blob: 30fc22c7dfd8db5f9bed2ff319d248f9790b9809 [file] [log] [blame]
//===-- MachTask.cpp --------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//----------------------------------------------------------------------
//
// MachTask.cpp
// debugserver
//
// Created by Greg Clayton on 12/5/08.
//
//===----------------------------------------------------------------------===//
#include "MachTask.h"
// C Includes
#include <mach-o/dyld_images.h>
#include <mach/mach_vm.h>
#import <sys/sysctl.h>
// C++ Includes
#include <iomanip>
#include <sstream>
// Other libraries and framework includes
// Project includes
#include "CFUtils.h"
#include "DNB.h"
#include "DNBError.h"
#include "DNBLog.h"
#include "MachProcess.h"
#include "DNBDataRef.h"
#include "stack_logging.h"
#ifdef WITH_SPRINGBOARD
#include <CoreFoundation/CoreFoundation.h>
#include <SpringBoardServices/SpringBoardServer.h>
#include <SpringBoardServices/SBSWatchdogAssertion.h>
#endif
//----------------------------------------------------------------------
// MachTask constructor
//----------------------------------------------------------------------
MachTask::MachTask(MachProcess *process) :
m_process (process),
m_task (TASK_NULL),
m_vm_memory (),
m_exception_thread (0),
m_exception_port (MACH_PORT_NULL)
{
memset(&m_exc_port_info, 0, sizeof(m_exc_port_info));
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
MachTask::~MachTask()
{
Clear();
}
//----------------------------------------------------------------------
// MachTask::Suspend
//----------------------------------------------------------------------
kern_return_t
MachTask::Suspend()
{
DNBError err;
task_t task = TaskPort();
err = ::task_suspend (task);
if (DNBLogCheckLogBit(LOG_TASK) || err.Fail())
err.LogThreaded("::task_suspend ( target_task = 0x%4.4x )", task);
return err.Error();
}
//----------------------------------------------------------------------
// MachTask::Resume
//----------------------------------------------------------------------
kern_return_t
MachTask::Resume()
{
struct task_basic_info task_info;
task_t task = TaskPort();
if (task == TASK_NULL)
return KERN_INVALID_ARGUMENT;
DNBError err;
err = BasicInfo(task, &task_info);
if (err.Success())
{
// task_resume isn't counted like task_suspend calls are, are, so if the
// task is not suspended, don't try and resume it since it is already
// running
if (task_info.suspend_count > 0)
{
err = ::task_resume (task);
if (DNBLogCheckLogBit(LOG_TASK) || err.Fail())
err.LogThreaded("::task_resume ( target_task = 0x%4.4x )", task);
}
}
return err.Error();
}
//----------------------------------------------------------------------
// MachTask::ExceptionPort
//----------------------------------------------------------------------
mach_port_t
MachTask::ExceptionPort() const
{
return m_exception_port;
}
//----------------------------------------------------------------------
// MachTask::ExceptionPortIsValid
//----------------------------------------------------------------------
bool
MachTask::ExceptionPortIsValid() const
{
return MACH_PORT_VALID(m_exception_port);
}
//----------------------------------------------------------------------
// MachTask::Clear
//----------------------------------------------------------------------
void
MachTask::Clear()
{
// Do any cleanup needed for this task
m_task = TASK_NULL;
m_exception_thread = 0;
m_exception_port = MACH_PORT_NULL;
}
//----------------------------------------------------------------------
// MachTask::SaveExceptionPortInfo
//----------------------------------------------------------------------
kern_return_t
MachTask::SaveExceptionPortInfo()
{
return m_exc_port_info.Save(TaskPort());
}
//----------------------------------------------------------------------
// MachTask::RestoreExceptionPortInfo
//----------------------------------------------------------------------
kern_return_t
MachTask::RestoreExceptionPortInfo()
{
return m_exc_port_info.Restore(TaskPort());
}
//----------------------------------------------------------------------
// MachTask::ReadMemory
//----------------------------------------------------------------------
nub_size_t
MachTask::ReadMemory (nub_addr_t addr, nub_size_t size, void *buf)
{
nub_size_t n = 0;
task_t task = TaskPort();
if (task != TASK_NULL)
{
n = m_vm_memory.Read(task, addr, buf, size);
DNBLogThreadedIf(LOG_MEMORY, "MachTask::ReadMemory ( addr = 0x%8.8llx, size = %llu, buf = %p) => %llu bytes read", (uint64_t)addr, (uint64_t)size, buf, (uint64_t)n);
if (DNBLogCheckLogBit(LOG_MEMORY_DATA_LONG) || (DNBLogCheckLogBit(LOG_MEMORY_DATA_SHORT) && size <= 8))
{
DNBDataRef data((uint8_t*)buf, n, false);
data.Dump(0, n, addr, DNBDataRef::TypeUInt8, 16);
}
}
return n;
}
//----------------------------------------------------------------------
// MachTask::WriteMemory
//----------------------------------------------------------------------
nub_size_t
MachTask::WriteMemory (nub_addr_t addr, nub_size_t size, const void *buf)
{
nub_size_t n = 0;
task_t task = TaskPort();
if (task != TASK_NULL)
{
n = m_vm_memory.Write(task, addr, buf, size);
DNBLogThreadedIf(LOG_MEMORY, "MachTask::WriteMemory ( addr = 0x%8.8llx, size = %llu, buf = %p) => %llu bytes written", (uint64_t)addr, (uint64_t)size, buf, (uint64_t)n);
if (DNBLogCheckLogBit(LOG_MEMORY_DATA_LONG) || (DNBLogCheckLogBit(LOG_MEMORY_DATA_SHORT) && size <= 8))
{
DNBDataRef data((uint8_t*)buf, n, false);
data.Dump(0, n, addr, DNBDataRef::TypeUInt8, 16);
}
}
return n;
}
//----------------------------------------------------------------------
// MachTask::MemoryRegionInfo
//----------------------------------------------------------------------
int
MachTask::GetMemoryRegionInfo (nub_addr_t addr, DNBRegionInfo *region_info)
{
task_t task = TaskPort();
if (task == TASK_NULL)
return -1;
int ret = m_vm_memory.GetMemoryRegionInfo(task, addr, region_info);
DNBLogThreadedIf(LOG_MEMORY, "MachTask::MemoryRegionInfo ( addr = 0x%8.8llx ) => %i (start = 0x%8.8llx, size = 0x%8.8llx, permissions = %u)",
(uint64_t)addr,
ret,
(uint64_t)region_info->addr,
(uint64_t)region_info->size,
region_info->permissions);
return ret;
}
#define TIME_VALUE_TO_TIMEVAL(a, r) do { \
(r)->tv_sec = (a)->seconds; \
(r)->tv_usec = (a)->microseconds; \
} while (0)
// We should consider moving this into each MacThread.
static void get_threads_profile_data(DNBProfileDataScanType scanType, task_t task, nub_process_t pid, std::vector<uint64_t> &threads_id, std::vector<std::string> &threads_name, std::vector<uint64_t> &threads_used_usec)
{
kern_return_t kr;
thread_act_array_t threads;
mach_msg_type_number_t tcnt;
kr = task_threads(task, &threads, &tcnt);
if (kr != KERN_SUCCESS)
return;
for (int i = 0; i < tcnt; i++)
{
thread_identifier_info_data_t identifier_info;
mach_msg_type_number_t count = THREAD_IDENTIFIER_INFO_COUNT;
kr = ::thread_info(threads[i], THREAD_IDENTIFIER_INFO, (thread_info_t)&identifier_info, &count);
if (kr != KERN_SUCCESS) continue;
thread_basic_info_data_t basic_info;
count = THREAD_BASIC_INFO_COUNT;
kr = ::thread_info(threads[i], THREAD_BASIC_INFO, (thread_info_t)&basic_info, &count);
if (kr != KERN_SUCCESS) continue;
if ((basic_info.flags & TH_FLAGS_IDLE) == 0)
{
nub_thread_t tid = MachThread::GetGloballyUniqueThreadIDForMachPortID (threads[i]);
threads_id.push_back(tid);
if ((scanType & eProfileThreadName) && (identifier_info.thread_handle != 0))
{
struct proc_threadinfo proc_threadinfo;
int len = ::proc_pidinfo(pid, PROC_PIDTHREADINFO, identifier_info.thread_handle, &proc_threadinfo, PROC_PIDTHREADINFO_SIZE);
if (len && proc_threadinfo.pth_name[0])
{
threads_name.push_back(proc_threadinfo.pth_name);
}
else
{
threads_name.push_back("");
}
}
else
{
threads_name.push_back("");
}
struct timeval tv;
struct timeval thread_tv;
TIME_VALUE_TO_TIMEVAL(&basic_info.user_time, &thread_tv);
TIME_VALUE_TO_TIMEVAL(&basic_info.system_time, &tv);
timeradd(&thread_tv, &tv, &thread_tv);
uint64_t used_usec = thread_tv.tv_sec * 1000000ULL + thread_tv.tv_usec;
threads_used_usec.push_back(used_usec);
}
kr = mach_port_deallocate(mach_task_self(), threads[i]);
}
kr = mach_vm_deallocate(mach_task_self(), (mach_vm_address_t)(uintptr_t)threads, tcnt * sizeof(*threads));
}
#define RAW_HEXBASE std::setfill('0') << std::hex << std::right
#define DECIMAL std::dec << std::setfill(' ')
std::string
MachTask::GetProfileData (DNBProfileDataScanType scanType)
{
std::string result;
static int32_t numCPU = -1;
struct host_cpu_load_info host_info;
if (scanType & eProfileHostCPU)
{
int32_t mib[] = {CTL_HW, HW_AVAILCPU};
size_t len = sizeof(numCPU);
if (numCPU == -1)
{
if (sysctl(mib, sizeof(mib) / sizeof(int32_t), &numCPU, &len, NULL, 0) != 0)
return result;
}
mach_port_t localHost = mach_host_self();
mach_msg_type_number_t count = HOST_CPU_LOAD_INFO_COUNT;
kern_return_t kr = host_statistics(localHost, HOST_CPU_LOAD_INFO, (host_info_t)&host_info, &count);
if (kr != KERN_SUCCESS)
return result;
}
task_t task = TaskPort();
if (task == TASK_NULL)
return result;
struct task_basic_info task_info;
DNBError err;
err = BasicInfo(task, &task_info);
if (!err.Success())
return result;
uint64_t elapsed_usec = 0;
uint64_t task_used_usec = 0;
if (scanType & eProfileCPU)
{
// Get current used time.
struct timeval current_used_time;
struct timeval tv;
TIME_VALUE_TO_TIMEVAL(&task_info.user_time, &current_used_time);
TIME_VALUE_TO_TIMEVAL(&task_info.system_time, &tv);
timeradd(&current_used_time, &tv, &current_used_time);
task_used_usec = current_used_time.tv_sec * 1000000ULL + current_used_time.tv_usec;
struct timeval current_elapsed_time;
int res = gettimeofday(&current_elapsed_time, NULL);
if (res == 0)
{
elapsed_usec = current_elapsed_time.tv_sec * 1000000ULL + current_elapsed_time.tv_usec;
}
}
std::vector<uint64_t> threads_id;
std::vector<std::string> threads_name;
std::vector<uint64_t> threads_used_usec;
if (scanType & eProfileThreadsCPU)
{
get_threads_profile_data(scanType, task, m_process->ProcessID(), threads_id, threads_name, threads_used_usec);
}
struct vm_statistics vm_stats;
uint64_t physical_memory;
mach_vm_size_t rprvt = 0;
mach_vm_size_t rsize = 0;
mach_vm_size_t vprvt = 0;
mach_vm_size_t vsize = 0;
mach_vm_size_t dirty_size = 0;
mach_vm_size_t purgeable = 0;
mach_vm_size_t anonymous = 0;
if (m_vm_memory.GetMemoryProfile(scanType, task, task_info, m_process->GetCPUType(), m_process->ProcessID(), vm_stats, physical_memory, rprvt, rsize, vprvt, vsize, dirty_size, purgeable, anonymous))
{
std::ostringstream profile_data_stream;
if (scanType & eProfileHostCPU)
{
profile_data_stream << "num_cpu:" << numCPU << ';';
profile_data_stream << "host_user_ticks:" << host_info.cpu_ticks[CPU_STATE_USER] << ';';
profile_data_stream << "host_sys_ticks:" << host_info.cpu_ticks[CPU_STATE_SYSTEM] << ';';
profile_data_stream << "host_idle_ticks:" << host_info.cpu_ticks[CPU_STATE_IDLE] << ';';
}
if (scanType & eProfileCPU)
{
profile_data_stream << "elapsed_usec:" << elapsed_usec << ';';
profile_data_stream << "task_used_usec:" << task_used_usec << ';';
}
if (scanType & eProfileThreadsCPU)
{
int num_threads = threads_id.size();
for (int i=0; i<num_threads; i++)
{
profile_data_stream << "thread_used_id:" << std::hex << threads_id[i] << std::dec << ';';
profile_data_stream << "thread_used_usec:" << threads_used_usec[i] << ';';
if (scanType & eProfileThreadName)
{
profile_data_stream << "thread_used_name:";
int len = threads_name[i].size();
if (len)
{
const char *thread_name = threads_name[i].c_str();
// Make sure that thread name doesn't interfere with our delimiter.
profile_data_stream << RAW_HEXBASE << std::setw(2);
const uint8_t *ubuf8 = (const uint8_t *)(thread_name);
for (int j=0; j<len; j++)
{
profile_data_stream << (uint32_t)(ubuf8[j]);
}
// Reset back to DECIMAL.
profile_data_stream << DECIMAL;
}
profile_data_stream << ';';
}
}
}
if (scanType & eProfileHostMemory)
profile_data_stream << "total:" << physical_memory << ';';
if (scanType & eProfileMemory)
{
static vm_size_t pagesize;
static bool calculated = false;
if (!calculated)
{
calculated = true;
pagesize = PageSize();
}
profile_data_stream << "wired:" << vm_stats.wire_count * pagesize << ';';
profile_data_stream << "active:" << vm_stats.active_count * pagesize << ';';
profile_data_stream << "inactive:" << vm_stats.inactive_count * pagesize << ';';
uint64_t total_used_count = vm_stats.wire_count + vm_stats.inactive_count + vm_stats.active_count;
profile_data_stream << "used:" << total_used_count * pagesize << ';';
profile_data_stream << "free:" << vm_stats.free_count * pagesize << ';';
profile_data_stream << "rprvt:" << rprvt << ';';
profile_data_stream << "rsize:" << rsize << ';';
profile_data_stream << "vprvt:" << vprvt << ';';
profile_data_stream << "vsize:" << vsize << ';';
if (scanType & eProfileMemoryDirtyPage)
profile_data_stream << "dirty:" << dirty_size << ';';
if (scanType & eProfileMemoryAnonymous)
{
profile_data_stream << "purgeable:" << purgeable << ';';
profile_data_stream << "anonymous:" << anonymous << ';';
}
}
profile_data_stream << "--end--;";
result = profile_data_stream.str();
}
return result;
}
//----------------------------------------------------------------------
// MachTask::TaskPortForProcessID
//----------------------------------------------------------------------
task_t
MachTask::TaskPortForProcessID (DNBError &err)
{
if (m_task == TASK_NULL && m_process != NULL)
m_task = MachTask::TaskPortForProcessID(m_process->ProcessID(), err);
return m_task;
}
//----------------------------------------------------------------------
// MachTask::TaskPortForProcessID
//----------------------------------------------------------------------
task_t
MachTask::TaskPortForProcessID (pid_t pid, DNBError &err, uint32_t num_retries, uint32_t usec_interval)
{
if (pid != INVALID_NUB_PROCESS)
{
DNBError err;
mach_port_t task_self = mach_task_self ();
task_t task = TASK_NULL;
for (uint32_t i=0; i<num_retries; i++)
{
err = ::task_for_pid ( task_self, pid, &task);
if (DNBLogCheckLogBit(LOG_TASK) || err.Fail())
{
char str[1024];
::snprintf (str,
sizeof(str),
"::task_for_pid ( target_tport = 0x%4.4x, pid = %d, &task ) => err = 0x%8.8x (%s)",
task_self,
pid,
err.Error(),
err.AsString() ? err.AsString() : "success");
if (err.Fail())
err.SetErrorString(str);
err.LogThreaded(str);
}
if (err.Success())
return task;
// Sleep a bit and try again
::usleep (usec_interval);
}
}
return TASK_NULL;
}
//----------------------------------------------------------------------
// MachTask::BasicInfo
//----------------------------------------------------------------------
kern_return_t
MachTask::BasicInfo(struct task_basic_info *info)
{
return BasicInfo (TaskPort(), info);
}
//----------------------------------------------------------------------
// MachTask::BasicInfo
//----------------------------------------------------------------------
kern_return_t
MachTask::BasicInfo(task_t task, struct task_basic_info *info)
{
if (info == NULL)
return KERN_INVALID_ARGUMENT;
DNBError err;
mach_msg_type_number_t count = TASK_BASIC_INFO_COUNT;
err = ::task_info (task, TASK_BASIC_INFO, (task_info_t)info, &count);
const bool log_process = DNBLogCheckLogBit(LOG_TASK);
if (log_process || err.Fail())
err.LogThreaded("::task_info ( target_task = 0x%4.4x, flavor = TASK_BASIC_INFO, task_info_out => %p, task_info_outCnt => %u )", task, info, count);
if (DNBLogCheckLogBit(LOG_TASK) && DNBLogCheckLogBit(LOG_VERBOSE) && err.Success())
{
float user = (float)info->user_time.seconds + (float)info->user_time.microseconds / 1000000.0f;
float system = (float)info->user_time.seconds + (float)info->user_time.microseconds / 1000000.0f;
DNBLogThreaded ("task_basic_info = { suspend_count = %i, virtual_size = 0x%8.8llx, resident_size = 0x%8.8llx, user_time = %f, system_time = %f }",
info->suspend_count,
(uint64_t)info->virtual_size,
(uint64_t)info->resident_size,
user,
system);
}
return err.Error();
}
//----------------------------------------------------------------------
// MachTask::IsValid
//
// Returns true if a task is a valid task port for a current process.
//----------------------------------------------------------------------
bool
MachTask::IsValid () const
{
return MachTask::IsValid(TaskPort());
}
//----------------------------------------------------------------------
// MachTask::IsValid
//
// Returns true if a task is a valid task port for a current process.
//----------------------------------------------------------------------
bool
MachTask::IsValid (task_t task)
{
if (task != TASK_NULL)
{
struct task_basic_info task_info;
return BasicInfo(task, &task_info) == KERN_SUCCESS;
}
return false;
}
bool
MachTask::StartExceptionThread(DNBError &err)
{
DNBLogThreadedIf(LOG_EXCEPTIONS, "MachTask::%s ( )", __FUNCTION__);
task_t task = TaskPortForProcessID(err);
if (MachTask::IsValid(task))
{
// Got the mach port for the current process
mach_port_t task_self = mach_task_self ();
// Allocate an exception port that we will use to track our child process
err = ::mach_port_allocate (task_self, MACH_PORT_RIGHT_RECEIVE, &m_exception_port);
if (err.Fail())
return false;
// Add the ability to send messages on the new exception port
err = ::mach_port_insert_right (task_self, m_exception_port, m_exception_port, MACH_MSG_TYPE_MAKE_SEND);
if (err.Fail())
return false;
// Save the original state of the exception ports for our child process
SaveExceptionPortInfo();
// We weren't able to save the info for our exception ports, we must stop...
if (m_exc_port_info.mask == 0)
{
err.SetErrorString("failed to get exception port info");
return false;
}
// Set the ability to get all exceptions on this port
err = ::task_set_exception_ports (task, m_exc_port_info.mask, m_exception_port, EXCEPTION_DEFAULT | MACH_EXCEPTION_CODES, THREAD_STATE_NONE);
if (DNBLogCheckLogBit(LOG_EXCEPTIONS) || err.Fail())
{
err.LogThreaded("::task_set_exception_ports ( task = 0x%4.4x, exception_mask = 0x%8.8x, new_port = 0x%4.4x, behavior = 0x%8.8x, new_flavor = 0x%8.8x )",
task,
m_exc_port_info.mask,
m_exception_port,
(EXCEPTION_DEFAULT | MACH_EXCEPTION_CODES),
THREAD_STATE_NONE);
}
if (err.Fail())
return false;
// Create the exception thread
err = ::pthread_create (&m_exception_thread, NULL, MachTask::ExceptionThread, this);
return err.Success();
}
else
{
DNBLogError("MachTask::%s (): task invalid, exception thread start failed.", __FUNCTION__);
}
return false;
}
kern_return_t
MachTask::ShutDownExcecptionThread()
{
DNBError err;
err = RestoreExceptionPortInfo();
// NULL our our exception port and let our exception thread exit
mach_port_t exception_port = m_exception_port;
m_exception_port = NULL;
err.SetError(::pthread_cancel(m_exception_thread), DNBError::POSIX);
if (DNBLogCheckLogBit(LOG_TASK) || err.Fail())
err.LogThreaded("::pthread_cancel ( thread = %p )", m_exception_thread);
err.SetError(::pthread_join(m_exception_thread, NULL), DNBError::POSIX);
if (DNBLogCheckLogBit(LOG_TASK) || err.Fail())
err.LogThreaded("::pthread_join ( thread = %p, value_ptr = NULL)", m_exception_thread);
// Deallocate our exception port that we used to track our child process
mach_port_t task_self = mach_task_self ();
err = ::mach_port_deallocate (task_self, exception_port);
if (DNBLogCheckLogBit(LOG_TASK) || err.Fail())
err.LogThreaded("::mach_port_deallocate ( task = 0x%4.4x, name = 0x%4.4x )", task_self, exception_port);
return err.Error();
}
void *
MachTask::ExceptionThread (void *arg)
{
if (arg == NULL)
return NULL;
MachTask *mach_task = (MachTask*) arg;
MachProcess *mach_proc = mach_task->Process();
DNBLogThreadedIf(LOG_EXCEPTIONS, "MachTask::%s ( arg = %p ) starting thread...", __FUNCTION__, arg);
// We keep a count of the number of consecutive exceptions received so
// we know to grab all exceptions without a timeout. We do this to get a
// bunch of related exceptions on our exception port so we can process
// then together. When we have multiple threads, we can get an exception
// per thread and they will come in consecutively. The main loop in this
// thread can stop periodically if needed to service things related to this
// process.
// flag set in the options, so we will wait forever for an exception on
// our exception port. After we get one exception, we then will use the
// MACH_RCV_TIMEOUT option with a zero timeout to grab all other current
// exceptions for our process. After we have received the last pending
// exception, we will get a timeout which enables us to then notify
// our main thread that we have an exception bundle avaiable. We then wait
// for the main thread to tell this exception thread to start trying to get
// exceptions messages again and we start again with a mach_msg read with
// infinite timeout.
uint32_t num_exceptions_received = 0;
DNBError err;
task_t task = mach_task->TaskPort();
mach_msg_timeout_t periodic_timeout = 0;
#ifdef WITH_SPRINGBOARD
mach_msg_timeout_t watchdog_elapsed = 0;
mach_msg_timeout_t watchdog_timeout = 60 * 1000;
pid_t pid = mach_proc->ProcessID();
CFReleaser<SBSWatchdogAssertionRef> watchdog;
if (mach_proc->ProcessUsingSpringBoard())
{
// Request a renewal for every 60 seconds if we attached using SpringBoard
watchdog.reset(::SBSWatchdogAssertionCreateForPID(NULL, pid, 60));
DNBLogThreadedIf(LOG_TASK, "::SBSWatchdogAssertionCreateForPID (NULL, %4.4x, 60 ) => %p", pid, watchdog.get());
if (watchdog.get())
{
::SBSWatchdogAssertionRenew (watchdog.get());
CFTimeInterval watchdogRenewalInterval = ::SBSWatchdogAssertionGetRenewalInterval (watchdog.get());
DNBLogThreadedIf(LOG_TASK, "::SBSWatchdogAssertionGetRenewalInterval ( %p ) => %g seconds", watchdog.get(), watchdogRenewalInterval);
if (watchdogRenewalInterval > 0.0)
{
watchdog_timeout = (mach_msg_timeout_t)watchdogRenewalInterval * 1000;
if (watchdog_timeout > 3000)
watchdog_timeout -= 1000; // Give us a second to renew our timeout
else if (watchdog_timeout > 1000)
watchdog_timeout -= 250; // Give us a quarter of a second to renew our timeout
}
}
if (periodic_timeout == 0 || periodic_timeout > watchdog_timeout)
periodic_timeout = watchdog_timeout;
}
#endif // #ifdef WITH_SPRINGBOARD
while (mach_task->ExceptionPortIsValid())
{
::pthread_testcancel ();
MachException::Message exception_message;
if (num_exceptions_received > 0)
{
// No timeout, just receive as many exceptions as we can since we already have one and we want
// to get all currently available exceptions for this task
err = exception_message.Receive(mach_task->ExceptionPort(), MACH_RCV_MSG | MACH_RCV_INTERRUPT | MACH_RCV_TIMEOUT, 0);
}
else if (periodic_timeout > 0)
{
// We need to stop periodically in this loop, so try and get a mach message with a valid timeout (ms)
err = exception_message.Receive(mach_task->ExceptionPort(), MACH_RCV_MSG | MACH_RCV_INTERRUPT | MACH_RCV_TIMEOUT, periodic_timeout);
}
else
{
// We don't need to parse all current exceptions or stop periodically,
// just wait for an exception forever.
err = exception_message.Receive(mach_task->ExceptionPort(), MACH_RCV_MSG | MACH_RCV_INTERRUPT, 0);
}
if (err.Error() == MACH_RCV_INTERRUPTED)
{
// If we have no task port we should exit this thread
if (!mach_task->ExceptionPortIsValid())
{
DNBLogThreadedIf(LOG_EXCEPTIONS, "thread cancelled...");
break;
}
// Make sure our task is still valid
if (MachTask::IsValid(task))
{
// Task is still ok
DNBLogThreadedIf(LOG_EXCEPTIONS, "interrupted, but task still valid, continuing...");
continue;
}
else
{
DNBLogThreadedIf(LOG_EXCEPTIONS, "task has exited...");
mach_proc->SetState(eStateExited);
// Our task has died, exit the thread.
break;
}
}
else if (err.Error() == MACH_RCV_TIMED_OUT)
{
if (num_exceptions_received > 0)
{
// We were receiving all current exceptions with a timeout of zero
// it is time to go back to our normal looping mode
num_exceptions_received = 0;
// Notify our main thread we have a complete exception message
// bundle available.
mach_proc->ExceptionMessageBundleComplete();
// in case we use a timeout value when getting exceptions...
// Make sure our task is still valid
if (MachTask::IsValid(task))
{
// Task is still ok
DNBLogThreadedIf(LOG_EXCEPTIONS, "got a timeout, continuing...");
continue;
}
else
{
DNBLogThreadedIf(LOG_EXCEPTIONS, "task has exited...");
mach_proc->SetState(eStateExited);
// Our task has died, exit the thread.
break;
}
continue;
}
#ifdef WITH_SPRINGBOARD
if (watchdog.get())
{
watchdog_elapsed += periodic_timeout;
if (watchdog_elapsed >= watchdog_timeout)
{
DNBLogThreadedIf(LOG_TASK, "SBSWatchdogAssertionRenew ( %p )", watchdog.get());
::SBSWatchdogAssertionRenew (watchdog.get());
watchdog_elapsed = 0;
}
}
#endif
}
else if (err.Error() != KERN_SUCCESS)
{
DNBLogThreadedIf(LOG_EXCEPTIONS, "got some other error, do something about it??? nah, continuing for now...");
// TODO: notify of error?
}
else
{
if (exception_message.CatchExceptionRaise(task))
{
++num_exceptions_received;
mach_proc->ExceptionMessageReceived(exception_message);
}
}
}
#ifdef WITH_SPRINGBOARD
if (watchdog.get())
{
// TODO: change SBSWatchdogAssertionRelease to SBSWatchdogAssertionCancel when we
// all are up and running on systems that support it. The SBS framework has a #define
// that will forward SBSWatchdogAssertionRelease to SBSWatchdogAssertionCancel for now
// so it should still build either way.
DNBLogThreadedIf(LOG_TASK, "::SBSWatchdogAssertionRelease(%p)", watchdog.get());
::SBSWatchdogAssertionRelease (watchdog.get());
}
#endif // #ifdef WITH_SPRINGBOARD
DNBLogThreadedIf(LOG_EXCEPTIONS, "MachTask::%s (%p): thread exiting...", __FUNCTION__, arg);
return NULL;
}
// So the TASK_DYLD_INFO used to just return the address of the all image infos
// as a single member called "all_image_info". Then someone decided it would be
// a good idea to rename this first member to "all_image_info_addr" and add a
// size member called "all_image_info_size". This of course can not be detected
// using code or #defines. So to hack around this problem, we define our own
// version of the TASK_DYLD_INFO structure so we can guarantee what is inside it.
struct hack_task_dyld_info {
mach_vm_address_t all_image_info_addr;
mach_vm_size_t all_image_info_size;
};
nub_addr_t
MachTask::GetDYLDAllImageInfosAddress (DNBError& err)
{
struct hack_task_dyld_info dyld_info;
mach_msg_type_number_t count = TASK_DYLD_INFO_COUNT;
// Make sure that COUNT isn't bigger than our hacked up struct hack_task_dyld_info.
// If it is, then make COUNT smaller to match.
if (count > (sizeof(struct hack_task_dyld_info) / sizeof(natural_t)))
count = (sizeof(struct hack_task_dyld_info) / sizeof(natural_t));
task_t task = TaskPortForProcessID (err);
if (err.Success())
{
err = ::task_info (task, TASK_DYLD_INFO, (task_info_t)&dyld_info, &count);
if (err.Success())
{
// We now have the address of the all image infos structure
return dyld_info.all_image_info_addr;
}
}
return INVALID_NUB_ADDRESS;
}
//----------------------------------------------------------------------
// MachTask::AllocateMemory
//----------------------------------------------------------------------
nub_addr_t
MachTask::AllocateMemory (size_t size, uint32_t permissions)
{
mach_vm_address_t addr;
task_t task = TaskPort();
if (task == TASK_NULL)
return INVALID_NUB_ADDRESS;
DNBError err;
err = ::mach_vm_allocate (task, &addr, size, TRUE);
if (err.Error() == KERN_SUCCESS)
{
// Set the protections:
vm_prot_t mach_prot = VM_PROT_NONE;
if (permissions & eMemoryPermissionsReadable)
mach_prot |= VM_PROT_READ;
if (permissions & eMemoryPermissionsWritable)
mach_prot |= VM_PROT_WRITE;
if (permissions & eMemoryPermissionsExecutable)
mach_prot |= VM_PROT_EXECUTE;
err = ::mach_vm_protect (task, addr, size, 0, mach_prot);
if (err.Error() == KERN_SUCCESS)
{
m_allocations.insert (std::make_pair(addr, size));
return addr;
}
::mach_vm_deallocate (task, addr, size);
}
return INVALID_NUB_ADDRESS;
}
//----------------------------------------------------------------------
// MachTask::DeallocateMemory
//----------------------------------------------------------------------
nub_bool_t
MachTask::DeallocateMemory (nub_addr_t addr)
{
task_t task = TaskPort();
if (task == TASK_NULL)
return false;
// We have to stash away sizes for the allocations...
allocation_collection::iterator pos, end = m_allocations.end();
for (pos = m_allocations.begin(); pos != end; pos++)
{
if ((*pos).first == addr)
{
m_allocations.erase(pos);
#define ALWAYS_ZOMBIE_ALLOCATIONS 0
if (ALWAYS_ZOMBIE_ALLOCATIONS || getenv ("DEBUGSERVER_ZOMBIE_ALLOCATIONS"))
{
::mach_vm_protect (task, (*pos).first, (*pos).second, 0, VM_PROT_NONE);
return true;
}
else
return ::mach_vm_deallocate (task, (*pos).first, (*pos).second) == KERN_SUCCESS;
}
}
return false;
}
static void foundStackLog(mach_stack_logging_record_t record, void *context) {
*((bool*)context) = true;
}
bool
MachTask::HasMallocLoggingEnabled ()
{
bool found = false;
__mach_stack_logging_enumerate_records(m_task, 0x0, foundStackLog, &found);
return found;
}
struct history_enumerator_impl_data
{
MachMallocEvent *buffer;
uint32_t *position;
uint32_t count;
};
static void history_enumerator_impl(mach_stack_logging_record_t record, void* enum_obj)
{
history_enumerator_impl_data *data = (history_enumerator_impl_data*)enum_obj;
if (*data->position >= data->count)
return;
data->buffer[*data->position].m_base_address = record.address;
data->buffer[*data->position].m_size = record.argument;
data->buffer[*data->position].m_event_id = record.stack_identifier;
data->buffer[*data->position].m_event_type = record.type_flags == stack_logging_type_alloc ? eMachMallocEventTypeAlloc :
record.type_flags == stack_logging_type_dealloc ? eMachMallocEventTypeDealloc :
eMachMallocEventTypeOther;
*data->position+=1;
}
bool
MachTask::EnumerateMallocRecords (MachMallocEvent *event_buffer,
uint32_t buffer_size,
uint32_t *count)
{
return EnumerateMallocRecords(0,
event_buffer,
buffer_size,
count);
}
bool
MachTask::EnumerateMallocRecords (mach_vm_address_t address,
MachMallocEvent *event_buffer,
uint32_t buffer_size,
uint32_t *count)
{
if (!event_buffer || !count)
return false;
if (buffer_size == 0)
return false;
*count = 0;
history_enumerator_impl_data data = { event_buffer, count, buffer_size };
__mach_stack_logging_enumerate_records(m_task, address, history_enumerator_impl, &data);
return (*count > 0);
}
bool
MachTask::EnumerateMallocFrames (MachMallocEventId event_id,
mach_vm_address_t *function_addresses_buffer,
uint32_t buffer_size,
uint32_t *count)
{
if (!function_addresses_buffer || !count)
return false;
if (buffer_size == 0)
return false;
__mach_stack_logging_frames_for_uniqued_stack(m_task, event_id, &function_addresses_buffer[0], buffer_size, count);
*count -= 1;
if (function_addresses_buffer[*count-1] < PageSize())
*count -= 1;
return (*count > 0);
}
nub_size_t
MachTask::PageSize ()
{
return m_vm_memory.PageSize (m_task);
}