| //===-- DataExtractor.cpp ---------------------------------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| // C Includes |
| // C++ Includes |
| #include <bitset> |
| #include <cassert> |
| #include <cmath> |
| #include <cstddef> |
| #include <sstream> |
| #include <string> |
| |
| // Other libraries and framework includes |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Support/MD5.h" |
| #include "llvm/Support/MathExtras.h" |
| |
| #include "clang/AST/ASTContext.h" |
| |
| // Project includes |
| #include "lldb/Core/DataBuffer.h" |
| #include "lldb/Core/DataBufferHeap.h" |
| #include "lldb/Core/DataExtractor.h" |
| #include "lldb/Core/Disassembler.h" |
| #include "lldb/Core/Log.h" |
| #include "lldb/Core/Stream.h" |
| #include "lldb/Core/StreamString.h" |
| #include "lldb/Core/UUID.h" |
| #include "lldb/Core/dwarf.h" |
| #include "lldb/Host/Endian.h" |
| #include "lldb/Symbol/ClangASTContext.h" |
| #include "lldb/Target/ExecutionContext.h" |
| #include "lldb/Target/ExecutionContextScope.h" |
| #include "lldb/Target/SectionLoadList.h" |
| #include "lldb/Target/Target.h" |
| |
| using namespace lldb; |
| using namespace lldb_private; |
| |
| static inline uint16_t ReadInt16(const unsigned char *ptr, offset_t offset) { |
| uint16_t value; |
| memcpy(&value, ptr + offset, 2); |
| return value; |
| } |
| |
| static inline uint32_t ReadInt32(const unsigned char *ptr, |
| offset_t offset = 0) { |
| uint32_t value; |
| memcpy(&value, ptr + offset, 4); |
| return value; |
| } |
| |
| static inline uint64_t ReadInt64(const unsigned char *ptr, |
| offset_t offset = 0) { |
| uint64_t value; |
| memcpy(&value, ptr + offset, 8); |
| return value; |
| } |
| |
| static inline uint16_t ReadInt16(const void *ptr) { |
| uint16_t value; |
| memcpy(&value, ptr, 2); |
| return value; |
| } |
| |
| static inline uint16_t ReadSwapInt16(const unsigned char *ptr, |
| offset_t offset) { |
| uint16_t value; |
| memcpy(&value, ptr + offset, 2); |
| return llvm::ByteSwap_16(value); |
| } |
| |
| static inline uint32_t ReadSwapInt32(const unsigned char *ptr, |
| offset_t offset) { |
| uint32_t value; |
| memcpy(&value, ptr + offset, 4); |
| return llvm::ByteSwap_32(value); |
| } |
| |
| static inline uint64_t ReadSwapInt64(const unsigned char *ptr, |
| offset_t offset) { |
| uint64_t value; |
| memcpy(&value, ptr + offset, 8); |
| return llvm::ByteSwap_64(value); |
| } |
| |
| static inline uint16_t ReadSwapInt16(const void *ptr) { |
| uint16_t value; |
| memcpy(&value, ptr, 2); |
| return llvm::ByteSwap_16(value); |
| } |
| |
| static inline uint32_t ReadSwapInt32(const void *ptr) { |
| uint32_t value; |
| memcpy(&value, ptr, 4); |
| return llvm::ByteSwap_32(value); |
| } |
| |
| static inline uint64_t ReadSwapInt64(const void *ptr) { |
| uint64_t value; |
| memcpy(&value, ptr, 8); |
| return llvm::ByteSwap_64(value); |
| } |
| |
| #define NON_PRINTABLE_CHAR '.' |
| |
| DataExtractor::DataExtractor() |
| : m_start(nullptr), m_end(nullptr), |
| m_byte_order(endian::InlHostByteOrder()), m_addr_size(sizeof(void *)), |
| m_data_sp(), m_target_byte_size(1) {} |
| |
| //---------------------------------------------------------------------- |
| // This constructor allows us to use data that is owned by someone else. |
| // The data must stay around as long as this object is valid. |
| //---------------------------------------------------------------------- |
| DataExtractor::DataExtractor(const void *data, offset_t length, |
| ByteOrder endian, uint32_t addr_size, |
| uint32_t target_byte_size /*=1*/) |
| : m_start(const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(data))), |
| m_end(const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(data)) + |
| length), |
| m_byte_order(endian), m_addr_size(addr_size), m_data_sp(), |
| m_target_byte_size(target_byte_size) { |
| #ifdef LLDB_CONFIGURATION_DEBUG |
| assert(addr_size == 4 || addr_size == 8); |
| #endif |
| } |
| |
| //---------------------------------------------------------------------- |
| // Make a shared pointer reference to the shared data in "data_sp" and |
| // set the endian swapping setting to "swap", and the address size to |
| // "addr_size". The shared data reference will ensure the data lives |
| // as long as any DataExtractor objects exist that have a reference to |
| // this data. |
| //---------------------------------------------------------------------- |
| DataExtractor::DataExtractor(const DataBufferSP &data_sp, ByteOrder endian, |
| uint32_t addr_size, |
| uint32_t target_byte_size /*=1*/) |
| : m_start(nullptr), m_end(nullptr), m_byte_order(endian), |
| m_addr_size(addr_size), m_data_sp(), |
| m_target_byte_size(target_byte_size) { |
| #ifdef LLDB_CONFIGURATION_DEBUG |
| assert(addr_size == 4 || addr_size == 8); |
| #endif |
| SetData(data_sp); |
| } |
| |
| //---------------------------------------------------------------------- |
| // Initialize this object with a subset of the data bytes in "data". |
| // If "data" contains shared data, then a reference to this shared |
| // data will added and the shared data will stay around as long |
| // as any object contains a reference to that data. The endian |
| // swap and address size settings are copied from "data". |
| //---------------------------------------------------------------------- |
| DataExtractor::DataExtractor(const DataExtractor &data, offset_t offset, |
| offset_t length, uint32_t target_byte_size /*=1*/) |
| : m_start(nullptr), m_end(nullptr), m_byte_order(data.m_byte_order), |
| m_addr_size(data.m_addr_size), m_data_sp(), |
| m_target_byte_size(target_byte_size) { |
| #ifdef LLDB_CONFIGURATION_DEBUG |
| assert(m_addr_size == 4 || m_addr_size == 8); |
| #endif |
| if (data.ValidOffset(offset)) { |
| offset_t bytes_available = data.GetByteSize() - offset; |
| if (length > bytes_available) |
| length = bytes_available; |
| SetData(data, offset, length); |
| } |
| } |
| |
| DataExtractor::DataExtractor(const DataExtractor &rhs) |
| : m_start(rhs.m_start), m_end(rhs.m_end), m_byte_order(rhs.m_byte_order), |
| m_addr_size(rhs.m_addr_size), m_data_sp(rhs.m_data_sp), |
| m_target_byte_size(rhs.m_target_byte_size) { |
| #ifdef LLDB_CONFIGURATION_DEBUG |
| assert(m_addr_size == 4 || m_addr_size == 8); |
| #endif |
| } |
| |
| //---------------------------------------------------------------------- |
| // Assignment operator |
| //---------------------------------------------------------------------- |
| const DataExtractor &DataExtractor::operator=(const DataExtractor &rhs) { |
| if (this != &rhs) { |
| m_start = rhs.m_start; |
| m_end = rhs.m_end; |
| m_byte_order = rhs.m_byte_order; |
| m_addr_size = rhs.m_addr_size; |
| m_data_sp = rhs.m_data_sp; |
| } |
| return *this; |
| } |
| |
| DataExtractor::~DataExtractor() = default; |
| |
| //------------------------------------------------------------------ |
| // Clears the object contents back to a default invalid state, and |
| // release any references to shared data that this object may |
| // contain. |
| //------------------------------------------------------------------ |
| void DataExtractor::Clear() { |
| m_start = nullptr; |
| m_end = nullptr; |
| m_byte_order = endian::InlHostByteOrder(); |
| m_addr_size = sizeof(void *); |
| m_data_sp.reset(); |
| } |
| |
| //------------------------------------------------------------------ |
| // If this object contains shared data, this function returns the |
| // offset into that shared data. Else zero is returned. |
| //------------------------------------------------------------------ |
| size_t DataExtractor::GetSharedDataOffset() const { |
| if (m_start != nullptr) { |
| const DataBuffer *data = m_data_sp.get(); |
| if (data != nullptr) { |
| const uint8_t *data_bytes = data->GetBytes(); |
| if (data_bytes != nullptr) { |
| assert(m_start >= data_bytes); |
| return m_start - data_bytes; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| //---------------------------------------------------------------------- |
| // Set the data with which this object will extract from to data |
| // starting at BYTES and set the length of the data to LENGTH bytes |
| // long. The data is externally owned must be around at least as |
| // long as this object points to the data. No copy of the data is |
| // made, this object just refers to this data and can extract from |
| // it. If this object refers to any shared data upon entry, the |
| // reference to that data will be released. Is SWAP is set to true, |
| // any data extracted will be endian swapped. |
| //---------------------------------------------------------------------- |
| lldb::offset_t DataExtractor::SetData(const void *bytes, offset_t length, |
| ByteOrder endian) { |
| m_byte_order = endian; |
| m_data_sp.reset(); |
| if (bytes == nullptr || length == 0) { |
| m_start = nullptr; |
| m_end = nullptr; |
| } else { |
| m_start = const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(bytes)); |
| m_end = m_start + length; |
| } |
| return GetByteSize(); |
| } |
| |
| //---------------------------------------------------------------------- |
| // Assign the data for this object to be a subrange in "data" |
| // starting "data_offset" bytes into "data" and ending "data_length" |
| // bytes later. If "data_offset" is not a valid offset into "data", |
| // then this object will contain no bytes. If "data_offset" is |
| // within "data" yet "data_length" is too large, the length will be |
| // capped at the number of bytes remaining in "data". If "data" |
| // contains a shared pointer to other data, then a ref counted |
| // pointer to that data will be made in this object. If "data" |
| // doesn't contain a shared pointer to data, then the bytes referred |
| // to in "data" will need to exist at least as long as this object |
| // refers to those bytes. The address size and endian swap settings |
| // are copied from the current values in "data". |
| //---------------------------------------------------------------------- |
| lldb::offset_t DataExtractor::SetData(const DataExtractor &data, |
| offset_t data_offset, |
| offset_t data_length) { |
| m_addr_size = data.m_addr_size; |
| #ifdef LLDB_CONFIGURATION_DEBUG |
| assert(m_addr_size == 4 || m_addr_size == 8); |
| #endif |
| // If "data" contains shared pointer to data, then we can use that |
| if (data.m_data_sp) { |
| m_byte_order = data.m_byte_order; |
| return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset, |
| data_length); |
| } |
| |
| // We have a DataExtractor object that just has a pointer to bytes |
| if (data.ValidOffset(data_offset)) { |
| if (data_length > data.GetByteSize() - data_offset) |
| data_length = data.GetByteSize() - data_offset; |
| return SetData(data.GetDataStart() + data_offset, data_length, |
| data.GetByteOrder()); |
| } |
| return 0; |
| } |
| |
| //---------------------------------------------------------------------- |
| // Assign the data for this object to be a subrange of the shared |
| // data in "data_sp" starting "data_offset" bytes into "data_sp" |
| // and ending "data_length" bytes later. If "data_offset" is not |
| // a valid offset into "data_sp", then this object will contain no |
| // bytes. If "data_offset" is within "data_sp" yet "data_length" is |
| // too large, the length will be capped at the number of bytes |
| // remaining in "data_sp". A ref counted pointer to the data in |
| // "data_sp" will be made in this object IF the number of bytes this |
| // object refers to in greater than zero (if at least one byte was |
| // available starting at "data_offset") to ensure the data stays |
| // around as long as it is needed. The address size and endian swap |
| // settings will remain unchanged from their current settings. |
| //---------------------------------------------------------------------- |
| lldb::offset_t DataExtractor::SetData(const DataBufferSP &data_sp, |
| offset_t data_offset, |
| offset_t data_length) { |
| m_start = m_end = nullptr; |
| |
| if (data_length > 0) { |
| m_data_sp = data_sp; |
| if (data_sp) { |
| const size_t data_size = data_sp->GetByteSize(); |
| if (data_offset < data_size) { |
| m_start = data_sp->GetBytes() + data_offset; |
| const size_t bytes_left = data_size - data_offset; |
| // Cap the length of we asked for too many |
| if (data_length <= bytes_left) |
| m_end = m_start + data_length; // We got all the bytes we wanted |
| else |
| m_end = m_start + bytes_left; // Not all the bytes requested were |
| // available in the shared data |
| } |
| } |
| } |
| |
| size_t new_size = GetByteSize(); |
| |
| // Don't hold a shared pointer to the data buffer if we don't share |
| // any valid bytes in the shared buffer. |
| if (new_size == 0) |
| m_data_sp.reset(); |
| |
| return new_size; |
| } |
| |
| //---------------------------------------------------------------------- |
| // Extract a single unsigned char from the binary data and update |
| // the offset pointed to by "offset_ptr". |
| // |
| // RETURNS the byte that was extracted, or zero on failure. |
| //---------------------------------------------------------------------- |
| uint8_t DataExtractor::GetU8(offset_t *offset_ptr) const { |
| const uint8_t *data = (const uint8_t *)GetData(offset_ptr, 1); |
| if (data) |
| return *data; |
| return 0; |
| } |
| |
| //---------------------------------------------------------------------- |
| // Extract "count" unsigned chars from the binary data and update the |
| // offset pointed to by "offset_ptr". The extracted data is copied into |
| // "dst". |
| // |
| // RETURNS the non-nullptr buffer pointer upon successful extraction of |
| // all the requested bytes, or nullptr when the data is not available in |
| // the buffer due to being out of bounds, or insufficient data. |
| //---------------------------------------------------------------------- |
| void *DataExtractor::GetU8(offset_t *offset_ptr, void *dst, |
| uint32_t count) const { |
| const uint8_t *data = (const uint8_t *)GetData(offset_ptr, count); |
| if (data) { |
| // Copy the data into the buffer |
| memcpy(dst, data, count); |
| // Return a non-nullptr pointer to the converted data as an indicator of |
| // success |
| return dst; |
| } |
| return nullptr; |
| } |
| |
| //---------------------------------------------------------------------- |
| // Extract a single uint16_t from the data and update the offset |
| // pointed to by "offset_ptr". |
| // |
| // RETURNS the uint16_t that was extracted, or zero on failure. |
| //---------------------------------------------------------------------- |
| uint16_t DataExtractor::GetU16(offset_t *offset_ptr) const { |
| uint16_t val = 0; |
| const uint8_t *data = (const uint8_t *)GetData(offset_ptr, sizeof(val)); |
| if (data) { |
| if (m_byte_order != endian::InlHostByteOrder()) |
| val = ReadSwapInt16(data); |
| else |
| val = ReadInt16(data); |
| } |
| return val; |
| } |
| |
| uint16_t DataExtractor::GetU16_unchecked(offset_t *offset_ptr) const { |
| uint16_t val; |
| if (m_byte_order == endian::InlHostByteOrder()) |
| val = ReadInt16(m_start, *offset_ptr); |
| else |
| val = ReadSwapInt16(m_start, *offset_ptr); |
| *offset_ptr += sizeof(val); |
| return val; |
| } |
| |
| uint32_t DataExtractor::GetU32_unchecked(offset_t *offset_ptr) const { |
| uint32_t val; |
| if (m_byte_order == endian::InlHostByteOrder()) |
| val = ReadInt32(m_start, *offset_ptr); |
| else |
| val = ReadSwapInt32(m_start, *offset_ptr); |
| *offset_ptr += sizeof(val); |
| return val; |
| } |
| |
| uint64_t DataExtractor::GetU64_unchecked(offset_t *offset_ptr) const { |
| uint64_t val; |
| if (m_byte_order == endian::InlHostByteOrder()) |
| val = ReadInt64(m_start, *offset_ptr); |
| else |
| val = ReadSwapInt64(m_start, *offset_ptr); |
| *offset_ptr += sizeof(val); |
| return val; |
| } |
| |
| //---------------------------------------------------------------------- |
| // Extract "count" uint16_t values from the binary data and update |
| // the offset pointed to by "offset_ptr". The extracted data is |
| // copied into "dst". |
| // |
| // RETURNS the non-nullptr buffer pointer upon successful extraction of |
| // all the requested bytes, or nullptr when the data is not available |
| // in the buffer due to being out of bounds, or insufficient data. |
| //---------------------------------------------------------------------- |
| void *DataExtractor::GetU16(offset_t *offset_ptr, void *void_dst, |
| uint32_t count) const { |
| const size_t src_size = sizeof(uint16_t) * count; |
| const uint16_t *src = (const uint16_t *)GetData(offset_ptr, src_size); |
| if (src) { |
| if (m_byte_order != endian::InlHostByteOrder()) { |
| uint16_t *dst_pos = (uint16_t *)void_dst; |
| uint16_t *dst_end = dst_pos + count; |
| const uint16_t *src_pos = src; |
| while (dst_pos < dst_end) { |
| *dst_pos = ReadSwapInt16(src_pos); |
| ++dst_pos; |
| ++src_pos; |
| } |
| } else { |
| memcpy(void_dst, src, src_size); |
| } |
| // Return a non-nullptr pointer to the converted data as an indicator of |
| // success |
| return void_dst; |
| } |
| return nullptr; |
| } |
| |
| //---------------------------------------------------------------------- |
| // Extract a single uint32_t from the data and update the offset |
| // pointed to by "offset_ptr". |
| // |
| // RETURNS the uint32_t that was extracted, or zero on failure. |
| //---------------------------------------------------------------------- |
| uint32_t DataExtractor::GetU32(offset_t *offset_ptr) const { |
| uint32_t val = 0; |
| const uint8_t *data = (const uint8_t *)GetData(offset_ptr, sizeof(val)); |
| if (data) { |
| if (m_byte_order != endian::InlHostByteOrder()) { |
| val = ReadSwapInt32(data); |
| } else { |
| memcpy(&val, data, 4); |
| } |
| } |
| return val; |
| } |
| |
| //---------------------------------------------------------------------- |
| // Extract "count" uint32_t values from the binary data and update |
| // the offset pointed to by "offset_ptr". The extracted data is |
| // copied into "dst". |
| // |
| // RETURNS the non-nullptr buffer pointer upon successful extraction of |
| // all the requested bytes, or nullptr when the data is not available |
| // in the buffer due to being out of bounds, or insufficient data. |
| //---------------------------------------------------------------------- |
| void *DataExtractor::GetU32(offset_t *offset_ptr, void *void_dst, |
| uint32_t count) const { |
| const size_t src_size = sizeof(uint32_t) * count; |
| const uint32_t *src = (const uint32_t *)GetData(offset_ptr, src_size); |
| if (src) { |
| if (m_byte_order != endian::InlHostByteOrder()) { |
| uint32_t *dst_pos = (uint32_t *)void_dst; |
| uint32_t *dst_end = dst_pos + count; |
| const uint32_t *src_pos = src; |
| while (dst_pos < dst_end) { |
| *dst_pos = ReadSwapInt32(src_pos); |
| ++dst_pos; |
| ++src_pos; |
| } |
| } else { |
| memcpy(void_dst, src, src_size); |
| } |
| // Return a non-nullptr pointer to the converted data as an indicator of |
| // success |
| return void_dst; |
| } |
| return nullptr; |
| } |
| |
| //---------------------------------------------------------------------- |
| // Extract a single uint64_t from the data and update the offset |
| // pointed to by "offset_ptr". |
| // |
| // RETURNS the uint64_t that was extracted, or zero on failure. |
| //---------------------------------------------------------------------- |
| uint64_t DataExtractor::GetU64(offset_t *offset_ptr) const { |
| uint64_t val = 0; |
| const uint8_t *data = (const uint8_t *)GetData(offset_ptr, sizeof(val)); |
| if (data) { |
| if (m_byte_order != endian::InlHostByteOrder()) { |
| val = ReadSwapInt64(data); |
| } else { |
| memcpy(&val, data, 8); |
| } |
| } |
| return val; |
| } |
| |
| //---------------------------------------------------------------------- |
| // GetU64 |
| // |
| // Get multiple consecutive 64 bit values. Return true if the entire |
| // read succeeds and increment the offset pointed to by offset_ptr, else |
| // return false and leave the offset pointed to by offset_ptr unchanged. |
| //---------------------------------------------------------------------- |
| void *DataExtractor::GetU64(offset_t *offset_ptr, void *void_dst, |
| uint32_t count) const { |
| const size_t src_size = sizeof(uint64_t) * count; |
| const uint64_t *src = (const uint64_t *)GetData(offset_ptr, src_size); |
| if (src) { |
| if (m_byte_order != endian::InlHostByteOrder()) { |
| uint64_t *dst_pos = (uint64_t *)void_dst; |
| uint64_t *dst_end = dst_pos + count; |
| const uint64_t *src_pos = src; |
| while (dst_pos < dst_end) { |
| *dst_pos = ReadSwapInt64(src_pos); |
| ++dst_pos; |
| ++src_pos; |
| } |
| } else { |
| memcpy(void_dst, src, src_size); |
| } |
| // Return a non-nullptr pointer to the converted data as an indicator of |
| // success |
| return void_dst; |
| } |
| return nullptr; |
| } |
| |
| //---------------------------------------------------------------------- |
| // Extract a single integer value from the data and update the offset |
| // pointed to by "offset_ptr". The size of the extracted integer |
| // is specified by the "byte_size" argument. "byte_size" should have |
| // a value between 1 and 4 since the return value is only 32 bits |
| // wide. Any "byte_size" values less than 1 or greater than 4 will |
| // result in nothing being extracted, and zero being returned. |
| // |
| // RETURNS the integer value that was extracted, or zero on failure. |
| //---------------------------------------------------------------------- |
| uint32_t DataExtractor::GetMaxU32(offset_t *offset_ptr, |
| size_t byte_size) const { |
| switch (byte_size) { |
| case 1: |
| return GetU8(offset_ptr); |
| break; |
| case 2: |
| return GetU16(offset_ptr); |
| break; |
| case 4: |
| return GetU32(offset_ptr); |
| break; |
| default: |
| assert(false && "GetMaxU32 unhandled case!"); |
| break; |
| } |
| return 0; |
| } |
| |
| //---------------------------------------------------------------------- |
| // Extract a single integer value from the data and update the offset |
| // pointed to by "offset_ptr". The size of the extracted integer |
| // is specified by the "byte_size" argument. "byte_size" should have |
| // a value >= 1 and <= 8 since the return value is only 64 bits |
| // wide. Any "byte_size" values less than 1 or greater than 8 will |
| // result in nothing being extracted, and zero being returned. |
| // |
| // RETURNS the integer value that was extracted, or zero on failure. |
| //---------------------------------------------------------------------- |
| uint64_t DataExtractor::GetMaxU64(offset_t *offset_ptr, size_t size) const { |
| switch (size) { |
| case 1: |
| return GetU8(offset_ptr); |
| break; |
| case 2: |
| return GetU16(offset_ptr); |
| break; |
| case 4: |
| return GetU32(offset_ptr); |
| break; |
| case 8: |
| return GetU64(offset_ptr); |
| break; |
| default: |
| assert(false && "GetMax64 unhandled case!"); |
| break; |
| } |
| return 0; |
| } |
| |
| uint64_t DataExtractor::GetMaxU64_unchecked(offset_t *offset_ptr, |
| size_t size) const { |
| switch (size) { |
| case 1: |
| return GetU8_unchecked(offset_ptr); |
| break; |
| case 2: |
| return GetU16_unchecked(offset_ptr); |
| break; |
| case 4: |
| return GetU32_unchecked(offset_ptr); |
| break; |
| case 8: |
| return GetU64_unchecked(offset_ptr); |
| break; |
| default: |
| assert(false && "GetMax64 unhandled case!"); |
| break; |
| } |
| return 0; |
| } |
| |
| int64_t DataExtractor::GetMaxS64(offset_t *offset_ptr, size_t size) const { |
| switch (size) { |
| case 1: |
| return (int8_t)GetU8(offset_ptr); |
| break; |
| case 2: |
| return (int16_t)GetU16(offset_ptr); |
| break; |
| case 4: |
| return (int32_t)GetU32(offset_ptr); |
| break; |
| case 8: |
| return (int64_t)GetU64(offset_ptr); |
| break; |
| default: |
| assert(false && "GetMax64 unhandled case!"); |
| break; |
| } |
| return 0; |
| } |
| |
| uint64_t DataExtractor::GetMaxU64Bitfield(offset_t *offset_ptr, size_t size, |
| uint32_t bitfield_bit_size, |
| uint32_t bitfield_bit_offset) const { |
| uint64_t uval64 = GetMaxU64(offset_ptr, size); |
| if (bitfield_bit_size > 0) { |
| int32_t lsbcount = bitfield_bit_offset; |
| if (m_byte_order == eByteOrderBig) |
| lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size; |
| if (lsbcount > 0) |
| uval64 >>= lsbcount; |
| uint64_t bitfield_mask = ((1ul << bitfield_bit_size) - 1); |
| if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64) |
| return uval64; |
| uval64 &= bitfield_mask; |
| } |
| return uval64; |
| } |
| |
| int64_t DataExtractor::GetMaxS64Bitfield(offset_t *offset_ptr, size_t size, |
| uint32_t bitfield_bit_size, |
| uint32_t bitfield_bit_offset) const { |
| int64_t sval64 = GetMaxS64(offset_ptr, size); |
| if (bitfield_bit_size > 0) { |
| int32_t lsbcount = bitfield_bit_offset; |
| if (m_byte_order == eByteOrderBig) |
| lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size; |
| if (lsbcount > 0) |
| sval64 >>= lsbcount; |
| uint64_t bitfield_mask = (((uint64_t)1) << bitfield_bit_size) - 1; |
| sval64 &= bitfield_mask; |
| // sign extend if needed |
| if (sval64 & (((uint64_t)1) << (bitfield_bit_size - 1))) |
| sval64 |= ~bitfield_mask; |
| } |
| return sval64; |
| } |
| |
| float DataExtractor::GetFloat(offset_t *offset_ptr) const { |
| typedef float float_type; |
| float_type val = 0.0; |
| const size_t src_size = sizeof(float_type); |
| const float_type *src = (const float_type *)GetData(offset_ptr, src_size); |
| if (src) { |
| if (m_byte_order != endian::InlHostByteOrder()) { |
| const uint8_t *src_data = (const uint8_t *)src; |
| uint8_t *dst_data = (uint8_t *)&val; |
| for (size_t i = 0; i < sizeof(float_type); ++i) |
| dst_data[sizeof(float_type) - 1 - i] = src_data[i]; |
| } else { |
| val = *src; |
| } |
| } |
| return val; |
| } |
| |
| double DataExtractor::GetDouble(offset_t *offset_ptr) const { |
| typedef double float_type; |
| float_type val = 0.0; |
| const size_t src_size = sizeof(float_type); |
| const float_type *src = (const float_type *)GetData(offset_ptr, src_size); |
| if (src) { |
| if (m_byte_order != endian::InlHostByteOrder()) { |
| const uint8_t *src_data = (const uint8_t *)src; |
| uint8_t *dst_data = (uint8_t *)&val; |
| for (size_t i = 0; i < sizeof(float_type); ++i) |
| dst_data[sizeof(float_type) - 1 - i] = src_data[i]; |
| } else { |
| val = *src; |
| } |
| } |
| return val; |
| } |
| |
| long double DataExtractor::GetLongDouble(offset_t *offset_ptr) const { |
| long double val = 0.0; |
| #if defined(__i386__) || defined(__amd64__) || defined(__x86_64__) || \ |
| defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64) |
| *offset_ptr += CopyByteOrderedData(*offset_ptr, 10, &val, sizeof(val), |
| endian::InlHostByteOrder()); |
| #else |
| *offset_ptr += CopyByteOrderedData(*offset_ptr, sizeof(val), &val, |
| sizeof(val), endian::InlHostByteOrder()); |
| #endif |
| return val; |
| } |
| |
| //------------------------------------------------------------------ |
| // Extract a single address from the data and update the offset |
| // pointed to by "offset_ptr". The size of the extracted address |
| // comes from the "this->m_addr_size" member variable and should be |
| // set correctly prior to extracting any address values. |
| // |
| // RETURNS the address that was extracted, or zero on failure. |
| //------------------------------------------------------------------ |
| uint64_t DataExtractor::GetAddress(offset_t *offset_ptr) const { |
| #ifdef LLDB_CONFIGURATION_DEBUG |
| assert(m_addr_size == 4 || m_addr_size == 8); |
| #endif |
| return GetMaxU64(offset_ptr, m_addr_size); |
| } |
| |
| uint64_t DataExtractor::GetAddress_unchecked(offset_t *offset_ptr) const { |
| #ifdef LLDB_CONFIGURATION_DEBUG |
| assert(m_addr_size == 4 || m_addr_size == 8); |
| #endif |
| return GetMaxU64_unchecked(offset_ptr, m_addr_size); |
| } |
| |
| //------------------------------------------------------------------ |
| // Extract a single pointer from the data and update the offset |
| // pointed to by "offset_ptr". The size of the extracted pointer |
| // comes from the "this->m_addr_size" member variable and should be |
| // set correctly prior to extracting any pointer values. |
| // |
| // RETURNS the pointer that was extracted, or zero on failure. |
| //------------------------------------------------------------------ |
| uint64_t DataExtractor::GetPointer(offset_t *offset_ptr) const { |
| #ifdef LLDB_CONFIGURATION_DEBUG |
| assert(m_addr_size == 4 || m_addr_size == 8); |
| #endif |
| return GetMaxU64(offset_ptr, m_addr_size); |
| } |
| |
| //---------------------------------------------------------------------- |
| // GetDwarfEHPtr |
| // |
| // Used for calls when the value type is specified by a DWARF EH Frame |
| // pointer encoding. |
| //---------------------------------------------------------------------- |
| |
| uint64_t DataExtractor::GetGNUEHPointer( |
| offset_t *offset_ptr, uint32_t eh_ptr_enc, lldb::addr_t pc_rel_addr, |
| lldb::addr_t text_addr, |
| lldb::addr_t data_addr) //, BSDRelocs *data_relocs) const |
| { |
| if (eh_ptr_enc == DW_EH_PE_omit) |
| return ULLONG_MAX; // Value isn't in the buffer... |
| |
| uint64_t baseAddress = 0; |
| uint64_t addressValue = 0; |
| const uint32_t addr_size = GetAddressByteSize(); |
| #ifdef LLDB_CONFIGURATION_DEBUG |
| assert(addr_size == 4 || addr_size == 8); |
| #endif |
| |
| bool signExtendValue = false; |
| // Decode the base part or adjust our offset |
| switch (eh_ptr_enc & 0x70) { |
| case DW_EH_PE_pcrel: |
| signExtendValue = true; |
| baseAddress = *offset_ptr; |
| if (pc_rel_addr != LLDB_INVALID_ADDRESS) |
| baseAddress += pc_rel_addr; |
| // else |
| // Log::GlobalWarning ("PC relative pointer encoding found with |
| // invalid pc relative address."); |
| break; |
| |
| case DW_EH_PE_textrel: |
| signExtendValue = true; |
| if (text_addr != LLDB_INVALID_ADDRESS) |
| baseAddress = text_addr; |
| // else |
| // Log::GlobalWarning ("text relative pointer encoding being |
| // decoded with invalid text section address, setting base address |
| // to zero."); |
| break; |
| |
| case DW_EH_PE_datarel: |
| signExtendValue = true; |
| if (data_addr != LLDB_INVALID_ADDRESS) |
| baseAddress = data_addr; |
| // else |
| // Log::GlobalWarning ("data relative pointer encoding being |
| // decoded with invalid data section address, setting base address |
| // to zero."); |
| break; |
| |
| case DW_EH_PE_funcrel: |
| signExtendValue = true; |
| break; |
| |
| case DW_EH_PE_aligned: { |
| // SetPointerSize should be called prior to extracting these so the |
| // pointer size is cached |
| assert(addr_size != 0); |
| if (addr_size) { |
| // Align to a address size boundary first |
| uint32_t alignOffset = *offset_ptr % addr_size; |
| if (alignOffset) |
| offset_ptr += addr_size - alignOffset; |
| } |
| } break; |
| |
| default: |
| break; |
| } |
| |
| // Decode the value part |
| switch (eh_ptr_enc & DW_EH_PE_MASK_ENCODING) { |
| case DW_EH_PE_absptr: { |
| addressValue = GetAddress(offset_ptr); |
| // if (data_relocs) |
| // addressValue = data_relocs->Relocate(*offset_ptr - |
| // addr_size, *this, addressValue); |
| } break; |
| case DW_EH_PE_uleb128: |
| addressValue = GetULEB128(offset_ptr); |
| break; |
| case DW_EH_PE_udata2: |
| addressValue = GetU16(offset_ptr); |
| break; |
| case DW_EH_PE_udata4: |
| addressValue = GetU32(offset_ptr); |
| break; |
| case DW_EH_PE_udata8: |
| addressValue = GetU64(offset_ptr); |
| break; |
| case DW_EH_PE_sleb128: |
| addressValue = GetSLEB128(offset_ptr); |
| break; |
| case DW_EH_PE_sdata2: |
| addressValue = (int16_t)GetU16(offset_ptr); |
| break; |
| case DW_EH_PE_sdata4: |
| addressValue = (int32_t)GetU32(offset_ptr); |
| break; |
| case DW_EH_PE_sdata8: |
| addressValue = (int64_t)GetU64(offset_ptr); |
| break; |
| default: |
| // Unhandled encoding type |
| assert(eh_ptr_enc); |
| break; |
| } |
| |
| // Since we promote everything to 64 bit, we may need to sign extend |
| if (signExtendValue && addr_size < sizeof(baseAddress)) { |
| uint64_t sign_bit = 1ull << ((addr_size * 8ull) - 1ull); |
| if (sign_bit & addressValue) { |
| uint64_t mask = ~sign_bit + 1; |
| addressValue |= mask; |
| } |
| } |
| return baseAddress + addressValue; |
| } |
| |
| size_t DataExtractor::ExtractBytes(offset_t offset, offset_t length, |
| ByteOrder dst_byte_order, void *dst) const { |
| const uint8_t *src = PeekData(offset, length); |
| if (src) { |
| if (dst_byte_order != GetByteOrder()) { |
| // Validate that only a word- or register-sized dst is byte swapped |
| assert(length == 1 || length == 2 || length == 4 || length == 8 || |
| length == 10 || length == 16 || length == 32); |
| |
| for (uint32_t i = 0; i < length; ++i) |
| ((uint8_t *)dst)[i] = src[length - i - 1]; |
| } else |
| ::memcpy(dst, src, length); |
| return length; |
| } |
| return 0; |
| } |
| |
| // Extract data as it exists in target memory |
| lldb::offset_t DataExtractor::CopyData(offset_t offset, offset_t length, |
| void *dst) const { |
| const uint8_t *src = PeekData(offset, length); |
| if (src) { |
| ::memcpy(dst, src, length); |
| return length; |
| } |
| return 0; |
| } |
| |
| // Extract data and swap if needed when doing the copy |
| lldb::offset_t |
| DataExtractor::CopyByteOrderedData(offset_t src_offset, offset_t src_len, |
| void *dst_void_ptr, offset_t dst_len, |
| ByteOrder dst_byte_order) const { |
| // Validate the source info |
| if (!ValidOffsetForDataOfSize(src_offset, src_len)) |
| assert(ValidOffsetForDataOfSize(src_offset, src_len)); |
| assert(src_len > 0); |
| assert(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle); |
| |
| // Validate the destination info |
| assert(dst_void_ptr != nullptr); |
| assert(dst_len > 0); |
| assert(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle); |
| |
| // Validate that only a word- or register-sized dst is byte swapped |
| assert(dst_byte_order == m_byte_order || dst_len == 1 || dst_len == 2 || |
| dst_len == 4 || dst_len == 8 || dst_len == 10 || dst_len == 16 || |
| dst_len == 32); |
| |
| // Must have valid byte orders set in this object and for destination |
| if (!(dst_byte_order == eByteOrderBig || |
| dst_byte_order == eByteOrderLittle) || |
| !(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle)) |
| return 0; |
| |
| uint8_t *dst = (uint8_t *)dst_void_ptr; |
| const uint8_t *src = (const uint8_t *)PeekData(src_offset, src_len); |
| if (src) { |
| if (dst_len >= src_len) { |
| // We are copying the entire value from src into dst. |
| // Calculate how many, if any, zeroes we need for the most |
| // significant bytes if "dst_len" is greater than "src_len"... |
| const size_t num_zeroes = dst_len - src_len; |
| if (dst_byte_order == eByteOrderBig) { |
| // Big endian, so we lead with zeroes... |
| if (num_zeroes > 0) |
| ::memset(dst, 0, num_zeroes); |
| // Then either copy or swap the rest |
| if (m_byte_order == eByteOrderBig) { |
| ::memcpy(dst + num_zeroes, src, src_len); |
| } else { |
| for (uint32_t i = 0; i < src_len; ++i) |
| dst[i + num_zeroes] = src[src_len - 1 - i]; |
| } |
| } else { |
| // Little endian destination, so we lead the value bytes |
| if (m_byte_order == eByteOrderBig) { |
| for (uint32_t i = 0; i < src_len; ++i) |
| dst[i] = src[src_len - 1 - i]; |
| } else { |
| ::memcpy(dst, src, src_len); |
| } |
| // And zero the rest... |
| if (num_zeroes > 0) |
| ::memset(dst + src_len, 0, num_zeroes); |
| } |
| return src_len; |
| } else { |
| // We are only copying some of the value from src into dst.. |
| |
| if (dst_byte_order == eByteOrderBig) { |
| // Big endian dst |
| if (m_byte_order == eByteOrderBig) { |
| // Big endian dst, with big endian src |
| ::memcpy(dst, src + (src_len - dst_len), dst_len); |
| } else { |
| // Big endian dst, with little endian src |
| for (uint32_t i = 0; i < dst_len; ++i) |
| dst[i] = src[dst_len - 1 - i]; |
| } |
| } else { |
| // Little endian dst |
| if (m_byte_order == eByteOrderBig) { |
| // Little endian dst, with big endian src |
| for (uint32_t i = 0; i < dst_len; ++i) |
| dst[i] = src[src_len - 1 - i]; |
| } else { |
| // Little endian dst, with big endian src |
| ::memcpy(dst, src, dst_len); |
| } |
| } |
| return dst_len; |
| } |
| } |
| return 0; |
| } |
| |
| //---------------------------------------------------------------------- |
| // Extracts a variable length NULL terminated C string from |
| // the data at the offset pointed to by "offset_ptr". The |
| // "offset_ptr" will be updated with the offset of the byte that |
| // follows the NULL terminator byte. |
| // |
| // If the offset pointed to by "offset_ptr" is out of bounds, or if |
| // "length" is non-zero and there aren't enough available |
| // bytes, nullptr will be returned and "offset_ptr" will not be |
| // updated. |
| //---------------------------------------------------------------------- |
| const char *DataExtractor::GetCStr(offset_t *offset_ptr) const { |
| const char *cstr = (const char *)PeekData(*offset_ptr, 1); |
| if (cstr) { |
| const char *cstr_end = cstr; |
| const char *end = (const char *)m_end; |
| while (cstr_end < end && *cstr_end) |
| ++cstr_end; |
| |
| // Now we are either at the end of the data or we point to the |
| // NULL C string terminator with cstr_end... |
| if (*cstr_end == '\0') { |
| // Advance the offset with one extra byte for the NULL terminator |
| *offset_ptr += (cstr_end - cstr + 1); |
| return cstr; |
| } |
| |
| // We reached the end of the data without finding a NULL C string |
| // terminator. Fall through and return nullptr otherwise anyone that |
| // would have used the result as a C string can wander into |
| // unknown memory... |
| } |
| return nullptr; |
| } |
| |
| //---------------------------------------------------------------------- |
| // Extracts a NULL terminated C string from the fixed length field of |
| // length "len" at the offset pointed to by "offset_ptr". |
| // The "offset_ptr" will be updated with the offset of the byte that |
| // follows the fixed length field. |
| // |
| // If the offset pointed to by "offset_ptr" is out of bounds, or if |
| // the offset plus the length of the field is out of bounds, or if the |
| // field does not contain a NULL terminator byte, nullptr will be returned |
| // and "offset_ptr" will not be updated. |
| //---------------------------------------------------------------------- |
| const char *DataExtractor::GetCStr(offset_t *offset_ptr, offset_t len) const { |
| const char *cstr = (const char *)PeekData(*offset_ptr, len); |
| if (cstr != nullptr) { |
| if (memchr(cstr, '\0', len) == nullptr) { |
| return nullptr; |
| } |
| *offset_ptr += len; |
| return cstr; |
| } |
| return nullptr; |
| } |
| |
| //------------------------------------------------------------------ |
| // Peeks at a string in the contained data. No verification is done |
| // to make sure the entire string lies within the bounds of this |
| // object's data, only "offset" is verified to be a valid offset. |
| // |
| // Returns a valid C string pointer if "offset" is a valid offset in |
| // this object's data, else nullptr is returned. |
| //------------------------------------------------------------------ |
| const char *DataExtractor::PeekCStr(offset_t offset) const { |
| return (const char *)PeekData(offset, 1); |
| } |
| |
| //---------------------------------------------------------------------- |
| // Extracts an unsigned LEB128 number from this object's data |
| // starting at the offset pointed to by "offset_ptr". The offset |
| // pointed to by "offset_ptr" will be updated with the offset of the |
| // byte following the last extracted byte. |
| // |
| // Returned the extracted integer value. |
| //---------------------------------------------------------------------- |
| uint64_t DataExtractor::GetULEB128(offset_t *offset_ptr) const { |
| const uint8_t *src = (const uint8_t *)PeekData(*offset_ptr, 1); |
| if (src == nullptr) |
| return 0; |
| |
| const uint8_t *end = m_end; |
| |
| if (src < end) { |
| uint64_t result = *src++; |
| if (result >= 0x80) { |
| result &= 0x7f; |
| int shift = 7; |
| while (src < end) { |
| uint8_t byte = *src++; |
| result |= (uint64_t)(byte & 0x7f) << shift; |
| if ((byte & 0x80) == 0) |
| break; |
| shift += 7; |
| } |
| } |
| *offset_ptr = src - m_start; |
| return result; |
| } |
| |
| return 0; |
| } |
| |
| //---------------------------------------------------------------------- |
| // Extracts an signed LEB128 number from this object's data |
| // starting at the offset pointed to by "offset_ptr". The offset |
| // pointed to by "offset_ptr" will be updated with the offset of the |
| // byte following the last extracted byte. |
| // |
| // Returned the extracted integer value. |
| //---------------------------------------------------------------------- |
| int64_t DataExtractor::GetSLEB128(offset_t *offset_ptr) const { |
| const uint8_t *src = (const uint8_t *)PeekData(*offset_ptr, 1); |
| if (src == nullptr) |
| return 0; |
| |
| const uint8_t *end = m_end; |
| |
| if (src < end) { |
| int64_t result = 0; |
| int shift = 0; |
| int size = sizeof(int64_t) * 8; |
| |
| uint8_t byte = 0; |
| int bytecount = 0; |
| |
| while (src < end) { |
| bytecount++; |
| byte = *src++; |
| result |= (int64_t)(byte & 0x7f) << shift; |
| shift += 7; |
| if ((byte & 0x80) == 0) |
| break; |
| } |
| |
| // Sign bit of byte is 2nd high order bit (0x40) |
| if (shift < size && (byte & 0x40)) |
| result |= -(1 << shift); |
| |
| *offset_ptr += bytecount; |
| return result; |
| } |
| return 0; |
| } |
| |
| //---------------------------------------------------------------------- |
| // Skips a ULEB128 number (signed or unsigned) from this object's |
| // data starting at the offset pointed to by "offset_ptr". The |
| // offset pointed to by "offset_ptr" will be updated with the offset |
| // of the byte following the last extracted byte. |
| // |
| // Returns the number of bytes consumed during the extraction. |
| //---------------------------------------------------------------------- |
| uint32_t DataExtractor::Skip_LEB128(offset_t *offset_ptr) const { |
| uint32_t bytes_consumed = 0; |
| const uint8_t *src = (const uint8_t *)PeekData(*offset_ptr, 1); |
| if (src == nullptr) |
| return 0; |
| |
| const uint8_t *end = m_end; |
| |
| if (src < end) { |
| const uint8_t *src_pos = src; |
| while ((src_pos < end) && (*src_pos++ & 0x80)) |
| ++bytes_consumed; |
| *offset_ptr += src_pos - src; |
| } |
| return bytes_consumed; |
| } |
| |
| static bool GetAPInt(const DataExtractor &data, lldb::offset_t *offset_ptr, |
| lldb::offset_t byte_size, llvm::APInt &result) { |
| llvm::SmallVector<uint64_t, 2> uint64_array; |
| lldb::offset_t bytes_left = byte_size; |
| uint64_t u64; |
| const lldb::ByteOrder byte_order = data.GetByteOrder(); |
| if (byte_order == lldb::eByteOrderLittle) { |
| while (bytes_left > 0) { |
| if (bytes_left >= 8) { |
| u64 = data.GetU64(offset_ptr); |
| bytes_left -= 8; |
| } else { |
| u64 = data.GetMaxU64(offset_ptr, (uint32_t)bytes_left); |
| bytes_left = 0; |
| } |
| uint64_array.push_back(u64); |
| } |
| result = llvm::APInt(byte_size * 8, llvm::ArrayRef<uint64_t>(uint64_array)); |
| return true; |
| } else if (byte_order == lldb::eByteOrderBig) { |
| lldb::offset_t be_offset = *offset_ptr + byte_size; |
| lldb::offset_t temp_offset; |
| while (bytes_left > 0) { |
| if (bytes_left >= 8) { |
| be_offset -= 8; |
| temp_offset = be_offset; |
| u64 = data.GetU64(&temp_offset); |
| bytes_left -= 8; |
| } else { |
| be_offset -= bytes_left; |
| temp_offset = be_offset; |
| u64 = data.GetMaxU64(&temp_offset, (uint32_t)bytes_left); |
| bytes_left = 0; |
| } |
| uint64_array.push_back(u64); |
| } |
| *offset_ptr += byte_size; |
| result = llvm::APInt(byte_size * 8, llvm::ArrayRef<uint64_t>(uint64_array)); |
| return true; |
| } |
| return false; |
| } |
| |
| static lldb::offset_t DumpAPInt(Stream *s, const DataExtractor &data, |
| lldb::offset_t offset, lldb::offset_t byte_size, |
| bool is_signed, unsigned radix) { |
| llvm::APInt apint; |
| if (GetAPInt(data, &offset, byte_size, apint)) { |
| std::string apint_str(apint.toString(radix, is_signed)); |
| switch (radix) { |
| case 2: |
| s->Write("0b", 2); |
| break; |
| case 8: |
| s->Write("0", 1); |
| break; |
| case 10: |
| break; |
| } |
| s->Write(apint_str.c_str(), apint_str.size()); |
| } |
| return offset; |
| } |
| |
| static float half2float(uint16_t half) { |
| union { |
| float f; |
| uint32_t u; |
| } u; |
| int32_t v = (int16_t)half; |
| |
| if (0 == (v & 0x7c00)) { |
| u.u = v & 0x80007FFFU; |
| return u.f * ldexpf(1, 125); |
| } |
| |
| v <<= 13; |
| u.u = v | 0x70000000U; |
| return u.f * ldexpf(1, -112); |
| } |
| |
| lldb::offset_t DataExtractor::Dump( |
| Stream *s, offset_t start_offset, lldb::Format item_format, |
| size_t item_byte_size, size_t item_count, size_t num_per_line, |
| uint64_t base_addr, |
| uint32_t item_bit_size, // If zero, this is not a bitfield value, if |
| // non-zero, the value is a bitfield |
| uint32_t item_bit_offset, // If "item_bit_size" is non-zero, this is the |
| // shift amount to apply to a bitfield |
| ExecutionContextScope *exe_scope) const { |
| if (s == nullptr) |
| return start_offset; |
| |
| if (item_format == eFormatPointer) { |
| if (item_byte_size != 4 && item_byte_size != 8) |
| item_byte_size = s->GetAddressByteSize(); |
| } |
| |
| offset_t offset = start_offset; |
| |
| if (item_format == eFormatInstruction) { |
| TargetSP target_sp; |
| if (exe_scope) |
| target_sp = exe_scope->CalculateTarget(); |
| if (target_sp) { |
| DisassemblerSP disassembler_sp(Disassembler::FindPlugin( |
| target_sp->GetArchitecture(), nullptr, nullptr)); |
| if (disassembler_sp) { |
| lldb::addr_t addr = base_addr + start_offset; |
| lldb_private::Address so_addr; |
| bool data_from_file = true; |
| if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr, so_addr)) { |
| data_from_file = false; |
| } else { |
| if (target_sp->GetSectionLoadList().IsEmpty() || |
| !target_sp->GetImages().ResolveFileAddress(addr, so_addr)) |
| so_addr.SetRawAddress(addr); |
| } |
| |
| size_t bytes_consumed = disassembler_sp->DecodeInstructions( |
| so_addr, *this, start_offset, item_count, false, data_from_file); |
| |
| if (bytes_consumed) { |
| offset += bytes_consumed; |
| const bool show_address = base_addr != LLDB_INVALID_ADDRESS; |
| const bool show_bytes = true; |
| ExecutionContext exe_ctx; |
| exe_scope->CalculateExecutionContext(exe_ctx); |
| disassembler_sp->GetInstructionList().Dump(s, show_address, |
| show_bytes, &exe_ctx); |
| } |
| } |
| } else |
| s->Printf("invalid target"); |
| |
| return offset; |
| } |
| |
| if ((item_format == eFormatOSType || item_format == eFormatAddressInfo) && |
| item_byte_size > 8) |
| item_format = eFormatHex; |
| |
| lldb::offset_t line_start_offset = start_offset; |
| for (uint32_t count = 0; ValidOffset(offset) && count < item_count; ++count) { |
| if ((count % num_per_line) == 0) { |
| if (count > 0) { |
| if (item_format == eFormatBytesWithASCII && |
| offset > line_start_offset) { |
| s->Printf("%*s", |
| static_cast<int>( |
| (num_per_line - (offset - line_start_offset)) * 3 + 2), |
| ""); |
| Dump(s, line_start_offset, eFormatCharPrintable, 1, |
| offset - line_start_offset, SIZE_MAX, LLDB_INVALID_ADDRESS, 0, |
| 0); |
| } |
| s->EOL(); |
| } |
| if (base_addr != LLDB_INVALID_ADDRESS) |
| s->Printf("0x%8.8" PRIx64 ": ", |
| (uint64_t)(base_addr + |
| (offset - start_offset) / m_target_byte_size)); |
| |
| line_start_offset = offset; |
| } else if (item_format != eFormatChar && |
| item_format != eFormatCharPrintable && |
| item_format != eFormatCharArray && count > 0) { |
| s->PutChar(' '); |
| } |
| |
| switch (item_format) { |
| case eFormatBoolean: |
| if (item_byte_size <= 8) |
| s->Printf("%s", GetMaxU64Bitfield(&offset, item_byte_size, |
| item_bit_size, item_bit_offset) |
| ? "true" |
| : "false"); |
| else { |
| s->Printf("error: unsupported byte size (%" PRIu64 |
| ") for boolean format", |
| (uint64_t)item_byte_size); |
| return offset; |
| } |
| break; |
| |
| case eFormatBinary: |
| if (item_byte_size <= 8) { |
| uint64_t uval64 = GetMaxU64Bitfield(&offset, item_byte_size, |
| item_bit_size, item_bit_offset); |
| // Avoid std::bitset<64>::to_string() since it is missing in |
| // earlier C++ libraries |
| std::string binary_value(64, '0'); |
| std::bitset<64> bits(uval64); |
| for (uint32_t i = 0; i < 64; ++i) |
| if (bits[i]) |
| binary_value[64 - 1 - i] = '1'; |
| if (item_bit_size > 0) |
| s->Printf("0b%s", binary_value.c_str() + 64 - item_bit_size); |
| else if (item_byte_size > 0 && item_byte_size <= 8) |
| s->Printf("0b%s", binary_value.c_str() + 64 - item_byte_size * 8); |
| } else { |
| const bool is_signed = false; |
| const unsigned radix = 2; |
| offset = DumpAPInt(s, *this, offset, item_byte_size, is_signed, radix); |
| } |
| break; |
| |
| case eFormatBytes: |
| case eFormatBytesWithASCII: |
| for (uint32_t i = 0; i < item_byte_size; ++i) { |
| s->Printf("%2.2x", GetU8(&offset)); |
| } |
| |
| // Put an extra space between the groups of bytes if more than one |
| // is being dumped in a group (item_byte_size is more than 1). |
| if (item_byte_size > 1) |
| s->PutChar(' '); |
| break; |
| |
| case eFormatChar: |
| case eFormatCharPrintable: |
| case eFormatCharArray: { |
| // If we are only printing one character surround it with single |
| // quotes |
| if (item_count == 1 && item_format == eFormatChar) |
| s->PutChar('\''); |
| |
| const uint64_t ch = GetMaxU64Bitfield(&offset, item_byte_size, |
| item_bit_size, item_bit_offset); |
| if (isprint(ch)) |
| s->Printf("%c", (char)ch); |
| else if (item_format != eFormatCharPrintable) { |
| switch (ch) { |
| case '\033': |
| s->Printf("\\e"); |
| break; |
| case '\a': |
| s->Printf("\\a"); |
| break; |
| case '\b': |
| s->Printf("\\b"); |
| break; |
| case '\f': |
| s->Printf("\\f"); |
| break; |
| case '\n': |
| s->Printf("\\n"); |
| break; |
| case '\r': |
| s->Printf("\\r"); |
| break; |
| case '\t': |
| s->Printf("\\t"); |
| break; |
| case '\v': |
| s->Printf("\\v"); |
| break; |
| case '\0': |
| s->Printf("\\0"); |
| break; |
| default: |
| if (item_byte_size == 1) |
| s->Printf("\\x%2.2x", (uint8_t)ch); |
| else |
| s->Printf("%" PRIu64, ch); |
| break; |
| } |
| } else { |
| s->PutChar(NON_PRINTABLE_CHAR); |
| } |
| |
| // If we are only printing one character surround it with single quotes |
| if (item_count == 1 && item_format == eFormatChar) |
| s->PutChar('\''); |
| } break; |
| |
| case eFormatEnum: // Print enum value as a signed integer when we don't get |
| // the enum type |
| case eFormatDecimal: |
| if (item_byte_size <= 8) |
| s->Printf("%" PRId64, |
| GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size, |
| item_bit_offset)); |
| else { |
| const bool is_signed = true; |
| const unsigned radix = 10; |
| offset = DumpAPInt(s, *this, offset, item_byte_size, is_signed, radix); |
| } |
| break; |
| |
| case eFormatUnsigned: |
| if (item_byte_size <= 8) |
| s->Printf("%" PRIu64, |
| GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, |
| item_bit_offset)); |
| else { |
| const bool is_signed = false; |
| const unsigned radix = 10; |
| offset = DumpAPInt(s, *this, offset, item_byte_size, is_signed, radix); |
| } |
| break; |
| |
| case eFormatOctal: |
| if (item_byte_size <= 8) |
| s->Printf("0%" PRIo64, |
| GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size, |
| item_bit_offset)); |
| else { |
| const bool is_signed = false; |
| const unsigned radix = 8; |
| offset = DumpAPInt(s, *this, offset, item_byte_size, is_signed, radix); |
| } |
| break; |
| |
| case eFormatOSType: { |
| uint64_t uval64 = GetMaxU64Bitfield(&offset, item_byte_size, |
| item_bit_size, item_bit_offset); |
| s->PutChar('\''); |
| for (uint32_t i = 0; i < item_byte_size; ++i) { |
| uint8_t ch = (uint8_t)(uval64 >> ((item_byte_size - i - 1) * 8)); |
| if (isprint(ch)) |
| s->Printf("%c", ch); |
| else { |
| switch (ch) { |
| case '\033': |
| s->Printf("\\e"); |
| break; |
| case '\a': |
| s->Printf("\\a"); |
| break; |
| case '\b': |
| s->Printf("\\b"); |
| break; |
| case '\f': |
| s->Printf("\\f"); |
| break; |
| case '\n': |
| s->Printf("\\n"); |
| break; |
| case '\r': |
| s->Printf("\\r"); |
| break; |
| case '\t': |
| s->Printf("\\t"); |
| break; |
| case '\v': |
| s->Printf("\\v"); |
| break; |
| case '\0': |
| s->Printf("\\0"); |
| break; |
| default: |
| s->Printf("\\x%2.2x", ch); |
| break; |
| } |
| } |
| } |
| s->PutChar('\''); |
| } break; |
| |
| case eFormatCString: { |
| const char *cstr = GetCStr(&offset); |
| |
| if (!cstr) { |
| s->Printf("NULL"); |
| offset = LLDB_INVALID_OFFSET; |
| } else { |
| s->PutChar('\"'); |
| |
| while (const char c = *cstr) { |
| if (isprint(c)) { |
| s->PutChar(c); |
| } else { |
| switch (c) { |
| case '\033': |
| s->Printf("\\e"); |
| break; |
| case '\a': |
| s->Printf("\\a"); |
| break; |
| case '\b': |
| s->Printf("\\b"); |
| break; |
| case '\f': |
| s->Printf("\\f"); |
| break; |
| case '\n': |
| s->Printf("\\n"); |
| break; |
| case '\r': |
| s->Printf("\\r"); |
| break; |
| case '\t': |
| s->Printf("\\t"); |
| break; |
| case '\v': |
| s->Printf("\\v"); |
| break; |
| default: |
| s->Printf("\\x%2.2x", c); |
| break; |
| } |
| } |
| |
| ++cstr; |
| } |
| |
| s->PutChar('\"'); |
| } |
| } break; |
| |
| case eFormatPointer: |
| s->Address(GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, |
| item_bit_offset), |
| sizeof(addr_t)); |
| break; |
| |
| case eFormatComplexInteger: { |
| size_t complex_int_byte_size = item_byte_size / 2; |
| |
| if (complex_int_byte_size > 0 && complex_int_byte_size <= 8) { |
| s->Printf("%" PRIu64, |
| GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0)); |
| s->Printf(" + %" PRIu64 "i", |
| GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0)); |
| } else { |
| s->Printf("error: unsupported byte size (%" PRIu64 |
| ") for complex integer format", |
| (uint64_t)item_byte_size); |
| return offset; |
| } |
| } break; |
| |
| case eFormatComplex: |
| if (sizeof(float) * 2 == item_byte_size) { |
| float f32_1 = GetFloat(&offset); |
| float f32_2 = GetFloat(&offset); |
| |
| s->Printf("%g + %gi", f32_1, f32_2); |
| break; |
| } else if (sizeof(double) * 2 == item_byte_size) { |
| double d64_1 = GetDouble(&offset); |
| double d64_2 = GetDouble(&offset); |
| |
| s->Printf("%lg + %lgi", d64_1, d64_2); |
| break; |
| } else if (sizeof(long double) * 2 == item_byte_size) { |
| long double ld64_1 = GetLongDouble(&offset); |
| long double ld64_2 = GetLongDouble(&offset); |
| s->Printf("%Lg + %Lgi", ld64_1, ld64_2); |
| break; |
| } else { |
| s->Printf("error: unsupported byte size (%" PRIu64 |
| ") for complex float format", |
| (uint64_t)item_byte_size); |
| return offset; |
| } |
| break; |
| |
| default: |
| case eFormatDefault: |
| case eFormatHex: |
| case eFormatHexUppercase: { |
| bool wantsuppercase = (item_format == eFormatHexUppercase); |
| switch (item_byte_size) { |
| case 1: |
| case 2: |
| case 4: |
| case 8: |
| s->Printf(wantsuppercase ? "0x%*.*" PRIX64 : "0x%*.*" PRIx64, |
| (int)(2 * item_byte_size), (int)(2 * item_byte_size), |
| GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, |
| item_bit_offset)); |
| break; |
| default: { |
| assert(item_bit_size == 0 && item_bit_offset == 0); |
| const uint8_t *bytes = |
| (const uint8_t *)GetData(&offset, item_byte_size); |
| if (bytes) { |
| s->PutCString("0x"); |
| uint32_t idx; |
| if (m_byte_order == eByteOrderBig) { |
| for (idx = 0; idx < item_byte_size; ++idx) |
| s->Printf(wantsuppercase ? "%2.2X" : "%2.2x", bytes[idx]); |
| } else { |
| for (idx = 0; idx < item_byte_size; ++idx) |
| s->Printf(wantsuppercase ? "%2.2X" : "%2.2x", |
| bytes[item_byte_size - 1 - idx]); |
| } |
| } |
| } break; |
| } |
| } break; |
| |
| case eFormatFloat: { |
| TargetSP target_sp; |
| bool used_apfloat = false; |
| if (exe_scope) |
| target_sp = exe_scope->CalculateTarget(); |
| if (target_sp) { |
| ClangASTContext *clang_ast = target_sp->GetScratchClangASTContext(); |
| if (clang_ast) { |
| clang::ASTContext *ast = clang_ast->getASTContext(); |
| if (ast) { |
| llvm::SmallVector<char, 256> sv; |
| // Show full precision when printing float values |
| const unsigned format_precision = 0; |
| const unsigned format_max_padding = 100; |
| size_t item_bit_size = item_byte_size * 8; |
| |
| if (item_bit_size == ast->getTypeSize(ast->FloatTy)) { |
| llvm::APInt apint(item_bit_size, |
| this->GetMaxU64(&offset, item_byte_size)); |
| llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->FloatTy), |
| apint); |
| apfloat.toString(sv, format_precision, format_max_padding); |
| } else if (item_bit_size == ast->getTypeSize(ast->DoubleTy)) { |
| llvm::APInt apint; |
| if (GetAPInt(*this, &offset, item_byte_size, apint)) { |
| llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->DoubleTy), |
| apint); |
| apfloat.toString(sv, format_precision, format_max_padding); |
| } |
| } else if (item_bit_size == ast->getTypeSize(ast->LongDoubleTy)) { |
| const auto &semantics = |
| ast->getFloatTypeSemantics(ast->LongDoubleTy); |
| const auto byte_size = |
| (llvm::APFloat::getSizeInBits(semantics) + 7) / 8; |
| |
| llvm::APInt apint; |
| if (GetAPInt(*this, &offset, byte_size, apint)) { |
| llvm::APFloat apfloat(semantics, apint); |
| apfloat.toString(sv, format_precision, format_max_padding); |
| } |
| } else if (item_bit_size == ast->getTypeSize(ast->HalfTy)) { |
| llvm::APInt apint(item_bit_size, this->GetU16(&offset)); |
| llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->HalfTy), |
| apint); |
| apfloat.toString(sv, format_precision, format_max_padding); |
| } |
| |
| if (!sv.empty()) { |
| s->Printf("%*.*s", (int)sv.size(), (int)sv.size(), sv.data()); |
| used_apfloat = true; |
| } |
| } |
| } |
| } |
| |
| if (!used_apfloat) { |
| std::ostringstream ss; |
| if (item_byte_size == sizeof(float) || item_byte_size == 2) { |
| float f; |
| if (item_byte_size == 2) { |
| uint16_t half = this->GetU16(&offset); |
| f = half2float(half); |
| } else { |
| f = GetFloat(&offset); |
| } |
| ss.precision(std::numeric_limits<float>::digits10); |
| ss << f; |
| } else if (item_byte_size == sizeof(double)) { |
| ss.precision(std::numeric_limits<double>::digits10); |
| ss << GetDouble(&offset); |
| } else if (item_byte_size == sizeof(long double) || |
| item_byte_size == 10) { |
| ss.precision(std::numeric_limits<long double>::digits10); |
| ss << GetLongDouble(&offset); |
| } else { |
| s->Printf("error: unsupported byte size (%" PRIu64 |
| ") for float format", |
| (uint64_t)item_byte_size); |
| return offset; |
| } |
| ss.flush(); |
| s->Printf("%s", ss.str().c_str()); |
| } |
| } break; |
| |
| case eFormatUnicode16: |
| s->Printf("U+%4.4x", GetU16(&offset)); |
| break; |
| |
| case eFormatUnicode32: |
| s->Printf("U+0x%8.8x", GetU32(&offset)); |
| break; |
| |
| case eFormatAddressInfo: { |
| addr_t addr = GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, |
| item_bit_offset); |
| s->Printf("0x%*.*" PRIx64, (int)(2 * item_byte_size), |
| (int)(2 * item_byte_size), addr); |
| if (exe_scope) { |
| TargetSP target_sp(exe_scope->CalculateTarget()); |
| lldb_private::Address so_addr; |
| if (target_sp) { |
| if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr, |
| so_addr)) { |
| s->PutChar(' '); |
| so_addr.Dump(s, exe_scope, Address::DumpStyleResolvedDescription, |
| Address::DumpStyleModuleWithFileAddress); |
| } else { |
| so_addr.SetOffset(addr); |
| so_addr.Dump(s, exe_scope, |
| Address::DumpStyleResolvedPointerDescription); |
| } |
| } |
| } |
| } break; |
| |
| case eFormatHexFloat: |
| if (sizeof(float) == item_byte_size) { |
| char float_cstr[256]; |
| llvm::APFloat ap_float(GetFloat(&offset)); |
| ap_float.convertToHexString(float_cstr, 0, false, |
| llvm::APFloat::rmNearestTiesToEven); |
| s->Printf("%s", float_cstr); |
| break; |
| } else if (sizeof(double) == item_byte_size) { |
| char float_cstr[256]; |
| llvm::APFloat ap_float(GetDouble(&offset)); |
| ap_float.convertToHexString(float_cstr, 0, false, |
| llvm::APFloat::rmNearestTiesToEven); |
| s->Printf("%s", float_cstr); |
| break; |
| } else { |
| s->Printf("error: unsupported byte size (%" PRIu64 |
| ") for hex float format", |
| (uint64_t)item_byte_size); |
| return offset; |
| } |
| break; |
| |
| // please keep the single-item formats below in sync with |
| // FormatManager::GetSingleItemFormat |
| // if you fail to do so, users will start getting different outputs |
| // depending on internal |
| // implementation details they should not care about || |
| case eFormatVectorOfChar: // || |
| s->PutChar('{'); // \/ |
| offset = Dump(s, offset, eFormatCharArray, 1, item_byte_size, |
| item_byte_size, LLDB_INVALID_ADDRESS, 0, 0); |
| s->PutChar('}'); |
| break; |
| |
| case eFormatVectorOfSInt8: |
| s->PutChar('{'); |
| offset = Dump(s, offset, eFormatDecimal, 1, item_byte_size, |
| item_byte_size, LLDB_INVALID_ADDRESS, 0, 0); |
| s->PutChar('}'); |
| break; |
| |
| case eFormatVectorOfUInt8: |
| s->PutChar('{'); |
| offset = Dump(s, offset, eFormatHex, 1, item_byte_size, item_byte_size, |
| LLDB_INVALID_ADDRESS, 0, 0); |
| s->PutChar('}'); |
| break; |
| |
| case eFormatVectorOfSInt16: |
| s->PutChar('{'); |
| offset = |
| Dump(s, offset, eFormatDecimal, sizeof(uint16_t), |
| item_byte_size / sizeof(uint16_t), |
| item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0); |
| s->PutChar('}'); |
| break; |
| |
| case eFormatVectorOfUInt16: |
| s->PutChar('{'); |
| offset = |
| Dump(s, offset, eFormatHex, sizeof(uint16_t), |
| item_byte_size / sizeof(uint16_t), |
| item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0); |
| s->PutChar('}'); |
| break; |
| |
| case eFormatVectorOfSInt32: |
| s->PutChar('{'); |
| offset = |
| Dump(s, offset, eFormatDecimal, sizeof(uint32_t), |
| item_byte_size / sizeof(uint32_t), |
| item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0); |
| s->PutChar('}'); |
| break; |
| |
| case eFormatVectorOfUInt32: |
| s->PutChar('{'); |
| offset = |
| Dump(s, offset, eFormatHex, sizeof(uint32_t), |
| item_byte_size / sizeof(uint32_t), |
| item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0); |
| s->PutChar('}'); |
| break; |
| |
| case eFormatVectorOfSInt64: |
| s->PutChar('{'); |
| offset = |
| Dump(s, offset, eFormatDecimal, sizeof(uint64_t), |
| item_byte_size / sizeof(uint64_t), |
| item_byte_size / sizeof(uint64_t), LLDB_INVALID_ADDRESS, 0, 0); |
| s->PutChar('}'); |
| break; |
| |
| case eFormatVectorOfUInt64: |
| s->PutChar('{'); |
| offset = |
| Dump(s, offset, eFormatHex, sizeof(uint64_t), |
| item_byte_size / sizeof(uint64_t), |
| item_byte_size / sizeof(uint64_t), LLDB_INVALID_ADDRESS, 0, 0); |
| s->PutChar('}'); |
| break; |
| |
| case eFormatVectorOfFloat16: |
| s->PutChar('{'); |
| offset = Dump(s, offset, eFormatFloat, 2, item_byte_size / 2, |
| item_byte_size / 2, LLDB_INVALID_ADDRESS, 0, 0); |
| s->PutChar('}'); |
| break; |
| |
| case eFormatVectorOfFloat32: |
| s->PutChar('{'); |
| offset = Dump(s, offset, eFormatFloat, 4, item_byte_size / 4, |
| item_byte_size / 4, LLDB_INVALID_ADDRESS, 0, 0); |
| s->PutChar('}'); |
| break; |
| |
| case eFormatVectorOfFloat64: |
| s->PutChar('{'); |
| offset = Dump(s, offset, eFormatFloat, 8, item_byte_size / 8, |
| item_byte_size / 8, LLDB_INVALID_ADDRESS, 0, 0); |
| s->PutChar('}'); |
| break; |
| |
| case eFormatVectorOfUInt128: |
| s->PutChar('{'); |
| offset = Dump(s, offset, eFormatHex, 16, item_byte_size / 16, |
| item_byte_size / 16, LLDB_INVALID_ADDRESS, 0, 0); |
| s->PutChar('}'); |
| break; |
| } |
| } |
| |
| if (item_format == eFormatBytesWithASCII && offset > line_start_offset) { |
| s->Printf("%*s", static_cast<int>( |
| (num_per_line - (offset - line_start_offset)) * 3 + 2), |
| ""); |
| Dump(s, line_start_offset, eFormatCharPrintable, 1, |
| offset - line_start_offset, SIZE_MAX, LLDB_INVALID_ADDRESS, 0, 0); |
| } |
| return offset; // Return the offset at which we ended up |
| } |
| |
| //---------------------------------------------------------------------- |
| // Dumps bytes from this object's data to the stream "s" starting |
| // "start_offset" bytes into this data, and ending with the byte |
| // before "end_offset". "base_addr" will be added to the offset |
| // into the dumped data when showing the offset into the data in the |
| // output information. "num_per_line" objects of type "type" will |
| // be dumped with the option to override the format for each object |
| // with "type_format". "type_format" is a printf style formatting |
| // string. If "type_format" is nullptr, then an appropriate format |
| // string will be used for the supplied "type". If the stream "s" |
| // is nullptr, then the output will be send to Log(). |
| //---------------------------------------------------------------------- |
| lldb::offset_t DataExtractor::PutToLog(Log *log, offset_t start_offset, |
| offset_t length, uint64_t base_addr, |
| uint32_t num_per_line, |
| DataExtractor::Type type, |
| const char *format) const { |
| if (log == nullptr) |
| return start_offset; |
| |
| offset_t offset; |
| offset_t end_offset; |
| uint32_t count; |
| StreamString sstr; |
| for (offset = start_offset, end_offset = offset + length, count = 0; |
| ValidOffset(offset) && offset < end_offset; ++count) { |
| if ((count % num_per_line) == 0) { |
| // Print out any previous string |
| if (sstr.GetSize() > 0) { |
| log->PutString(sstr.GetString()); |
| sstr.Clear(); |
| } |
| // Reset string offset and fill the current line string with address: |
| if (base_addr != LLDB_INVALID_ADDRESS) |
| sstr.Printf("0x%8.8" PRIx64 ":", |
| (uint64_t)(base_addr + (offset - start_offset))); |
| } |
| |
| switch (type) { |
| case TypeUInt8: |
| sstr.Printf(format ? format : " %2.2x", GetU8(&offset)); |
| break; |
| case TypeChar: { |
| char ch = GetU8(&offset); |
| sstr.Printf(format ? format : " %c", isprint(ch) ? ch : ' '); |
| } break; |
| case TypeUInt16: |
| sstr.Printf(format ? format : " %4.4x", GetU16(&offset)); |
| break; |
| case TypeUInt32: |
| sstr.Printf(format ? format : " %8.8x", GetU32(&offset)); |
| break; |
| case TypeUInt64: |
| sstr.Printf(format ? format : " %16.16" PRIx64, GetU64(&offset)); |
| break; |
| case TypePointer: |
| sstr.Printf(format ? format : " 0x%" PRIx64, GetAddress(&offset)); |
| break; |
| case TypeULEB128: |
| sstr.Printf(format ? format : " 0x%" PRIx64, GetULEB128(&offset)); |
| break; |
| case TypeSLEB128: |
| sstr.Printf(format ? format : " %" PRId64, GetSLEB128(&offset)); |
| break; |
| } |
| } |
| |
| if (!sstr.Empty()) |
| log->PutString(sstr.GetString()); |
| |
| return offset; // Return the offset at which we ended up |
| } |
| |
| //---------------------------------------------------------------------- |
| // DumpUUID |
| // |
| // Dump out a UUID starting at 'offset' bytes into the buffer |
| //---------------------------------------------------------------------- |
| void DataExtractor::DumpUUID(Stream *s, offset_t offset) const { |
| if (s) { |
| const uint8_t *uuid_data = PeekData(offset, 16); |
| if (uuid_data) { |
| lldb_private::UUID uuid(uuid_data, 16); |
| uuid.Dump(s); |
| } else { |
| s->Printf("<not enough data for UUID at offset 0x%8.8" PRIx64 ">", |
| offset); |
| } |
| } |
| } |
| |
| void DataExtractor::DumpHexBytes(Stream *s, const void *src, size_t src_len, |
| uint32_t bytes_per_line, addr_t base_addr) { |
| DataExtractor data(src, src_len, eByteOrderLittle, 4); |
| data.Dump(s, |
| 0, // Offset into "src" |
| eFormatBytes, // Dump as hex bytes |
| 1, // Size of each item is 1 for single bytes |
| src_len, // Number of bytes |
| bytes_per_line, // Num bytes per line |
| base_addr, // Base address |
| 0, 0); // Bitfield info |
| } |
| |
| size_t DataExtractor::Copy(DataExtractor &dest_data) const { |
| if (m_data_sp) { |
| // we can pass along the SP to the data |
| dest_data.SetData(m_data_sp); |
| } else { |
| const uint8_t *base_ptr = m_start; |
| size_t data_size = GetByteSize(); |
| dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size))); |
| } |
| return GetByteSize(); |
| } |
| |
| bool DataExtractor::Append(DataExtractor &rhs) { |
| if (rhs.GetByteOrder() != GetByteOrder()) |
| return false; |
| |
| if (rhs.GetByteSize() == 0) |
| return true; |
| |
| if (GetByteSize() == 0) |
| return (rhs.Copy(*this) > 0); |
| |
| size_t bytes = GetByteSize() + rhs.GetByteSize(); |
| |
| DataBufferHeap *buffer_heap_ptr = nullptr; |
| DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0)); |
| |
| if (!buffer_sp || buffer_heap_ptr == nullptr) |
| return false; |
| |
| uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes(); |
| |
| memcpy(bytes_ptr, GetDataStart(), GetByteSize()); |
| memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize()); |
| |
| SetData(buffer_sp); |
| |
| return true; |
| } |
| |
| bool DataExtractor::Append(void *buf, offset_t length) { |
| if (buf == nullptr) |
| return false; |
| |
| if (length == 0) |
| return true; |
| |
| size_t bytes = GetByteSize() + length; |
| |
| DataBufferHeap *buffer_heap_ptr = nullptr; |
| DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0)); |
| |
| if (!buffer_sp || buffer_heap_ptr == nullptr) |
| return false; |
| |
| uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes(); |
| |
| if (GetByteSize() > 0) |
| memcpy(bytes_ptr, GetDataStart(), GetByteSize()); |
| |
| memcpy(bytes_ptr + GetByteSize(), buf, length); |
| |
| SetData(buffer_sp); |
| |
| return true; |
| } |
| |
| void DataExtractor::Checksum(llvm::SmallVectorImpl<uint8_t> &dest, |
| uint64_t max_data) { |
| if (max_data == 0) |
| max_data = GetByteSize(); |
| else |
| max_data = std::min(max_data, GetByteSize()); |
| |
| llvm::MD5 md5; |
| |
| const llvm::ArrayRef<uint8_t> data(GetDataStart(), max_data); |
| md5.update(data); |
| |
| llvm::MD5::MD5Result result; |
| md5.final(result); |
| |
| dest.resize(16); |
| std::copy(result, result + 16, dest.begin()); |
| } |