blob: 93b869ba9c5c4234532d654a35abc4a90f1d7f97 [file] [log] [blame]
//===-- SBValue.h -----------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLDB_SBValue_h_
#define LLDB_SBValue_h_
#include "lldb/API/SBData.h"
#include "lldb/API/SBDefines.h"
#include "lldb/API/SBType.h"
class ValueImpl;
class ValueLocker;
namespace lldb {
class SBValue
{
friend class ValueLocker;
public:
SBValue ();
SBValue (const lldb::SBValue &rhs);
lldb::SBValue &
operator =(const lldb::SBValue &rhs);
~SBValue ();
bool
IsValid();
void
Clear();
SBError
GetError();
lldb::user_id_t
GetID ();
const char *
GetName();
const char *
GetTypeName ();
const char *
GetDisplayTypeName ();
size_t
GetByteSize ();
bool
IsInScope ();
lldb::Format
GetFormat ();
void
SetFormat (lldb::Format format);
const char *
GetValue ();
int64_t
GetValueAsSigned (lldb::SBError& error, int64_t fail_value=0);
uint64_t
GetValueAsUnsigned (lldb::SBError& error, uint64_t fail_value=0);
int64_t
GetValueAsSigned(int64_t fail_value=0);
uint64_t
GetValueAsUnsigned(uint64_t fail_value=0);
ValueType
GetValueType ();
bool
GetValueDidChange ();
const char *
GetSummary ();
const char *
GetObjectDescription ();
lldb::SBValue
GetDynamicValue (lldb::DynamicValueType use_dynamic);
lldb::SBValue
GetStaticValue ();
lldb::SBValue
GetNonSyntheticValue ();
lldb::DynamicValueType
GetPreferDynamicValue ();
void
SetPreferDynamicValue (lldb::DynamicValueType use_dynamic);
bool
GetPreferSyntheticValue ();
void
SetPreferSyntheticValue (bool use_synthetic);
bool
IsDynamic ();
bool
IsSynthetic ();
const char *
GetLocation ();
// Deprecated - use the one that takes SBError&
bool
SetValueFromCString (const char *value_str);
bool
SetValueFromCString (const char *value_str, lldb::SBError& error);
lldb::SBTypeFormat
GetTypeFormat ();
#ifndef LLDB_DISABLE_PYTHON
lldb::SBTypeSummary
GetTypeSummary ();
#endif
lldb::SBTypeFilter
GetTypeFilter ();
#ifndef LLDB_DISABLE_PYTHON
lldb::SBTypeSynthetic
GetTypeSynthetic ();
#endif
lldb::SBValue
GetChildAtIndex (uint32_t idx);
lldb::SBValue
CreateChildAtOffset (const char *name, uint32_t offset, lldb::SBType type);
lldb::SBValue
Cast (lldb::SBType type);
lldb::SBValue
CreateValueFromExpression (const char *name, const char* expression);
lldb::SBValue
CreateValueFromExpression (const char *name, const char* expression, SBExpressionOptions &options);
lldb::SBValue
CreateValueFromAddress (const char* name,
lldb::addr_t address,
lldb::SBType type);
// this has no address! GetAddress() and GetLoadAddress() as well as AddressOf()
// on the return of this call all return invalid
lldb::SBValue
CreateValueFromData (const char* name,
lldb::SBData data,
lldb::SBType type);
//------------------------------------------------------------------
/// Get a child value by index from a value.
///
/// Structs, unions, classes, arrays and pointers have child
/// values that can be access by index.
///
/// Structs and unions access child members using a zero based index
/// for each child member. For
///
/// Classes reserve the first indexes for base classes that have
/// members (empty base classes are omitted), and all members of the
/// current class will then follow the base classes.
///
/// Pointers differ depending on what they point to. If the pointer
/// points to a simple type, the child at index zero
/// is the only child value available, unless \a synthetic_allowed
/// is \b true, in which case the pointer will be used as an array
/// and can create 'synthetic' child values using positive or
/// negative indexes. If the pointer points to an aggregate type
/// (an array, class, union, struct), then the pointee is
/// transparently skipped and any children are going to be the indexes
/// of the child values within the aggregate type. For example if
/// we have a 'Point' type and we have a SBValue that contains a
/// pointer to a 'Point' type, then the child at index zero will be
/// the 'x' member, and the child at index 1 will be the 'y' member
/// (the child at index zero won't be a 'Point' instance).
///
/// Arrays have a preset number of children that can be accessed by
/// index and will returns invalid child values for indexes that are
/// out of bounds unless the \a synthetic_allowed is \b true. In this
/// case the array can create 'synthetic' child values for indexes
/// that aren't in the array bounds using positive or negative
/// indexes.
///
/// @param[in] idx
/// The index of the child value to get
///
/// @param[in] use_dynamic
/// An enumeration that specifies whether to get dynamic values,
/// and also if the target can be run to figure out the dynamic
/// type of the child value.
///
/// @param[in] synthetic_allowed
/// If \b true, then allow child values to be created by index
/// for pointers and arrays for indexes that normally wouldn't
/// be allowed.
///
/// @return
/// A new SBValue object that represents the child member value.
//------------------------------------------------------------------
lldb::SBValue
GetChildAtIndex (uint32_t idx,
lldb::DynamicValueType use_dynamic,
bool can_create_synthetic);
// Matches children of this object only and will match base classes and
// member names if this is a clang typed object.
uint32_t
GetIndexOfChildWithName (const char *name);
// Matches child members of this object and child members of any base
// classes.
lldb::SBValue
GetChildMemberWithName (const char *name);
// Matches child members of this object and child members of any base
// classes.
lldb::SBValue
GetChildMemberWithName (const char *name, lldb::DynamicValueType use_dynamic);
// Expands nested expressions like .a->b[0].c[1]->d
lldb::SBValue
GetValueForExpressionPath(const char* expr_path);
lldb::SBValue
AddressOf();
lldb::addr_t
GetLoadAddress();
lldb::SBAddress
GetAddress();
//------------------------------------------------------------------
/// Get an SBData wrapping what this SBValue points to.
///
/// This method will dereference the current SBValue, if its
/// data type is a T* or T[], and extract item_count elements
/// of type T from it, copying their contents in an SBData.
///
/// @param[in] item_idx
/// The index of the first item to retrieve. For an array
/// this is equivalent to array[item_idx], for a pointer
/// to *(pointer + item_idx). In either case, the measurement
/// unit for item_idx is the sizeof(T) rather than the byte
///
/// @param[in] item_count
/// How many items should be copied into the output. By default
/// only one item is copied, but more can be asked for.
///
/// @return
/// An SBData with the contents of the copied items, on success.
/// An empty SBData otherwise.
//------------------------------------------------------------------
lldb::SBData
GetPointeeData (uint32_t item_idx = 0,
uint32_t item_count = 1);
//------------------------------------------------------------------
/// Get an SBData wrapping the contents of this SBValue.
///
/// This method will read the contents of this object in memory
/// and copy them into an SBData for future use.
///
/// @return
/// An SBData with the contents of this SBValue, on success.
/// An empty SBData otherwise.
//------------------------------------------------------------------
lldb::SBData
GetData ();
bool
SetData (lldb::SBData &data, lldb::SBError& error);
lldb::SBDeclaration
GetDeclaration ();
//------------------------------------------------------------------
/// Find out if a SBValue might have children.
///
/// This call is much more efficient than GetNumChildren() as it
/// doesn't need to complete the underlying type. This is designed
/// to be used in a UI environment in order to detect if the
/// disclosure triangle should be displayed or not.
///
/// This function returns true for class, union, structure,
/// pointers, references, arrays and more. Again, it does so without
/// doing any expensive type completion.
///
/// @return
/// Returns \b true if the SBValue might have children, or \b
/// false otherwise.
//------------------------------------------------------------------
bool
MightHaveChildren ();
uint32_t
GetNumChildren ();
void *
GetOpaqueType();
lldb::SBTarget
GetTarget();
lldb::SBProcess
GetProcess();
lldb::SBThread
GetThread();
lldb::SBFrame
GetFrame();
lldb::SBValue
Dereference ();
bool
TypeIsPointerType ();
lldb::SBType
GetType();
bool
GetDescription (lldb::SBStream &description);
bool
GetExpressionPath (lldb::SBStream &description);
bool
GetExpressionPath (lldb::SBStream &description,
bool qualify_cxx_base_classes);
SBValue (const lldb::ValueObjectSP &value_sp);
//------------------------------------------------------------------
/// Watch this value if it resides in memory.
///
/// Sets a watchpoint on the value.
///
/// @param[in] resolve_location
/// Resolve the location of this value once and watch its address.
/// This value must currently be set to \b true as watching all
/// locations of a variable or a variable path is not yet supported,
/// though we plan to support it in the future.
///
/// @param[in] read
/// Stop when this value is accessed.
///
/// @param[in] write
/// Stop when this value is modified
///
/// @param[out]
/// An error object. Contains the reason if there is some failure.
///
/// @return
/// An SBWatchpoint object. This object might not be valid upon
/// return due to a value not being contained in memory, too
/// large, or watchpoint resources are not available or all in
/// use.
//------------------------------------------------------------------
lldb::SBWatchpoint
Watch (bool resolve_location, bool read, bool write, SBError &error);
// Backward compatibility fix in the interim.
lldb::SBWatchpoint
Watch (bool resolve_location, bool read, bool write);
//------------------------------------------------------------------
/// Watch this value that this value points to in memory
///
/// Sets a watchpoint on the value.
///
/// @param[in] resolve_location
/// Resolve the location of this value once and watch its address.
/// This value must currently be set to \b true as watching all
/// locations of a variable or a variable path is not yet supported,
/// though we plan to support it in the future.
///
/// @param[in] read
/// Stop when this value is accessed.
///
/// @param[in] write
/// Stop when this value is modified
///
/// @param[out]
/// An error object. Contains the reason if there is some failure.
///
/// @return
/// An SBWatchpoint object. This object might not be valid upon
/// return due to a value not being contained in memory, too
/// large, or watchpoint resources are not available or all in
/// use.
//------------------------------------------------------------------
lldb::SBWatchpoint
WatchPointee (bool resolve_location, bool read, bool write, SBError &error);
//------------------------------------------------------------------
/// Same as the protected version of GetSP that takes a locker, except that we make the
/// locker locally in the function. Since the Target API mutex is recursive, and the
/// StopLocker is a read lock, you can call this function even if you are already
/// holding the two above-mentioned locks.
///
/// @return
/// A ValueObjectSP of the best kind (static, dynamic or synthetic) we
/// can cons up, in accordance with the SBValue's settings.
//------------------------------------------------------------------
lldb::ValueObjectSP
GetSP () const;
protected:
friend class SBBlock;
friend class SBFrame;
friend class SBTarget;
friend class SBThread;
friend class SBValueList;
//------------------------------------------------------------------
/// Get the appropriate ValueObjectSP from this SBValue, consulting the
/// use_dynamic and use_synthetic options passed in to SetSP when the
/// SBValue's contents were set. Since this often requires examining memory,
/// and maybe even running code, it needs to acquire the Target API and Process StopLock.
/// Those are held in an opaque class ValueLocker which is currently local to SBValue.cpp.
/// So you don't have to get these yourself just default construct a ValueLocker, and pass it into this.
/// If we need to make a ValueLocker and use it in some other .cpp file, we'll have to move it to
/// ValueObject.h/cpp or somewhere else convenient. We haven't needed to so far.
///
/// @param[in] value_locker
/// An object that will hold the Target API, and Process RunLocks, and
/// auto-destroy them when it goes out of scope. Currently this is only useful in
/// SBValue.cpp.
///
/// @return
/// A ValueObjectSP of the best kind (static, dynamic or synthetic) we
/// can cons up, in accordance with the SBValue's settings.
//------------------------------------------------------------------
lldb::ValueObjectSP
GetSP (ValueLocker &value_locker) const;
// these calls do the right thing WRT adjusting their settings according to the target's preferences
void
SetSP (const lldb::ValueObjectSP &sp);
void
SetSP (const lldb::ValueObjectSP &sp, bool use_synthetic);
void
SetSP (const lldb::ValueObjectSP &sp, lldb::DynamicValueType use_dynamic);
void
SetSP (const lldb::ValueObjectSP &sp, lldb::DynamicValueType use_dynamic, bool use_synthetic);
void
SetSP (const lldb::ValueObjectSP &sp, lldb::DynamicValueType use_dynamic, bool use_synthetic, const char *name);
private:
typedef std::shared_ptr<ValueImpl> ValueImplSP;
ValueImplSP m_opaque_sp;
void
SetSP (ValueImplSP impl_sp);
};
} // namespace lldb
#endif // LLDB_SBValue_h_