == '0' then
MemU[address,2] = R[t]<15:0>;
else // Can only occur before ARMv7
MemU[address,2] = bits(16) UNKNOWN;
if wback then R[n] = offset_addr;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t t;
uint32_t n;
uint32_t m;
bool index;
bool add;
bool wback;
ARM_ShifterType shift_t;
uint32_t shift_n;
// EncodingSpecificOperations(); NullCheckIfThumbEE(n);
switch (encoding)
{
case eEncodingT1:
// if CurrentInstrSet() == InstrSet_ThumbEE then SEE "Modified operation in ThumbEE";
// t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
t = Bits32 (opcode, 2, 0);
n = Bits32 (opcode, 5, 3);
m = Bits32 (opcode, 8, 6);
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = true;
wback = false;
// (shift_t, shift_n) = (SRType_LSL, 0);
shift_t = SRType_LSL;
shift_n = 0;
break;
case eEncodingT2:
// if Rn == '1111' then UNDEFINED;
// t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
m = Bits32 (opcode, 3, 0);
if (n == 15)
return false;
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = true;
wback = false;
// (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
shift_t = SRType_LSL;
shift_n = Bits32 (opcode, 5, 4);
// if BadReg(t) || BadReg(m) then UNPREDICTABLE;
if (BadReg (t) || BadReg (m))
return false;
break;
case eEncodingA1:
// if P == '0' && W == '1' then SEE STRHT;
// t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
m = Bits32 (opcode, 3, 0);
// index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
index = BitIsSet (opcode, 24);
add = BitIsSet (opcode, 23);
wback = (BitIsClear (opcode, 24) || BitIsSet (opcode, 21));
// (shift_t, shift_n) = (SRType_LSL, 0);
shift_t = SRType_LSL;
shift_n = 0;
// if t == 15 || m == 15 then UNPREDICTABLE;
if ((t == 15) || (m == 15))
return false;
// if wback && (n == 15 || n == t) then UNPREDICTABLE;
if (wback && ((n == 15) || (n == t)))
return false;
break;
default:
return false;
}
uint32_t Rm = ReadCoreReg (m, &success);
if (!success)
return false;
uint32_t Rn = ReadCoreReg (n, &success);
if (!success)
return false;
// offset = Shift(R[m], shift_t, shift_n, APSR.C);
uint32_t offset = Shift (Rm, shift_t, shift_n, APSR_C, &success);
if (!success)
return false;
// offset_addr = if add then (R[n] + offset) else (R[n] - offset);
addr_t offset_addr;
if (add)
offset_addr = Rn + offset;
else
offset_addr = Rn - offset;
// address = if index then offset_addr else R[n];
addr_t address;
if (index)
address = offset_addr;
else
address = Rn;
EmulateInstruction::Context context;
context.type = eContextRegisterStore;
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
RegisterInfo offset_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, offset_reg);
// if UnalignedSupport() || address<0> == '0' then
if (UnalignedSupport() || BitIsClear (address, 0))
{
// MemU[address,2] = R[t]<15:0>;
uint32_t Rt = ReadCoreReg (t, &success);
if (!success)
return false;
EmulateInstruction::Context context;
context.type = eContextRegisterStore;
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
RegisterInfo offset_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, offset_reg);
RegisterInfo data_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + t, data_reg);
context.SetRegisterToRegisterPlusIndirectOffset (base_reg, offset_reg, data_reg);
if (!MemUWrite (context, address, Bits32 (Rt, 15, 0), 2))
return false;
}
else // Can only occur before ARMv7
{
// MemU[address,2] = bits(16) UNKNOWN;
}
// if wback then R[n] = offset_addr;
if (wback)
{
context.type = eContextAdjustBaseRegister;
context.SetAddress (offset_addr);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
return false;
}
}
return true;
}
// Add with Carry (immediate) adds an immediate value and the carry flag value to a register value,
// and writes the result to the destination register. It can optionally update the condition flags
// based on the result.
bool
EmulateInstructionARM::EmulateADCImm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddWithCarry(R[n], imm32, APSR.C);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t Rd, Rn;
uint32_t imm32; // the immediate value to be added to the value obtained from Rn
bool setflags;
switch (encoding)
{
case eEncodingT1:
Rd = Bits32(opcode, 11, 8);
Rn = Bits32(opcode, 19, 16);
setflags = BitIsSet(opcode, 20);
imm32 = ThumbExpandImm(opcode); // imm32 = ThumbExpandImm(i:imm3:imm8)
if (BadReg(Rd) || BadReg(Rn))
return false;
break;
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
Rn = Bits32(opcode, 19, 16);
setflags = BitIsSet(opcode, 20);
imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
if (Rd == 15 && setflags)
return EmulateSUBSPcLrEtc (opcode, encoding);
break;
default:
return false;
}
// Read the first operand.
int32_t val1 = ReadCoreReg(Rn, &success);
if (!success)
return false;
AddWithCarryResult res = AddWithCarry(val1, imm32, APSR_C);
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags, res.carry_out, res.overflow))
return false;
}
return true;
}
// Add with Carry (register) adds a register value, the carry flag value, and an optionally-shifted
// register value, and writes the result to the destination register. It can optionally update the
// condition flags based on the result.
bool
EmulateInstructionARM::EmulateADCReg (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddWithCarry(R[n], shifted, APSR.C);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t Rd, Rn, Rm;
ARM_ShifterType shift_t;
uint32_t shift_n; // the shift applied to the value read from Rm
bool setflags;
switch (encoding)
{
case eEncodingT1:
Rd = Rn = Bits32(opcode, 2, 0);
Rm = Bits32(opcode, 5, 3);
setflags = !InITBlock();
shift_t = SRType_LSL;
shift_n = 0;
break;
case eEncodingT2:
Rd = Bits32(opcode, 11, 8);
Rn = Bits32(opcode, 19, 16);
Rm = Bits32(opcode, 3, 0);
setflags = BitIsSet(opcode, 20);
shift_n = DecodeImmShiftThumb(opcode, shift_t);
if (BadReg(Rd) || BadReg(Rn) || BadReg(Rm))
return false;
break;
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
Rn = Bits32(opcode, 19, 16);
Rm = Bits32(opcode, 3, 0);
setflags = BitIsSet(opcode, 20);
shift_n = DecodeImmShiftARM(opcode, shift_t);
if (Rd == 15 && setflags)
return EmulateSUBSPcLrEtc (opcode, encoding);
break;
default:
return false;
}
// Read the first operand.
int32_t val1 = ReadCoreReg(Rn, &success);
if (!success)
return false;
// Read the second operand.
int32_t val2 = ReadCoreReg(Rm, &success);
if (!success)
return false;
uint32_t shifted = Shift(val2, shift_t, shift_n, APSR_C, &success);
if (!success)
return false;
AddWithCarryResult res = AddWithCarry(val1, shifted, APSR_C);
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags, res.carry_out, res.overflow))
return false;
}
return true;
}
// This instruction adds an immediate value to the PC value to form a PC-relative address,
// and writes the result to the destination register.
bool
EmulateInstructionARM::EmulateADR (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
result = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
if d == 15 then // Can only occur for ARM encodings
ALUWritePC(result);
else
R[d] = result;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t Rd;
uint32_t imm32; // the immediate value to be added/subtracted to/from the PC
bool add;
switch (encoding)
{
case eEncodingT1:
Rd = Bits32(opcode, 10, 8);
imm32 = ThumbImm8Scaled(opcode); // imm32 = ZeroExtend(imm8:'00', 32)
add = true;
break;
case eEncodingT2:
case eEncodingT3:
Rd = Bits32(opcode, 11, 8);
imm32 = ThumbImm12(opcode); // imm32 = ZeroExtend(i:imm3:imm8, 32)
add = (Bits32(opcode, 24, 21) == 0); // 0b0000 => ADD; 0b0101 => SUB
if (BadReg(Rd))
return false;
break;
case eEncodingA1:
case eEncodingA2:
Rd = Bits32(opcode, 15, 12);
imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
add = (Bits32(opcode, 24, 21) == 0x4); // 0b0100 => ADD; 0b0010 => SUB
break;
default:
return false;
}
// Read the PC value.
uint32_t pc = ReadCoreReg(PC_REG, &success);
if (!success)
return false;
uint32_t result = (add ? Align(pc, 4) + imm32 : Align(pc, 4) - imm32);
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteCoreReg(context, result, Rd))
return false;
}
return true;
}
// This instruction performs a bitwise AND of a register value and an immediate value, and writes the result
// to the destination register. It can optionally update the condition flags based on the result.
bool
EmulateInstructionARM::EmulateANDImm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] AND imm32;
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t Rd, Rn;
uint32_t imm32; // the immediate value to be ANDed to the value obtained from Rn
bool setflags;
uint32_t carry; // the carry bit after ARM/Thumb Expand operation
switch (encoding)
{
case eEncodingT1:
Rd = Bits32(opcode, 11, 8);
Rn = Bits32(opcode, 19, 16);
setflags = BitIsSet(opcode, 20);
imm32 = ThumbExpandImm_C(opcode, APSR_C, carry); // (imm32, carry) = ThumbExpandImm(i:imm3:imm8, APSR.C)
// if Rd == '1111' && S == '1' then SEE TST (immediate);
if (Rd == 15 && setflags)
return EmulateTSTImm(opcode, eEncodingT1);
if (Rd == 13 || (Rd == 15 && !setflags) || BadReg(Rn))
return false;
break;
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
Rn = Bits32(opcode, 19, 16);
setflags = BitIsSet(opcode, 20);
imm32 = ARMExpandImm_C(opcode, APSR_C, carry); // (imm32, carry) = ARMExpandImm(imm12, APSR.C)
if (Rd == 15 && setflags)
return EmulateSUBSPcLrEtc (opcode, encoding);
break;
default:
return false;
}
// Read the first operand.
uint32_t val1 = ReadCoreReg(Rn, &success);
if (!success)
return false;
uint32_t result = val1 & imm32;
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
return false;
}
return true;
}
// This instruction performs a bitwise AND of a register value and an optionally-shifted register value,
// and writes the result to the destination register. It can optionally update the condition flags
// based on the result.
bool
EmulateInstructionARM::EmulateANDReg (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = R[n] AND shifted;
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t Rd, Rn, Rm;
ARM_ShifterType shift_t;
uint32_t shift_n; // the shift applied to the value read from Rm
bool setflags;
uint32_t carry;
switch (encoding)
{
case eEncodingT1:
Rd = Rn = Bits32(opcode, 2, 0);
Rm = Bits32(opcode, 5, 3);
setflags = !InITBlock();
shift_t = SRType_LSL;
shift_n = 0;
break;
case eEncodingT2:
Rd = Bits32(opcode, 11, 8);
Rn = Bits32(opcode, 19, 16);
Rm = Bits32(opcode, 3, 0);
setflags = BitIsSet(opcode, 20);
shift_n = DecodeImmShiftThumb(opcode, shift_t);
// if Rd == '1111' && S == '1' then SEE TST (register);
if (Rd == 15 && setflags)
return EmulateTSTReg(opcode, eEncodingT2);
if (Rd == 13 || (Rd == 15 && !setflags) || BadReg(Rn) || BadReg(Rm))
return false;
break;
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
Rn = Bits32(opcode, 19, 16);
Rm = Bits32(opcode, 3, 0);
setflags = BitIsSet(opcode, 20);
shift_n = DecodeImmShiftARM(opcode, shift_t);
if (Rd == 15 && setflags)
return EmulateSUBSPcLrEtc (opcode, encoding);
break;
default:
return false;
}
// Read the first operand.
uint32_t val1 = ReadCoreReg(Rn, &success);
if (!success)
return false;
// Read the second operand.
uint32_t val2 = ReadCoreReg(Rm, &success);
if (!success)
return false;
uint32_t shifted = Shift_C(val2, shift_t, shift_n, APSR_C, carry, &success);
if (!success)
return false;
uint32_t result = val1 & shifted;
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
return false;
}
return true;
}
// Bitwise Bit Clear (immediate) performs a bitwise AND of a register value and the complement of an
// immediate value, and writes the result to the destination register. It can optionally update the
// condition flags based on the result.
bool
EmulateInstructionARM::EmulateBICImm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] AND NOT(imm32);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t Rd, Rn;
uint32_t imm32; // the immediate value to be bitwise inverted and ANDed to the value obtained from Rn
bool setflags;
uint32_t carry; // the carry bit after ARM/Thumb Expand operation
switch (encoding)
{
case eEncodingT1:
Rd = Bits32(opcode, 11, 8);
Rn = Bits32(opcode, 19, 16);
setflags = BitIsSet(opcode, 20);
imm32 = ThumbExpandImm_C(opcode, APSR_C, carry); // (imm32, carry) = ThumbExpandImm(i:imm3:imm8, APSR.C)
if (BadReg(Rd) || BadReg(Rn))
return false;
break;
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
Rn = Bits32(opcode, 19, 16);
setflags = BitIsSet(opcode, 20);
imm32 = ARMExpandImm_C(opcode, APSR_C, carry); // (imm32, carry) = ARMExpandImm(imm12, APSR.C)
// if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
if (Rd == 15 && setflags)
return EmulateSUBSPcLrEtc (opcode, encoding);
break;
default:
return false;
}
// Read the first operand.
uint32_t val1 = ReadCoreReg(Rn, &success);
if (!success)
return false;
uint32_t result = val1 & ~imm32;
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
return false;
}
return true;
}
// Bitwise Bit Clear (register) performs a bitwise AND of a register value and the complement of an
// optionally-shifted register value, and writes the result to the destination register.
// It can optionally update the condition flags based on the result.
bool
EmulateInstructionARM::EmulateBICReg (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = R[n] AND NOT(shifted);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t Rd, Rn, Rm;
ARM_ShifterType shift_t;
uint32_t shift_n; // the shift applied to the value read from Rm
bool setflags;
uint32_t carry;
switch (encoding)
{
case eEncodingT1:
Rd = Rn = Bits32(opcode, 2, 0);
Rm = Bits32(opcode, 5, 3);
setflags = !InITBlock();
shift_t = SRType_LSL;
shift_n = 0;
break;
case eEncodingT2:
Rd = Bits32(opcode, 11, 8);
Rn = Bits32(opcode, 19, 16);
Rm = Bits32(opcode, 3, 0);
setflags = BitIsSet(opcode, 20);
shift_n = DecodeImmShiftThumb(opcode, shift_t);
if (BadReg(Rd) || BadReg(Rn) || BadReg(Rm))
return false;
break;
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
Rn = Bits32(opcode, 19, 16);
Rm = Bits32(opcode, 3, 0);
setflags = BitIsSet(opcode, 20);
shift_n = DecodeImmShiftARM(opcode, shift_t);
// if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
if (Rd == 15 && setflags)
return EmulateSUBSPcLrEtc (opcode, encoding);
break;
default:
return false;
}
// Read the first operand.
uint32_t val1 = ReadCoreReg(Rn, &success);
if (!success)
return false;
// Read the second operand.
uint32_t val2 = ReadCoreReg(Rm, &success);
if (!success)
return false;
uint32_t shifted = Shift_C(val2, shift_t, shift_n, APSR_C, carry, &success);
if (!success)
return false;
uint32_t result = val1 & ~shifted;
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
return false;
}
return true;
}
// LDR (immediate, ARM) calculates an address from a base register value and an immediate offset, loads a word
// from memory, and writes it to a register. It can use offset, post-indexed, or pre-indexed addressing.
bool
EmulateInstructionARM::EmulateLDRImmediateARM (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
data = MemU[address,4];
if wback then R[n] = offset_addr;
if t == 15 then
if address<1:0> == '00' then LoadWritePC(data); else UNPREDICTABLE;
elsif UnalignedSupport() || address<1:0> = '00' then
R[t] = data;
else // Can only apply before ARMv7
R[t] = ROR(data, 8*UInt(address<1:0>));
#endif
bool success = false;
if (ConditionPassed(opcode))
{
const uint32_t addr_byte_size = GetAddressByteSize();
uint32_t t;
uint32_t n;
uint32_t imm32;
bool index;
bool add;
bool wback;
switch (encoding)
{
case eEncodingA1:
// if Rn == '1111' then SEE LDR (literal);
// if P == '0' && W == '1' then SEE LDRT;
// if Rn == '1101' && P == '0' && U == '1' && W == '0' && imm12 == '000000000100' then SEE POP;
// t == UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
imm32 = Bits32 (opcode, 11, 0);
// index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
index = BitIsSet (opcode, 24);
add = BitIsSet (opcode, 23);
wback = (BitIsClear (opcode, 24) || BitIsSet (opcode, 21));
// if wback && n == t then UNPREDICTABLE;
if (wback && (n == t))
return false;
break;
default:
return false;
}
addr_t address;
addr_t offset_addr;
addr_t base_address = ReadCoreReg (n, &success);
if (!success)
return false;
// offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
if (add)
offset_addr = base_address + imm32;
else
offset_addr = base_address - imm32;
// address = if index then offset_addr else R[n];
if (index)
address = offset_addr;
else
address = base_address;
// data = MemU[address,4];
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
EmulateInstruction::Context context;
context.type = eContextRegisterLoad;
context.SetRegisterPlusOffset (base_reg, address - base_address);
uint64_t data = MemURead (context, address, addr_byte_size, 0, &success);
if (!success)
return false;
// if wback then R[n] = offset_addr;
if (wback)
{
context.type = eContextAdjustBaseRegister;
context.SetAddress (offset_addr);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
return false;
}
// if t == 15 then
if (t == 15)
{
// if address<1:0> == '00' then LoadWritePC(data); else UNPREDICTABLE;
if (BitIsClear (address, 1) && BitIsClear (address, 0))
{
// LoadWritePC (data);
context.type = eContextRegisterLoad;
context.SetRegisterPlusOffset (base_reg, address - base_address);
LoadWritePC (context, data);
}
else
return false;
}
// elsif UnalignedSupport() || address<1:0> = '00' then
else if (UnalignedSupport() || (BitIsClear (address, 1) && BitIsClear (address, 0)))
{
// R[t] = data;
context.type = eContextRegisterLoad;
context.SetRegisterPlusOffset (base_reg, address - base_address);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, data))
return false;
}
// else // Can only apply before ARMv7
else
{
// R[t] = ROR(data, 8*UInt(address<1:0>));
data = ROR (data, Bits32 (address, 1, 0), &success);
if (!success)
return false;
context.type = eContextRegisterLoad;
context.SetImmediate (data);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, data))
return false;
}
}
return true;
}
// LDR (register) calculates an address from a base register value and an offset register value, loads a word
// from memory, and writes it to a register. The offset register value can optionally be shifted.
bool
EmulateInstructionARM::EmulateLDRRegister (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset = Shift(R[m], shift_t, shift_n, APSR.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
data = MemU[address,4];
if wback then R[n] = offset_addr;
if t == 15 then
if address<1:0> == '00' then LoadWritePC(data); else UNPREDICTABLE;
elsif UnalignedSupport() || address<1:0> = '00' then
R[t] = data;
else // Can only apply before ARMv7
if CurrentInstrSet() == InstrSet_ARM then
R[t] = ROR(data, 8*UInt(address<1:0>));
else
R[t] = bits(32) UNKNOWN;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
const uint32_t addr_byte_size = GetAddressByteSize();
uint32_t t;
uint32_t n;
uint32_t m;
bool index;
bool add;
bool wback;
ARM_ShifterType shift_t;
uint32_t shift_n;
switch (encoding)
{
case eEncodingT1:
// if CurrentInstrSet() == InstrSet_ThumbEE then SEE "Modified operation in ThumbEE";
// t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
t = Bits32 (opcode, 2, 0);
n = Bits32 (opcode, 5, 3);
m = Bits32 (opcode, 8, 6);
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = true;
wback = false;
// (shift_t, shift_n) = (SRType_LSL, 0);
shift_t = SRType_LSL;
shift_n = 0;
break;
case eEncodingT2:
// if Rn == '1111' then SEE LDR (literal);
// t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
m = Bits32 (opcode, 3, 0);
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = true;
wback = false;
// (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
shift_t = SRType_LSL;
shift_n = Bits32 (opcode, 5, 4);
// if BadReg(m) then UNPREDICTABLE;
if (BadReg (m))
return false;
// if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
if ((t == 15) && InITBlock() && !LastInITBlock())
return false;
break;
case eEncodingA1:
{
// if P == '0' && W == '1' then SEE LDRT;
// t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
m = Bits32 (opcode, 3, 0);
// index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
index = BitIsSet (opcode, 24);
add = BitIsSet (opcode, 23);
wback = (BitIsClear (opcode, 24) || BitIsSet (opcode, 21));
// (shift_t, shift_n) = DecodeImmShift(type, imm5);
uint32_t type = Bits32 (opcode, 6, 5);
uint32_t imm5 = Bits32 (opcode, 11, 7);
shift_n = DecodeImmShift (type, imm5, shift_t);
// if m == 15 then UNPREDICTABLE;
if (m == 15)
return false;
// if wback && (n == 15 || n == t) then UNPREDICTABLE;
if (wback && ((n == 15) || (n == t)))
return false;
}
break;
default:
return false;
}
uint32_t Rm = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
if (!success)
return false;
uint32_t Rn = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
if (!success)
return false;
addr_t offset_addr;
addr_t address;
// offset = Shift(R[m], shift_t, shift_n, APSR.C); -- Note "The APSR is an application level alias for the CPSR".
addr_t offset = Shift (Rm, shift_t, shift_n, Bit32 (m_opcode_cpsr, APSR_C), &success);
if (!success)
return false;
// offset_addr = if add then (R[n] + offset) else (R[n] - offset);
if (add)
offset_addr = Rn + offset;
else
offset_addr = Rn - offset;
// address = if index then offset_addr else R[n];
if (index)
address = offset_addr;
else
address = Rn;
// data = MemU[address,4];
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
EmulateInstruction::Context context;
context.type = eContextRegisterLoad;
context.SetRegisterPlusOffset (base_reg, address - Rn);
uint64_t data = MemURead (context, address, addr_byte_size, 0, &success);
if (!success)
return false;
// if wback then R[n] = offset_addr;
if (wback)
{
context.type = eContextAdjustBaseRegister;
context.SetAddress (offset_addr);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
return false;
}
// if t == 15 then
if (t == 15)
{
// if address<1:0> == '00' then LoadWritePC(data); else UNPREDICTABLE;
if (BitIsClear (address, 1) && BitIsClear (address, 0))
{
context.type = eContextRegisterLoad;
context.SetRegisterPlusOffset (base_reg, address - Rn);
LoadWritePC (context, data);
}
else
return false;
}
// elsif UnalignedSupport() || address<1:0> = '00' then
else if (UnalignedSupport () || (BitIsClear (address, 1) && BitIsClear (address, 0)))
{
// R[t] = data;
context.type = eContextRegisterLoad;
context.SetRegisterPlusOffset (base_reg, address - Rn);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, data))
return false;
}
else // Can only apply before ARMv7
{
// if CurrentInstrSet() == InstrSet_ARM then
if (CurrentInstrSet () == eModeARM)
{
// R[t] = ROR(data, 8*UInt(address<1:0>));
data = ROR (data, Bits32 (address, 1, 0), &success);
if (!success)
return false;
context.type = eContextRegisterLoad;
context.SetImmediate (data);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, data))
return false;
}
else
{
// R[t] = bits(32) UNKNOWN;
WriteBits32Unknown (t);
}
}
}
return true;
}
// LDRB (immediate, Thumb)
bool
EmulateInstructionARM::EmulateLDRBImmediate (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
R[t] = ZeroExtend(MemU[address,1], 32);
if wback then R[n] = offset_addr;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t t;
uint32_t n;
uint32_t imm32;
bool index;
bool add;
bool wback;
// EncodingSpecificOperations(); NullCheckIfThumbEE(n);
switch (encoding)
{
case eEncodingT1:
// t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5, 32);
t = Bits32 (opcode, 2, 0);
n = Bits32 (opcode, 5, 3);
imm32 = Bits32 (opcode, 10, 6);
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = true;
wback= false;
break;
case eEncodingT2:
// if Rt == '1111' then SEE PLD;
// if Rn == '1111' then SEE LDRB (literal);
// t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
imm32 = Bits32 (opcode, 11, 0);
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = true;
wback = false;
// if t == 13 then UNPREDICTABLE;
if (t == 13)
return false;
break;
case eEncodingT3:
// if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE PLD;
// if Rn == '1111' then SEE LDRB (literal);
// if P == '1' && U == '1' && W == '0' then SEE LDRBT;
// if P == '0' && W == '0' then UNDEFINED;
if (BitIsClear (opcode, 10) && BitIsClear (opcode, 8))
return false;
// t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
imm32 = Bits32 (opcode, 7, 0);
// index = (P == '1'); add = (U == '1'); wback = (W == '1');
index = BitIsSet (opcode, 10);
add = BitIsSet (opcode, 9);
wback = BitIsSet (opcode, 8);
// if BadReg(t) || (wback && n == t) then UNPREDICTABLE;
if (BadReg (t) || (wback && (n == t)))
return false;
break;
default:
return false;
}
uint32_t Rn = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
if (!success)
return false;
addr_t address;
addr_t offset_addr;
// offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
if (add)
offset_addr = Rn + imm32;
else
offset_addr = Rn - imm32;
// address = if index then offset_addr else R[n];
if (index)
address = offset_addr;
else
address = Rn;
// R[t] = ZeroExtend(MemU[address,1], 32);
RegisterInfo base_reg;
RegisterInfo data_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + t, data_reg);
EmulateInstruction::Context context;
context.type = eContextRegisterLoad;
context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, address - Rn);
uint64_t data = MemURead (context, address, 1, 0, &success);
if (!success)
return false;
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, data))
return false;
// if wback then R[n] = offset_addr;
if (wback)
{
context.type = eContextAdjustBaseRegister;
context.SetAddress (offset_addr);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
return false;
}
}
return true;
}
// LDRB (literal) calculates an address from the PC value and an immediate offset, loads a byte from memory,
// zero-extends it to form a 32-bit word and writes it to a register.
bool
EmulateInstructionARM::EmulateLDRBLiteral (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(15);
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
R[t] = ZeroExtend(MemU[address,1], 32);
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t t;
uint32_t imm32;
bool add;
switch (encoding)
{
case eEncodingT1:
// if Rt == '1111' then SEE PLD;
// t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
t = Bits32 (opcode, 15, 12);
imm32 = Bits32 (opcode, 11, 0);
add = BitIsSet (opcode, 23);
// if t == 13 then UNPREDICTABLE;
if (t == 13)
return false;
break;
case eEncodingA1:
// t == UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
t = Bits32 (opcode, 15, 12);
imm32 = Bits32 (opcode, 11, 0);
add = BitIsSet (opcode, 23);
// if t == 15 then UNPREDICTABLE;
if (t == 15)
return false;
break;
default:
return false;
}
// base = Align(PC,4);
uint32_t pc_val = ReadCoreReg (PC_REG, &success);
if (!success)
return false;
uint32_t base = AlignPC (pc_val);
addr_t address;
// address = if add then (base + imm32) else (base - imm32);
if (add)
address = base + imm32;
else
address = base - imm32;
// R[t] = ZeroExtend(MemU[address,1], 32);
EmulateInstruction::Context context;
context.type = eContextRelativeBranchImmediate;
context.SetImmediate (address - base);
uint64_t data = MemURead (context, address, 1, 0, &success);
if (!success)
return false;
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, data))
return false;
}
return true;
}
// LDRB (register) calculates an address from a base register value and an offset rigister value, loads a byte from
// memory, zero-extends it to form a 32-bit word, and writes it to a register. The offset register value can
// optionally be shifted.
bool
EmulateInstructionARM::EmulateLDRBRegister (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset = Shift(R[m], shift_t, shift_n, APSR.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
R[t] = ZeroExtend(MemU[address,1],32);
if wback then R[n] = offset_addr;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t t;
uint32_t n;
uint32_t m;
bool index;
bool add;
bool wback;
ARM_ShifterType shift_t;
uint32_t shift_n;
// EncodingSpecificOperations(); NullCheckIfThumbEE(n);
switch (encoding)
{
case eEncodingT1:
// t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
t = Bits32 (opcode, 2, 0);
n = Bits32 (opcode, 5, 3);
m = Bits32 (opcode, 8, 6);
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = true;
wback = false;
// (shift_t, shift_n) = (SRType_LSL, 0);
shift_t = SRType_LSL;
shift_n = 0;
break;
case eEncodingT2:
// if Rt == '1111' then SEE PLD;
// if Rn == '1111' then SEE LDRB (literal);
// t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
m = Bits32 (opcode, 3, 0);
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = true;
wback = false;
// (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
shift_t = SRType_LSL;
shift_n = Bits32 (opcode, 5, 4);
// if t == 13 || BadReg(m) then UNPREDICTABLE;
if ((t == 13) || BadReg (m))
return false;
break;
case eEncodingA1:
{
// if P == '0' && W == '1' then SEE LDRBT;
// t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
m = Bits32 (opcode, 3, 0);
// index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
index = BitIsSet (opcode, 24);
add = BitIsSet (opcode, 23);
wback = (BitIsClear (opcode, 24) || BitIsSet (opcode, 21));
// (shift_t, shift_n) = DecodeImmShift(type, imm5);
uint32_t type = Bits32 (opcode, 6, 5);
uint32_t imm5 = Bits32 (opcode, 11, 7);
shift_n = DecodeImmShift (type, imm5, shift_t);
// if t == 15 || m == 15 then UNPREDICTABLE;
if ((t == 15) || (m == 15))
return false;
// if wback && (n == 15 || n == t) then UNPREDICTABLE;
if (wback && ((n == 15) || (n == t)))
return false;
}
break;
default:
return false;
}
addr_t offset_addr;
addr_t address;
// offset = Shift(R[m], shift_t, shift_n, APSR.C);
uint32_t Rm = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
if (!success)
return false;
addr_t offset = Shift (Rm, shift_t, shift_n, APSR_C, &success);
if (!success)
return false;
// offset_addr = if add then (R[n] + offset) else (R[n] - offset);
uint32_t Rn = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
if (!success)
return false;
if (add)
offset_addr = Rn + offset;
else
offset_addr = Rn - offset;
// address = if index then offset_addr else R[n];
if (index)
address = offset_addr;
else
address = Rn;
// R[t] = ZeroExtend(MemU[address,1],32);
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
EmulateInstruction::Context context;
context.type = eContextRegisterLoad;
context.SetRegisterPlusOffset (base_reg, address - Rn);
uint64_t data = MemURead (context, address, 1, 0, &success);
if (!success)
return false;
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, data))
return false;
// if wback then R[n] = offset_addr;
if (wback)
{
context.type = eContextAdjustBaseRegister;
context.SetAddress (offset_addr);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
return false;
}
}
return true;
}
// LDRH (immediate, Thumb) calculates an address from a base register value and an immediate offset, loads a
// halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. It can use offset,
// post-indexed, or pre-indexed addressing.
bool
EmulateInstructionARM::EmulateLDRHImmediate (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
data = MemU[address,2];
if wback then R[n] = offset_addr;
if UnalignedSupport() || address<0> = '0' then
R[t] = ZeroExtend(data, 32);
else // Can only apply before ARMv7
R[t] = bits(32) UNKNOWN;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t t;
uint32_t n;
uint32_t imm32;
bool index;
bool add;
bool wback;
// EncodingSpecificOperations(); NullCheckIfThumbEE(n);
switch (encoding)
{
case eEncodingT1:
// t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'0', 32);
t = Bits32 (opcode, 2, 0);
n = Bits32 (opcode, 5, 3);
imm32 = Bits32 (opcode, 10, 6) << 1;
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = true;
wback = false;
break;
case eEncodingT2:
// if Rt == '1111' then SEE "Unallocated memory hints";
// if Rn == '1111' then SEE LDRH (literal);
// t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
imm32 = Bits32 (opcode, 11, 0);
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = true;
wback = false;
// if t == 13 then UNPREDICTABLE;
if (t == 13)
return false;
break;
case eEncodingT3:
// if Rn == '1111' then SEE LDRH (literal);
// if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "Unallocated memory hints";
// if P == '1' && U == '1' && W == '0' then SEE LDRHT;
// if P == '0' && W == '0' then UNDEFINED;
if (BitIsClear (opcode, 10) && BitIsClear (opcode, 8))
return false;
// t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
imm32 = Bits32 (opcode, 7, 0);
// index = (P == '1'); add = (U == '1'); wback = (W == '1');
index = BitIsSet (opcode, 10);
add = BitIsSet (opcode, 9);
wback = BitIsSet (opcode, 8);
// if BadReg(t) || (wback && n == t) then UNPREDICTABLE;
if (BadReg (t) || (wback && (n == t)))
return false;
break;
default:
return false;
}
// offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
uint32_t Rn = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
if (!success)
return false;
addr_t offset_addr;
addr_t address;
if (add)
offset_addr = Rn + imm32;
else
offset_addr = Rn - imm32;
// address = if index then offset_addr else R[n];
if (index)
address = offset_addr;
else
address = Rn;
// data = MemU[address,2];
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
EmulateInstruction::Context context;
context.type = eContextRegisterLoad;
context.SetRegisterPlusOffset (base_reg, address - Rn);
uint64_t data = MemURead (context, address, 2, 0, &success);
if (!success)
return false;
// if wback then R[n] = offset_addr;
if (wback)
{
context.type = eContextAdjustBaseRegister;
context.SetAddress (offset_addr);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
return false;
}
// if UnalignedSupport() || address<0> = '0' then
if (UnalignedSupport () || BitIsClear (address, 0))
{
// R[t] = ZeroExtend(data, 32);
context.type = eContextRegisterLoad;
context.SetRegisterPlusOffset (base_reg, address - Rn);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, data))
return false;
}
else // Can only apply before ARMv7
{
// R[t] = bits(32) UNKNOWN;
WriteBits32Unknown (t);
}
}
return true;
}
// LDRH (literal) caculates an address from the PC value and an immediate offset, loads a halfword from memory,
// zero-extends it to form a 32-bit word, and writes it to a register.
bool
EmulateInstructionARM::EmulateLDRHLiteral (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(15);
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
data = MemU[address,2];
if UnalignedSupport() || address<0> = '0' then
R[t] = ZeroExtend(data, 32);
else // Can only apply before ARMv7
R[t] = bits(32) UNKNOWN;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t t;
uint32_t imm32;
bool add;
// EncodingSpecificOperations(); NullCheckIfThumbEE(15);
switch (encoding)
{
case eEncodingT1:
// if Rt == '1111' then SEE "Unallocated memory hints";
// t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
t = Bits32 (opcode, 15, 12);
imm32 = Bits32 (opcode, 11, 0);
add = BitIsSet (opcode, 23);
// if t == 13 then UNPREDICTABLE;
if (t == 13)
return false;
break;
case eEncodingA1:
{
uint32_t imm4H = Bits32 (opcode, 11, 8);
uint32_t imm4L = Bits32 (opcode, 3, 0);
// t == UInt(Rt); imm32 = ZeroExtend(imm4H:imm4L, 32); add = (U == '1');
t = Bits32 (opcode, 15, 12);
imm32 = (imm4H << 4) | imm4L;
add = BitIsSet (opcode, 23);
// if t == 15 then UNPREDICTABLE;
if (t == 15)
return false;
break;
}
default:
return false;
}
// base = Align(PC,4);
uint64_t pc_value = ReadCoreReg (PC_REG, &success);
if (!success)
return false;
addr_t base = AlignPC (pc_value);
addr_t address;
// address = if add then (base + imm32) else (base - imm32);
if (add)
address = base + imm32;
else
address = base - imm32;
// data = MemU[address,2];
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, base_reg);
EmulateInstruction::Context context;
context.type = eContextRegisterLoad;
context.SetRegisterPlusOffset (base_reg, address - base);
uint64_t data = MemURead (context, address, 2, 0, &success);
if (!success)
return false;
// if UnalignedSupport() || address<0> = '0' then
if (UnalignedSupport () || BitIsClear (address, 0))
{
// R[t] = ZeroExtend(data, 32);
context.type = eContextRegisterLoad;
context.SetRegisterPlusOffset (base_reg, address - base);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, data))
return false;
}
else // Can only apply before ARMv7
{
// R[t] = bits(32) UNKNOWN;
WriteBits32Unknown (t);
}
}
return true;
}
// LDRH (literal) calculates an address from a base register value and an offset register value, loads a halfword
// from memory, zero-extends it to form a 32-bit word, and writes it to a register. The offset register value can
// be shifted left by 0, 1, 2, or 3 bits.
bool
EmulateInstructionARM::EmulateLDRHRegister (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset = Shift(R[m], shift_t, shift_n, APSR.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
data = MemU[address,2];
if wback then R[n] = offset_addr;
if UnalignedSupport() || address<0> = '0' then
R[t] = ZeroExtend(data, 32);
else // Can only apply before ARMv7
R[t] = bits(32) UNKNOWN;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t t;
uint32_t n;
uint32_t m;
bool index;
bool add;
bool wback;
ARM_ShifterType shift_t;
uint32_t shift_n;
// EncodingSpecificOperations(); NullCheckIfThumbEE(n);
switch (encoding)
{
case eEncodingT1:
// if CurrentInstrSet() == InstrSet_ThumbEE then SEE "Modified operation in ThumbEE";
// t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
t = Bits32 (opcode, 2, 0);
n = Bits32 (opcode, 5, 3);
m = Bits32 (opcode, 8, 6);
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = true;
wback = false;
// (shift_t, shift_n) = (SRType_LSL, 0);
shift_t = SRType_LSL;
shift_n = 0;
break;
case eEncodingT2:
// if Rn == '1111' then SEE LDRH (literal);
// if Rt == '1111' then SEE "Unallocated memory hints";
// t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
m = Bits32 (opcode, 3, 0);
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = true;
wback = false;
// (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
shift_t = SRType_LSL;
shift_n = Bits32 (opcode, 5, 4);
// if t == 13 || BadReg(m) then UNPREDICTABLE;
if ((t == 13) || BadReg (m))
return false;
break;
case eEncodingA1:
// if P == '0' && W == '1' then SEE LDRHT;
// t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
m = Bits32 (opcode, 3, 0);
// index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
index = BitIsSet (opcode, 24);
add = BitIsSet (opcode, 23);
wback = (BitIsClear (opcode, 24) || BitIsSet (opcode, 21));
// (shift_t, shift_n) = (SRType_LSL, 0);
shift_t = SRType_LSL;
shift_n = 0;
// if t == 15 || m == 15 then UNPREDICTABLE;
if ((t == 15) || (m == 15))
return false;
// if wback && (n == 15 || n == t) then UNPREDICTABLE;
if (wback && ((n == 15) || (n == t)))
return false;
break;
default:
return false;
}
// offset = Shift(R[m], shift_t, shift_n, APSR.C);
uint64_t Rm = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
if (!success)
return false;
addr_t offset = Shift (Rm, shift_t, shift_n, APSR_C, &success);
if (!success)
return false;
addr_t offset_addr;
addr_t address;
// offset_addr = if add then (R[n] + offset) else (R[n] - offset);
uint64_t Rn = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
if (!success)
return false;
if (add)
offset_addr = Rn + offset;
else
offset_addr = Rn - offset;
// address = if index then offset_addr else R[n];
if (index)
address = offset_addr;
else
address = Rn;
// data = MemU[address,2];
RegisterInfo base_reg;
RegisterInfo offset_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, offset_reg);
EmulateInstruction::Context context;
context.type = eContextRegisterLoad;
context.SetRegisterPlusIndirectOffset (base_reg, offset_reg);
uint64_t data = MemURead (context, address, 2, 0, &success);
if (!success)
return false;
// if wback then R[n] = offset_addr;
if (wback)
{
context.type = eContextAdjustBaseRegister;
context.SetAddress (offset_addr);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
return false;
}
// if UnalignedSupport() || address<0> = '0' then
if (UnalignedSupport() || BitIsClear (address, 0))
{
// R[t] = ZeroExtend(data, 32);
context.type = eContextRegisterLoad;
context.SetRegisterPlusIndirectOffset (base_reg, offset_reg);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, data))
return false;
}
else // Can only apply before ARMv7
{
// R[t] = bits(32) UNKNOWN;
WriteBits32Unknown (t);
}
}
return true;
}
// LDRSB (immediate) calculates an address from a base register value and an immediate offset, loads a byte from
// memory, sign-extends it to form a 32-bit word, and writes it to a register. It can use offset, post-indexed,
// or pre-indexed addressing.
bool
EmulateInstructionARM::EmulateLDRSBImmediate (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
R[t] = SignExtend(MemU[address,1], 32);
if wback then R[n] = offset_addr;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t t;
uint32_t n;
uint32_t imm32;
bool index;
bool add;
bool wback;
// EncodingSpecificOperations(); NullCheckIfThumbEE(n);
switch (encoding)
{
case eEncodingT1:
// if Rt == '1111' then SEE PLI;
// if Rn == '1111' then SEE LDRSB (literal);
// t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
imm32 = Bits32 (opcode, 11, 0);
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = true;
wback = false;
// if t == 13 then UNPREDICTABLE;
if (t == 13)
return false;
break;
case eEncodingT2:
// if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE PLI;
// if Rn == '1111' then SEE LDRSB (literal);
// if P == '1' && U == '1' && W == '0' then SEE LDRSBT;
// if P == '0' && W == '0' then UNDEFINED;
if (BitIsClear (opcode, 10) && BitIsClear (opcode, 8))
return false;
// t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
imm32 = Bits32 (opcode, 7, 0);
// index = (P == '1'); add = (U == '1'); wback = (W == '1');
index = BitIsSet (opcode, 10);
add = BitIsSet (opcode, 9);
wback = BitIsSet (opcode, 8);
// if BadReg(t) || (wback && n == t) then UNPREDICTABLE;
if (((t == 13) || ((t == 15)
&& (BitIsClear (opcode, 10) || BitIsSet (opcode, 9) || BitIsSet (opcode, 8))))
|| (wback && (n == t)))
return false;
break;
case eEncodingA1:
{
// if Rn == '1111' then SEE LDRSB (literal);
// if P == '0' && W == '1' then SEE LDRSBT;
// t == UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
uint32_t imm4H = Bits32 (opcode, 11, 8);
uint32_t imm4L = Bits32 (opcode, 3, 0);
imm32 = (imm4H << 4) | imm4L;
// index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
index = BitIsSet (opcode, 24);
add = BitIsSet (opcode, 23);
wback = (BitIsClear (opcode, 24) || BitIsSet (opcode, 21));
// if t == 15 || (wback && n == t) then UNPREDICTABLE;
if ((t == 15) || (wback && (n == t)))
return false;
break;
}
default:
return false;
}
uint64_t Rn = ReadCoreReg (n, &success);
if (!success)
return false;
addr_t offset_addr;
addr_t address;
// offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
if (add)
offset_addr = Rn + imm32;
else
offset_addr = Rn - imm32;
// address = if index then offset_addr else R[n];
if (index)
address = offset_addr;
else
address = Rn;
// R[t] = SignExtend(MemU[address,1], 32);
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
EmulateInstruction::Context context;
context.type = eContextRegisterLoad;
context.SetRegisterPlusOffset (base_reg, address - Rn);
uint64_t unsigned_data = MemURead (context, address, 1, 0, &success);
if (!success)
return false;
int64_t signed_data = llvm::SignExtend64<8>(unsigned_data);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, (uint64_t) signed_data))
return false;
// if wback then R[n] = offset_addr;
if (wback)
{
context.type = eContextAdjustBaseRegister;
context.SetAddress (offset_addr);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
return false;
}
}
return true;
}
// LDRSB (literal) calculates an address from the PC value and an immediate offset, loads a byte from memory,
// sign-extends it to form a 32-bit word, and writes tit to a register.
bool
EmulateInstructionARM::EmulateLDRSBLiteral (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(15);
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
R[t] = SignExtend(MemU[address,1], 32);
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t t;
uint32_t imm32;
bool add;
// EncodingSpecificOperations(); NullCheckIfThumbEE(15);
switch (encoding)
{
case eEncodingT1:
// if Rt == '1111' then SEE PLI;
// t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
t = Bits32 (opcode, 15, 12);
imm32 = Bits32 (opcode, 11, 0);
add = BitIsSet (opcode, 23);
// if t == 13 then UNPREDICTABLE;
if (t == 13)
return false;
break;
case eEncodingA1:
{
// t == UInt(Rt); imm32 = ZeroExtend(imm4H:imm4L, 32); add = (U == '1');
t = Bits32 (opcode, 15, 12);
uint32_t imm4H = Bits32 (opcode, 11, 8);
uint32_t imm4L = Bits32 (opcode, 3, 0);
imm32 = (imm4H << 4) | imm4L;
add = BitIsSet (opcode, 23);
// if t == 15 then UNPREDICTABLE;
if (t == 15)
return false;
break;
}
default:
return false;
}
// base = Align(PC,4);
uint64_t pc_value = ReadCoreReg (PC_REG, &success);
if (!success)
return false;
uint64_t base = AlignPC (pc_value);
// address = if add then (base + imm32) else (base - imm32);
addr_t address;
if (add)
address = base + imm32;
else
address = base - imm32;
// R[t] = SignExtend(MemU[address,1], 32);
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, base_reg);
EmulateInstruction::Context context;
context.type = eContextRegisterLoad;
context.SetRegisterPlusOffset (base_reg, address - base);
uint64_t unsigned_data = MemURead (context, address, 1, 0, &success);
if (!success)
return false;
int64_t signed_data = llvm::SignExtend64<8>(unsigned_data);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, (uint64_t) signed_data))
return false;
}
return true;
}
// LDRSB (register) calculates an address from a base register value and an offset register value, loadsa byte from
// memory, sign-extends it to form a 32-bit word, and writes it to a register. The offset register value can be
// shifted left by 0, 1, 2, or 3 bits.
bool
EmulateInstructionARM::EmulateLDRSBRegister (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset = Shift(R[m], shift_t, shift_n, APSR.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
R[t] = SignExtend(MemU[address,1], 32);
if wback then R[n] = offset_addr;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t t;
uint32_t n;
uint32_t m;
bool index;
bool add;
bool wback;
ARM_ShifterType shift_t;
uint32_t shift_n;
// EncodingSpecificOperations(); NullCheckIfThumbEE(n);
switch (encoding)
{
case eEncodingT1:
// t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
t = Bits32 (opcode, 2, 0);
n = Bits32 (opcode, 5, 3);
m = Bits32 (opcode, 8, 6);
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = true;
wback = false;
// (shift_t, shift_n) = (SRType_LSL, 0);
shift_t = SRType_LSL;
shift_n = 0;
break;
case eEncodingT2:
// if Rt == '1111' then SEE PLI;
// if Rn == '1111' then SEE LDRSB (literal);
// t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
m = Bits32 (opcode, 3, 0);
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = true;
wback = false;
// (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
shift_t = SRType_LSL;
shift_n = Bits32 (opcode, 5, 4);
// if t == 13 || BadReg(m) then UNPREDICTABLE;
if ((t == 13) || BadReg (m))
return false;
break;
case eEncodingA1:
// if P == '0' && W == '1' then SEE LDRSBT;
// t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
m = Bits32 (opcode, 3, 0);
// index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
index = BitIsSet (opcode, 24);
add = BitIsSet (opcode, 23);
wback = BitIsClear (opcode, 24) || BitIsSet (opcode, 21);
// (shift_t, shift_n) = (SRType_LSL, 0);
shift_t = SRType_LSL;
shift_n = 0;
// if t == 15 || m == 15 then UNPREDICTABLE;
if ((t == 15) || (m == 15))
return false;
// if wback && (n == 15 || n == t) then UNPREDICTABLE;
if (wback && ((n == 15) || (n == t)))
return false;
break;
default:
return false;
}
uint64_t Rm = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
if (!success)
return false;
// offset = Shift(R[m], shift_t, shift_n, APSR.C);
addr_t offset = Shift (Rm, shift_t, shift_n, APSR_C, &success);
if (!success)
return false;
addr_t offset_addr;
addr_t address;
// offset_addr = if add then (R[n] + offset) else (R[n] - offset);
uint64_t Rn = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
if (!success)
return false;
if (add)
offset_addr = Rn + offset;
else
offset_addr = Rn - offset;
// address = if index then offset_addr else R[n];
if (index)
address = offset_addr;
else
address = Rn;
// R[t] = SignExtend(MemU[address,1], 32);
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
RegisterInfo offset_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, offset_reg);
EmulateInstruction::Context context;
context.type = eContextRegisterLoad;
context.SetRegisterPlusIndirectOffset (base_reg, offset_reg);
uint64_t unsigned_data = MemURead (context, address, 1, 0, &success);
if (!success)
return false;
int64_t signed_data = llvm::SignExtend64<8>(unsigned_data);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, (uint64_t) signed_data))
return false;
// if wback then R[n] = offset_addr;
if (wback)
{
context.type = eContextAdjustBaseRegister;
context.SetAddress (offset_addr);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
return false;
}
}
return true;
}
// LDRSH (immediate) calculates an address from a base register value and an immediate offset, loads a halfword from
// memory, sign-extends it to form a 32-bit word, and writes it to a register. It can use offset, post-indexed, or
// pre-indexed addressing.
bool
EmulateInstructionARM::EmulateLDRSHImmediate (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
data = MemU[address,2];
if wback then R[n] = offset_addr;
if UnalignedSupport() || address<0> = '0' then
R[t] = SignExtend(data, 32);
else // Can only apply before ARMv7
R[t] = bits(32) UNKNOWN;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t t;
uint32_t n;
uint32_t imm32;
bool index;
bool add;
bool wback;
// EncodingSpecificOperations(); NullCheckIfThumbEE(n);
switch (encoding)
{
case eEncodingT1:
// if Rn == '1111' then SEE LDRSH (literal);
// if Rt == '1111' then SEE "Unallocated memory hints";
// t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
imm32 = Bits32 (opcode, 11, 0);
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = true;
wback = false;
// if t == 13 then UNPREDICTABLE;
if (t == 13)
return false;
break;
case eEncodingT2:
// if Rn == '1111' then SEE LDRSH (literal);
// if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "Unallocated memory hints";
// if P == '1' && U == '1' && W == '0' then SEE LDRSHT;
// if P == '0' && W == '0' then UNDEFINED;
if (BitIsClear (opcode, 10) && BitIsClear (opcode, 8))
return false;
// t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
imm32 = Bits32 (opcode, 7, 0);
// index = (P == '1'); add = (U == '1'); wback = (W == '1');
index = BitIsSet (opcode, 10);
add = BitIsSet (opcode, 9);
wback = BitIsSet (opcode, 8);
// if BadReg(t) || (wback && n == t) then UNPREDICTABLE;
if (BadReg (t) || (wback && (n == t)))
return false;
break;
case eEncodingA1:
{
// if Rn == '1111' then SEE LDRSH (literal);
// if P == '0' && W == '1' then SEE LDRSHT;
// t == UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
uint32_t imm4H = Bits32 (opcode, 11,8);
uint32_t imm4L = Bits32 (opcode, 3, 0);
imm32 = (imm4H << 4) | imm4L;
// index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
index = BitIsSet (opcode, 24);
add = BitIsSet (opcode, 23);
wback = BitIsClear (opcode, 24) || BitIsSet (opcode, 21);
// if t == 15 || (wback && n == t) then UNPREDICTABLE;
if ((t == 15) || (wback && (n == t)))
return false;
break;
}
default:
return false;
}
// offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
uint64_t Rn = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
if (!success)
return false;
addr_t offset_addr;
if (add)
offset_addr = Rn + imm32;
else
offset_addr = Rn - imm32;
// address = if index then offset_addr else R[n];
addr_t address;
if (index)
address = offset_addr;
else
address = Rn;
// data = MemU[address,2];
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
EmulateInstruction::Context context;
context.type = eContextRegisterLoad;
context.SetRegisterPlusOffset (base_reg, address - Rn);
uint64_t data = MemURead (context, address, 2, 0, &success);
if (!success)
return false;
// if wback then R[n] = offset_addr;
if (wback)
{
context.type = eContextAdjustBaseRegister;
context.SetAddress (offset_addr);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
return false;
}
// if UnalignedSupport() || address<0> = '0' then
if (UnalignedSupport() || BitIsClear (address, 0))
{
// R[t] = SignExtend(data, 32);
int64_t signed_data = llvm::SignExtend64<16>(data);
context.type = eContextRegisterLoad;
context.SetRegisterPlusOffset (base_reg, address - Rn);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, (uint64_t) signed_data))
return false;
}
else // Can only apply before ARMv7
{
// R[t] = bits(32) UNKNOWN;
WriteBits32Unknown (t);
}
}
return true;
}
// LDRSH (literal) calculates an address from the PC value and an immediate offset, loads a halfword from memory,
// sign-extends it to from a 32-bit word, and writes it to a register.
bool
EmulateInstructionARM::EmulateLDRSHLiteral (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(15);
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
data = MemU[address,2];
if UnalignedSupport() || address<0> = '0' then
R[t] = SignExtend(data, 32);
else // Can only apply before ARMv7
R[t] = bits(32) UNKNOWN;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t t;
uint32_t imm32;
bool add;
// EncodingSpecificOperations(); NullCheckIfThumbEE(15);
switch (encoding)
{
case eEncodingT1:
// if Rt == '1111' then SEE "Unallocated memory hints";
// t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
t = Bits32 (opcode, 15, 12);
imm32 = Bits32 (opcode, 11, 0);
add = BitIsSet (opcode, 23);
// if t == 13 then UNPREDICTABLE;
if (t == 13)
return false;
break;
case eEncodingA1:
{
// t == UInt(Rt); imm32 = ZeroExtend(imm4H:imm4L, 32); add = (U == '1');
t = Bits32 (opcode, 15, 12);
uint32_t imm4H = Bits32 (opcode, 11, 8);
uint32_t imm4L = Bits32 (opcode, 3, 0);
imm32 = (imm4H << 4) | imm4L;
add = BitIsSet (opcode, 23);
// if t == 15 then UNPREDICTABLE;
if (t == 15)
return false;
break;
}
default:
return false;
}
// base = Align(PC,4);
uint64_t pc_value = ReadCoreReg (PC_REG, &success);
if (!success)
return false;
uint64_t base = AlignPC (pc_value);
addr_t address;
// address = if add then (base + imm32) else (base - imm32);
if (add)
address = base + imm32;
else
address = base - imm32;
// data = MemU[address,2];
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, base_reg);
EmulateInstruction::Context context;
context.type = eContextRegisterLoad;
context.SetRegisterPlusOffset (base_reg, imm32);
uint64_t data = MemURead (context, address, 2, 0, &success);
if (!success)
return false;
// if UnalignedSupport() || address<0> = '0' then
if (UnalignedSupport() || BitIsClear (address, 0))
{
// R[t] = SignExtend(data, 32);
int64_t signed_data = llvm::SignExtend64<16>(data);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, (uint64_t) signed_data))
return false;
}
else // Can only apply before ARMv7
{
// R[t] = bits(32) UNKNOWN;
WriteBits32Unknown (t);
}
}
return true;
}
// LDRSH (register) calculates an address from a base register value and an offset register value, loads a halfword
// from memory, sign-extends it to form a 32-bit word, and writes it to a register. The offset register value can be
// shifted left by 0, 1, 2, or 3 bits.
bool
EmulateInstructionARM::EmulateLDRSHRegister (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset = Shift(R[m], shift_t, shift_n, APSR.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
data = MemU[address,2];
if wback then R[n] = offset_addr;
if UnalignedSupport() || address<0> = '0' then
R[t] = SignExtend(data, 32);
else // Can only apply before ARMv7
R[t] = bits(32) UNKNOWN;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t t;
uint32_t n;
uint32_t m;
bool index;
bool add;
bool wback;
ARM_ShifterType shift_t;
uint32_t shift_n;
// EncodingSpecificOperations(); NullCheckIfThumbEE(n);
switch (encoding)
{
case eEncodingT1:
// if CurrentInstrSet() == InstrSet_ThumbEE then SEE "Modified operation in ThumbEE";
// t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
t = Bits32 (opcode, 2, 0);
n = Bits32 (opcode, 5, 3);
m = Bits32 (opcode, 8, 6);
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = true;
wback = false;
// (shift_t, shift_n) = (SRType_LSL, 0);
shift_t = SRType_LSL;
shift_n = 0;
break;
case eEncodingT2:
// if Rn == '1111' then SEE LDRSH (literal);
// if Rt == '1111' then SEE "Unallocated memory hints";
// t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
m = Bits32 (opcode, 3, 0);
// index = TRUE; add = TRUE; wback = FALSE;
index = true;
add = true;
wback = false;
// (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
shift_t = SRType_LSL;
shift_n = Bits32 (opcode, 5, 4);
// if t == 13 || BadReg(m) then UNPREDICTABLE;
if ((t == 13) || BadReg (m))
return false;
break;
case eEncodingA1:
// if P == '0' && W == '1' then SEE LDRSHT;
// t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
m = Bits32 (opcode, 3, 0);
// index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
index = BitIsSet (opcode, 24);
add = BitIsSet (opcode, 23);
wback = BitIsClear (opcode, 24) || BitIsSet (opcode, 21);
// (shift_t, shift_n) = (SRType_LSL, 0);
shift_t = SRType_LSL;
shift_n = 0;
// if t == 15 || m == 15 then UNPREDICTABLE;
if ((t == 15) || (m == 15))
return false;
// if wback && (n == 15 || n == t) then UNPREDICTABLE;
if (wback && ((n == 15) || (n == t)))
return false;
break;
default:
return false;
}
uint64_t Rm = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
if (!success)
return false;
uint64_t Rn = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
if (!success)
return false;
// offset = Shift(R[m], shift_t, shift_n, APSR.C);
addr_t offset = Shift (Rm, shift_t, shift_n, APSR_C, &success);
if (!success)
return false;
addr_t offset_addr;
addr_t address;
// offset_addr = if add then (R[n] + offset) else (R[n] - offset);
if (add)
offset_addr = Rn + offset;
else
offset_addr = Rn - offset;
// address = if index then offset_addr else R[n];
if (index)
address = offset_addr;
else
address = Rn;
// data = MemU[address,2];
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
RegisterInfo offset_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, offset_reg);
EmulateInstruction::Context context;
context.type = eContextRegisterLoad;
context.SetRegisterPlusIndirectOffset (base_reg, offset_reg);
uint64_t data = MemURead (context, address, 2, 0, &success);
if (!success)
return false;
// if wback then R[n] = offset_addr;
if (wback)
{
context.type = eContextAdjustBaseRegister;
context.SetAddress (offset_addr);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
return false;
}
// if UnalignedSupport() || address<0> = '0' then
if (UnalignedSupport() || BitIsClear (address, 0))
{
// R[t] = SignExtend(data, 32);
context.type = eContextRegisterLoad;
context.SetRegisterPlusIndirectOffset (base_reg, offset_reg);
int64_t signed_data = llvm::SignExtend64<16>(data);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, (uint64_t) signed_data))
return false;
}
else // Can only apply before ARMv7
{
// R[t] = bits(32) UNKNOWN;
WriteBits32Unknown (t);
}
}
return true;
}
// SXTB extracts an 8-bit value from a register, sign-extends it to 32 bits, and writes the result to the destination
// register. You can specifiy a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.
bool
EmulateInstructionARM::EmulateSXTB (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations();
rotated = ROR(R[m], rotation);
R[d] = SignExtend(rotated<7:0>, 32);
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t d;
uint32_t m;
uint32_t rotation;
// EncodingSpecificOperations();
switch (encoding)
{
case eEncodingT1:
// d = UInt(Rd); m = UInt(Rm); rotation = 0;
d = Bits32 (opcode, 2, 0);
m = Bits32 (opcode, 5, 3);
rotation = 0;
break;
case eEncodingT2:
// d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
d = Bits32 (opcode, 11, 8);
m = Bits32 (opcode, 3, 0);
rotation = Bits32 (opcode, 5, 4) << 3;
// if BadReg(d) || BadReg(m) then UNPREDICTABLE;
if (BadReg (d) || BadReg (m))
return false;
break;
case eEncodingA1:
// d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
d = Bits32 (opcode, 15, 12);
m = Bits32 (opcode, 3, 0);
rotation = Bits32 (opcode, 11, 10) << 3;
// if d == 15 || m == 15 then UNPREDICTABLE;
if ((d == 15) || (m == 15))
return false;
break;
default:
return false;
}
uint64_t Rm = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
if (!success)
return false;
// rotated = ROR(R[m], rotation);
uint64_t rotated = ROR (Rm, rotation, &success);
if (!success)
return false;
// R[d] = SignExtend(rotated<7:0>, 32);
int64_t data = llvm::SignExtend64<8>(rotated);
RegisterInfo source_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, source_reg);
EmulateInstruction::Context context;
context.type = eContextRegisterLoad;
context.SetRegister (source_reg);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + d, (uint64_t) data))
return false;
}
return true;
}
// SXTH extracts a 16-bit value from a register, sign-extends it to 32 bits, and writes the result to the destination
// register. You can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value.
bool
EmulateInstructionARM::EmulateSXTH (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations();
rotated = ROR(R[m], rotation);
R[d] = SignExtend(rotated<15:0>, 32);
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t d;
uint32_t m;
uint32_t rotation;
// EncodingSpecificOperations();
switch (encoding)
{
case eEncodingT1:
// d = UInt(Rd); m = UInt(Rm); rotation = 0;
d = Bits32 (opcode, 2, 0);
m = Bits32 (opcode, 5, 3);
rotation = 0;
break;
case eEncodingT2:
// d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
d = Bits32 (opcode, 11, 8);
m = Bits32 (opcode, 3, 0);
rotation = Bits32 (opcode, 5, 4) << 3;
// if BadReg(d) || BadReg(m) then UNPREDICTABLE;
if (BadReg (d) || BadReg (m))
return false;
break;
case eEncodingA1:
// d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
d = Bits32 (opcode, 15, 12);
m = Bits32 (opcode, 3, 0);
rotation = Bits32 (opcode, 11, 10) << 3;
// if d == 15 || m == 15 then UNPREDICTABLE;
if ((d == 15) || (m == 15))
return false;
break;
default:
return false;
}
uint64_t Rm = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
if (!success)
return false;
// rotated = ROR(R[m], rotation);
uint64_t rotated = ROR (Rm, rotation, &success);
if (!success)
return false;
// R[d] = SignExtend(rotated<15:0>, 32);
RegisterInfo source_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, source_reg);
EmulateInstruction::Context context;
context.type = eContextRegisterLoad;
context.SetRegister (source_reg);
int64_t data = llvm::SignExtend64<16> (rotated);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + d, (uint64_t) data))
return false;
}
return true;
}
// UXTB extracts an 8-bit value from a register, zero-extneds it to 32 bits, and writes the result to the destination
// register. You can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.
bool
EmulateInstructionARM::EmulateUXTB (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations();
rotated = ROR(R[m], rotation);
R[d] = ZeroExtend(rotated<7:0>, 32);
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t d;
uint32_t m;
uint32_t rotation;
// EncodingSpecificOperations();
switch (encoding)
{
case eEncodingT1:
// d = UInt(Rd); m = UInt(Rm); rotation = 0;
d = Bits32 (opcode, 2, 0);
m = Bits32 (opcode, 5, 3);
rotation = 0;
break;
case eEncodingT2:
// d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
d = Bits32 (opcode, 11, 8);
m = Bits32 (opcode, 3, 0);
rotation = Bits32 (opcode, 5, 4) << 3;
// if BadReg(d) || BadReg(m) then UNPREDICTABLE;
if (BadReg (d) || BadReg (m))
return false;
break;
case eEncodingA1:
// d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
d = Bits32 (opcode, 15, 12);
m = Bits32 (opcode, 3, 0);
rotation = Bits32 (opcode, 11, 10) << 3;
// if d == 15 || m == 15 then UNPREDICTABLE;
if ((d == 15) || (m == 15))
return false;
break;
default:
return false;
}
uint64_t Rm = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
if (!success)
return false;
// rotated = ROR(R[m], rotation);
uint64_t rotated = ROR (Rm, rotation, &success);
if (!success)
return false;
// R[d] = ZeroExtend(rotated<7:0>, 32);
RegisterInfo source_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, source_reg);
EmulateInstruction::Context context;
context.type = eContextRegisterLoad;
context.SetRegister (source_reg);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + d, Bits32 (rotated, 7, 0)))
return false;
}
return true;
}
// UXTH extracts a 16-bit value from a register, zero-extends it to 32 bits, and writes the result to the destination
// register. You can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value.
bool
EmulateInstructionARM::EmulateUXTH (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations();
rotated = ROR(R[m], rotation);
R[d] = ZeroExtend(rotated<15:0>, 32);
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t d;
uint32_t m;
uint32_t rotation;
switch (encoding)
{
case eEncodingT1:
// d = UInt(Rd); m = UInt(Rm); rotation = 0;
d = Bits32 (opcode, 2, 0);
m = Bits32 (opcode, 5, 3);
rotation = 0;
break;
case eEncodingT2:
// d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
d = Bits32 (opcode, 11, 8);
m = Bits32 (opcode, 3, 0);
rotation = Bits32 (opcode, 5, 4) << 3;
// if BadReg(d) || BadReg(m) then UNPREDICTABLE;
if (BadReg (d) || BadReg (m))
return false;
break;
case eEncodingA1:
// d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
d = Bits32 (opcode, 15, 12);
m = Bits32 (opcode, 3, 0);
rotation = Bits32 (opcode, 11, 10) << 3;
// if d == 15 || m == 15 then UNPREDICTABLE;
if ((d == 15) || (m == 15))
return false;
break;
default:
return false;
}
uint64_t Rm = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
if (!success)
return false;
// rotated = ROR(R[m], rotation);
uint64_t rotated = ROR (Rm, rotation, &success);
if (!success)
return false;
// R[d] = ZeroExtend(rotated<15:0>, 32);
RegisterInfo source_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, source_reg);
EmulateInstruction::Context context;
context.type = eContextRegisterLoad;
context.SetRegister (source_reg);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + d, Bits32 (rotated, 15, 0)))
return false;
}
return true;
}
// RFE (Return From Exception) loads the PC and the CPSR from the word at the specified address and the following
// word respectively.
bool
EmulateInstructionARM::EmulateRFE (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations();
if !CurrentModeIsPrivileged() || CurrentInstrSet() == InstrSet_ThumbEE then
UNPREDICTABLE;
else
address = if increment then R[n] else R[n]-8;
if wordhigher then address = address+4;
CPSRWriteByInstr(MemA[address+4,4], '1111', TRUE);
BranchWritePC(MemA[address,4]);
if wback then R[n] = if increment then R[n]+8 else R[n]-8;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t n;
bool wback;
bool increment;
bool wordhigher;
// EncodingSpecificOperations();
switch (encoding)
{
case eEncodingT1:
// n = UInt(Rn); wback = (W == '1'); increment = FALSE; wordhigher = FALSE;
n = Bits32 (opcode, 19, 16);
wback = BitIsSet (opcode, 21);
increment = false;
wordhigher = false;
// if n == 15 then UNPREDICTABLE;
if (n == 15)
return false;
// if InITBlock() && !LastInITBlock() then UNPREDICTABLE;
if (InITBlock() && !LastInITBlock())
return false;
break;
case eEncodingT2:
// n = UInt(Rn); wback = (W == '1'); increment = TRUE; wordhigher = FALSE;
n = Bits32 (opcode, 19, 16);
wback = BitIsSet (opcode, 21);
increment = true;
wordhigher = false;
// if n == 15 then UNPREDICTABLE;
if (n == 15)
return false;
// if InITBlock() && !LastInITBlock() then UNPREDICTABLE;
if (InITBlock() && !LastInITBlock())
return false;
break;
case eEncodingA1:
// n = UInt(Rn);
n = Bits32 (opcode, 19, 16);
// wback = (W == '1'); inc = (U == '1'); wordhigher = (P == U);
wback = BitIsSet (opcode, 21);
increment = BitIsSet (opcode, 23);
wordhigher = (Bit32 (opcode, 24) == Bit32 (opcode, 23));
// if n == 15 then UNPREDICTABLE;
if (n == 15)
return false;
break;
default:
return false;
}
// if !CurrentModeIsPrivileged() || CurrentInstrSet() == InstrSet_ThumbEE then
if (!CurrentModeIsPrivileged ())
// UNPREDICTABLE;
return false;
else
{
uint64_t Rn = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
if (!success)
return false;
addr_t address;
// address = if increment then R[n] else R[n]-8;
if (increment)
address = Rn;
else
address = Rn - 8;
// if wordhigher then address = address+4;
if (wordhigher)
address = address + 4;
// CPSRWriteByInstr(MemA[address+4,4], '1111', TRUE);
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
EmulateInstruction::Context context;
context.type = eContextReturnFromException;
context.SetRegisterPlusOffset (base_reg, address - Rn);
uint64_t data = MemARead (context, address + 4, 4, 0, &success);
if (!success)
return false;
CPSRWriteByInstr (data, 15, true);
// BranchWritePC(MemA[address,4]);
uint64_t data2 = MemARead (context, address, 4, 0, &success);
if (!success)
return false;
BranchWritePC (context, data2);
// if wback then R[n] = if increment then R[n]+8 else R[n]-8;
if (wback)
{
context.type = eContextAdjustBaseRegister;
if (increment)
{
context.SetOffset (8);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, Rn + 8))
return false;
}
else
{
context.SetOffset (-8);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, Rn - 8))
return false;
}
} // if wback
}
} // if ConditionPassed()
return true;
}
// Bitwise Exclusive OR (immediate) performs a bitwise exclusive OR of a register value and an immediate value,
// and writes the result to the destination register. It can optionally update the condition flags based on
// the result.
bool
EmulateInstructionARM::EmulateEORImm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] EOR imm32;
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t Rd, Rn;
uint32_t imm32; // the immediate value to be ORed to the value obtained from Rn
bool setflags;
uint32_t carry; // the carry bit after ARM/Thumb Expand operation
switch (encoding)
{
case eEncodingT1:
Rd = Bits32(opcode, 11, 8);
Rn = Bits32(opcode, 19, 16);
setflags = BitIsSet(opcode, 20);
imm32 = ThumbExpandImm_C(opcode, APSR_C, carry); // (imm32, carry) = ThumbExpandImm(i:imm3:imm8, APSR.C)
// if Rd == '1111' && S == '1' then SEE TEQ (immediate);
if (Rd == 15 && setflags)
return EmulateTEQImm (opcode, eEncodingT1);
if (Rd == 13 || (Rd == 15 && !setflags) || BadReg(Rn))
return false;
break;
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
Rn = Bits32(opcode, 19, 16);
setflags = BitIsSet(opcode, 20);
imm32 = ARMExpandImm_C(opcode, APSR_C, carry); // (imm32, carry) = ARMExpandImm(imm12, APSR.C)
// if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
if (Rd == 15 && setflags)
return EmulateSUBSPcLrEtc (opcode, encoding);
break;
default:
return false;
}
// Read the first operand.
uint32_t val1 = ReadCoreReg(Rn, &success);
if (!success)
return false;
uint32_t result = val1 ^ imm32;
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
return false;
}
return true;
}
// Bitwise Exclusive OR (register) performs a bitwise exclusive OR of a register value and an
// optionally-shifted register value, and writes the result to the destination register.
// It can optionally update the condition flags based on the result.
bool
EmulateInstructionARM::EmulateEORReg (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = R[n] EOR shifted;
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t Rd, Rn, Rm;
ARM_ShifterType shift_t;
uint32_t shift_n; // the shift applied to the value read from Rm
bool setflags;
uint32_t carry;
switch (encoding)
{
case eEncodingT1:
Rd = Rn = Bits32(opcode, 2, 0);
Rm = Bits32(opcode, 5, 3);
setflags = !InITBlock();
shift_t = SRType_LSL;
shift_n = 0;
break;
case eEncodingT2:
Rd = Bits32(opcode, 11, 8);
Rn = Bits32(opcode, 19, 16);
Rm = Bits32(opcode, 3, 0);
setflags = BitIsSet(opcode, 20);
shift_n = DecodeImmShiftThumb(opcode, shift_t);
// if Rd == '1111' && S == '1' then SEE TEQ (register);
if (Rd == 15 && setflags)
return EmulateTEQReg (opcode, eEncodingT1);
if (Rd == 13 || (Rd == 15 && !setflags) || BadReg(Rn) || BadReg(Rm))
return false;
break;
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
Rn = Bits32(opcode, 19, 16);
Rm = Bits32(opcode, 3, 0);
setflags = BitIsSet(opcode, 20);
shift_n = DecodeImmShiftARM(opcode, shift_t);
// if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
if (Rd == 15 && setflags)
return EmulateSUBSPcLrEtc (opcode, encoding);
break;
default:
return false;
}
// Read the first operand.
uint32_t val1 = ReadCoreReg(Rn, &success);
if (!success)
return false;
// Read the second operand.
uint32_t val2 = ReadCoreReg(Rm, &success);
if (!success)
return false;
uint32_t shifted = Shift_C(val2, shift_t, shift_n, APSR_C, carry, &success);
if (!success)
return false;
uint32_t result = val1 ^ shifted;
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
return false;
}
return true;
}
// Bitwise OR (immediate) performs a bitwise (inclusive) OR of a register value and an immediate value, and
// writes the result to the destination register. It can optionally update the condition flags based
// on the result.
bool
EmulateInstructionARM::EmulateORRImm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] OR imm32;
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t Rd, Rn;
uint32_t imm32; // the immediate value to be ORed to the value obtained from Rn
bool setflags;
uint32_t carry; // the carry bit after ARM/Thumb Expand operation
switch (encoding)
{
case eEncodingT1:
Rd = Bits32(opcode, 11, 8);
Rn = Bits32(opcode, 19, 16);
setflags = BitIsSet(opcode, 20);
imm32 = ThumbExpandImm_C(opcode, APSR_C, carry); // (imm32, carry) = ThumbExpandImm(i:imm3:imm8, APSR.C)
// if Rn == '1111' then SEE MOV (immediate);
if (Rn == 15)
return EmulateMOVRdImm (opcode, eEncodingT2);
if (BadReg(Rd) || Rn == 13)
return false;
break;
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
Rn = Bits32(opcode, 19, 16);
setflags = BitIsSet(opcode, 20);
imm32 = ARMExpandImm_C(opcode, APSR_C, carry); // (imm32, carry) = ARMExpandImm(imm12, APSR.C)
if (Rd == 15 && setflags)
return EmulateSUBSPcLrEtc (opcode, encoding);
break;
default:
return false;
}
// Read the first operand.
uint32_t val1 = ReadCoreReg(Rn, &success);
if (!success)
return false;
uint32_t result = val1 | imm32;
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
return false;
}
return true;
}
// Bitwise OR (register) performs a bitwise (inclusive) OR of a register value and an optionally-shifted register
// value, and writes the result to the destination register. It can optionally update the condition flags based
// on the result.
bool
EmulateInstructionARM::EmulateORRReg (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = R[n] OR shifted;
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t Rd, Rn, Rm;
ARM_ShifterType shift_t;
uint32_t shift_n; // the shift applied to the value read from Rm
bool setflags;
uint32_t carry;
switch (encoding)
{
case eEncodingT1:
Rd = Rn = Bits32(opcode, 2, 0);
Rm = Bits32(opcode, 5, 3);
setflags = !InITBlock();
shift_t = SRType_LSL;
shift_n = 0;
break;
case eEncodingT2:
Rd = Bits32(opcode, 11, 8);
Rn = Bits32(opcode, 19, 16);
Rm = Bits32(opcode, 3, 0);
setflags = BitIsSet(opcode, 20);
shift_n = DecodeImmShiftThumb(opcode, shift_t);
// if Rn == '1111' then SEE MOV (register);
if (Rn == 15)
return EmulateMOVRdRm (opcode, eEncodingT3);
if (BadReg(Rd) || Rn == 13 || BadReg(Rm))
return false;
break;
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
Rn = Bits32(opcode, 19, 16);
Rm = Bits32(opcode, 3, 0);
setflags = BitIsSet(opcode, 20);
shift_n = DecodeImmShiftARM(opcode, shift_t);
if (Rd == 15 && setflags)
return EmulateSUBSPcLrEtc (opcode, encoding);
break;
default:
return false;
}
// Read the first operand.
uint32_t val1 = ReadCoreReg(Rn, &success);
if (!success)
return false;
// Read the second operand.
uint32_t val2 = ReadCoreReg(Rm, &success);
if (!success)
return false;
uint32_t shifted = Shift_C(val2, shift_t, shift_n, APSR_C, carry, &success);
if (!success)
return false;
uint32_t result = val1 | shifted;
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
return false;
}
return true;
}
// Reverse Subtract (immediate) subtracts a register value from an immediate value, and writes the result to
// the destination register. It can optionally update the condition flags based on the result.
bool
EmulateInstructionARM::EmulateRSBImm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddWithCarry(NOT(R[n]), imm32, '1');
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
#endif
bool success = false;
uint32_t Rd; // the destination register
uint32_t Rn; // the first operand
bool setflags;
uint32_t imm32; // the immediate value to be added to the value obtained from Rn
switch (encoding) {
case eEncodingT1:
Rd = Bits32(opcode, 2, 0);
Rn = Bits32(opcode, 5, 3);
setflags = !InITBlock();
imm32 = 0;
break;
case eEncodingT2:
Rd = Bits32(opcode, 11, 8);
Rn = Bits32(opcode, 19, 16);
setflags = BitIsSet(opcode, 20);
imm32 = ThumbExpandImm(opcode); // imm32 = ThumbExpandImm(i:imm3:imm8)
if (BadReg(Rd) || BadReg(Rn))
return false;
break;
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
Rn = Bits32(opcode, 19, 16);
setflags = BitIsSet(opcode, 20);
imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
// if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
if (Rd == 15 && setflags)
return EmulateSUBSPcLrEtc (opcode, encoding);
break;
default:
return false;
}
// Read the register value from the operand register Rn.
uint32_t reg_val = ReadCoreReg(Rn, &success);
if (!success)
return false;
AddWithCarryResult res = AddWithCarry(~reg_val, imm32, 1);
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags, res.carry_out, res.overflow))
return false;
return true;
}
// Reverse Subtract (register) subtracts a register value from an optionally-shifted register value, and writes the
// result to the destination register. It can optionally update the condition flags based on the result.
bool
EmulateInstructionARM::EmulateRSBReg (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddWithCarry(NOT(R[n]), shifted, '1');
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
#endif
bool success = false;
uint32_t Rd; // the destination register
uint32_t Rn; // the first operand
uint32_t Rm; // the second operand
bool setflags;
ARM_ShifterType shift_t;
uint32_t shift_n; // the shift applied to the value read from Rm
switch (encoding) {
case eEncodingT1:
Rd = Bits32(opcode, 11, 8);
Rn = Bits32(opcode, 19, 16);
Rm = Bits32(opcode, 3, 0);
setflags = BitIsSet(opcode, 20);
shift_n = DecodeImmShiftThumb(opcode, shift_t);
// if (BadReg(d) || BadReg(m)) then UNPREDICTABLE;
if (BadReg(Rd) || BadReg(Rn) || BadReg(Rm))
return false;
break;
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
Rn = Bits32(opcode, 19, 16);
Rm = Bits32(opcode, 3, 0);
setflags = BitIsSet(opcode, 20);
shift_n = DecodeImmShiftARM(opcode, shift_t);
// if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
if (Rd == 15 && setflags)
return EmulateSUBSPcLrEtc (opcode, encoding);
break;
default:
return false;
}
// Read the register value from register Rn.
uint32_t val1 = ReadCoreReg(Rn, &success);
if (!success)
return false;
// Read the register value from register Rm.
uint32_t val2 = ReadCoreReg(Rm, &success);
if (!success)
return false;
uint32_t shifted = Shift(val2, shift_t, shift_n, APSR_C, &success);
if (!success)
return false;
AddWithCarryResult res = AddWithCarry(~val1, shifted, 1);
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs();
if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags, res.carry_out, res.overflow))
return false;
return true;
}
// Reverse Subtract with Carry (immediate) subtracts a register value and the value of NOT (Carry flag) from
// an immediate value, and writes the result to the destination register. It can optionally update the condition
// flags based on the result.
bool
EmulateInstructionARM::EmulateRSCImm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddWithCarry(NOT(R[n]), imm32, APSR.C);
if d == 15 then
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
#endif
bool success = false;
uint32_t Rd; // the destination register
uint32_t Rn; // the first operand
bool setflags;
uint32_t imm32; // the immediate value to be added to the value obtained from Rn
switch (encoding) {
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
Rn = Bits32(opcode, 19, 16);
setflags = BitIsSet(opcode, 20);
imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
// if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
if (Rd == 15 && setflags)
return EmulateSUBSPcLrEtc (opcode, encoding);
break;
default:
return false;
}
// Read the register value from the operand register Rn.
uint32_t reg_val = ReadCoreReg(Rn, &success);
if (!success)
return false;
AddWithCarryResult res = AddWithCarry(~reg_val, imm32, APSR_C);
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags, res.carry_out, res.overflow))
return false;
return true;
}
// Reverse Subtract with Carry (register) subtracts a register value and the value of NOT (Carry flag) from an
// optionally-shifted register value, and writes the result to the destination register. It can optionally update the
// condition flags based on the result.
bool
EmulateInstructionARM::EmulateRSCReg (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddWithCarry(NOT(R[n]), shifted, APSR.C);
if d == 15 then
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
#endif
bool success = false;
uint32_t Rd; // the destination register
uint32_t Rn; // the first operand
uint32_t Rm; // the second operand
bool setflags;
ARM_ShifterType shift_t;
uint32_t shift_n; // the shift applied to the value read from Rm
switch (encoding) {
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
Rn = Bits32(opcode, 19, 16);
Rm = Bits32(opcode, 3, 0);
setflags = BitIsSet(opcode, 20);
shift_n = DecodeImmShiftARM(opcode, shift_t);
// if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
if (Rd == 15 && setflags)
return EmulateSUBSPcLrEtc (opcode, encoding);
break;
default:
return false;
}
// Read the register value from register Rn.
uint32_t val1 = ReadCoreReg(Rn, &success);
if (!success)
return false;
// Read the register value from register Rm.
uint32_t val2 = ReadCoreReg(Rm, &success);
if (!success)
return false;
uint32_t shifted = Shift(val2, shift_t, shift_n, APSR_C, &success);
if (!success)
return false;
AddWithCarryResult res = AddWithCarry(~val1, shifted, APSR_C);
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs();
if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags, res.carry_out, res.overflow))
return false;
return true;
}
// Subtract with Carry (immediate) subtracts an immediate value and the value of
// NOT (Carry flag) from a register value, and writes the result to the destination register.
// It can optionally update the condition flags based on the result.
bool
EmulateInstructionARM::EmulateSBCImm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), APSR.C);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
#endif
bool success = false;
uint32_t Rd; // the destination register
uint32_t Rn; // the first operand
bool setflags;
uint32_t imm32; // the immediate value to be added to the value obtained from Rn
switch (encoding) {
case eEncodingT1:
Rd = Bits32(opcode, 11, 8);
Rn = Bits32(opcode, 19, 16);
setflags = BitIsSet(opcode, 20);
imm32 = ThumbExpandImm(opcode); // imm32 = ThumbExpandImm(i:imm3:imm8)
if (BadReg(Rd) || BadReg(Rn))
return false;
break;
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
Rn = Bits32(opcode, 19, 16);
setflags = BitIsSet(opcode, 20);
imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
// if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
if (Rd == 15 && setflags)
return EmulateSUBSPcLrEtc (opcode, encoding);
break;
default:
return false;
}
// Read the register value from the operand register Rn.
uint32_t reg_val = ReadCoreReg(Rn, &success);
if (!success)
return false;
AddWithCarryResult res = AddWithCarry(reg_val, ~imm32, APSR_C);
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags, res.carry_out, res.overflow))
return false;
return true;
}
// Subtract with Carry (register) subtracts an optionally-shifted register value and the value of
// NOT (Carry flag) from a register value, and writes the result to the destination register.
// It can optionally update the condition flags based on the result.
bool
EmulateInstructionARM::EmulateSBCReg (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), APSR.C);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
#endif
bool success = false;
uint32_t Rd; // the destination register
uint32_t Rn; // the first operand
uint32_t Rm; // the second operand
bool setflags;
ARM_ShifterType shift_t;
uint32_t shift_n; // the shift applied to the value read from Rm
switch (encoding) {
case eEncodingT1:
Rd = Rn = Bits32(opcode, 2, 0);
Rm = Bits32(opcode, 5, 3);
setflags = !InITBlock();
shift_t = SRType_LSL;
shift_n = 0;
break;
case eEncodingT2:
Rd = Bits32(opcode, 11, 8);
Rn = Bits32(opcode, 19, 16);
Rm = Bits32(opcode, 3, 0);
setflags = BitIsSet(opcode, 20);
shift_n = DecodeImmShiftThumb(opcode, shift_t);
if (BadReg(Rd) || BadReg(Rn) || BadReg(Rm))
return false;
break;
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
Rn = Bits32(opcode, 19, 16);
Rm = Bits32(opcode, 3, 0);
setflags = BitIsSet(opcode, 20);
shift_n = DecodeImmShiftARM(opcode, shift_t);
// if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
if (Rd == 15 && setflags)
return EmulateSUBSPcLrEtc (opcode, encoding);
break;
default:
return false;
}
// Read the register value from register Rn.
uint32_t val1 = ReadCoreReg(Rn, &success);
if (!success)
return false;
// Read the register value from register Rm.
uint32_t val2 = ReadCoreReg(Rm, &success);
if (!success)
return false;
uint32_t shifted = Shift(val2, shift_t, shift_n, APSR_C, &success);
if (!success)
return false;
AddWithCarryResult res = AddWithCarry(val1, ~shifted, APSR_C);
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs();
if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags, res.carry_out, res.overflow))
return false;
return true;
}
// This instruction subtracts an immediate value from a register value, and writes the result
// to the destination register. It can optionally update the condition flags based on the result.
bool
EmulateInstructionARM::EmulateSUBImmThumb (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), '1');
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
#endif
bool success = false;
uint32_t Rd; // the destination register
uint32_t Rn; // the first operand
bool setflags;
uint32_t imm32; // the immediate value to be subtracted from the value obtained from Rn
switch (encoding) {
case eEncodingT1:
Rd = Bits32(opcode, 2, 0);
Rn = Bits32(opcode, 5, 3);
setflags = !InITBlock();
imm32 = Bits32(opcode, 8, 6); // imm32 = ZeroExtend(imm3, 32)
break;
case eEncodingT2:
Rd = Rn = Bits32(opcode, 10, 8);
setflags = !InITBlock();
imm32 = Bits32(opcode, 7, 0); // imm32 = ZeroExtend(imm8, 32)
break;
case eEncodingT3:
Rd = Bits32(opcode, 11, 8);
Rn = Bits32(opcode, 19, 16);
setflags = BitIsSet(opcode, 20);
imm32 = ThumbExpandImm(opcode); // imm32 = ThumbExpandImm(i:imm3:imm8)
// if Rd == '1111' && S == '1' then SEE CMP (immediate);
if (Rd == 15 && setflags)
return EmulateCMPImm (opcode, eEncodingT2);
// if Rn == '1101' then SEE SUB (SP minus immediate);
if (Rn == 13)
return EmulateSUBSPImm (opcode, eEncodingT2);
// if d == 13 || (d == 15 && S == '0') || n == 15 then UNPREDICTABLE;
if (Rd == 13 || (Rd == 15 && !setflags) || Rn == 15)
return false;
break;
case eEncodingT4:
Rd = Bits32(opcode, 11, 8);
Rn = Bits32(opcode, 19, 16);
setflags = BitIsSet(opcode, 20);
imm32 = ThumbImm12(opcode); // imm32 = ZeroExtend(i:imm3:imm8, 32)
// if Rn == '1111' then SEE ADR;
if (Rn == 15)
return EmulateADR (opcode, eEncodingT2);
// if Rn == '1101' then SEE SUB (SP minus immediate);
if (Rn == 13)
return EmulateSUBSPImm (opcode, eEncodingT3);
if (BadReg(Rd))
return false;
break;
default:
return false;
}
// Read the register value from the operand register Rn.
uint32_t reg_val = ReadCoreReg(Rn, &success);
if (!success)
return false;
AddWithCarryResult res = AddWithCarry(reg_val, ~imm32, 1);
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags, res.carry_out, res.overflow))
return false;
return true;
}
// This instruction subtracts an immediate value from a register value, and writes the result
// to the destination register. It can optionally update the condition flags based on the result.
bool
EmulateInstructionARM::EmulateSUBImmARM (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), '1');
if d == 15 then
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
#endif
bool success = false;
uint32_t Rd; // the destination register
uint32_t Rn; // the first operand
bool setflags;
uint32_t imm32; // the immediate value to be subtracted from the value obtained from Rn
switch (encoding) {
case eEncodingA1:
Rd = Bits32(opcode, 15, 12);
Rn = Bits32(opcode, 19, 16);
setflags = BitIsSet(opcode, 20);
imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
// if Rn == '1111' && S == '0' then SEE ADR;
if (Rn == 15 && !setflags)
return EmulateADR (opcode, eEncodingA2);
// if Rn == '1101' then SEE SUB (SP minus immediate);
if (Rn == 13)
return EmulateSUBSPImm (opcode, eEncodingA1);
// if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related instructions;
if (Rd == 15 && setflags)
return EmulateSUBSPcLrEtc (opcode, encoding);
break;
default:
return false;
}
// Read the register value from the operand register Rn.
uint32_t reg_val = ReadCoreReg(Rn, &success);
if (!success)
return false;
AddWithCarryResult res = AddWithCarry(reg_val, ~imm32, 1);
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags, res.carry_out, res.overflow))
return false;
return true;
}
// Test Equivalence (immediate) performs a bitwise exclusive OR operation on a register value and an
// immediate value. It updates the condition flags based on the result, and discards the result.
bool
EmulateInstructionARM::EmulateTEQImm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] EOR imm32;
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t Rn;
uint32_t imm32; // the immediate value to be ANDed to the value obtained from Rn
uint32_t carry; // the carry bit after ARM/Thumb Expand operation
switch (encoding)
{
case eEncodingT1:
Rn = Bits32(opcode, 19, 16);
imm32 = ThumbExpandImm_C (opcode, APSR_C, carry); // (imm32, carry) = ThumbExpandImm(i:imm3:imm8, APSR.C)
if (BadReg(Rn))
return false;
break;
case eEncodingA1:
Rn = Bits32(opcode, 19, 16);
imm32 = ARMExpandImm_C (opcode, APSR_C, carry); // (imm32, carry) = ARMExpandImm(imm12, APSR.C)
break;
default:
return false;
}
// Read the first operand.
uint32_t val1 = ReadCoreReg(Rn, &success);
if (!success)
return false;
uint32_t result = val1 ^ imm32;
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteFlags(context, result, carry))
return false;
}
return true;
}
// Test Equivalence (register) performs a bitwise exclusive OR operation on a register value and an
// optionally-shifted register value. It updates the condition flags based on the result, and discards
// the result.
bool
EmulateInstructionARM::EmulateTEQReg (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = R[n] EOR shifted;
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t Rn, Rm;
ARM_ShifterType shift_t;
uint32_t shift_n; // the shift applied to the value read from Rm
uint32_t carry;
switch (encoding)
{
case eEncodingT1:
Rn = Bits32(opcode, 19, 16);
Rm = Bits32(opcode, 3, 0);
shift_n = DecodeImmShiftThumb(opcode, shift_t);
if (BadReg(Rn) || BadReg(Rm))
return false;
break;
case eEncodingA1:
Rn = Bits32(opcode, 19, 16);
Rm = Bits32(opcode, 3, 0);
shift_n = DecodeImmShiftARM(opcode, shift_t);
break;
default:
return false;
}
// Read the first operand.
uint32_t val1 = ReadCoreReg(Rn, &success);
if (!success)
return false;
// Read the second operand.
uint32_t val2 = ReadCoreReg(Rm, &success);
if (!success)
return false;
uint32_t shifted = Shift_C(val2, shift_t, shift_n, APSR_C, carry, &success);
if (!success)
return false;
uint32_t result = val1 ^ shifted;
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteFlags(context, result, carry))
return false;
}
return true;
}
// Test (immediate) performs a bitwise AND operation on a register value and an immediate value.
// It updates the condition flags based on the result, and discards the result.
bool
EmulateInstructionARM::EmulateTSTImm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] AND imm32;
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t Rn;
uint32_t imm32; // the immediate value to be ANDed to the value obtained from Rn
uint32_t carry; // the carry bit after ARM/Thumb Expand operation
switch (encoding)
{
case eEncodingT1:
Rn = Bits32(opcode, 19, 16);
imm32 = ThumbExpandImm_C(opcode, APSR_C, carry); // (imm32, carry) = ThumbExpandImm(i:imm3:imm8, APSR.C)
if (BadReg(Rn))
return false;
break;
case eEncodingA1:
Rn = Bits32(opcode, 19, 16);
imm32 = ARMExpandImm_C(opcode, APSR_C, carry); // (imm32, carry) = ARMExpandImm(imm12, APSR.C)
break;
default:
return false;
}
// Read the first operand.
uint32_t val1 = ReadCoreReg(Rn, &success);
if (!success)
return false;
uint32_t result = val1 & imm32;
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteFlags(context, result, carry))
return false;
}
return true;
}
// Test (register) performs a bitwise AND operation on a register value and an optionally-shifted register value.
// It updates the condition flags based on the result, and discards the result.
bool
EmulateInstructionARM::EmulateTSTReg (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
// ARM pseudo code...
if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = R[n] AND shifted;
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t Rn, Rm;
ARM_ShifterType shift_t;
uint32_t shift_n; // the shift applied to the value read from Rm
uint32_t carry;
switch (encoding)
{
case eEncodingT1:
Rn = Bits32(opcode, 2, 0);
Rm = Bits32(opcode, 5, 3);
shift_t = SRType_LSL;
shift_n = 0;
break;
case eEncodingT2:
Rn = Bits32(opcode, 19, 16);
Rm = Bits32(opcode, 3, 0);
shift_n = DecodeImmShiftThumb(opcode, shift_t);
if (BadReg(Rn) || BadReg(Rm))
return false;
break;
case eEncodingA1:
Rn = Bits32(opcode, 19, 16);
Rm = Bits32(opcode, 3, 0);
shift_n = DecodeImmShiftARM(opcode, shift_t);
break;
default:
return false;
}
// Read the first operand.
uint32_t val1 = ReadCoreReg(Rn, &success);
if (!success)
return false;
// Read the second operand.
uint32_t val2 = ReadCoreReg(Rm, &success);
if (!success)
return false;
uint32_t shifted = Shift_C(val2, shift_t, shift_n, APSR_C, carry, &success);
if (!success)
return false;
uint32_t result = val1 & shifted;
EmulateInstruction::Context context;
context.type = EmulateInstruction::eContextImmediate;
context.SetNoArgs ();
if (!WriteFlags(context, result, carry))
return false;
}
return true;
}
// A8.6.216 SUB (SP minus register)
bool
EmulateInstructionARM::EmulateSUBSPReg (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddWithCarry(SP, NOT(shifted), Ô1Õ);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t d;
uint32_t m;
bool setflags;
ARM_ShifterType shift_t;
uint32_t shift_n;
switch (encoding)
{
case eEncodingT1:
// d = UInt(Rd); m = UInt(Rm); setflags = (S == Ô1Õ);
d = Bits32 (opcode, 11, 8);
m = Bits32 (opcode, 3, 0);
setflags = BitIsSet (opcode, 20);
// (shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
shift_n = DecodeImmShiftThumb (opcode, shift_t);
// if d == 13 && (shift_t != SRType_LSL || shift_n > 3) then UNPREDICTABLE;
if ((d == 13) && ((shift_t != SRType_LSL) || (shift_n > 3)))
return false;
// if d == 15 || BadReg(m) then UNPREDICTABLE;
if ((d == 15) || BadReg (m))
return false;
break;
case eEncodingA1:
// d = UInt(Rd); m = UInt(Rm); setflags = (S == Ô1Õ);
d = Bits32 (opcode, 15, 12);
m = Bits32 (opcode, 3, 0);
setflags = BitIsSet (opcode, 20);
// if Rd == Ô1111Õ && S == Ô1Õ then SEE SUBS PC, LR and related instructions;
if (d == 15 && setflags)
EmulateSUBSPcLrEtc (opcode, encoding);
// (shift_t, shift_n) = DecodeImmShift(type, imm5);
shift_n = DecodeImmShiftARM (opcode, shift_t);
break;
default:
return false;
}
// shifted = Shift(R[m], shift_t, shift_n, APSR.C);
uint32_t Rm = ReadCoreReg (m, &success);
if (!success)
return false;
uint32_t shifted = Shift (Rm, shift_t, shift_n, APSR_C, &success);
if (!success)
return false;
// (result, carry, overflow) = AddWithCarry(SP, NOT(shifted), Ô1Õ);
uint32_t sp_val = ReadCoreReg (SP_REG, &success);
if (!success)
return false;
AddWithCarryResult res = AddWithCarry (sp_val, ~shifted, 1);
EmulateInstruction::Context context;
context.type = eContextArithmetic;
RegisterInfo sp_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_sp, sp_reg);
RegisterInfo dwarf_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, dwarf_reg);
context.SetRegisterRegisterOperands (sp_reg, dwarf_reg);
if (!WriteCoreRegOptionalFlags(context, res.result, dwarf_r0 + d, setflags, res.carry_out, res.overflow))
return false;
}
return true;
}
// A8.6.7 ADD (register-shifted register)
bool
EmulateInstructionARM::EmulateADDRegShift (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddWithCarry(R[n], shifted, Ô0Õ);
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t d;
uint32_t n;
uint32_t m;
uint32_t s;
bool setflags;
ARM_ShifterType shift_t;
switch (encoding)
{
case eEncodingA1:
// d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
d = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
m = Bits32 (opcode, 3, 0);
s = Bits32 (opcode, 11, 8);
// setflags = (S == Ô1Õ); shift_t = DecodeRegShift(type);
setflags = BitIsSet (opcode, 20);
shift_t = DecodeRegShift (Bits32 (opcode, 6, 5));
// if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;
if ((d == 15) || (m == 15) || (m == 15) || (s == 15))
return false;
break;
default:
return false;
}
// shift_n = UInt(R[s]<7:0>);
uint32_t Rs = ReadCoreReg (s, &success);
if (!success)
return false;
uint32_t shift_n = Bits32 (Rs, 7, 0);
// shifted = Shift(R[m], shift_t, shift_n, APSR.C);
uint32_t Rm = ReadCoreReg (m, &success);
if (!success)
return false;
uint32_t shifted = Shift (Rm, shift_t, shift_n, APSR_C, &success);
if (!success)
return false;
// (result, carry, overflow) = AddWithCarry(R[n], shifted, Ô0Õ);
uint32_t Rn = ReadCoreReg (n, &success);
if (!success)
return false;
AddWithCarryResult res = AddWithCarry (Rn, shifted, 0);
// R[d] = result;
EmulateInstruction::Context context;
context.type = eContextArithmetic;
RegisterInfo reg_n;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, reg_n);
RegisterInfo reg_m;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, reg_m);
context.SetRegisterRegisterOperands (reg_n, reg_m);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + d, res.result))
return false;
// if setflags then
// APSR.N = result<31>;
// APSR.Z = IsZeroBit(result);
// APSR.C = carry;
// APSR.V = overflow;
if (setflags)
return WriteFlags (context, res.result, res.carry_out, res.overflow);
}
return true;
}
// A8.6.213 SUB (register)
bool
EmulateInstructionARM::EmulateSUBReg (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), Ô1Õ);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t d;
uint32_t n;
uint32_t m;
bool setflags;
ARM_ShifterType shift_t;
uint32_t shift_n;
switch (encoding)
{
case eEncodingT1:
// d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = !InITBlock();
d = Bits32 (opcode, 2, 0);
n = Bits32 (opcode, 5, 3);
m = Bits32 (opcode, 8, 6);
setflags = !InITBlock();
// (shift_t, shift_n) = (SRType_LSL, 0);
shift_t = SRType_LSL;
shift_n = 0;
break;
case eEncodingT2:
// if Rd == Ô1111Õ && S == Ô1Õ then SEE CMP (register);
// if Rn == Ô1101Õ then SEE SUB (SP minus register);
// d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == Ô1Õ);
d = Bits32 (opcode, 11, 8);
n = Bits32 (opcode, 19, 16);
m = Bits32 (opcode, 3, 0);
setflags = BitIsSet (opcode, 20);
// (shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
shift_n = DecodeImmShiftThumb (opcode, shift_t);
// if d == 13 || (d == 15 && S == '0') || n == 15 || BadReg(m) then UNPREDICTABLE;
if ((d == 13) || ((d == 15) && BitIsClear (opcode, 20)) || (n == 15) || BadReg (m))
return false;
break;
case eEncodingA1:
// if Rn == Ô1101Õ then SEE SUB (SP minus register);
// d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == Ô1Õ);
d = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
m = Bits32 (opcode, 3, 0);
setflags = BitIsSet (opcode, 20);
// if Rd == Ô1111Õ && S == Ô1Õ then SEE SUBS PC, LR and related instructions;
if ((d == 15) && setflags)
EmulateSUBSPcLrEtc (opcode, encoding);
// (shift_t, shift_n) = DecodeImmShift(type, imm5);
shift_n = DecodeImmShiftARM (opcode, shift_t);
break;
default:
return false;
}
// shifted = Shift(R[m], shift_t, shift_n, APSR.C);
uint32_t Rm = ReadCoreReg (m, &success);
if (!success)
return false;
uint32_t shifted = Shift (Rm, shift_t, shift_n, APSR_C, &success);
if (!success)
return false;
// (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), Ô1Õ);
uint32_t Rn = ReadCoreReg (n, &success);
if (!success)
return false;
AddWithCarryResult res = AddWithCarry (Rn, ~shifted, 1);
// if d == 15 then // Can only occur for ARM encoding
// ALUWritePC(result); // setflags is always FALSE here
// else
// R[d] = result;
// if setflags then
// APSR.N = result<31>;
// APSR.Z = IsZeroBit(result);
// APSR.C = carry;
// APSR.V = overflow;
EmulateInstruction::Context context;
context.type = eContextArithmetic;
RegisterInfo reg_n;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, reg_n);
RegisterInfo reg_m;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, reg_m);
context.SetRegisterRegisterOperands (reg_n, reg_m);
if (!WriteCoreRegOptionalFlags (context, res.result, dwarf_r0 + d, setflags, res.carry_out, res.overflow))
return false;
}
return true;
}
// A8.6.202 STREX
// Store Register Exclusive calculates an address from a base register value and an immediate offset, and stores a
// word from a register to memory if the executing processor has exclusive access to the memory addressed.
bool
EmulateInstructionARM::EmulateSTREX (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
address = R[n] + imm32;
if ExclusiveMonitorsPass(address,4) then
MemA[address,4] = R[t];
R[d] = 0;
else
R[d] = 1;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t d;
uint32_t t;
uint32_t n;
uint32_t imm32;
const uint32_t addr_byte_size = GetAddressByteSize();
switch (encoding)
{
case eEncodingT1:
// d = UInt(Rd); t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8:Õ00Õ, 32);
d = Bits32 (opcode, 11, 8);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
imm32 = Bits32 (opcode, 7, 0) << 2;
// if BadReg(d) || BadReg(t) || n == 15 then UNPREDICTABLE;
if (BadReg (d) || BadReg (t) || (n == 15))
return false;
// if d == n || d == t then UNPREDICTABLE;
if ((d == n) || (d == t))
return false;
break;
case eEncodingA1:
// d = UInt(Rd); t = UInt(Rt); n = UInt(Rn); imm32 = Zeros(32); // Zero offset
d = Bits32 (opcode, 15, 12);
t = Bits32 (opcode, 3, 0);
n = Bits32 (opcode, 19, 16);
imm32 = 0;
// if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
if ((d == 15) || (t == 15) || (n == 15))
return false;
// if d == n || d == t then UNPREDICTABLE;
if ((d == n) || (d == t))
return false;
break;
default:
return false;
}
// address = R[n] + imm32;
uint32_t Rn = ReadCoreReg (n, &success);
if (!success)
return false;
addr_t address = Rn + imm32;
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
RegisterInfo data_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + t, data_reg);
EmulateInstruction::Context context;
context.type = eContextRegisterStore;
context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, imm32);
// if ExclusiveMonitorsPass(address,4) then
// if (ExclusiveMonitorsPass (address, addr_byte_size)) -- For now, for the sake of emulation, we will say this
// always return true.
if (true)
{
// MemA[address,4] = R[t];
uint32_t Rt = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_r0 + t, 0, &success);
if (!success)
return false;
if (!MemAWrite (context, address, Rt, addr_byte_size))
return false;
// R[d] = 0;
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, 0))
return false;
}
else
{
// R[d] = 1;
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, 1))
return false;
}
}
return true;
}
// A8.6.197 STRB (immediate, ARM)
bool
EmulateInstructionARM::EmulateSTRBImmARM (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
MemU[address,1] = R[t]<7:0>;
if wback then R[n] = offset_addr;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t t;
uint32_t n;
uint32_t imm32;
bool index;
bool add;
bool wback;
switch (encoding)
{
case eEncodingA1:
// if P == Ô0Õ && W == Ô1Õ then SEE STRBT;
// t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
imm32 = Bits32 (opcode, 11, 0);
// index = (P == Ô1Õ); add = (U == Ô1Õ); wback = (P == Ô0Õ) || (W == Ô1Õ);
index = BitIsSet (opcode, 24);
add = BitIsSet (opcode, 23);
wback = BitIsClear (opcode, 24) || BitIsSet (opcode, 21);
// if t == 15 then UNPREDICTABLE;
if (t == 15)
return false;
// if wback && (n == 15 || n == t) then UNPREDICTABLE;
if (wback && ((n == 15) || (n == t)))
return false;
break;
default:
return false;
}
// offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
uint32_t Rn = ReadCoreReg (n, &success);
if (!success)
return false;
addr_t offset_addr;
if (add)
offset_addr = Rn + imm32;
else
offset_addr = Rn - imm32;
// address = if index then offset_addr else R[n];
addr_t address;
if (index)
address = offset_addr;
else
address = Rn;
// MemU[address,1] = R[t]<7:0>;
uint32_t Rt = ReadCoreReg (t, &success);
if (!success)
return false;
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
RegisterInfo data_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + t, data_reg);
EmulateInstruction::Context context;
context.type = eContextRegisterStore;
context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, address - Rn);
if (!MemUWrite (context, address, Bits32 (Rt, 7, 0), 1))
return false;
// if wback then R[n] = offset_addr;
if (wback)
{
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
return false;
}
}
return true;
}
// A8.6.194 STR (immediate, ARM)
bool
EmulateInstructionARM::EmulateSTRImmARM (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
MemU[address,4] = if t == 15 then PCStoreValue() else R[t];
if wback then R[n] = offset_addr;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t t;
uint32_t n;
uint32_t imm32;
bool index;
bool add;
bool wback;
const uint32_t addr_byte_size = GetAddressByteSize();
switch (encoding)
{
case eEncodingA1:
// if P == Ô0Õ && W == Ô1Õ then SEE STRT;
// if Rn == Ô1101Õ && P == Ô1Õ && U == Ô0Õ && W == Ô1Õ && imm12 == Ô000000000100Õ then SEE PUSH;
// t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
t = Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
imm32 = Bits32 (opcode, 11, 0);
// index = (P == Ô1Õ); add = (U == Ô1Õ); wback = (P == Ô0Õ) || (W == Ô1Õ);
index = BitIsSet (opcode, 24);
add = BitIsSet (opcode, 23);
wback = BitIsClear (opcode, 24) || BitIsSet (opcode, 21);
// if wback && (n == 15 || n == t) then UNPREDICTABLE;
if (wback && ((n == 15) || (n == t)))
return false;
break;
default:
return false;
}
// offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
uint32_t Rn = ReadCoreReg (n, &success);
if (!success)
return false;
addr_t offset_addr;
if (add)
offset_addr = Rn + imm32;
else
offset_addr = Rn - imm32;
// address = if index then offset_addr else R[n];
addr_t address;
if (index)
address = offset_addr;
else
address = Rn;
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
RegisterInfo data_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + t, data_reg);
EmulateInstruction::Context context;
context.type = eContextRegisterStore;
context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, address - Rn);
// MemU[address,4] = if t == 15 then PCStoreValue() else R[t];
uint32_t Rt = ReadCoreReg (t, &success);
if (!success)
return false;
if (t == 15)
{
uint32_t pc_value = ReadCoreReg (PC_REG, &success);
if (!success)
return false;
if (!MemUWrite (context, address, pc_value, addr_byte_size))
return false;
}
else
{
if (!MemUWrite (context, address, Rt, addr_byte_size))
return false;
}
// if wback then R[n] = offset_addr;
if (wback)
{
context.type = eContextAdjustBaseRegister;
context.SetImmediate (offset_addr);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
return false;
}
}
return true;
}
// A8.6.66 LDRD (immediate)
// Load Register Dual (immediate) calculates an address from a base register value and an immediate offset, loads two
// words from memory, and writes them to two registers. It can use offset, post-indexed, or pre-indexed addressing.
bool
EmulateInstructionARM::EmulateLDRDImmediate (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
R[t] = MemA[address,4];
R[t2] = MemA[address+4,4];
if wback then R[n] = offset_addr;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t t;
uint32_t t2;
uint32_t n;
uint32_t imm32;
bool index;
bool add;
bool wback;
switch (encoding)
{
case eEncodingT1:
//if P == Ô0Õ && W == Ô0Õ then SEE ÒRelated encodingsÓ;
//if Rn == Ô1111Õ then SEE LDRD (literal);
//t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); imm32 = ZeroExtend(imm8:Õ00Õ, 32);
t = Bits32 (opcode, 15, 12);
t2 = Bits32 (opcode, 11, 8);
n = Bits32 (opcode, 19, 16);
imm32 = Bits32 (opcode, 7, 0) << 2;
//index = (P == Ô1Õ); add = (U == Ô1Õ); wback = (W == Ô1Õ);
index = BitIsSet (opcode, 24);
add = BitIsSet (opcode, 23);
wback = BitIsSet (opcode, 21);
//if wback && (n == t || n == t2) then UNPREDICTABLE;
if (wback && ((n == t) || (n == t2)))
return false;
//if BadReg(t) || BadReg(t2) || t == t2 then UNPREDICTABLE;
if (BadReg (t) || BadReg (t2) || (t == t2))
return false;
break;
case eEncodingA1:
//if Rn == Ô1111Õ then SEE LDRD (literal);
//if Rt<0> == Ô1Õ then UNPREDICTABLE;
//t = UInt(Rt); t2 = t+1; n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
t = Bits32 (opcode, 15, 12);
if (BitIsSet (t, 0))
return false;
t2 = t + 1;
n = Bits32 (opcode, 19, 16);
imm32 = (Bits32 (opcode, 11, 8) << 4) | Bits32 (opcode, 3, 0);
//index = (P == Ô1Õ); add = (U == Ô1Õ); wback = (P == Ô0Õ) || (W == Ô1Õ);
index = BitIsSet (opcode, 24);
add = BitIsSet (opcode, 23);
wback = BitIsClear (opcode, 24) || BitIsSet (opcode, 21);
//if P == Ô0Õ && W == Ô1Õ then UNPREDICTABLE;
if (BitIsClear (opcode, 24) && BitIsSet (opcode, 21))
return false;
//if wback && (n == t || n == t2) then UNPREDICTABLE;
if (wback && ((n == t) || (n == t2)))
return false;
//if t2 == 15 then UNPREDICTABLE;
if (t2 == 15)
return false;
break;
default:
return false;
}
//offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
uint32_t Rn = ReadCoreReg (n, &success);
if (!success)
return false;
addr_t offset_addr;
if (add)
offset_addr = Rn + imm32;
else
offset_addr = Rn - imm32;
//address = if index then offset_addr else R[n];
addr_t address;
if (index)
address = offset_addr;
else
address = Rn;
//R[t] = MemA[address,4];
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
EmulateInstruction::Context context;
context.type = eContextRegisterLoad;
context.SetRegisterPlusOffset (base_reg, address - Rn);
const uint32_t addr_byte_size = GetAddressByteSize();
uint32_t data = MemARead (context, address, addr_byte_size, 0, &success);
if (!success)
return false;
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, data))
return false;
//R[t2] = MemA[address+4,4];
context.SetRegisterPlusOffset (base_reg, (address + 4) - Rn);
data = MemARead (context, address + 4, addr_byte_size, 0, &success);
if (!success)
return false;
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t2, data))
return false;
//if wback then R[n] = offset_addr;
if (wback)
{
context.type = eContextAdjustBaseRegister;
context.SetAddress (offset_addr);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
return false;
}
}
return true;
}
// A8.6.68 LDRD (register)
// Load Register Dual (register) calculates an address from a base register value and a register offset, loads two
// words from memory, and writes them to two registers. It can use offset, post-indexed or pre-indexed addressing.
bool
EmulateInstructionARM::EmulateLDRDRegister (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + R[m]) else (R[n] - R[m]);
address = if index then offset_addr else R[n];
R[t] = MemA[address,4];
R[t2] = MemA[address+4,4];
if wback then R[n] = offset_addr;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t t;
uint32_t t2;
uint32_t n;
uint32_t m;
bool index;
bool add;
bool wback;
switch (encoding)
{
case eEncodingA1:
// if Rt<0> == Ô1Õ then UNPREDICTABLE;
// t = UInt(Rt); t2 = t+1; n = UInt(Rn); m = UInt(Rm);
t = Bits32 (opcode, 15, 12);
if (BitIsSet (t, 0))
return false;
t2 = t + 1;
n = Bits32 (opcode, 19, 16);
m = Bits32 (opcode, 3, 0);
// index = (P == Ô1Õ); add = (U == Ô1Õ); wback = (P == Ô0Õ) || (W == Ô1Õ);
index = BitIsSet (opcode, 24);
add = BitIsSet (opcode, 23);
wback = BitIsClear (opcode, 24) || BitIsSet (opcode, 21);
// if P == Ô0Õ && W == Ô1Õ then UNPREDICTABLE;
if (BitIsClear (opcode, 24) && BitIsSet (opcode, 21))
return false;
// if t2 == 15 || m == 15 || m == t || m == t2 then UNPREDICTABLE;
if ((t2 == 15) || (m == 15) || (m == t) || (m == t2))
return false;
// if wback && (n == 15 || n == t || n == t2) then UNPREDICTABLE;
if (wback && ((n == 15) || (n == t) || (n == t2)))
return false;
// if ArchVersion() < 6 && wback && m == n then UNPREDICTABLE;
if ((ArchVersion() < 6) && wback && (m == n))
return false;
break;
default:
return false;
}
uint32_t Rn = ReadCoreReg (n, &success);
if (!success)
return false;
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
uint32_t Rm = ReadCoreReg (m, &success);
if (!success)
return false;
RegisterInfo offset_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, offset_reg);
// offset_addr = if add then (R[n] + R[m]) else (R[n] - R[m]);
addr_t offset_addr;
if (add)
offset_addr = Rn + Rm;
else
offset_addr = Rn - Rm;
// address = if index then offset_addr else R[n];
addr_t address;
if (index)
address = offset_addr;
else
address = Rn;
EmulateInstruction::Context context;
context.type = eContextRegisterLoad;
context.SetRegisterPlusIndirectOffset (base_reg, offset_reg);
// R[t] = MemA[address,4];
const uint32_t addr_byte_size = GetAddressByteSize();
uint32_t data = MemARead (context, address, addr_byte_size, 0, &success);
if (!success)
return false;
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, data))
return false;
// R[t2] = MemA[address+4,4];
data = MemARead (context, address + 4, addr_byte_size, 0, &success);
if (!success)
return false;
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t2, data))
return false;
// if wback then R[n] = offset_addr;
if (wback)
{
context.type = eContextAdjustBaseRegister;
context.SetAddress (offset_addr);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
return false;
}
}
return true;
}
// A8.6.200 STRD (immediate)
// Store Register Dual (immediate) calculates an address from a base register value and an immediate offset, and
// stores two words from two registers to memory. It can use offset, post-indexed, or pre-indexed addressing.
bool
EmulateInstructionARM::EmulateSTRDImm (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); NullCheckIfThumbEE(n);
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
MemA[address,4] = R[t];
MemA[address+4,4] = R[t2];
if wback then R[n] = offset_addr;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t t;
uint32_t t2;
uint32_t n;
uint32_t imm32;
bool index;
bool add;
bool wback;
switch (encoding)
{
case eEncodingT1:
// if P == Ô0Õ && W == Ô0Õ then SEE ÒRelated encodingsÓ;
// t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); imm32 = ZeroExtend(imm8:Õ00Õ, 32);
t = Bits32 (opcode, 15, 12);
t2 = Bits32 (opcode, 11, 8);
n = Bits32 (opcode, 19, 16);
imm32 = Bits32 (opcode, 7, 0) << 2;
// index = (P == Ô1Õ); add = (U == Ô1Õ); wback = (W == Ô1Õ);
index = BitIsSet (opcode, 24);
add = BitIsSet (opcode, 23);
wback = BitIsSet (opcode, 21);
// if wback && (n == t || n == t2) then UNPREDICTABLE;
if (wback && ((n == t) || (n == t2)))
return false;
// if n == 15 || BadReg(t) || BadReg(t2) then UNPREDICTABLE;
if ((n == 15) || BadReg (t) || BadReg (t2))
return false;
break;
case eEncodingA1:
// if Rt<0> == Ô1Õ then UNPREDICTABLE;
// t = UInt(Rt); t2 = t+1; n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
t = Bits32 (opcode, 15, 12);
if (BitIsSet (t, 0))
return false;
t2 = t + 1;
n = Bits32 (opcode, 19, 16);
imm32 = (Bits32 (opcode, 11, 8) << 4) | Bits32 (opcode, 3, 0);
// index = (P == Ô1Õ); add = (U == Ô1Õ); wback = (P == Ô0Õ) || (W == Ô1Õ);
index = BitIsSet (opcode, 24);
add = BitIsSet (opcode, 23);
wback = BitIsClear (opcode, 24) || BitIsSet (opcode, 21);
// if P == Ô0Õ && W == Ô1Õ then UNPREDICTABLE;
if (BitIsClear (opcode, 24) && BitIsSet (opcode, 21))
return false;
// if wback && (n == 15 || n == t || n == t2) then UNPREDICTABLE;
if (wback && ((n == 15) || (n == t) || (n == t2)))
return false;
// if t2 == 15 then UNPREDICTABLE;
if (t2 == 15)
return false;
break;
default:
return false;
}
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
uint32_t Rn = ReadCoreReg (n, &success);
if (!success)
return false;
//offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
addr_t offset_addr;
if (add)
offset_addr = Rn + imm32;
else
offset_addr = Rn - imm32;
//address = if index then offset_addr else R[n];
addr_t address;
if (index)
address = offset_addr;
else
address = Rn;
//MemA[address,4] = R[t];
RegisterInfo data_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + t, data_reg);
uint32_t data = ReadCoreReg (t, &success);
if (!success)
return false;
EmulateInstruction::Context context;
context.type = eContextRegisterStore;
context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, address - Rn);
const uint32_t addr_byte_size = GetAddressByteSize();
if (!MemAWrite (context, address, data, addr_byte_size))
return false;
//MemA[address+4,4] = R[t2];
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + t2, data_reg);
context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, (address + 4) - Rn);
data = ReadCoreReg (t2, &success);
if (!success)
return false;
if (!MemAWrite (context, address + 4, data, addr_byte_size))
return false;
//if wback then R[n] = offset_addr;
if (wback)
{
context.type = eContextAdjustBaseRegister;
context.SetAddress (offset_addr);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
return false;
}
}
return true;
}
// A8.6.201 STRD (register)
bool
EmulateInstructionARM::EmulateSTRDReg (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + R[m]) else (R[n] - R[m]);
address = if index then offset_addr else R[n];
MemA[address,4] = R[t];
MemA[address+4,4] = R[t2];
if wback then R[n] = offset_addr;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
uint32_t t;
uint32_t t2;
uint32_t n;
uint32_t m;
bool index;
bool add;
bool wback;
switch (encoding)
{
case eEncodingA1:
// if Rt<0> == Ô1Õ then UNPREDICTABLE;
// t = UInt(Rt); t2 = t+1; n = UInt(Rn); m = UInt(Rm);
t = Bits32 (opcode, 15, 12);
if (BitIsSet (t, 0))
return false;
t2 = t+1;
n = Bits32 (opcode, 19, 16);
m = Bits32 (opcode, 3, 0);
// index = (P == Ô1Õ); add = (U == Ô1Õ); wback = (P == Ô0Õ) || (W == Ô1Õ);
index = BitIsSet (opcode, 24);
add = BitIsSet (opcode, 23);
wback = BitIsClear (opcode, 24) || BitIsSet (opcode, 21);
// if P == Ô0Õ && W == Ô1Õ then UNPREDICTABLE;
if (BitIsClear (opcode, 24) && BitIsSet (opcode, 21))
return false;
// if t2 == 15 || m == 15 then UNPREDICTABLE;
if ((t2 == 15) || (m == 15))
return false;
// if wback && (n == 15 || n == t || n == t2) then UNPREDICTABLE;
if (wback && ((n == 15) || (n == t) || (n == t2)))
return false;
// if ArchVersion() < 6 && wback && m == n then UNPREDICTABLE;
if ((ArchVersion() < 6) && wback && (m == n))
return false;
break;
default:
return false;
}
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
RegisterInfo offset_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + m, offset_reg);
RegisterInfo data_reg;
uint32_t Rn = ReadCoreReg (n, &success);
if (!success)
return false;
uint32_t Rm = ReadCoreReg (m, &success);
if (!success)
return false;
// offset_addr = if add then (R[n] + R[m]) else (R[n] - R[m]);
addr_t offset_addr;
if (add)
offset_addr = Rn + Rm;
else
offset_addr = Rn - Rm;
// address = if index then offset_addr else R[n];
addr_t address;
if (index)
address = offset_addr;
else
address = Rn;
// MemA[address,4] = R[t];
uint32_t Rt = ReadCoreReg (t, &success);
if (!success)
return false;
EmulateInstruction::Context context;
context.type = eContextRegisterStore;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + t, data_reg);
context.SetRegisterToRegisterPlusIndirectOffset (base_reg, offset_reg, data_reg);
const uint32_t addr_byte_size = GetAddressByteSize();
if (!MemAWrite (context, address, Rt, addr_byte_size))
return false;
// MemA[address+4,4] = R[t2];
uint32_t Rt2 = ReadCoreReg (t2, &success);
if (!success)
return false;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + t2, data_reg);
context.SetRegisterToRegisterPlusIndirectOffset (base_reg, offset_reg, data_reg);
if (!MemAWrite (context, address + 4, Rt2, addr_byte_size))
return false;
// if wback then R[n] = offset_addr;
if (wback)
{
context.type = eContextAdjustBaseRegister;
context.SetAddress (offset_addr);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, offset_addr))
return false;
}
}
return true;
}
// A8.6.319 VLDM
// Vector Load Multiple loads multiple extension registers from consecutive memory locations using an address from
// an ARM core register.
bool
EmulateInstructionARM::EmulateVLDM (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(n);
address = if add then R[n] else R[n]-imm32;
if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;
for r = 0 to regs-1
if single_regs then
S[d+r] = MemA[address,4]; address = address+4;
else
word1 = MemA[address,4]; word2 = MemA[address+4,4]; address = address+8;
// Combine the word-aligned words in the correct order for current endianness.
D[d+r] = if BigEndian() then word1:word2 else word2:word1;
#endif
bool success = false;
if (ConditionPassed(opcode))
{
bool single_regs;
bool add;
bool wback;
uint32_t d;
uint32_t n;
uint32_t imm32;
uint32_t regs;
switch (encoding)
{
case eEncodingT1:
case eEncodingA1:
// if P == Ô0Õ && U == Ô0Õ && W == Ô0Õ then SEE ÒRelated encodingsÓ;
// if P == Ô0Õ && U == Ô1Õ && W == Ô1Õ && Rn == Ô1101Õ then SEE VPOP;
// if P == Ô1Õ && W == Ô0Õ then SEE VLDR;
// if P == U && W == Ô1Õ then UNDEFINED;
if ((Bit32 (opcode, 24) == Bit32 (opcode, 23)) && BitIsSet (opcode, 21))
return false;
// // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
// single_regs = FALSE; add = (U == Ô1Õ); wback = (W == Ô1Õ);
single_regs = false;
add = BitIsSet (opcode, 23);
wback = BitIsSet (opcode, 21);
// d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:Õ00Õ, 32);
d = (Bit32 (opcode, 22) << 4) | Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
imm32 = Bits32 (opcode, 7, 0) << 2;
// regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see ÒFLDMXÓ.
regs = Bits32 (opcode, 7, 0) / 2;
// if n == 15 && (wback || CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;
if (n == 15 && (wback || CurrentInstrSet() != eModeARM))
return false;
// if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
if ((regs == 0) || (regs > 16) || ((d + regs) > 32))
return false;
break;
case eEncodingT2:
case eEncodingA2:
// if P == Ô0Õ && U == Ô0Õ && W == Ô0Õ then SEE ÒRelated encodingsÓ;
// if P == Ô0Õ && U == Ô1Õ && W == Ô1Õ && Rn == Ô1101Õ then SEE VPOP;
// if P == Ô1Õ && W == Ô0Õ then SEE VLDR;
// if P == U && W == Ô1Õ then UNDEFINED;
if ((Bit32 (opcode, 24) == Bit32 (opcode, 23)) && BitIsSet (opcode, 21))
return false;
// // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
// single_regs = TRUE; add = (U == Ô1Õ); wback = (W == Ô1Õ); d = UInt(Vd:D); n = UInt(Rn);
single_regs = true;
add = BitIsSet (opcode, 23);
wback = BitIsSet (opcode, 21);
d = (Bits32 (opcode, 15, 12) << 1) | Bit32 (opcode, 22);
n = Bits32 (opcode, 19, 16);
// imm32 = ZeroExtend(imm8:Õ00Õ, 32); regs = UInt(imm8);
imm32 = Bits32 (opcode, 7, 0) << 2;
regs = Bits32 (opcode, 7, 0);
// if n == 15 && (wback || CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;
if ((n == 15) && (wback || (CurrentInstrSet() != eModeARM)))
return false;
// if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;
if ((regs == 0) || ((d + regs) > 32))
return false;
break;
default:
return false;
}
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
uint32_t Rn = ReadCoreReg (n, &success);
if (!success)
return false;
// address = if add then R[n] else R[n]-imm32;
addr_t address;
if (add)
address = Rn;
else
address = Rn - imm32;
// if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;
EmulateInstruction::Context context;
if (wback)
{
uint32_t value;
if (add)
value = Rn + imm32;
else
value = Rn - imm32;
context.type = eContextAdjustBaseRegister;
context.SetImmediateSigned (value - Rn);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, value))
return false;
}
const uint32_t addr_byte_size = GetAddressByteSize();
uint32_t start_reg = single_regs ? dwarf_s0 : dwarf_d0;
context.type = eContextRegisterLoad;
// for r = 0 to regs-1
for (uint32_t r = 0; r < regs; ++r)
{
if (single_regs)
{
// S[d+r] = MemA[address,4]; address = address+4;
context.SetRegisterPlusOffset (base_reg, address - Rn);
uint32_t data = MemARead (context, address, addr_byte_size, 0, &success);
if (!success)
return false;
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, start_reg + d + r, data))
return false;
address = address + 4;
}
else
{
// word1 = MemA[address,4]; word2 = MemA[address+4,4]; address = address+8;
context.SetRegisterPlusOffset (base_reg, address - Rn);
uint32_t word1 = MemARead (context, address, addr_byte_size, 0, &success);
if (!success)
return false;
context.SetRegisterPlusOffset (base_reg, (address + 4) - Rn);
uint32_t word2 = MemARead (context, address + 4, addr_byte_size, 0, &success);
if (!success)
return false;
address = address + 8;
// // Combine the word-aligned words in the correct order for current endianness.
// D[d+r] = if BigEndian() then word1:word2 else word2:word1;
uint64_t data;
if (GetByteOrder() == eByteOrderBig)
{
data = word1;
data = (data << 32) | word2;
}
else
{
data = word2;
data = (data << 32) | word1;
}
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, start_reg + d + r, data))
return false;
}
}
}
return true;
}
// A8.6.399 VSTM
// Vector Store Multiple stores multiple extension registers to consecutive memory locations using an address from an
// ARM core register.
bool
EmulateInstructionARM::EmulateVSTM (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(n);
address = if add then R[n] else R[n]-imm32;
if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;
for r = 0 to regs-1
if single_regs then
MemA[address,4] = S[d+r]; address = address+4;
else
// Store as two word-aligned words in the correct order for current endianness.
MemA[address,4] = if BigEndian() then D[d+r]<63:32> else D[d+r]<31:0>;
MemA[address+4,4] = if BigEndian() then D[d+r]<31:0> else D[d+r]<63:32>;
address = address+8;
#endif
bool success = false;
if (ConditionPassed (opcode))
{
bool single_regs;
bool add;
bool wback;
uint32_t d;
uint32_t n;
uint32_t imm32;
uint32_t regs;
switch (encoding)
{
case eEncodingT1:
case eEncodingA1:
// if P == Ô0Õ && U == Ô0Õ && W == Ô0Õ then SEE ÒRelated encodingsÓ;
// if P == Ô1Õ && U == Ô0Õ && W == Ô1Õ && Rn == Ô1101Õ then SEE VPUSH;
// if P == Ô1Õ && W == Ô0Õ then SEE VSTR;
// if P == U && W == Ô1Õ then UNDEFINED;
if ((Bit32 (opcode, 24) == Bit32 (opcode, 23)) && BitIsSet (opcode, 21))
return false;
// // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
// single_regs = FALSE; add = (U == Ô1Õ); wback = (W == Ô1Õ);
single_regs = false;
add = BitIsSet (opcode, 23);
wback = BitIsSet (opcode, 21);
// d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:Õ00Õ, 32);
d = (Bit32 (opcode, 22) << 4) | Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
imm32 = Bits32 (opcode, 7, 0) << 2;
// regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see ÒFSTMXÓ.
regs = Bits32 (opcode, 7, 0) / 2;
// if n == 15 && (wback || CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;
if ((n == 15) && (wback || (CurrentInstrSet() != eModeARM)))
return false;
// if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
if ((regs == 0) || (regs > 16) || ((d + regs) > 32))
return false;
break;
case eEncodingT2:
case eEncodingA2:
// if P == Ô0Õ && U == Ô0Õ && W == Ô0Õ then SEE ÒRelated encodingsÓ;
// if P == Ô1Õ && U == Ô0Õ && W == Ô1Õ && Rn == Ô1101Õ then SEE VPUSH;
// if P == Ô1Õ && W == Ô0Õ then SEE VSTR;
// if P == U && W == Ô1Õ then UNDEFINED;
if ((Bit32 (opcode, 24) == Bit32 (opcode, 23)) && BitIsSet (opcode, 21))
return false;
// // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
// single_regs = TRUE; add = (U == Ô1Õ); wback = (W == Ô1Õ); d = UInt(Vd:D); n = UInt(Rn);
single_regs = true;
add = BitIsSet (opcode, 23);
wback = BitIsSet (opcode, 21);
d = (Bits32 (opcode, 15, 12) << 1) | Bit32 (opcode, 22);
n = Bits32 (opcode, 19, 16);
// imm32 = ZeroExtend(imm8:Õ00Õ, 32); regs = UInt(imm8);
imm32 = Bits32 (opcode, 7, 0) << 2;
regs = Bits32 (opcode, 7, 0);
// if n == 15 && (wback || CurrentInstrSet() != InstrSet_ARM) then UNPREDICTABLE;
if ((n == 15) && (wback || (CurrentInstrSet () != eModeARM)))
return false;
// if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;
if ((regs == 0) || ((d + regs) > 32))
return false;
break;
default:
return false;
}
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
uint32_t Rn = ReadCoreReg (n, &success);
if (!success)
return false;
// address = if add then R[n] else R[n]-imm32;
addr_t address;
if (add)
address = Rn;
else
address = Rn - imm32;
EmulateInstruction::Context context;
// if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;
if (wback)
{
uint32_t value;
if (add)
value = Rn + imm32;
else
value = Rn - imm32;
context.type = eContextAdjustBaseRegister;
context.SetRegisterPlusOffset (base_reg, value - Rn);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, value))
return false;
}
const uint32_t addr_byte_size = GetAddressByteSize();
uint32_t start_reg = single_regs ? dwarf_s0 : dwarf_d0;
context.type = eContextRegisterStore;
// for r = 0 to regs-1
for (uint32_t r = 0; r < regs; ++r)
{
if (single_regs)
{
// MemA[address,4] = S[d+r]; address = address+4;
uint32_t data = ReadRegisterUnsigned (eRegisterKindDWARF, start_reg + d + r, 0, &success);
if (!success)
return false;
RegisterInfo data_reg;
GetRegisterInfo (eRegisterKindDWARF, start_reg + d + r, data_reg);
context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, address - Rn);
if (!MemAWrite (context, address, data, addr_byte_size))
return false;
address = address + 4;
}
else
{
// // Store as two word-aligned words in the correct order for current endianness.
// MemA[address,4] = if BigEndian() then D[d+r]<63:32> else D[d+r]<31:0>;
// MemA[address+4,4] = if BigEndian() then D[d+r]<31:0> else D[d+r]<63:32>;
uint64_t data = ReadRegisterUnsigned (eRegisterKindDWARF, start_reg + d + r, 0, &success);
if (!success)
return false;
RegisterInfo data_reg;
GetRegisterInfo (eRegisterKindDWARF, start_reg + d + r, data_reg);
if (GetByteOrder() == eByteOrderBig)
{
context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, address - Rn);
if (!MemAWrite (context, address, Bits64 (data, 63, 32), addr_byte_size))
return false;
context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, (address + 4) - Rn);
if (!MemAWrite (context, address+ 4, Bits64 (data, 31, 0), addr_byte_size))
return false;
}
else
{
context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, address - Rn);
if (!MemAWrite (context, address, Bits64 (data, 31, 0), addr_byte_size))
return false;
context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, (address + 4) - Rn);
if (!MemAWrite (context, address + 4, Bits64 (data, 63, 32), addr_byte_size))
return false;
}
// address = address+8;
address = address + 8;
}
}
}
return true;
}
// A8.6.320
// This instruction loads a single extension register from memory, using an address from an ARM core register, with
// an optional offset.
bool
EmulateInstructionARM::EmulateVLDR (const uint32_t opcode, ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(n);
base = if n == 15 then Align(PC,4) else R[n];
address = if add then (base + imm32) else (base - imm32);
if single_reg then
S[d] = MemA[address,4];
else
word1 = MemA[address,4]; word2 = MemA[address+4,4];
// Combine the word-aligned words in the correct order for current endianness.
D[d] = if BigEndian() then word1:word2 else word2:word1;
#endif
bool success = false;
if (ConditionPassed (opcode))
{
bool single_reg;
bool add;
uint32_t imm32;
uint32_t d;
uint32_t n;
switch (encoding)
{
case eEncodingT1:
case eEncodingA1:
// single_reg = FALSE; add = (U == Ô1Õ); imm32 = ZeroExtend(imm8:Õ00Õ, 32);
single_reg = false;
add = BitIsSet (opcode, 23);
imm32 = Bits32 (opcode, 7, 0) << 2;
// d = UInt(D:Vd); n = UInt(Rn);
d = (Bit32 (opcode, 22) << 4) | Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
break;
case eEncodingT2:
case eEncodingA2:
// single_reg = TRUE; add = (U == Ô1Õ); imm32 = ZeroExtend(imm8:Õ00Õ, 32);
single_reg = true;
add = BitIsSet (opcode, 23);
imm32 = Bits32 (opcode, 7, 0) << 2;
// d = UInt(Vd:D); n = UInt(Rn);
d = (Bits32 (opcode, 15, 12) << 1) | Bit32 (opcode, 22);
n = Bits32 (opcode, 19, 16);
break;
default:
return false;
}
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
uint32_t Rn = ReadCoreReg (n, &success);
if (!success)
return false;
// base = if n == 15 then Align(PC,4) else R[n];
uint32_t base;
if (n == 15)
base = AlignPC (Rn);
else
base = Rn;
// address = if add then (base + imm32) else (base - imm32);
addr_t address;
if (add)
address = base + imm32;
else
address = base - imm32;
const uint32_t addr_byte_size = GetAddressByteSize();
uint32_t start_reg = single_reg ? dwarf_s0 : dwarf_d0;
EmulateInstruction::Context context;
context.type = eContextRegisterLoad;
context.SetRegisterPlusOffset (base_reg, address - base);
if (single_reg)
{
// S[d] = MemA[address,4];
uint32_t data = MemARead (context, address, addr_byte_size, 0, &success);
if (!success)
return false;
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, start_reg + d, data))
return false;
}
else
{
// word1 = MemA[address,4]; word2 = MemA[address+4,4];
uint32_t word1 = MemARead (context, address, addr_byte_size, 0, &success);
if (!success)
return false;
context.SetRegisterPlusOffset (base_reg, (address + 4) - base);
uint32_t word2 = MemARead (context, address + 4, addr_byte_size, 0, &success);
if (!success)
return false;
// // Combine the word-aligned words in the correct order for current endianness.
// D[d] = if BigEndian() then word1:word2 else word2:word1;
uint64_t data64;
if (GetByteOrder() == eByteOrderBig)
{
data64 = word1;
data64 = (data64 << 32) | word2;
}
else
{
data64 = word2;
data64 = (data64 << 32) | word1;
}
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, start_reg + d, data64))
return false;
}
}
return true;
}
// A8.6.400 VSTR
// This instruction stores a signle extension register to memory, using an address from an ARM core register, with an
// optional offset.
bool
EmulateInstructionARM::EmulateVSTR (const uint32_t opcode, ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(n);
address = if add then (R[n] + imm32) else (R[n] - imm32);
if single_reg then
MemA[address,4] = S[d];
else
// Store as two word-aligned words in the correct order for current endianness.
MemA[address,4] = if BigEndian() then D[d]<63:32> else D[d]<31:0>;
MemA[address+4,4] = if BigEndian() then D[d]<31:0> else D[d]<63:32>;
#endif
bool success = false;
if (ConditionPassed (opcode))
{
bool single_reg;
bool add;
uint32_t imm32;
uint32_t d;
uint32_t n;
switch (encoding)
{
case eEncodingT1:
case eEncodingA1:
// single_reg = FALSE; add = (U == Ô1Õ); imm32 = ZeroExtend(imm8:Õ00Õ, 32);
single_reg = false;
add = BitIsSet (opcode, 23);
imm32 = Bits32 (opcode, 7, 0) << 2;
// d = UInt(D:Vd); n = UInt(Rn);
d = (Bit32 (opcode, 22) << 4) | Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
// if n == 15 && CurrentInstrSet() != InstrSet_ARM then UNPREDICTABLE;
if ((n == 15) && (CurrentInstrSet() != eModeARM))
return false;
break;
case eEncodingT2:
case eEncodingA2:
// single_reg = TRUE; add = (U == Ô1Õ); imm32 = ZeroExtend(imm8:Õ00Õ, 32);
single_reg = true;
add = BitIsSet (opcode, 23);
imm32 = Bits32 (opcode, 7, 0) << 2;
// d = UInt(Vd:D); n = UInt(Rn);
d = (Bits32 (opcode, 15, 12) << 1) | Bit32 (opcode, 22);
n = Bits32 (opcode, 19, 16);
// if n == 15 && CurrentInstrSet() != InstrSet_ARM then UNPREDICTABLE;
if ((n == 15) && (CurrentInstrSet() != eModeARM))
return false;
break;
default:
return false;
}
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
uint32_t Rn = ReadCoreReg (n, &success);
if (!success)
return false;
// address = if add then (R[n] + imm32) else (R[n] - imm32);
addr_t address;
if (add)
address = Rn + imm32;
else
address = Rn - imm32;
const uint32_t addr_byte_size = GetAddressByteSize();
uint32_t start_reg = single_reg ? dwarf_s0 : dwarf_d0;
RegisterInfo data_reg;
GetRegisterInfo (eRegisterKindDWARF, start_reg + d, data_reg);
EmulateInstruction::Context context;
context.type = eContextRegisterStore;
context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, address - Rn);
if (single_reg)
{
// MemA[address,4] = S[d];
uint32_t data = ReadRegisterUnsigned (eRegisterKindDWARF, start_reg + d, 0, &success);
if (!success)
return false;
if (!MemAWrite (context, address, data, addr_byte_size))
return false;
}
else
{
// // Store as two word-aligned words in the correct order for current endianness.
// MemA[address,4] = if BigEndian() then D[d]<63:32> else D[d]<31:0>;
// MemA[address+4,4] = if BigEndian() then D[d]<31:0> else D[d]<63:32>;
uint64_t data = ReadRegisterUnsigned (eRegisterKindDWARF, start_reg + d, 0, &success);
if (!success)
return false;
if (GetByteOrder() == eByteOrderBig)
{
if (!MemAWrite (context, address, Bits64 (data, 63, 32), addr_byte_size))
return false;
context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, (address + 4) - Rn);
if (!MemAWrite (context, address + 4, Bits64 (data, 31, 0), addr_byte_size))
return false;
}
else
{
if (!MemAWrite (context, address, Bits64 (data, 31, 0), addr_byte_size))
return false;
context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, (address + 4) - Rn);
if (!MemAWrite (context, address + 4, Bits64 (data, 63, 32), addr_byte_size))
return false;
}
}
}
return true;
}
// A8.6.307 VLDI1 (multiple single elements)
// This instruction loads elements from memory into one, two, three or four registers, without de-interleaving. Every
// element of each register is loaded.
bool
EmulateInstructionARM::EmulateVLD1Multiple (const uint32_t opcode, ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
if wback then R[n] = R[n] + (if register_index then R[m] else 8*regs);
for r = 0 to regs-1
for e = 0 to elements-1
Elem[D[d+r],e,esize] = MemU[address,ebytes];
address = address + ebytes;
#endif
bool success = false;
if (ConditionPassed (opcode))
{
uint32_t regs;
uint32_t alignment;
uint32_t ebytes;
uint32_t esize;
uint32_t elements;
uint32_t d;
uint32_t n;
uint32_t m;
bool wback;
bool register_index;
switch (encoding)
{
case eEncodingT1:
case eEncodingA1:
{
// case type of
// when Ô0111Õ
// regs = 1; if align<1> == Ô1Õ then UNDEFINED;
// when Ô1010Õ
// regs = 2; if align == Ô11Õ then UNDEFINED;
// when Ô0110Õ
// regs = 3; if align<1> == Ô1Õ then UNDEFINED;
// when Ô0010Õ
// regs = 4;
// otherwise
// SEE ÒRelated encodingsÓ;
uint32_t type = Bits32 (opcode, 11, 8);
uint32_t align = Bits32 (opcode, 5, 4);
if (type == 7) // '0111'
{
regs = 1;
if (BitIsSet (align, 1))
return false;
}
else if (type == 10) // '1010'
{
regs = 2;
if (align == 3)
return false;
}
else if (type == 6) // '0110'
{
regs = 3;
if (BitIsSet (align, 1))
return false;
}
else if (type == 2) // '0010'
{
regs = 4;
}
else
return false;
// alignment = if align == Ô00Õ then 1 else 4 << UInt(align);
if (align == 0)
alignment = 1;
else
alignment = 4 << align;
// ebytes = 1 << UInt(size); esize = 8 * ebytes; elements = 8 DIV ebytes;
ebytes = 1 << Bits32 (opcode, 7, 6);
esize = 8 * ebytes;
elements = 8 / ebytes;
// d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
d = (Bit32 (opcode, 22) << 4) | Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 15);
m = Bits32 (opcode, 3, 0);
// wback = (m != 15); register_index = (m != 15 && m != 13);
wback = (m != 15);
register_index = ((m != 15) && (m != 13));
// if d+regs > 32 then UNPREDICTABLE;
if ((d + regs) > 32)
return false;
}
break;
default:
return false;
}
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
uint32_t Rn = ReadCoreReg (n, &success);
if (!success)
return false;
// address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
addr_t address = Rn;
if ((address % alignment) != 0)
return false;
EmulateInstruction::Context context;
// if wback then R[n] = R[n] + (if register_index then R[m] else 8*regs);
if (wback)
{
uint32_t Rm = ReadCoreReg (m, &success);
if (!success)
return false;
uint32_t offset;
if (register_index)
offset = Rm;
else
offset = 8 * regs;
uint32_t value = Rn + offset;
context.type = eContextAdjustBaseRegister;
context.SetRegisterPlusOffset (base_reg, offset);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, value))
return false;
}
// for r = 0 to regs-1
for (uint32_t r = 0; r < regs; ++r)
{
// for e = 0 to elements-1
uint64_t assembled_data = 0;
for (uint32_t e = 0; e < elements; ++e)
{
// Elem[D[d+r],e,esize] = MemU[address,ebytes];
context.type = eContextRegisterLoad;
context.SetRegisterPlusOffset (base_reg, address - Rn);
uint64_t data = MemURead (context, address, ebytes, 0, &success);
if (!success)
return false;
assembled_data = (data << (e * esize)) | assembled_data; // New data goes to the left of existing data
// address = address + ebytes;
address = address + ebytes;
}
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_d0 + d + r, assembled_data))
return false;
}
}
return true;
}
// A8.6.308 VLD1 (single element to one lane)
//
bool
EmulateInstructionARM::EmulateVLD1Single (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
if wback then R[n] = R[n] + (if register_index then R[m] else ebytes);
Elem[D[d],index,esize] = MemU[address,ebytes];
#endif
bool success = false;
if (ConditionPassed (opcode))
{
uint32_t ebytes;
uint32_t esize;
uint32_t index;
uint32_t alignment;
uint32_t d;
uint32_t n;
uint32_t m;
bool wback;
bool register_index;
switch (encoding)
{
case eEncodingT1:
case eEncodingA1:
{
uint32_t size = Bits32 (opcode, 11, 10);
uint32_t index_align = Bits32 (opcode, 7, 4);
// if size == Ô11Õ then SEE VLD1 (single element to all lanes);
if (size == 3)
return EmulateVLD1SingleAll (opcode, encoding);
// case size of
if (size == 0) // when '00'
{
// if index_align<0> != Ô0Õ then UNDEFINED;
if (BitIsClear (index_align, 0))
return false;
// ebytes = 1; esize = 8; index = UInt(index_align<3:1>); alignment = 1;
ebytes = 1;
esize = 8;
index = Bits32 (index_align, 3, 1);
alignment = 1;
}
else if (size == 1) // when Ô01Õ
{
// if index_align<1> != Ô0Õ then UNDEFINED;
if (BitIsClear (index_align, 1))
return false;
// ebytes = 2; esize = 16; index = UInt(index_align<3:2>);
ebytes = 2;
esize = 16;
index = Bits32 (index_align, 3, 2);
// alignment = if index_align<0> == Ô0Õ then 1 else 2;
if (BitIsClear (index_align, 0))
alignment = 1;
else
alignment = 2;
}
else if (size == 2) // when Ô10Õ
{
// if index_align<2> != Ô0Õ then UNDEFINED;
if (BitIsClear (index_align, 2))
return false;
// if index_align<1:0> != Ô00Õ && index_align<1:0> != Ô11Õ then UNDEFINED;
if ((Bits32 (index_align, 1, 0) != 0) && (Bits32 (index_align, 1, 0) != 3))
return false;
// ebytes = 4; esize = 32; index = UInt(index_align<3>);
ebytes = 4;
esize = 32;
index = Bit32 (index_align, 3);
// alignment = if index_align<1:0> == Ô00Õ then 1 else 4;
if (Bits32 (index_align, 1, 0) == 0)
alignment = 1;
else
alignment = 4;
}
else
{
return false;
}
// d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
d = (Bit32 (opcode, 22) << 4) | Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
m = Bits32 (opcode, 3, 0);
// wback = (m != 15); register_index = (m != 15 && m != 13); if n == 15 then UNPREDICTABLE;
wback = (m != 15);
register_index = ((m != 15) && (m != 13));
if (n == 15)
return false;
}
break;
default:
return false;
}
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
uint32_t Rn = ReadCoreReg (n, &success);
if (!success)
return false;
// address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
addr_t address = Rn;
if ((address % alignment) != 0)
return false;
EmulateInstruction::Context context;
// if wback then R[n] = R[n] + (if register_index then R[m] else ebytes);
if (wback)
{
uint32_t Rm = ReadCoreReg (m, &success);
if (!success)
return false;
uint32_t offset;
if (register_index)
offset = Rm;
else
offset = ebytes;
uint32_t value = Rn + offset;
context.type = eContextAdjustBaseRegister;
context.SetRegisterPlusOffset (base_reg, offset);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, value))
return false;
}
// Elem[D[d],index,esize] = MemU[address,ebytes];
uint32_t element = MemURead (context, address, esize, 0, &success);
if (!success)
return false;
element = element << (index * esize);
uint64_t reg_data = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_d0 + d, 0, &success);
if (!success)
return false;
uint64_t all_ones = -1;
uint64_t mask = all_ones << ((index+1) * esize); // mask is all 1's to left of where 'element' goes, & all 0's
// at element & to the right of element.
if (index > 0)
mask = mask | Bits64 (all_ones, (index * esize) - 1, 0); // add 1's to the right of where 'element' goes.
// now mask should be 0's where element goes & 1's
// everywhere else.
uint64_t masked_reg = reg_data & mask; // Take original reg value & zero out 'element' bits
reg_data = masked_reg & element; // Put 'element' into those bits in reg_data.
context.type = eContextRegisterLoad;
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + d, reg_data))
return false;
}
return true;
}
// A8.6.391 VST1 (multiple single elements)
// Vector Store (multiple single elements) stores elements to memory from one, two, three, or four registers, without
// interleaving. Every element of each register is stored.
bool
EmulateInstructionARM::EmulateVST1Multiple (const uint32_t opcode, ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
if wback then R[n] = R[n] + (if register_index then R[m] else 8*regs);
for r = 0 to regs-1
for e = 0 to elements-1
MemU[address,ebytes] = Elem[D[d+r],e,esize];
address = address + ebytes;
#endif
bool success = false;
if (ConditionPassed (opcode))
{
uint32_t regs;
uint32_t alignment;
uint32_t ebytes;
uint32_t esize;
uint32_t elements;
uint32_t d;
uint32_t n;
uint32_t m;
bool wback;
bool register_index;
switch (encoding)
{
case eEncodingT1:
case eEncodingA1:
{
uint32_t type = Bits32 (opcode, 11, 8);
uint32_t align = Bits32 (opcode, 5, 4);
// case type of
if (type == 7) // when Ô0111Õ
{
// regs = 1; if align<1> == Ô1Õ then UNDEFINED;
regs = 1;
if (BitIsSet (align, 1))
return false;
}
else if (type == 10) // when Ô1010Õ
{
// regs = 2; if align == Ô11Õ then UNDEFINED;
regs = 2;
if (align == 3)
return false;
}
else if (type == 6) // when Ô0110Õ
{
// regs = 3; if align<1> == Ô1Õ then UNDEFINED;
regs = 3;
if (BitIsSet (align, 1))
return false;
}
else if (type == 2) // when Ô0010Õ
// regs = 4;
regs = 4;
else // otherwise
// SEE ÒRelated encodingsÓ;
return false;
// alignment = if align == Ô00Õ then 1 else 4 << UInt(align);
if (align == 0)
alignment = 1;
else
alignment = 4 << align;
// ebytes = 1 << UInt(size); esize = 8 * ebytes; elements = 8 DIV ebytes;
ebytes = 1 << Bits32 (opcode,7, 6);
esize = 8 * ebytes;
elements = 8 / ebytes;
// d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
d = (Bit32 (opcode, 22) << 4) | Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
m = Bits32 (opcode, 3, 0);
// wback = (m != 15); register_index = (m != 15 && m != 13);
wback = (m != 15);
register_index = ((m != 15) && (m != 13));
// if d+regs > 32 then UNPREDICTABLE; if n == 15 then UNPREDICTABLE;
if ((d + regs) > 32)
return false;
if (n == 15)
return false;
}
break;
default:
return false;
}
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
uint32_t Rn = ReadCoreReg (n, &success);
if (!success)
return false;
// address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
addr_t address = Rn;
if ((address % alignment) != 0)
return false;
EmulateInstruction::Context context;
// if wback then R[n] = R[n] + (if register_index then R[m] else 8*regs);
if (wback)
{
uint32_t Rm = ReadCoreReg (m, &success);
if (!success)
return false;
uint32_t offset;
if (register_index)
offset = Rm;
else
offset = 8 * regs;
context.type = eContextAdjustBaseRegister;
context.SetRegisterPlusOffset (base_reg, offset);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, Rn + offset))
return false;
}
RegisterInfo data_reg;
context.type = eContextRegisterStore;
// for r = 0 to regs-1
for (uint32_t r = 0; r < regs; ++r)
{
GetRegisterInfo (eRegisterKindDWARF, dwarf_d0 + d + r, data_reg);
uint64_t register_data = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_d0 + d + r, 0, &success);
if (!success)
return false;
// for e = 0 to elements-1
for (uint32_t e = 0; e < elements; ++e)
{
// MemU[address,ebytes] = Elem[D[d+r],e,esize];
uint64_t word = Bits64 (register_data, ((e + 1) * esize) - 1, e * esize);
context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, address - Rn);
if (!MemUWrite (context, address, word, ebytes))
return false;
// address = address + ebytes;
address = address + ebytes;
}
}
}
return true;
}
// A8.6.392 VST1 (single element from one lane)
// This instruction stores one element to memory from one element of a register.
bool
EmulateInstructionARM::EmulateVST1Single (const uint32_t opcode, ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
if wback then R[n] = R[n] + (if register_index then R[m] else ebytes);
MemU[address,ebytes] = Elem[D[d],index,esize];
#endif
bool success = false;
if (ConditionPassed (opcode))
{
uint32_t ebytes;
uint32_t esize;
uint32_t index;
uint32_t alignment;
uint32_t d;
uint32_t n;
uint32_t m;
bool wback;
bool register_index;
switch (encoding)
{
case eEncodingT1:
case eEncodingA1:
{
uint32_t size = Bits32 (opcode, 11, 10);
uint32_t index_align = Bits32 (opcode, 7, 4);
// if size == Ô11Õ then UNDEFINED;
if (size == 3)
return false;
// case size of
if (size == 0) // when Ô00Õ
{
// if index_align<0> != Ô0Õ then UNDEFINED;
if (BitIsClear (index_align, 0))
return false;
// ebytes = 1; esize = 8; index = UInt(index_align<3:1>); alignment = 1;
ebytes = 1;
esize = 8;
index = Bits32 (index_align, 3, 1);
alignment = 1;
}
else if (size == 1) // when Ô01Õ
{
// if index_align<1> != Ô0Õ then UNDEFINED;
if (BitIsClear (index_align, 1))
return false;
// ebytes = 2; esize = 16; index = UInt(index_align<3:2>);
ebytes = 2;
esize = 16;
index = Bits32 (index_align, 3, 2);
// alignment = if index_align<0> == Ô0Õ then 1 else 2;
if (BitIsClear (index_align, 0))
alignment = 1;
else
alignment = 2;
}
else if (size == 2) // when Ô10Õ
{
// if index_align<2> != Ô0Õ then UNDEFINED;
if (BitIsClear (index_align, 2))
return false;
// if index_align<1:0> != Ô00Õ && index_align<1:0> != Ô11Õ then UNDEFINED;
if ((Bits32 (index_align, 1, 0) != 0) && (Bits32 (index_align, 1, 0) != 3))
return false;
// ebytes = 4; esize = 32; index = UInt(index_align<3>);
ebytes = 4;
esize = 32;
index = Bit32 (index_align, 3);
// alignment = if index_align<1:0> == Ô00Õ then 1 else 4;
if (Bits32 (index_align, 1, 0) == 0)
alignment = 1;
else
alignment = 4;
}
else
{
return false;
}
// d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
d = (Bit32 (opcode, 22) << 4) | Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
m = Bits32 (opcode, 3, 0);
// wback = (m != 15); register_index = (m != 15 && m != 13); if n == 15 then UNPREDICTABLE;
wback = (m != 15);
register_index = ((m != 15) && (m != 13));
if (n == 15)
return false;
}
break;
default:
return false;
}
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
uint32_t Rn = ReadCoreReg (n, &success);
if (!success)
return false;
// address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
addr_t address = Rn;
if ((address % alignment) != 0)
return false;
EmulateInstruction::Context context;
// if wback then R[n] = R[n] + (if register_index then R[m] else ebytes);
if (wback)
{
uint32_t Rm = ReadCoreReg (m, &success);
if (!success)
return false;
uint32_t offset;
if (register_index)
offset = Rm;
else
offset = ebytes;
context.type = eContextAdjustBaseRegister;
context.SetRegisterPlusOffset (base_reg, offset);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, Rn + offset))
return false;
}
// MemU[address,ebytes] = Elem[D[d],index,esize];
uint64_t register_data = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_d0 + d, 0, &success);
if (!success)
return false;
uint64_t word = Bits64 (register_data, ((index + 1) * esize) - 1, index * esize);
RegisterInfo data_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_d0 + d, data_reg);
context.type = eContextRegisterStore;
context.SetRegisterToRegisterPlusOffset (data_reg, base_reg, address - Rn);
if (!MemUWrite (context, address, word, ebytes))
return false;
}
return true;
}
// A8.6.309 VLD1 (single element to all lanes)
// This instruction loads one element from memory into every element of one or two vectors.
bool
EmulateInstructionARM::EmulateVLD1SingleAll (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
if wback then R[n] = R[n] + (if register_index then R[m] else ebytes);
replicated_element = Replicate(MemU[address,ebytes], elements);
for r = 0 to regs-1
D[d+r] = replicated_element;
#endif
bool success = false;
if (ConditionPassed (opcode))
{
uint32_t ebytes;
uint32_t elements;
uint32_t regs;
uint32_t alignment;
uint32_t d;
uint32_t n;
uint32_t m;
bool wback;
bool register_index;
switch (encoding)
{
case eEncodingT1:
case eEncodingA1:
{
//if size == Ô11Õ || (size == Ô00Õ && a == Ô1Õ) then UNDEFINED;
uint32_t size = Bits32 (opcode, 7, 6);
if ((size == 3) || ((size == 0) && BitIsSet (opcode, 4)))
return false;
//ebytes = 1 << UInt(size); elements = 8 DIV ebytes; regs = if T == Ô0Õ then 1 else 2;
ebytes = 1 << size;
elements = 8 / ebytes;
if (BitIsClear (opcode, 5))
regs = 1;
else
regs = 2;
//alignment = if a == Ô0Õ then 1 else ebytes;
if (BitIsClear (opcode, 4))
alignment = 1;
else
alignment = ebytes;
//d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
d = (Bit32 (opcode, 22) << 4) | Bits32 (opcode, 15, 12);
n = Bits32 (opcode, 19, 16);
m = Bits32 (opcode, 3, 0);
//wback = (m != 15); register_index = (m != 15 && m != 13);
wback = (m != 15);
register_index = ((m != 15) && (m != 13));
//if d+regs > 32 then UNPREDICTABLE; if n == 15 then UNPREDICTABLE;
if ((d + regs) > 32)
return false;
if (n == 15)
return false;
}
break;
default:
return false;
}
RegisterInfo base_reg;
GetRegisterInfo (eRegisterKindDWARF, dwarf_r0 + n, base_reg);
uint32_t Rn = ReadCoreReg (n, &success);
if (!success)
return false;
// address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
addr_t address = Rn;
if ((address % alignment) != 0)
return false;
EmulateInstruction::Context context;
// if wback then R[n] = R[n] + (if register_index then R[m] else ebytes);
if (wback)
{
uint32_t Rm = ReadCoreReg (m, &success);
if (!success)
return false;
uint32_t offset;
if (register_index)
offset = Rm;
else
offset = ebytes;
context.type = eContextAdjustBaseRegister;
context.SetRegisterPlusOffset (base_reg, offset);
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + n, Rn + offset))
return false;
}
// replicated_element = Replicate(MemU[address,ebytes], elements);
context.type = eContextRegisterLoad;
uint64_t word = MemURead (context, address, ebytes, 0, &success);
if (!success)
return false;
uint64_t replicated_element = 0;
uint32_t esize = ebytes * 8;
for (uint32_t e = 0; e < elements; ++e)
replicated_element = (replicated_element << esize) | Bits64 (word, esize - 1, 0);
// for r = 0 to regs-1
for (uint32_t r = 0; r < regs; ++r)
{
// D[d+r] = replicated_element;
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_d0 + d + r, replicated_element))
return false;
}
}
return true;
}
// B6.2.13 SUBS PC, LR and related instructions
//The SUBS PC, LR, #<const? instruction provides an exception return without the use of the stack. It subtracts the
// immediate constant from the LR, branches to the resulting address, and also copies the SPSR to the CPSR.
bool
EmulateInstructionARM::EmulateSUBSPcLrEtc (const uint32_t opcode, const ARMEncoding encoding)
{
#if 0
if ConditionPassed() then
EncodingSpecificOperations();
if CurrentInstrSet() == InstrSet_ThumbEE then
UNPREDICTABLE;
operand2 = if register_form then Shift(R[m], shift_t, shift_n, APSR.C) else imm32;
case opcode of
when Ô0000Õ result = R[n] AND operand2; // AND
when Ô0001Õ result = R[n] EOR operand2; // EOR
when Ô0010Õ (result, -, -) = AddWithCarry(R[n], NOT(operand2), Ô1Õ); // SUB
when Ô0011Õ (result, -, -) = AddWithCarry(NOT(R[n]), operand2, Ô1Õ); // RSB
when Ô0100Õ (result, -, -) = AddWithCarry(R[n], operand2, Ô0Õ); // ADD
when Ô0101Õ (result, -, -) = AddWithCarry(R[n], operand2, APSR.c); // ADC
when Ô0110Õ (result, -, -) = AddWithCarry(R[n], NOT(operand2), APSR.C); // SBC
when Ô0111Õ (result, -, -) = AddWithCarry(NOT(R[n]), operand2, APSR.C); // RSC
when Ô1100Õ result = R[n] OR operand2; // ORR
when Ô1101Õ result = operand2; // MOV
when Ô1110Õ result = R[n] AND NOT(operand2); // BIC
when Ô1111Õ result = NOT(operand2); // MVN
CPSRWriteByInstr(SPSR[], Ô1111Õ, TRUE);
BranchWritePC(result);
#endif
bool success = false;
if (ConditionPassed (opcode))
{
uint32_t n;
uint32_t m;
uint32_t imm32;
bool register_form;
ARM_ShifterType shift_t;
uint32_t shift_n;
uint32_t code;
switch (encoding)
{
case eEncodingT1:
// if CurrentInstrSet() == InstrSet_ThumbEE then UNPREDICTABLE
// n = 14; imm32 = ZeroExtend(imm8, 32); register_form = FALSE; opcode = Ô0010Õ; // = SUB
n = 14;
imm32 = Bits32 (opcode, 7, 0);
register_form = false;
code = 2;
// if InITBlock() && !LastInITBlock() then UNPREDICTABLE;
if (InITBlock() && !LastInITBlock())
return false;
break;
case eEncodingA1:
// n = UInt(Rn); imm32 = ARMExpandImm(imm12); register_form = FALSE;
n = Bits32 (opcode, 19, 16);
imm32 = ARMExpandImm (opcode);
register_form = false;
code = Bits32 (opcode, 24, 21);
break;
case eEncodingA2:
// n = UInt(Rn); m = UInt(Rm); register_form = TRUE;
n = Bits32 (opcode, 19, 16);
m = Bits32 (opcode, 3, 0);
register_form = true;
// (shift_t, shift_n) = DecodeImmShift(type, imm5);
shift_n = DecodeImmShiftARM (opcode, shift_t);
break;
default:
return false;
}
// operand2 = if register_form then Shift(R[m], shift_t, shift_n, APSR.C) else imm32;
uint32_t operand2;
if (register_form)
{
uint32_t Rm = ReadCoreReg (m, &success);
if (!success)
return false;
operand2 = Shift (Rm, shift_t, shift_n, APSR_C, &success);
if (!success)
return false;
}
else
{
operand2 = imm32;
}
uint32_t Rn = ReadCoreReg (n, &success);
if (!success)
return false;
AddWithCarryResult result;
// case opcode of
switch (code)
{
case 0: // when Ô0000Õ
// result = R[n] AND operand2; // AND
result.result = Rn & operand2;
break;
case 1: // when Ô0001Õ
// result = R[n] EOR operand2; // EOR
result.result = Rn ^ operand2;
break;
case 2: // when Ô0010Õ
// (result, -, -) = AddWithCarry(R[n], NOT(operand2), Ô1Õ); // SUB
result = AddWithCarry (Rn, ~(operand2), 1);
break;
case 3: // when Ô0011Õ
// (result, -, -) = AddWithCarry(NOT(R[n]), operand2, Ô1Õ); // RSB
result = AddWithCarry (~(Rn), operand2, 1);
break;
case 4: // when Ô0100Õ
// (result, -, -) = AddWithCarry(R[n], operand2, Ô0Õ); // ADD
result = AddWithCarry (Rn, operand2, 0);
break;
case 5: // when Ô0101Õ
// (result, -, -) = AddWithCarry(R[n], operand2, APSR.c); // ADC
result = AddWithCarry (Rn, operand2, APSR_C);
break;
case 6: // when Ô0110Õ
// (result, -, -) = AddWithCarry(R[n], NOT(operand2), APSR.C); // SBC
result = AddWithCarry (Rn, ~(operand2), APSR_C);
break;
case 7: // when Ô0111Õ
// (result, -, -) = AddWithCarry(NOT(R[n]), operand2, APSR.C); // RSC
result = AddWithCarry (~(Rn), operand2, APSR_C);
break;
case 10: // when Ô1100Õ
// result = R[n] OR operand2; // ORR
result.result = Rn | operand2;
break;
case 11: // when Ô1101Õ
// result = operand2; // MOV
result.result = operand2;
break;
case 12: // when Ô1110Õ
// result = R[n] AND NOT(operand2); // BIC
result.result = Rn & ~(operand2);
break;
case 15: // when Ô1111Õ
// result = NOT(operand2); // MVN
result.result = ~(operand2);
break;
default:
return false;
}
// CPSRWriteByInstr(SPSR[], Ô1111Õ, TRUE);
// For now, in emulation mode, we don't have access to the SPSR, so we will use the CPSR instead, and hope for
// the best.
uint32_t spsr = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_cpsr, 0, &success);
if (!success)
return false;
CPSRWriteByInstr (spsr, 15, true);
// BranchWritePC(result);
EmulateInstruction::Context context;
context.type = eContextAdjustPC;
context.SetImmediate (result.result);
BranchWritePC (context, result.result);
}
return true;
}
EmulateInstructionARM::ARMOpcode*
EmulateInstructionARM::GetARMOpcodeForInstruction (const uint32_t opcode, uint32_t arm_isa)
{
static ARMOpcode
g_arm_opcodes[] =
{
//----------------------------------------------------------------------
// Prologue instructions
//----------------------------------------------------------------------
// push register(s)
{ 0x0fff0000, 0x092d0000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulatePUSH, "push <registers>" },
{ 0x0fff0fff, 0x052d0004, ARMvAll, eEncodingA2, No_VFP, eSize32, &EmulateInstructionARM::EmulatePUSH, "push <register>" },
// set r7 to point to a stack offset
{ 0x0ffff000, 0x028d7000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateADDRdSPImm, "add r7, sp, #<const>" },
{ 0x0ffff000, 0x024c7000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBR7IPImm, "sub r7, ip, #<const>"},
// copy the stack pointer to ip
{ 0x0fffffff, 0x01a0c00d, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateMOVRdSP, "mov ip, sp" },
{ 0x0ffff000, 0x028dc000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateADDRdSPImm, "add ip, sp, #<const>" },
{ 0x0ffff000, 0x024dc000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBIPSPImm, "sub ip, sp, #<const>"},
// adjust the stack pointer
{ 0x0ffff000, 0x024dd000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBSPImm, "sub sp, sp, #<const>"},
{ 0x0fef0010, 0x004d0000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBSPReg, "sub{s}<c> <Rd>, sp, <Rm>{,<shift>}" },
// push one register
// if Rn == '1101' && imm12 == '000000000100' then SEE PUSH;
{ 0x0e5f0000, 0x040d0000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRRtSP, "str Rt, [sp, #-imm12]!" },
// vector push consecutive extension register(s)
{ 0x0fbf0f00, 0x0d2d0b00, ARMV6T2_ABOVE, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateVPUSH, "vpush.64 <list>"},
{ 0x0fbf0f00, 0x0d2d0a00, ARMV6T2_ABOVE, eEncodingA2, No_VFP, eSize32, &EmulateInstructionARM::EmulateVPUSH, "vpush.32 <list>"},
//----------------------------------------------------------------------
// Epilogue instructions
//----------------------------------------------------------------------
{ 0x0fff0000, 0x08bd0000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulatePOP, "pop <registers>"},
{ 0x0fff0fff, 0x049d0004, ARMvAll, eEncodingA2, No_VFP, eSize32, &EmulateInstructionARM::EmulatePOP, "pop <register>"},
{ 0x0fbf0f00, 0x0cbd0b00, ARMV6T2_ABOVE, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateVPOP, "vpop.64 <list>"},
{ 0x0fbf0f00, 0x0cbd0a00, ARMV6T2_ABOVE, eEncodingA2, No_VFP, eSize32, &EmulateInstructionARM::EmulateVPOP, "vpop.32 <list>"},
//----------------------------------------------------------------------
// Supervisor Call (previously Software Interrupt)
//----------------------------------------------------------------------
{ 0x0f000000, 0x0f000000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSVC, "svc #imm24"},
//----------------------------------------------------------------------
// Branch instructions
//----------------------------------------------------------------------
{ 0x0f000000, 0x0a000000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateB, "b #imm24"},
// To resolve ambiguity, "blx <label>" should come before "bl <label>".
{ 0xfe000000, 0xfa000000, ARMV5_ABOVE, eEncodingA2, No_VFP, eSize32, &EmulateInstructionARM::EmulateBLXImmediate, "blx <label>"},
{ 0x0f000000, 0x0b000000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateBLXImmediate, "bl <label>"},
{ 0x0ffffff0, 0x012fff30, ARMV5_ABOVE, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateBLXRm, "blx <Rm>"},
// for example, "bx lr"
{ 0x0ffffff0, 0x012fff10, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateBXRm, "bx <Rm>"},
// bxj
{ 0x0ffffff0, 0x012fff20, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateBXJRm, "bxj <Rm>"},
//----------------------------------------------------------------------
// Data-processing instructions
//----------------------------------------------------------------------
// adc (immediate)
{ 0x0fe00000, 0x02a00000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateADCImm, "adc{s}<c> <Rd>, <Rn>, #const"},
// adc (register)
{ 0x0fe00010, 0x00a00000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateADCReg, "adc{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
// add (immediate)
{ 0x0fe00000, 0x02800000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateADDImmARM, "add{s}<c> <Rd>, <Rn>, #const"},
// add (register)
{ 0x0fe00010, 0x00800000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateADDReg, "add{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
// add (register-shifted register)
{ 0x0fe00090, 0x00800010, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateADDRegShift, "add{s}<c> <Rd>, <Rn>, <Rm>, <type> <RS>"},
// adr
{ 0x0fff0000, 0x028f0000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateADR, "add<c> <Rd>, PC, #<const>"},
{ 0x0fff0000, 0x024f0000, ARMvAll, eEncodingA2, No_VFP, eSize32, &EmulateInstructionARM::EmulateADR, "sub<c> <Rd>, PC, #<const>"},
// and (immediate)
{ 0x0fe00000, 0x02000000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateANDImm, "and{s}<c> <Rd>, <Rn>, #const"},
// and (register)
{ 0x0fe00010, 0x00000000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateANDReg, "and{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
// bic (immediate)
{ 0x0fe00000, 0x03c00000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateBICImm, "bic{s}<c> <Rd>, <Rn>, #const"},
// bic (register)
{ 0x0fe00010, 0x01c00000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateBICReg, "bic{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
// eor (immediate)
{ 0x0fe00000, 0x02200000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateEORImm, "eor{s}<c> <Rd>, <Rn>, #const"},
// eor (register)
{ 0x0fe00010, 0x00200000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateEORReg, "eor{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
// orr (immediate)
{ 0x0fe00000, 0x03800000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateORRImm, "orr{s}<c> <Rd>, <Rn>, #const"},
// orr (register)
{ 0x0fe00010, 0x01800000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateORRReg, "orr{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
// rsb (immediate)
{ 0x0fe00000, 0x02600000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateRSBImm, "rsb{s}<c> <Rd>, <Rn>, #<const>"},
// rsb (register)
{ 0x0fe00010, 0x00600000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateRSBReg, "rsb{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
// rsc (immediate)
{ 0x0fe00000, 0x02e00000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateRSCImm, "rsc{s}<c> <Rd>, <Rn>, #<const>"},
// rsc (register)
{ 0x0fe00010, 0x00e00000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateRSCReg, "rsc{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
// sbc (immediate)
{ 0x0fe00000, 0x02c00000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSBCImm, "sbc{s}<c> <Rd>, <Rn>, #<const>"},
// sbc (register)
{ 0x0fe00010, 0x00c00000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSBCReg, "sbc{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
// sub (immediate, ARM)
{ 0x0fe00000, 0x02400000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBImmARM, "sub{s}<c> <Rd>, <Rn>, #<const>"},
// sub (sp minus immediate)
{ 0x0fef0000, 0x024d0000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBSPImm, "sub{s}<c> <Rd>, sp, #<const>"},
// sub (register)
{ 0x0fe00010, 0x00400000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBReg, "sub{s}<c> <Rd>, <Rn>, <Rm>{,<shift>}"},
// teq (immediate)
{ 0x0ff0f000, 0x03300000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateTEQImm, "teq<c> <Rn>, #const"},
// teq (register)
{ 0x0ff0f010, 0x01300000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateTEQReg, "teq<c> <Rn>, <Rm> {,<shift>}"},
// tst (immediate)
{ 0x0ff0f000, 0x03100000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateTSTImm, "tst<c> <Rn>, #const"},
// tst (register)
{ 0x0ff0f010, 0x01100000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateTSTReg, "tst<c> <Rn>, <Rm> {,<shift>}"},
// mov (immediate)
{ 0x0fef0000, 0x03a00000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateMOVRdImm, "mov{s}<c> <Rd>, #<const>"},
{ 0x0ff00000, 0x03000000, ARMV6T2_ABOVE, eEncodingA2, No_VFP, eSize32, &EmulateInstructionARM::EmulateMOVRdImm, "movw<c> <Rd>, #<imm16>" },
// mov (register)
{ 0x0fef0ff0, 0x01a00000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateMOVRdRm, "mov{s}<c> <Rd>, <Rm>"},
// mvn (immediate)
{ 0x0fef0000, 0x03e00000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateMVNImm, "mvn{s}<c> <Rd>, #<const>"},
// mvn (register)
{ 0x0fef0010, 0x01e00000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateMVNReg, "mvn{s}<c> <Rd>, <Rm> {,<shift>}"},
// cmn (immediate)
{ 0x0ff0f000, 0x03700000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateCMNImm, "cmn<c> <Rn>, #<const>"},
// cmn (register)
{ 0x0ff0f010, 0x01700000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateCMNReg, "cmn<c> <Rn>, <Rm> {,<shift>}"},
// cmp (immediate)
{ 0x0ff0f000, 0x03500000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateCMPImm, "cmp<c> <Rn>, #<const>"},
// cmp (register)
{ 0x0ff0f010, 0x01500000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateCMPReg, "cmp<c> <Rn>, <Rm> {,<shift>}"},
// asr (immediate)
{ 0x0fef0070, 0x01a00040, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateASRImm, "asr{s}<c> <Rd>, <Rm>, #imm"},
// asr (register)
{ 0x0fef00f0, 0x01a00050, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateASRReg, "asr{s}<c> <Rd>, <Rn>, <Rm>"},
// lsl (immediate)
{ 0x0fef0070, 0x01a00000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLSLImm, "lsl{s}<c> <Rd>, <Rm>, #imm"},
// lsl (register)
{ 0x0fef00f0, 0x01a00010, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLSLReg, "lsl{s}<c> <Rd>, <Rn>, <Rm>"},
// lsr (immediate)
{ 0x0fef0070, 0x01a00020, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLSRImm, "lsr{s}<c> <Rd>, <Rm>, #imm"},
// lsr (register)
{ 0x0fef00f0, 0x01a00050, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLSRReg, "lsr{s}<c> <Rd>, <Rn>, <Rm>"},
// rrx is a special case encoding of ror (immediate)
{ 0x0fef0ff0, 0x01a00060, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateRRX, "rrx{s}<c> <Rd>, <Rm>"},
// ror (immediate)
{ 0x0fef0070, 0x01a00060, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateRORImm, "ror{s}<c> <Rd>, <Rm>, #imm"},
// ror (register)
{ 0x0fef00f0, 0x01a00070, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateRORReg, "ror{s}<c> <Rd>, <Rn>, <Rm>"},
// mul
{ 0x0fe000f0, 0x00000090, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateMUL, "mul{s}<c> <Rd>,<R>,<Rm>" },
// subs pc, lr and related instructions
{ 0x0e10f000, 0x0210f000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBSPcLrEtc, "<opc>S<c> PC,#<const> | <Rn>,#<const>" },
{ 0x0e10f010, 0x0010f000, ARMvAll, eEncodingA2, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBSPcLrEtc, "<opc>S<c> PC,<Rn>,<Rm{,<shift>}" },
//----------------------------------------------------------------------
// Load instructions
//----------------------------------------------------------------------
{ 0x0fd00000, 0x08900000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDM, "ldm<c> <Rn>{!} <registers>" },
{ 0x0fd00000, 0x08100000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDMDA, "ldmda<c> <Rn>{!} <registers>" },
{ 0x0fd00000, 0x09100000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDMDB, "ldmdb<c> <Rn>{!} <registers>" },
{ 0x0fd00000, 0x09900000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDMIB, "ldmib<c> <Rn<{!} <registers>" },
{ 0x0e500000, 0x04100000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRImmediateARM, "ldr<c> <Rt> [<Rn> {#+/-<imm12>}]" },
{ 0x0e500010, 0x06100000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRRegister, "ldr<c> <Rt> [<Rn> +/-<Rm> {<shift>}] {!}" },
{ 0x0e5f0000, 0x045f0000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRBLiteral, "ldrb<c> <Rt>, [...]"},
{ 0xfe500010, 0x06500000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRBRegister, "ldrb<c> <Rt>, [<Rn>,+/-<Rm>{, <shift>}]{!}" },
{ 0x0e5f00f0, 0x005f00b0, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRHLiteral, "ldrh<c> <Rt>, <label>" },
{ 0x0e5000f0, 0x001000b0, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRHRegister, "ldrh<c> <Rt>,[<Rn>,+/-<Rm>]{!}" },
{ 0x0e5000f0, 0x005000d0, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSBImmediate, "ldrsb<c> <Rt>, [<Rn>{,#+/-<imm8>}]" },
{ 0x0e5f00f0, 0x005f00d0, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSBLiteral, "ldrsb<c> <Rt> <label>" },
{ 0x0e5000f0, 0x001000d0, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSBRegister, "ldrsb<c> <Rt>,[<Rn>,+/-<Rm>]{!}" },
{ 0x0e5000f0, 0x005000f0, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSHImmediate, "ldrsh<c> <Rt>,[<Rn>{,#+/-<imm8>}]"},
{ 0x0e5f00f0, 0x005f00f0, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSHLiteral, "ldrsh<c> <Rt>,<label>" },
{ 0x0e5000f0, 0x001000f0, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSHRegister, "ldrsh<c> <Rt>,[<Rn>,+/-<Rm>]{!}" },
{ 0x0e5000f0, 0x004000d0, ARMV5TE_ABOVE, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRDImmediate, "ldrd<c> <Rt>, <Rt2>, [<Rn>,#+/-<imm8>]!"},
{ 0x0e500ff0, 0x000000d0, ARMV5TE_ABOVE, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRDRegister, "ldrd<c> <Rt>, <Rt2>, [<Rn>, +/-<Rm>]{!}"},
{ 0x0e100f00, 0x0c100b00, ARMvAll, eEncodingA1, VFPv2_ABOVE, eSize32, &EmulateInstructionARM::EmulateVLDM, "vldm{mode}<c> <Rn>{!}, <list>"},
{ 0x0e100f00, 0x0c100a00, ARMvAll, eEncodingA2, VFPv2v3, eSize32, &EmulateInstructionARM::EmulateVLDM, "vldm{mode}<c> <Rn>{!}, <list>"},
{ 0x0f300f00, 0x0d100b00, ARMvAll, eEncodingA1, VFPv2_ABOVE, eSize32, &EmulateInstructionARM::EmulateVLDR, "vldr<c> <Dd>, [<Rn>{,#+/-<imm>}]"},
{ 0x0f300f00, 0x0d100a00, ARMvAll, eEncodingA2, VFPv2v3, eSize32, &EmulateInstructionARM::EmulateVLDR, "vldr<c> <Sd>, [<Rn>{,#+/-<imm>}]"},
{ 0xffb00000, 0xf4200000, ARMvAll, eEncodingA1, AdvancedSIMD, eSize32, &EmulateInstructionARM::EmulateVLD1Multiple, "vld1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>"},
{ 0xffb00300, 0xf4a00000, ARMvAll, eEncodingA1, AdvancedSIMD, eSize32, &EmulateInstructionARM::EmulateVLD1Single, "vld1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>"},
{ 0xffb00f00, 0xf4a00c00, ARMvAll, eEncodingA1, AdvancedSIMD, eSize32, &EmulateInstructionARM::EmulateVLD1SingleAll, "vld1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>"},
//----------------------------------------------------------------------
// Store instructions
//----------------------------------------------------------------------
{ 0x0fd00000, 0x08800000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTM, "stm<c> <Rn>{!} <registers>" },
{ 0x0fd00000, 0x08000000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTMDA, "stmda<c> <Rn>{!} <registers>" },
{ 0x0fd00000, 0x09000000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTMDB, "stmdb<c> <Rn>{!} <registers>" },
{ 0x0fd00000, 0x09800000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTMIB, "stmib<c> <Rn>{!} <registers>" },
{ 0x0e500010, 0x06000000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRRegister, "str<c> <Rt> [<Rn> +/-<Rm> {<shift>}]{!}" },
{ 0x0e5000f0, 0x000000b0, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRHRegister, "strh<c> <Rt>,[<Rn>,+/-<Rm>[{!}" },
{ 0x0ff00ff0, 0x01800f90, ARMV6_ABOVE, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTREX, "strex<c> <Rd>, <Rt>, [<Rn>]"},
{ 0x0e500000, 0x04400000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRBImmARM, "strb<c> <Rt>,[<Rn>,#+/-<imm12>]!"},
{ 0x0e500000, 0x04000000, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRImmARM, "str<c> <Rt>,[<Rn>,#+/-<imm12>]!"},
{ 0x0e5000f0, 0x004000f0, ARMV5TE_ABOVE, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRDImm, "strd<c> <Rt>, <Rt2>, [<Rn> #+/-<imm8>]!"},
{ 0x0e500ff0, 0x000000f0, ARMV5TE_ABOVE, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRDReg, "strd<c> <Rt>, <Rt2>, [<Rn>, +/-<Rm>]{!}"},
{ 0x0e100f00, 0x0c000b00, ARMvAll, eEncodingA1, VFPv2_ABOVE, eSize32, &EmulateInstructionARM::EmulateVSTM, "vstm{mode}<c> <Rn>{!} <list>"},
{ 0x0e100f00, 0x0c000a00, ARMvAll, eEncodingA2, VFPv2v3, eSize32, &EmulateInstructionARM::EmulateVSTM, "vstm{mode}<c> <Rn>{!} <list>"},
{ 0x0f300f00, 0x0d000b00, ARMvAll, eEncodingA1, VFPv2_ABOVE, eSize32, &EmulateInstructionARM::EmulateVSTR, "vstr<c> <Dd> [<Rn>{,#+/-<imm>}]"},
{ 0x0f300f00, 0x0d000a00, ARMvAll, eEncodingA2, VFPv2v3, eSize32, &EmulateInstructionARM::EmulateVSTR, "vstr<c> <Sd> [<Rn>{,#+/-<imm>}]"},
{ 0xffb00000, 0xf4000000, ARMvAll, eEncodingA1, AdvancedSIMD, eSize32, &EmulateInstructionARM::EmulateVST1Multiple, "vst1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>"},
{ 0xffb00300, 0xf4800000, ARMvAll, eEncodingA1, AdvancedSIMD, eSize32, &EmulateInstructionARM::EmulateVST1Single, "vst1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>"},
//----------------------------------------------------------------------
// Other instructions
//----------------------------------------------------------------------
{ 0x0fff00f0, 0x06af00f0, ARMV6_ABOVE, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSXTB, "sxtb<c> <Rd>,<Rm>{,<rotation>}" },
{ 0x0fff00f0, 0x06bf0070, ARMV6_ABOVE, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSXTH, "sxth<c> <Rd>,<Rm>{,<rotation>}" },
{ 0x0fff00f0, 0x06ef0070, ARMV6_ABOVE, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateUXTB, "uxtb<c> <Rd>,<Rm>{,<rotation>}" },
{ 0x0fff00f0, 0x06ff0070, ARMV6_ABOVE, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateUXTH, "uxth<c> <Rd>,<Rm>{,<rotation>}" },
{ 0xfe500000, 0xf8100000, ARMV6_ABOVE, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateRFE, "rfe{<amode>} <Rn>{!}" }
};
static const size_t k_num_arm_opcodes = llvm::array_lengthof(g_arm_opcodes);
for (size_t i=0; i<k_num_arm_opcodes; ++i)
{
if ((g_arm_opcodes[i].mask & opcode) == g_arm_opcodes[i].value &&
(g_arm_opcodes[i].variants & arm_isa) != 0)
return &g_arm_opcodes[i];
}
return NULL;
}
EmulateInstructionARM::ARMOpcode*
EmulateInstructionARM::GetThumbOpcodeForInstruction (const uint32_t opcode, uint32_t arm_isa)
{
static ARMOpcode
g_thumb_opcodes[] =
{
//----------------------------------------------------------------------
// Prologue instructions
//----------------------------------------------------------------------
// push register(s)
{ 0xfffffe00, 0x0000b400, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulatePUSH, "push <registers>" },
{ 0xffff0000, 0xe92d0000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulatePUSH, "push.w <registers>" },
{ 0xffff0fff, 0xf84d0d04, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulatePUSH, "push.w <register>" },
// set r7 to point to a stack offset
{ 0xffffff00, 0x0000af00, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateADDRdSPImm, "add r7, sp, #imm" },
// copy the stack pointer to r7
{ 0xffffffff, 0x0000466f, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateMOVRdSP, "mov r7, sp" },
// move from high register to low register (comes after "mov r7, sp" to resolve ambiguity)
{ 0xffffffc0, 0x00004640, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateMOVLowHigh, "mov r0-r7, r8-r15" },
// PC-relative load into register (see also EmulateADDSPRm)
{ 0xfffff800, 0x00004800, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLDRRtPCRelative, "ldr <Rt>, [PC, #imm]"},
// adjust the stack pointer
{ 0xffffff87, 0x00004485, ARMvAll, eEncodingT2, No_VFP, eSize16, &EmulateInstructionARM::EmulateADDSPRm, "add sp, <Rm>"},
{ 0xffffff80, 0x0000b080, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateSUBSPImm, "sub sp, sp, #imm"},
{ 0xfbef8f00, 0xf1ad0d00, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBSPImm, "sub.w sp, sp, #<const>"},
{ 0xfbff8f00, 0xf2ad0d00, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBSPImm, "subw sp, sp, #imm12"},
{ 0xffef8000, 0xebad0000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBSPReg, "sub{s}<c> <Rd>, sp, <Rm>{,<shift>}" },
// vector push consecutive extension register(s)
{ 0xffbf0f00, 0xed2d0b00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateVPUSH, "vpush.64 <list>"},
{ 0xffbf0f00, 0xed2d0a00, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateVPUSH, "vpush.32 <list>"},
//----------------------------------------------------------------------
// Epilogue instructions
//----------------------------------------------------------------------
{ 0xfffff800, 0x0000a800, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateADDSPImm, "add<c> <Rd>, sp, #imm"},
{ 0xffffff80, 0x0000b000, ARMvAll, eEncodingT2, No_VFP, eSize16, &EmulateInstructionARM::EmulateADDSPImm, "add sp, #imm"},
{ 0xfffffe00, 0x0000bc00, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulatePOP, "pop <registers>"},
{ 0xffff0000, 0xe8bd0000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulatePOP, "pop.w <registers>" },
{ 0xffff0fff, 0xf85d0d04, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulatePOP, "pop.w <register>" },
{ 0xffbf0f00, 0xecbd0b00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateVPOP, "vpop.64 <list>"},
{ 0xffbf0f00, 0xecbd0a00, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateVPOP, "vpop.32 <list>"},
//----------------------------------------------------------------------
// Supervisor Call (previously Software Interrupt)
//----------------------------------------------------------------------
{ 0xffffff00, 0x0000df00, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateSVC, "svc #imm8"},
//----------------------------------------------------------------------
// If Then makes up to four following instructions conditional.
//----------------------------------------------------------------------
// The next 5 opcode _must_ come before the if then instruction
{ 0xffffffff, 0x0000bf00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateNop, "nop"},
{ 0xffffffff, 0x0000bf10, ARMV7_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateNop, "nop YIELD (yield hint)"},
{ 0xffffffff, 0x0000bf20, ARMV7_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateNop, "nop WFE (wait for event hint)"},
{ 0xffffffff, 0x0000bf30, ARMV7_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateNop, "nop WFI (wait for interrupt hint)"},
{ 0xffffffff, 0x0000bf40, ARMV7_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateNop, "nop SEV (send event hint)"},
{ 0xffffff00, 0x0000bf00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateIT, "it{<x>{<y>{<z>}}} <firstcond>"},
//----------------------------------------------------------------------
// Branch instructions
//----------------------------------------------------------------------
// To resolve ambiguity, "b<c> #imm8" should come after "svc #imm8".
{ 0xfffff000, 0x0000d000, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateB, "b<c> #imm8 (outside IT)"},
{ 0xfffff800, 0x0000e000, ARMvAll, eEncodingT2, No_VFP, eSize16, &EmulateInstructionARM::EmulateB, "b<c> #imm11 (outside or last in IT)"},
{ 0xf800d000, 0xf0008000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulateB, "b<c>.w #imm8 (outside IT)"},
{ 0xf800d000, 0xf0009000, ARMV6T2_ABOVE, eEncodingT4, No_VFP, eSize32, &EmulateInstructionARM::EmulateB, "b<c>.w #imm8 (outside or last in IT)"},
// J1 == J2 == 1
{ 0xf800d000, 0xf000d000, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateBLXImmediate, "bl <label>"},
// J1 == J2 == 1
{ 0xf800d001, 0xf000c000, ARMV5_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateBLXImmediate, "blx <label>"},
{ 0xffffff87, 0x00004780, ARMV5_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateBLXRm, "blx <Rm>"},
// for example, "bx lr"
{ 0xffffff87, 0x00004700, ARMvAll, eEncodingA1, No_VFP, eSize32, &EmulateInstructionARM::EmulateBXRm, "bx <Rm>"},
// bxj
{ 0xfff0ffff, 0xf3c08f00, ARMV5J_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateBXJRm, "bxj <Rm>"},
// compare and branch
{ 0xfffff500, 0x0000b100, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateCB, "cb{n}z <Rn>, <label>"},
// table branch byte
{ 0xfff0fff0, 0xe8d0f000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateTB, "tbb<c> <Rn>, <Rm>"},
// table branch halfword
{ 0xfff0fff0, 0xe8d0f010, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateTB, "tbh<c> <Rn>, <Rm>, lsl #1"},
//----------------------------------------------------------------------
// Data-processing instructions
//----------------------------------------------------------------------
// adc (immediate)
{ 0xfbe08000, 0xf1400000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateADCImm, "adc{s}<c> <Rd>, <Rn>, #<const>"},
// adc (register)
{ 0xffffffc0, 0x00004140, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateADCReg, "adcs|adc<c> <Rdn>, <Rm>"},
{ 0xffe08000, 0xeb400000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateADCReg, "adc{s}<c>.w <Rd>, <Rn>, <Rm> {,<shift>}"},
// add (register)
{ 0xfffffe00, 0x00001800, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateADDReg, "adds|add<c> <Rd>, <Rn>, <Rm>"},
// Make sure "add sp, <Rm>" comes before this instruction, so there's no ambiguity decoding the two.
{ 0xffffff00, 0x00004400, ARMvAll, eEncodingT2, No_VFP, eSize16, &EmulateInstructionARM::EmulateADDReg, "add<c> <Rdn>, <Rm>"},
// adr
{ 0xfffff800, 0x0000a000, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateADR, "add<c> <Rd>, PC, #<const>"},
{ 0xfbff8000, 0xf2af0000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateADR, "sub<c> <Rd>, PC, #<const>"},
{ 0xfbff8000, 0xf20f0000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulateADR, "add<c> <Rd>, PC, #<const>"},
// and (immediate)
{ 0xfbe08000, 0xf0000000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateANDImm, "and{s}<c> <Rd>, <Rn>, #<const>"},
// and (register)
{ 0xffffffc0, 0x00004000, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateANDReg, "ands|and<c> <Rdn>, <Rm>"},
{ 0xffe08000, 0xea000000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateANDReg, "and{s}<c>.w <Rd>, <Rn>, <Rm> {,<shift>}"},
// bic (immediate)
{ 0xfbe08000, 0xf0200000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateBICImm, "bic{s}<c> <Rd>, <Rn>, #<const>"},
// bic (register)
{ 0xffffffc0, 0x00004380, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateBICReg, "bics|bic<c> <Rdn>, <Rm>"},
{ 0xffe08000, 0xea200000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateBICReg, "bic{s}<c>.w <Rd>, <Rn>, <Rm> {,<shift>}"},
// eor (immediate)
{ 0xfbe08000, 0xf0800000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateEORImm, "eor{s}<c> <Rd>, <Rn>, #<const>"},
// eor (register)
{ 0xffffffc0, 0x00004040, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateEORReg, "eors|eor<c> <Rdn>, <Rm>"},
{ 0xffe08000, 0xea800000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateEORReg, "eor{s}<c>.w <Rd>, <Rn>, <Rm> {,<shift>}"},
// orr (immediate)
{ 0xfbe08000, 0xf0400000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateORRImm, "orr{s}<c> <Rd>, <Rn>, #<const>"},
// orr (register)
{ 0xffffffc0, 0x00004300, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateORRReg, "orrs|orr<c> <Rdn>, <Rm>"},
{ 0xffe08000, 0xea400000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateORRReg, "orr{s}<c>.w <Rd>, <Rn>, <Rm> {,<shift>}"},
// rsb (immediate)
{ 0xffffffc0, 0x00004240, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateRSBImm, "rsbs|rsb<c> <Rd>, <Rn>, #0"},
{ 0xfbe08000, 0xf1c00000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateRSBImm, "rsb{s}<c>.w <Rd>, <Rn>, #<const>"},
// rsb (register)
{ 0xffe08000, 0xea400000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateRSBReg, "rsb{s}<c>.w <Rd>, <Rn>, <Rm> {,<shift>}"},
// sbc (immediate)
{ 0xfbe08000, 0xf1600000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSBCImm, "sbc{s}<c> <Rd>, <Rn>, #<const>"},
// sbc (register)
{ 0xffffffc0, 0x00004180, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateSBCReg, "sbcs|sbc<c> <Rdn>, <Rm>"},
{ 0xffe08000, 0xeb600000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateSBCReg, "sbc{s}<c>.w <Rd>, <Rn>, <Rm> {,<shift>}"},
// add (immediate, Thumb)
{ 0xfffffe00, 0x00001c00, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateADDImmThumb, "adds|add<c> <Rd>,<Rn>,#<imm3>" },
{ 0xfffff800, 0x00003000, ARMV4T_ABOVE, eEncodingT2, No_VFP, eSize16, &EmulateInstructionARM::EmulateADDImmThumb, "adds|add<c> <Rdn>,#<imm8>" },
{ 0xfbe08000, 0xf1000000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulateADDImmThumb, "add{s}<c>.w <Rd>,<Rn>,#<const>" },
{ 0xfbf08000, 0xf2000000, ARMV6T2_ABOVE, eEncodingT4, No_VFP, eSize32, &EmulateInstructionARM::EmulateADDImmThumb, "addw<c> <Rd>,<Rn>,#<imm12>" },
// sub (immediate, Thumb)
{ 0xfffffe00, 0x00001e00, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateSUBImmThumb, "subs|sub<c> <Rd>, <Rn> #imm3"},
{ 0xfffff800, 0x00003800, ARMvAll, eEncodingT2, No_VFP, eSize16, &EmulateInstructionARM::EmulateSUBImmThumb, "subs|sub<c> <Rdn>, #imm8"},
{ 0xfbe08000, 0xf1a00000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBImmThumb, "sub{s}<c>.w <Rd>, <Rn>, #<const>"},
{ 0xfbf08000, 0xf2a00000, ARMV6T2_ABOVE, eEncodingT4, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBImmThumb, "subw<c> <Rd>, <Rn>, #imm12"},
// sub (sp minus immediate)
{ 0xfbef8000, 0xf1ad0000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBSPImm, "sub{s}.w <Rd>, sp, #<const>"},
{ 0xfbff8000, 0xf2ad0000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBSPImm, "subw<c> <Rd>, sp, #imm12"},
// sub (register)
{ 0xfffffe00, 0x00001a00, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateSUBReg, "subs|sub<c> <Rd>, <Rn>, <Rm>"},
{ 0xffe08000, 0xeba00000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBReg, "sub{s}<c>.w <Rd>, <Rn>, <Rm>{,<shift>}"},
// teq (immediate)
{ 0xfbf08f00, 0xf0900f00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateTEQImm, "teq<c> <Rn>, #<const>"},
// teq (register)
{ 0xfff08f00, 0xea900f00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateTEQReg, "teq<c> <Rn>, <Rm> {,<shift>}"},
// tst (immediate)
{ 0xfbf08f00, 0xf0100f00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateTSTImm, "tst<c> <Rn>, #<const>"},
// tst (register)
{ 0xffffffc0, 0x00004200, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateTSTReg, "tst<c> <Rdn>, <Rm>"},
{ 0xfff08f00, 0xea100f00, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateTSTReg, "tst<c>.w <Rn>, <Rm> {,<shift>}"},
// move from high register to high register
{ 0xffffff00, 0x00004600, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateMOVRdRm, "mov<c> <Rd>, <Rm>"},
// move from low register to low register
{ 0xffffffc0, 0x00000000, ARMvAll, eEncodingT2, No_VFP, eSize16, &EmulateInstructionARM::EmulateMOVRdRm, "movs <Rd>, <Rm>"},
// mov{s}<c>.w <Rd>, <Rm>
{ 0xffeff0f0, 0xea4f0000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulateMOVRdRm, "mov{s}<c>.w <Rd>, <Rm>"},
// move immediate
{ 0xfffff800, 0x00002000, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateMOVRdImm, "movs|mov<c> <Rd>, #imm8"},
{ 0xfbef8000, 0xf04f0000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateMOVRdImm, "mov{s}<c>.w <Rd>, #<const>"},
{ 0xfbf08000, 0xf2400000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulateMOVRdImm, "movw<c> <Rd>,#<imm16>"},
// mvn (immediate)
{ 0xfbef8000, 0xf06f0000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateMVNImm, "mvn{s} <Rd>, #<const>"},
// mvn (register)
{ 0xffffffc0, 0x000043c0, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateMVNReg, "mvns|mvn<c> <Rd>, <Rm>"},
{ 0xffef8000, 0xea6f0000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateMVNReg, "mvn{s}<c>.w <Rd>, <Rm> {,<shift>}"},
// cmn (immediate)
{ 0xfbf08f00, 0xf1100f00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateCMNImm, "cmn<c> <Rn>, #<const>"},
// cmn (register)
{ 0xffffffc0, 0x000042c0, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateCMNReg, "cmn<c> <Rn>, <Rm>"},
{ 0xfff08f00, 0xeb100f00, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateCMNReg, "cmn<c> <Rn>, <Rm> {,<shift>}"},
// cmp (immediate)
{ 0xfffff800, 0x00002800, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateCMPImm, "cmp<c> <Rn>, #imm8"},
{ 0xfbf08f00, 0xf1b00f00, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateCMPImm, "cmp<c>.w <Rn>, #<const>"},
// cmp (register) (Rn and Rm both from r0-r7)
{ 0xffffffc0, 0x00004280, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateCMPReg, "cmp<c> <Rn>, <Rm>"},
// cmp (register) (Rn and Rm not both from r0-r7)
{ 0xffffff00, 0x00004500, ARMvAll, eEncodingT2, No_VFP, eSize16, &EmulateInstructionARM::EmulateCMPReg, "cmp<c> <Rn>, <Rm>"},
// asr (immediate)
{ 0xfffff800, 0x00001000, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateASRImm, "asrs|asr<c> <Rd>, <Rm>, #imm"},
{ 0xffef8030, 0xea4f0020, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateASRImm, "asr{s}<c>.w <Rd>, <Rm>, #imm"},
// asr (register)
{ 0xffffffc0, 0x00004100, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateASRReg, "asrs|asr<c> <Rdn>, <Rm>"},
{ 0xffe0f0f0, 0xfa40f000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateASRReg, "asr{s}<c>.w <Rd>, <Rn>, <Rm>"},
// lsl (immediate)
{ 0xfffff800, 0x00000000, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLSLImm, "lsls|lsl<c> <Rd>, <Rm>, #imm"},
{ 0xffef8030, 0xea4f0000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLSLImm, "lsl{s}<c>.w <Rd>, <Rm>, #imm"},
// lsl (register)
{ 0xffffffc0, 0x00004080, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLSLReg, "lsls|lsl<c> <Rdn>, <Rm>"},
{ 0xffe0f0f0, 0xfa00f000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLSLReg, "lsl{s}<c>.w <Rd>, <Rn>, <Rm>"},
// lsr (immediate)
{ 0xfffff800, 0x00000800, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLSRImm, "lsrs|lsr<c> <Rd>, <Rm>, #imm"},
{ 0xffef8030, 0xea4f0010, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLSRImm, "lsr{s}<c>.w <Rd>, <Rm>, #imm"},
// lsr (register)
{ 0xffffffc0, 0x000040c0, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLSRReg, "lsrs|lsr<c> <Rdn>, <Rm>"},
{ 0xffe0f0f0, 0xfa20f000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLSRReg, "lsr{s}<c>.w <Rd>, <Rn>, <Rm>"},
// rrx is a special case encoding of ror (immediate)
{ 0xffeff0f0, 0xea4f0030, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateRRX, "rrx{s}<c>.w <Rd>, <Rm>"},
// ror (immediate)
{ 0xffef8030, 0xea4f0030, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateRORImm, "ror{s}<c>.w <Rd>, <Rm>, #imm"},
// ror (register)
{ 0xffffffc0, 0x000041c0, ARMvAll, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateRORReg, "rors|ror<c> <Rdn>, <Rm>"},
{ 0xffe0f0f0, 0xfa60f000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateRORReg, "ror{s}<c>.w <Rd>, <Rn>, <Rm>"},
// mul
{ 0xffffffc0, 0x00004340, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateMUL, "muls <Rdm>,<Rn>,<Rdm>" },
// mul
{ 0xfff0f0f0, 0xfb00f000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateMUL, "mul<c> <Rd>,<Rn>,<Rm>" },
// subs pc, lr and related instructions
{ 0xffffff00, 0xf3de8f00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSUBSPcLrEtc, "SUBS<c> PC, LR, #<imm8>" },
//----------------------------------------------------------------------
// RFE instructions *** IMPORTANT *** THESE MUST BE LISTED **BEFORE** THE LDM.. Instructions in this table;
// otherwise the wrong instructions will be selected.
//----------------------------------------------------------------------
{ 0xffd0ffff, 0xe810c000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateRFE, "rfedb<c> <Rn>{!}" },
{ 0xffd0ffff, 0xe990c000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateRFE, "rfe{ia}<c> <Rn>{!}" },
//----------------------------------------------------------------------
// Load instructions
//----------------------------------------------------------------------
{ 0xfffff800, 0x0000c800, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLDM, "ldm<c> <Rn>{!} <registers>" },
{ 0xffd02000, 0xe8900000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDM, "ldm<c>.w <Rn>{!} <registers>" },
{ 0xffd00000, 0xe9100000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDMDB, "ldmdb<c> <Rn>{!} <registers>" },
{ 0xfffff800, 0x00006800, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLDRRtRnImm, "ldr<c> <Rt>, [<Rn>{,#imm}]"},
{ 0xfffff800, 0x00009800, ARMV4T_ABOVE, eEncodingT2, No_VFP, eSize16, &EmulateInstructionARM::EmulateLDRRtRnImm, "ldr<c> <Rt>, [SP{,#imm}]"},
{ 0xfff00000, 0xf8d00000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRRtRnImm, "ldr<c>.w <Rt>, [<Rn>{,#imm12}]"},
{ 0xfff00800, 0xf8500800, ARMV6T2_ABOVE, eEncodingT4, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRRtRnImm, "ldr<c> <Rt>, [<Rn>{,#+/-<imm8>}]{!}"},
// Thumb2 PC-relative load into register
{ 0xff7f0000, 0xf85f0000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRRtPCRelative, "ldr<c>.w <Rt>, [PC, +/-#imm}]"},
{ 0xfffffe00, 0x00005800, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLDRRegister, "ldr<c> <Rt>, [<Rn>, <Rm>]" },
{ 0xfff00fc0, 0xf8500000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRRegister, "ldr<c>.w <Rt>, [<Rn>,<Rm>{,LSL #<imm2>}]" },
{ 0xfffff800, 0x00007800, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLDRBImmediate, "ldrb<c> <Rt>,[<Rn>{,#<imm5>}]" },
{ 0xfff00000, 0xf8900000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRBImmediate, "ldrb<c>.w <Rt>,[<Rn>{,#<imm12>}]" },
{ 0xfff00800, 0xf8100800, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRBImmediate, "ldrb<c> <Rt>,[<Rn>, #+/-<imm8>]{!}" },
{ 0xff7f0000, 0xf81f0000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRBLiteral, "ldrb<c> <Rt>,[...]" },
{ 0xfffffe00, 0x00005c00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLDRBRegister, "ldrb<c> <Rt>,[<Rn>,<Rm>]" },
{ 0xfff00fc0, 0xf8100000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRBRegister, "ldrb<c>.w <Rt>,[<Rn>,<Rm>{,LSL #imm2>}]" },
{ 0xfffff800, 0x00008800, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLDRHImmediate, "ldrh<c> <Rt>, [<Rn>{,#<imm>}]" },
{ 0xfff00000, 0xf8b00000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRHImmediate, "ldrh<c>.w <Rt>,[<Rn>{,#<imm12>}]" },
{ 0xfff00800, 0xf8300800, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRHImmediate, "ldrh<c> <Rt>,[<Rn>,#+/-<imm8>]{!}" },
{ 0xff7f0000, 0xf83f0000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRHLiteral, "ldrh<c> <Rt>, <label>" },
{ 0xfffffe00, 0x00005a00, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLDRHRegister, "ldrh<c> <Rt>, [<Rn>,<Rm>]" },
{ 0xfff00fc0, 0xf8300000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRHRegister, "ldrh<c>.w <Rt>,[<Rn>,<Rm>{,LSL #<imm2>}]" },
{ 0xfff00000, 0xf9900000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSBImmediate, "ldrsb<c> <Rt>,[<Rn>,#<imm12>]" },
{ 0xfff00800, 0xf9100800, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSBImmediate, "ldrsb<c> <Rt>,[<Rn>,#+/-<imm8>]" },
{ 0xff7f0000, 0xf91f0000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSBLiteral, "ldrsb<c> <Rt>, <label>" },
{ 0xfffffe00, 0x00005600, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLDRSBRegister, "ldrsb<c> <Rt>,[<Rn>,<Rm>]" },
{ 0xfff00fc0, 0xf9100000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSBRegister, "ldrsb<c>.w <Rt>,[<Rn>,<Rm>{,LSL #imm2>}]" },
{ 0xfff00000, 0xf9b00000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSHImmediate, "ldrsh<c> <Rt>,[<Rn>,#<imm12>]" },
{ 0xfff00800, 0xf9300800, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSHImmediate, "ldrsh<c> <Rt>,[<Rn>,#+/-<imm8>]" },
{ 0xff7f0000, 0xf93f0000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSHLiteral, "ldrsh<c> <Rt>,<label>" },
{ 0xfffffe00, 0x00005e00, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateLDRSHRegister, "ldrsh<c> <Rt>,[<Rn>,<Rm>]" },
{ 0xfff00fc0, 0xf9300000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRSHRegister, "ldrsh<c>.w <Rt>,[<Rn>,<Rm>{,LSL #<imm2>}]" },
{ 0xfe500000, 0xe8500000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateLDRDImmediate, "ldrd<c> <Rt>, <Rt2>, [<Rn>,#+/-<imm>]!"},
{ 0xfe100f00, 0xec100b00, ARMvAll, eEncodingT1, VFPv2_ABOVE, eSize32, &EmulateInstructionARM::EmulateVLDM, "vldm{mode}<c> <Rn>{!}, <list>"},
{ 0xfe100f00, 0xec100a00, ARMvAll, eEncodingT2, VFPv2v3, eSize32, &EmulateInstructionARM::EmulateVLDM, "vldm{mode}<c> <Rn>{!}, <list>" },
{ 0xffe00f00, 0xed100b00, ARMvAll, eEncodingT1, VFPv2_ABOVE, eSize32, &EmulateInstructionARM::EmulateVLDR, "vldr<c> <Dd>, [<Rn>{,#+/-<imm>}]"},
{ 0xff300f00, 0xed100a00, ARMvAll, eEncodingT2, VFPv2v3, eSize32, &EmulateInstructionARM::EmulateVLDR, "vldr<c> <Sd>, {<Rn>{,#+/-<imm>}]"},
{ 0xffb00000, 0xf9200000, ARMvAll, eEncodingT1, AdvancedSIMD, eSize32, &EmulateInstructionARM::EmulateVLD1Multiple, "vld1<c>.<size> <list>, [<Rn>{@<align>}],<Rm>"},
{ 0xffb00300, 0xf9a00000, ARMvAll, eEncodingT1, AdvancedSIMD, eSize32, &EmulateInstructionARM::EmulateVLD1Single, "vld1<c>.<size> <list>, [<Rn>{@<align>}],<Rm>"},
{ 0xffb00f00, 0xf9a00c00, ARMvAll, eEncodingT1, AdvancedSIMD, eSize32, &EmulateInstructionARM::EmulateVLD1SingleAll, "vld1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>"},
//----------------------------------------------------------------------
// Store instructions
//----------------------------------------------------------------------
{ 0xfffff800, 0x0000c000, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateSTM, "stm<c> <Rn>{!} <registers>" },
{ 0xffd00000, 0xe8800000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTM, "stm<c>.w <Rn>{!} <registers>" },
{ 0xffd00000, 0xe9000000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTMDB, "stmdb<c> <Rn>{!} <registers>" },
{ 0xfffff800, 0x00006000, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateSTRThumb, "str<c> <Rt>, [<Rn>{,#<imm>}]" },
{ 0xfffff800, 0x00009000, ARMV4T_ABOVE, eEncodingT2, No_VFP, eSize16, &EmulateInstructionARM::EmulateSTRThumb, "str<c> <Rt>, [SP,#<imm>]" },
{ 0xfff00000, 0xf8c00000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRThumb, "str<c>.w <Rt>, [<Rn>,#<imm12>]" },
{ 0xfff00800, 0xf8400800, ARMV6T2_ABOVE, eEncodingT4, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRThumb, "str<c> <Rt>, [<Rn>,#+/-<imm8>]" },
{ 0xfffffe00, 0x00005000, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateSTRRegister, "str<c> <Rt> ,{<Rn>, <Rm>]" },
{ 0xfff00fc0, 0xf8400000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRRegister, "str<c>.w <Rt>, [<Rn>, <Rm> {lsl #imm2>}]" },
{ 0xfffff800, 0x00007000, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateSTRBThumb, "strb<c> <Rt>, [<Rn>, #<imm5>]" },
{ 0xfff00000, 0xf8800000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRBThumb, "strb<c>.w <Rt>, [<Rn>, #<imm12>]" },
{ 0xfff00800, 0xf8000800, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRBThumb, "strb<c> <Rt> ,[<Rn>, #+/-<imm8>]{!}" },
{ 0xfffffe00, 0x00005200, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateSTRHRegister, "strh<c> <Rt>,[<Rn>,<Rm>]" },
{ 0xfff00fc0, 0xf8200000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRHRegister, "strh<c>.w <Rt>,[<Rn>,<Rm>{,LSL #<imm2>}]" },
{ 0xfff00000, 0xe8400000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTREX, "strex<c> <Rd>, <Rt>, [<Rn{,#<imm>}]" },
{ 0xfe500000, 0xe8400000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32, &EmulateInstructionARM::EmulateSTRDImm, "strd<c> <Rt>, <Rt2>, [<Rn>, #+/-<imm>]!"},
{ 0xfe100f00, 0xec000b00, ARMvAll, eEncodingT1, VFPv2_ABOVE, eSize32, &EmulateInstructionARM::EmulateVSTM, "vstm{mode}<c> <Rn>{!}, <list>"},
{ 0xfea00f00, 0xec000a00, ARMvAll, eEncodingT2, VFPv2v3, eSize32, &EmulateInstructionARM::EmulateVSTM, "vstm{mode}<c> <Rn>{!}, <list>"},
{ 0xff300f00, 0xed000b00, ARMvAll, eEncodingT1, VFPv2_ABOVE, eSize32, &EmulateInstructionARM::EmulateVSTR, "vstr<c> <Dd>, [<Rn>{,#+/-<imm>}]"},
{ 0xff300f00, 0xed000a00, ARMvAll, eEncodingT2, VFPv2v3, eSize32, &EmulateInstructionARM::EmulateVSTR, "vstr<c> <Sd>, [<Rn>{,#+/-<imm>}]"},
{ 0xffb00000, 0xf9000000, ARMvAll, eEncodingT1, AdvancedSIMD, eSize32, &EmulateInstructionARM::EmulateVST1Multiple, "vst1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>"},
{ 0xffb00300, 0xf9800000, ARMvAll, eEncodingT1, AdvancedSIMD, eSize32, &EmulateInstructionARM::EmulateVST1Single, "vst1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>"},
//----------------------------------------------------------------------
// Other instructions
//----------------------------------------------------------------------
{ 0xffffffc0, 0x0000b240, ARMV6_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateSXTB, "sxtb<c> <Rd>,<Rm>" },
{ 0xfffff080, 0xfa4ff080, ARMV6_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateSXTB, "sxtb<c>.w <Rd>,<Rm>{,<rotation>}" },
{ 0xffffffc0, 0x0000b200, ARMV6_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateSXTH, "sxth<c> <Rd>,<Rm>" },
{ 0xfffff080, 0xfa0ff080, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateSXTH, "sxth<c>.w <Rd>,<Rm>{,<rotation>}" },
{ 0xffffffc0, 0x0000b2c0, ARMV6_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateUXTB, "uxtb<c> <Rd>,<Rm>" },
{ 0xfffff080, 0xfa5ff080, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateUXTB, "uxtb<c>.w <Rd>,<Rm>{,<rotation>}" },
{ 0xffffffc0, 0x0000b280, ARMV6_ABOVE, eEncodingT1, No_VFP, eSize16, &EmulateInstructionARM::EmulateUXTH, "uxth<c> <Rd>,<Rm>" },
{ 0xfffff080, 0xfa1ff080, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32, &EmulateInstructionARM::EmulateUXTH, "uxth<c>.w <Rd>,<Rm>{,<rotation>}" },
};
const size_t k_num_thumb_opcodes = llvm::array_lengthof(g_thumb_opcodes);
for (size_t i=0; i<k_num_thumb_opcodes; ++i)
{
if ((g_thumb_opcodes[i].mask & opcode) == g_thumb_opcodes[i].value &&
(g_thumb_opcodes[i].variants & arm_isa) != 0)
return &g_thumb_opcodes[i];
}
return NULL;
}
bool
EmulateInstructionARM::SetArchitecture (const ArchSpec &arch)
{
m_arch = arch;
m_arm_isa = 0;
const char *arch_cstr = arch.GetArchitectureName ();
if (arch_cstr)
{
if (0 == ::strcasecmp(arch_cstr, "armv4t")) m_arm_isa = ARMv4T;
else if (0 == ::strcasecmp(arch_cstr, "armv5tej")) m_arm_isa = ARMv5TEJ;
else if (0 == ::strcasecmp(arch_cstr, "armv5te")) m_arm_isa = ARMv5TE;
else if (0 == ::strcasecmp(arch_cstr, "armv5t")) m_arm_isa = ARMv5T;
else if (0 == ::strcasecmp(arch_cstr, "armv6k")) m_arm_isa = ARMv6K;
else if (0 == ::strcasecmp(arch_cstr, "armv6t2")) m_arm_isa = ARMv6T2;
else if (0 == ::strcasecmp(arch_cstr, "armv7s")) m_arm_isa = ARMv7S;
else if (0 == ::strcasecmp(arch_cstr, "arm")) m_arm_isa = ARMvAll;
else if (0 == ::strcasecmp(arch_cstr, "thumb")) m_arm_isa = ARMvAll;
else if (0 == ::strncasecmp(arch_cstr,"armv4", 5)) m_arm_isa = ARMv4;
else if (0 == ::strncasecmp(arch_cstr,"armv6", 5)) m_arm_isa = ARMv6;
else if (0 == ::strncasecmp(arch_cstr,"armv7", 5)) m_arm_isa = ARMv7;
else if (0 == ::strncasecmp(arch_cstr,"armv8", 5)) m_arm_isa = ARMv8;
}
return m_arm_isa != 0;
}
bool
EmulateInstructionARM::SetInstruction (const Opcode &insn_opcode, const Address &inst_addr, Target *target)
{
if (EmulateInstruction::SetInstruction (insn_opcode, inst_addr, target))
{
if (m_arch.GetTriple().getArch() == llvm::Triple::thumb)
m_opcode_mode = eModeThumb;
else
{
AddressClass addr_class = inst_addr.GetAddressClass();
if ((addr_class == eAddressClassCode) || (addr_class == eAddressClassUnknown))
m_opcode_mode = eModeARM;
else if (addr_class == eAddressClassCodeAlternateISA)
m_opcode_mode = eModeThumb;
else
return false;
}
if (m_opcode_mode == eModeThumb)
m_opcode_cpsr = CPSR_MODE_USR | MASK_CPSR_T;
else
m_opcode_cpsr = CPSR_MODE_USR;
return true;
}
return false;
}
bool
EmulateInstructionARM::ReadInstruction ()
{
bool success = false;
m_opcode_cpsr = ReadRegisterUnsigned (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS, 0, &success);
if (success)
{
addr_t pc = ReadRegisterUnsigned (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, LLDB_INVALID_ADDRESS, &success);
if (success)
{
Context read_inst_context;
read_inst_context.type = eContextReadOpcode;
read_inst_context.SetNoArgs ();
if (m_opcode_cpsr & MASK_CPSR_T)
{
m_opcode_mode = eModeThumb;
uint32_t thumb_opcode = MemARead(read_inst_context, pc, 2, 0, &success);
if (success)
{
if ((thumb_opcode & 0xe000) != 0xe000 || ((thumb_opcode & 0x1800u) == 0))
{
m_opcode.SetOpcode16 (thumb_opcode, GetByteOrder());
}
else
{
m_opcode.SetOpcode32 ((thumb_opcode << 16) | MemARead(read_inst_context, pc + 2, 2, 0, &success), GetByteOrder());
}
}
}
else
{
m_opcode_mode = eModeARM;
m_opcode.SetOpcode32 (MemARead(read_inst_context, pc, 4, 0, &success), GetByteOrder());
}
}
}
if (!success)
{
m_opcode_mode = eModeInvalid;
m_addr = LLDB_INVALID_ADDRESS;
}
return success;
}
uint32_t
EmulateInstructionARM::ArchVersion ()
{
return m_arm_isa;
}
bool
EmulateInstructionARM::ConditionPassed (const uint32_t opcode, bool *is_conditional)
{
// If we are ignoring conditions, then always return true.
// this allows us to iterate over disassembly code and still
// emulate an instruction even if we don't have all the right
// bits set in the CPSR register...
if (m_ignore_conditions)
return true;
if (is_conditional)
*is_conditional = true;
const uint32_t cond = CurrentCond (opcode);
if (cond == UINT32_MAX)
return false;
bool result = false;
switch (UnsignedBits(cond, 3, 1))
{
case 0:
if (m_opcode_cpsr == 0)
result = true;
else
result = (m_opcode_cpsr & MASK_CPSR_Z) != 0;
break;
case 1:
if (m_opcode_cpsr == 0)
result = true;
else
result = (m_opcode_cpsr & MASK_CPSR_C) != 0;
break;
case 2:
if (m_opcode_cpsr == 0)
result = true;
else
result = (m_opcode_cpsr & MASK_CPSR_N) != 0;
break;
case 3:
if (m_opcode_cpsr == 0)
result = true;
else
result = (m_opcode_cpsr & MASK_CPSR_V) != 0;
break;
case 4:
if (m_opcode_cpsr == 0)
result = true;
else
result = ((m_opcode_cpsr & MASK_CPSR_C) != 0) && ((m_opcode_cpsr & MASK_CPSR_Z) == 0);
break;
case 5:
if (m_opcode_cpsr == 0)
result = true;
else
{
bool n = (m_opcode_cpsr & MASK_CPSR_N);
bool v = (m_opcode_cpsr & MASK_CPSR_V);
result = n == v;
}
break;
case 6:
if (m_opcode_cpsr == 0)
result = true;
else
{
bool n = (m_opcode_cpsr & MASK_CPSR_N);
bool v = (m_opcode_cpsr & MASK_CPSR_V);
result = n == v && ((m_opcode_cpsr & MASK_CPSR_Z) == 0);
}
break;
case 7:
// Always execute (cond == 0b1110, or the special 0b1111 which gives
// opcodes different meanings, but always means execution happens.
if (is_conditional)
*is_conditional = false;
result = true;
break;
}
if (cond & 1)
result = !result;
return result;
}
uint32_t
EmulateInstructionARM::CurrentCond (const uint32_t opcode)
{
switch (m_opcode_mode)
{
case eModeInvalid:
break;
case eModeARM:
return UnsignedBits(opcode, 31, 28);
case eModeThumb:
// For T1 and T3 encodings of the Branch instruction, it returns the 4-bit
// 'cond' field of the encoding.
{
const uint32_t byte_size = m_opcode.GetByteSize();
if (byte_size == 2)
{
if (Bits32(opcode, 15, 12) == 0x0d && Bits32(opcode, 11, 7) != 0x0f)
return Bits32(opcode, 11, 7);
}
else if (byte_size == 4)
{
if (Bits32(opcode, 31, 27) == 0x1e &&
Bits32(opcode, 15, 14) == 0x02 &&
Bits32(opcode, 12, 12) == 0x00 &&
Bits32(opcode, 25, 22) <= 0x0d)
{
return Bits32(opcode, 25, 22);
}
}
else
// We have an invalid thumb instruction, let's bail out.
break;
return m_it_session.GetCond();
}
}
return UINT32_MAX; // Return invalid value
}
bool
EmulateInstructionARM::InITBlock()
{
return CurrentInstrSet() == eModeThumb && m_it_session.InITBlock();
}
bool
EmulateInstructionARM::LastInITBlock()
{
return CurrentInstrSet() == eModeThumb && m_it_session.LastInITBlock();
}
bool
EmulateInstructionARM::BadMode (uint32_t mode)
{
switch (mode)
{
case 16: return false; // '10000'
case 17: return false; // '10001'
case 18: return false; // '10010'
case 19: return false; // '10011'
case 22: return false; // '10110'
case 23: return false; // '10111'
case 27: return false; // '11011'
case 31: return false; // '11111'
default: return true;
}
return true;
}
bool
EmulateInstructionARM::CurrentModeIsPrivileged ()
{
uint32_t mode = Bits32 (m_opcode_cpsr, 4, 0);
if (BadMode (mode))
return false;
if (mode == 16)
return false;
return true;
}
void
EmulateInstructionARM::CPSRWriteByInstr (uint32_t value, uint32_t bytemask, bool affect_execstate)
{
bool privileged = CurrentModeIsPrivileged();
uint32_t tmp_cpsr = Bits32 (m_opcode_cpsr, 23, 20) << 20;
if (BitIsSet (bytemask, 3))
{
tmp_cpsr = tmp_cpsr | (Bits32 (value, 31, 27) << 27);
if (affect_execstate)
tmp_cpsr = tmp_cpsr | (Bits32 (value, 26, 24) << 24);
}
if (BitIsSet (bytemask, 2))
{
tmp_cpsr = tmp_cpsr | (Bits32 (value, 19, 16) << 16);
}
if (BitIsSet (bytemask, 1))
{
if (affect_execstate)
tmp_cpsr = tmp_cpsr | (Bits32 (value, 15, 10) << 10);
tmp_cpsr = tmp_cpsr | (Bit32 (value, 9) << 9);
if (privileged)
tmp_cpsr = tmp_cpsr | (Bit32 (value, 8) << 8);
}
if (BitIsSet (bytemask, 0))
{
if (privileged)
tmp_cpsr = tmp_cpsr | (Bits32 (value, 7, 6) << 6);
if (affect_execstate)
tmp_cpsr = tmp_cpsr | (Bit32 (value, 5) << 5);
if (privileged)
tmp_cpsr = tmp_cpsr | Bits32 (value, 4, 0);
}
m_opcode_cpsr = tmp_cpsr;
}
bool
EmulateInstructionARM::BranchWritePC (const Context &context, uint32_t addr)
{
addr_t target;
// Check the current instruction set.
if (CurrentInstrSet() == eModeARM)
target = addr & 0xfffffffc;
else
target = addr & 0xfffffffe;
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, target))
return false;
return true;
}
// As a side effect, BXWritePC sets context.arg2 to eModeARM or eModeThumb by inspecting addr.
bool
EmulateInstructionARM::BXWritePC (Context &context, uint32_t addr)
{
addr_t target;
// If the CPSR is changed due to switching between ARM and Thumb ISETSTATE,
// we want to record it and issue a WriteRegister callback so the clients
// can track the mode changes accordingly.
bool cpsr_changed = false;
if (BitIsSet(addr, 0))
{
if (CurrentInstrSet() != eModeThumb)
{
SelectInstrSet(eModeThumb);
cpsr_changed = true;
}
target = addr & 0xfffffffe;
context.SetISA (eModeThumb);
}
else if (BitIsClear(addr, 1))
{
if (CurrentInstrSet() != eModeARM)
{
SelectInstrSet(eModeARM);
cpsr_changed = true;
}
target = addr & 0xfffffffc;
context.SetISA (eModeARM);
}
else
return false; // address<1:0> == '10' => UNPREDICTABLE
if (cpsr_changed)
{
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS, m_new_inst_cpsr))
return false;
}
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, target))
return false;
return true;
}
// Dispatches to either BXWritePC or BranchWritePC based on architecture versions.
bool
EmulateInstructionARM::LoadWritePC (Context &context, uint32_t addr)
{
if (ArchVersion() >= ARMv5T)
return BXWritePC(context, addr);
else
return BranchWritePC((const Context)context, addr);
}
// Dispatches to either BXWritePC or BranchWritePC based on architecture versions and current instruction set.
bool
EmulateInstructionARM::ALUWritePC (Context &context, uint32_t addr)
{
if (ArchVersion() >= ARMv7 && CurrentInstrSet() == eModeARM)
return BXWritePC(context, addr);
else
return BranchWritePC((const Context)context, addr);
}
EmulateInstructionARM::Mode
EmulateInstructionARM::CurrentInstrSet ()
{
return m_opcode_mode;
}
// Set the 'T' bit of our CPSR. The m_opcode_mode gets updated when the next
// ReadInstruction() is performed. This function has a side effect of updating
// the m_new_inst_cpsr member variable if necessary.
bool
EmulateInstructionARM::SelectInstrSet (Mode arm_or_thumb)
{
m_new_inst_cpsr = m_opcode_cpsr;
switch (arm_or_thumb)
{
default:
return false;
case eModeARM:
// Clear the T bit.
m_new_inst_cpsr &= ~MASK_CPSR_T;
break;
case eModeThumb:
// Set the T bit.
m_new_inst_cpsr |= MASK_CPSR_T;
break;
}
return true;
}
// This function returns TRUE if the processor currently provides support for
// unaligned memory accesses, or FALSE otherwise. This is always TRUE in ARMv7,
// controllable by the SCTLR.U bit in ARMv6, and always FALSE before ARMv6.
bool
EmulateInstructionARM::UnalignedSupport()
{
return (ArchVersion() >= ARMv7);
}
// The main addition and subtraction instructions can produce status information
// about both unsigned carry and signed overflow conditions. This status
// information can be used to synthesize multi-word additions and subtractions.
EmulateInstructionARM::AddWithCarryResult
EmulateInstructionARM::AddWithCarry (uint32_t x, uint32_t y, uint8_t carry_in)
{
uint32_t result;
uint8_t carry_out;
uint8_t overflow;
uint64_t unsigned_sum = x + y + carry_in;
int64_t signed_sum = (int32_t)x + (int32_t)y + (int32_t)carry_in;
result = UnsignedBits(unsigned_sum, 31, 0);
// carry_out = (result == unsigned_sum ? 0 : 1);
overflow = ((int32_t)result == signed_sum ? 0 : 1);
if (carry_in)
carry_out = ((int32_t) x >= (int32_t) (~y)) ? 1 : 0;
else
carry_out = ((int32_t) x > (int32_t) y) ? 1 : 0;
AddWithCarryResult res = { result, carry_out, overflow };
return res;
}
uint32_t
EmulateInstructionARM::ReadCoreReg(uint32_t num, bool *success)
{
lldb::RegisterKind reg_kind;
uint32_t reg_num;
switch (num)
{
case SP_REG:
reg_kind = eRegisterKindGeneric;
reg_num = LLDB_REGNUM_GENERIC_SP;
break;
case LR_REG:
reg_kind = eRegisterKindGeneric;
reg_num = LLDB_REGNUM_GENERIC_RA;
break;
case PC_REG:
reg_kind = eRegisterKindGeneric;
reg_num = LLDB_REGNUM_GENERIC_PC;
break;
default:
if (num < SP_REG)
{
reg_kind = eRegisterKindDWARF;
reg_num = dwarf_r0 + num;
}
else
{
//assert(0 && "Invalid register number");
*success = false;
return UINT32_MAX;
}
break;
}
// Read our register.
uint32_t val = ReadRegisterUnsigned (reg_kind, reg_num, 0, success);
// When executing an ARM instruction , PC reads as the address of the current
// instruction plus 8.
// When executing a Thumb instruction , PC reads as the address of the current
// instruction plus 4.
if (num == 15)
{
if (CurrentInstrSet() == eModeARM)
val += 8;
else
val += 4;
}
return val;
}
// Write the result to the ARM core register Rd, and optionally update the
// condition flags based on the result.
//
// This helper method tries to encapsulate the following pseudocode from the
// ARM Architecture Reference Manual:
//
// if d == 15 then // Can only occur for encoding A1
// ALUWritePC(result); // setflags is always FALSE here
// else
// R[d] = result;
// if setflags then
// APSR.N = result<31>;
// APSR.Z = IsZeroBit(result);
// APSR.C = carry;
// // APSR.V unchanged
//
// In the above case, the API client does not pass in the overflow arg, which
// defaults to ~0u.
bool
EmulateInstructionARM::WriteCoreRegOptionalFlags (Context &context,
const uint32_t result,
const uint32_t Rd,
bool setflags,
const uint32_t carry,
const uint32_t overflow)
{
if (Rd == 15)
{
if (!ALUWritePC (context, result))
return false;
}
else
{
lldb::RegisterKind reg_kind;
uint32_t reg_num;
switch (Rd)
{
case SP_REG:
reg_kind = eRegisterKindGeneric;
reg_num = LLDB_REGNUM_GENERIC_SP;
break;
case LR_REG:
reg_kind = eRegisterKindGeneric;
reg_num = LLDB_REGNUM_GENERIC_RA;
break;
default:
reg_kind = eRegisterKindDWARF;
reg_num = dwarf_r0 + Rd;
}
if (!WriteRegisterUnsigned (context, reg_kind, reg_num, result))
return false;
if (setflags)
return WriteFlags (context, result, carry, overflow);
}
return true;
}
// This helper method tries to encapsulate the following pseudocode from the
// ARM Architecture Reference Manual:
//
// APSR.N = result<31>;
// APSR.Z = IsZeroBit(result);
// APSR.C = carry;
// APSR.V = overflow
//
// Default arguments can be specified for carry and overflow parameters, which means
// not to update the respective flags.
bool
EmulateInstructionARM::WriteFlags (Context &context,
const uint32_t result,
const uint32_t carry,
const uint32_t overflow)
{
m_new_inst_cpsr = m_opcode_cpsr;
SetBit32(m_new_inst_cpsr, CPSR_N_POS, Bit32(result, CPSR_N_POS));
SetBit32(m_new_inst_cpsr, CPSR_Z_POS, result == 0 ? 1 : 0);
if (carry != ~0u)
SetBit32(m_new_inst_cpsr, CPSR_C_POS, carry);
if (overflow != ~0u)
SetBit32(m_new_inst_cpsr, CPSR_V_POS, overflow);
if (m_new_inst_cpsr != m_opcode_cpsr)
{
if (!WriteRegisterUnsigned (context, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS, m_new_inst_cpsr))
return false;
}
return true;
}
bool
EmulateInstructionARM::EvaluateInstruction (uint32_t evaluate_options)
{
// Advance the ITSTATE bits to their values for the next instruction.
if (m_opcode_mode == eModeThumb && m_it_session.InITBlock())
m_it_session.ITAdvance();
ARMOpcode *opcode_data = NULL;
if (m_opcode_mode == eModeThumb)
opcode_data = GetThumbOpcodeForInstruction (m_opcode.GetOpcode32(), m_arm_isa);
else if (m_opcode_mode == eModeARM)
opcode_data = GetARMOpcodeForInstruction (m_opcode.GetOpcode32(), m_arm_isa);
if (opcode_data == NULL)
return false;
const bool auto_advance_pc = evaluate_options & eEmulateInstructionOptionAutoAdvancePC;
m_ignore_conditions = evaluate_options & eEmulateInstructionOptionIgnoreConditions;
bool success = false;
if (m_opcode_cpsr == 0 || m_ignore_conditions == false)
{
m_opcode_cpsr = ReadRegisterUnsigned (eRegisterKindDWARF,
dwarf_cpsr,
0,
&success);
}
// Only return false if we are unable to read the CPSR if we care about conditions
if (success == false && m_ignore_conditions == false)
return false;
uint32_t orig_pc_value = 0;
if (auto_advance_pc)
{
orig_pc_value = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_pc, 0, &success);
if (!success)
return false;
}
// Call the Emulate... function.
success = (this->*opcode_data->callback) (m_opcode.GetOpcode32(), opcode_data->encoding);
if (!success)
return false;
if (auto_advance_pc)
{
uint32_t after_pc_value = ReadRegisterUnsigned (eRegisterKindDWARF, dwarf_pc, 0, &success);
if (!success)
return false;
if (auto_advance_pc && (after_pc_value == orig_pc_value))
{
if (opcode_data->size == eSize32)
after_pc_value += 4;
else if (opcode_data->size == eSize16)
after_pc_value += 2;
EmulateInstruction::Context context;
context.type = eContextAdvancePC;
context.SetNoArgs();
if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_pc, after_pc_value))
return false;
}
}
return true;
}
bool
EmulateInstructionARM::TestEmulation (Stream *out_stream, ArchSpec &arch, OptionValueDictionary *test_data)
{
if (!test_data)
{
out_stream->Printf ("TestEmulation: Missing test data.\n");
return false;
}
static ConstString opcode_key ("opcode");
static ConstString before_key ("before_state");
static ConstString after_key ("after_state");
OptionValueSP value_sp = test_data->GetValueForKey (opcode_key);
uint32_t test_opcode;
if ((value_sp.get() == NULL) || (value_sp->GetType() != OptionValue::eTypeUInt64))
{
out_stream->Printf ("TestEmulation: Error reading opcode from test file.\n");
return false;
}
test_opcode = value_sp->GetUInt64Value ();
if (arch.GetTriple().getArch() == llvm::Triple::arm)
{
m_opcode_mode = eModeARM;
m_opcode.SetOpcode32 (test_opcode, GetByteOrder());
}
else if (arch.GetTriple().getArch() == llvm::Triple::thumb)
{
m_opcode_mode = eModeThumb;
if (test_opcode < 0x10000)
m_opcode.SetOpcode16 (test_opcode, GetByteOrder());
else
m_opcode.SetOpcode32 (test_opcode, GetByteOrder());
}
else
{
out_stream->Printf ("TestEmulation: Invalid arch.\n");
return false;
}
EmulationStateARM before_state;
EmulationStateARM after_state;
value_sp = test_data->GetValueForKey (before_key);
if ((value_sp.get() == NULL) || (value_sp->GetType() != OptionValue::eTypeDictionary))
{
out_stream->Printf ("TestEmulation: Failed to find 'before' state.\n");
return false;
}
OptionValueDictionary *state_dictionary = value_sp->GetAsDictionary ();
if (!before_state.LoadStateFromDictionary (state_dictionary))
{
out_stream->Printf ("TestEmulation: Failed loading 'before' state.\n");
return false;
}
value_sp = test_data->GetValueForKey (after_key);
if ((value_sp.get() == NULL) || (value_sp->GetType() != OptionValue::eTypeDictionary))
{
out_stream->Printf ("TestEmulation: Failed to find 'after' state.\n");
return false;
}
state_dictionary = value_sp->GetAsDictionary ();
if (!after_state.LoadStateFromDictionary (state_dictionary))
{
out_stream->Printf ("TestEmulation: Failed loading 'after' state.\n");
return false;
}
SetBaton ((void *) &before_state);
SetCallbacks (&EmulationStateARM::ReadPseudoMemory,
&EmulationStateARM::WritePseudoMemory,
&EmulationStateARM::ReadPseudoRegister,
&EmulationStateARM::WritePseudoRegister);
bool success = EvaluateInstruction (eEmulateInstructionOptionAutoAdvancePC);
if (!success)
{
out_stream->Printf ("TestEmulation: EvaluateInstruction() failed.\n");
return false;
}
success = before_state.CompareState (after_state);
if (!success)
out_stream->Printf ("TestEmulation: 'before' and 'after' states do not match.\n");
return success;
}
//
//
//const char *
//EmulateInstructionARM::GetRegisterName (uint32_t reg_kind, uint32_t reg_num)
//{
// if (reg_kind == eRegisterKindGeneric)
// {
// switch (reg_num)
// {
// case LLDB_REGNUM_GENERIC_PC: return "pc";
// case LLDB_REGNUM_GENERIC_SP: return "sp";
// case LLDB_REGNUM_GENERIC_FP: return "fp";
// case LLDB_REGNUM_GENERIC_RA: return "lr";
// case LLDB_REGNUM_GENERIC_FLAGS: return "cpsr";
// default: return NULL;
// }
// }
// else if (reg_kind == eRegisterKindDWARF)
// {
// return GetARMDWARFRegisterName (reg_num);
// }
// return NULL;
//}
//
bool
EmulateInstructionARM::CreateFunctionEntryUnwind (UnwindPlan &unwind_plan)
{
unwind_plan.Clear();
unwind_plan.SetRegisterKind (eRegisterKindDWARF);
UnwindPlan::RowSP row(new UnwindPlan::Row);
// Our previous Call Frame Address is the stack pointer
row->SetCFARegister (dwarf_sp);
// Our previous PC is in the LR
row->SetRegisterLocationToRegister(dwarf_pc, dwarf_lr, true);
unwind_plan.AppendRow (row);
// All other registers are the same.
unwind_plan.SetSourceName ("EmulateInstructionARM");
unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);
unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolYes);
return true;
}