blob: 58cafc737fcbde9a901b7bbafbcba5f62d359b1f [file] [log] [blame]
//===-- MinidumpParser.cpp ---------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Project includes
#include "MinidumpParser.h"
#include "NtStructures.h"
#include "RegisterContextMinidump_x86_32.h"
// Other libraries and framework includes
#include "lldb/Target/MemoryRegionInfo.h"
// C includes
// C++ includes
#include <map>
using namespace lldb_private;
using namespace minidump;
llvm::Optional<MinidumpParser>
MinidumpParser::Create(const lldb::DataBufferSP &data_buf_sp) {
if (data_buf_sp->GetByteSize() < sizeof(MinidumpHeader)) {
return llvm::None;
}
llvm::ArrayRef<uint8_t> header_data(data_buf_sp->GetBytes(),
sizeof(MinidumpHeader));
const MinidumpHeader *header = MinidumpHeader::Parse(header_data);
if (header == nullptr) {
return llvm::None;
}
lldb::offset_t directory_list_offset = header->stream_directory_rva;
// check if there is enough data for the parsing of the directory list
if ((directory_list_offset +
sizeof(MinidumpDirectory) * header->streams_count) >
data_buf_sp->GetByteSize()) {
return llvm::None;
}
const MinidumpDirectory *directory = nullptr;
Status error;
llvm::ArrayRef<uint8_t> directory_data(
data_buf_sp->GetBytes() + directory_list_offset,
sizeof(MinidumpDirectory) * header->streams_count);
llvm::DenseMap<uint32_t, MinidumpLocationDescriptor> directory_map;
for (uint32_t i = 0; i < header->streams_count; ++i) {
error = consumeObject(directory_data, directory);
if (error.Fail()) {
return llvm::None;
}
directory_map[static_cast<const uint32_t>(directory->stream_type)] =
directory->location;
}
return MinidumpParser(data_buf_sp, header, std::move(directory_map));
}
MinidumpParser::MinidumpParser(
const lldb::DataBufferSP &data_buf_sp, const MinidumpHeader *header,
llvm::DenseMap<uint32_t, MinidumpLocationDescriptor> &&directory_map)
: m_data_sp(data_buf_sp), m_header(header), m_directory_map(directory_map) {
}
llvm::ArrayRef<uint8_t> MinidumpParser::GetData() {
return llvm::ArrayRef<uint8_t>(m_data_sp->GetBytes(),
m_data_sp->GetByteSize());
}
llvm::ArrayRef<uint8_t>
MinidumpParser::GetStream(MinidumpStreamType stream_type) {
auto iter = m_directory_map.find(static_cast<uint32_t>(stream_type));
if (iter == m_directory_map.end())
return {};
// check if there is enough data
if (iter->second.rva + iter->second.data_size > m_data_sp->GetByteSize())
return {};
return llvm::ArrayRef<uint8_t>(m_data_sp->GetBytes() + iter->second.rva,
iter->second.data_size);
}
llvm::Optional<std::string> MinidumpParser::GetMinidumpString(uint32_t rva) {
auto arr_ref = m_data_sp->GetData();
if (rva > arr_ref.size())
return llvm::None;
arr_ref = arr_ref.drop_front(rva);
return parseMinidumpString(arr_ref);
}
UUID MinidumpParser::GetModuleUUID(const MinidumpModule *module) {
auto cv_record =
GetData().slice(module->CV_record.rva, module->CV_record.data_size);
// Read the CV record signature
const llvm::support::ulittle32_t *signature = nullptr;
Status error = consumeObject(cv_record, signature);
if (error.Fail())
return UUID();
const CvSignature cv_signature =
static_cast<CvSignature>(static_cast<const uint32_t>(*signature));
if (cv_signature == CvSignature::Pdb70) {
// PDB70 record
const CvRecordPdb70 *pdb70_uuid = nullptr;
Status error = consumeObject(cv_record, pdb70_uuid);
if (!error.Fail())
return UUID(pdb70_uuid, sizeof(*pdb70_uuid));
} else if (cv_signature == CvSignature::ElfBuildId) {
// ELF BuildID (found in Breakpad/Crashpad generated minidumps)
//
// This is variable-length, but usually 20 bytes
// as the binutils ld default is a SHA-1 hash.
// (We'll handle only 16 and 20 bytes signatures,
// matching LLDB support for UUIDs)
//
if (cv_record.size() == 16 || cv_record.size() == 20)
return UUID(cv_record.data(), cv_record.size());
}
return UUID();
}
llvm::ArrayRef<MinidumpThread> MinidumpParser::GetThreads() {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::ThreadList);
if (data.size() == 0)
return llvm::None;
return MinidumpThread::ParseThreadList(data);
}
llvm::ArrayRef<uint8_t>
MinidumpParser::GetThreadContext(const MinidumpThread &td) {
if (td.thread_context.rva + td.thread_context.data_size > GetData().size())
return {};
return GetData().slice(td.thread_context.rva, td.thread_context.data_size);
}
llvm::ArrayRef<uint8_t>
MinidumpParser::GetThreadContextWow64(const MinidumpThread &td) {
// On Windows, a 32-bit process can run on a 64-bit machine under WOW64. If
// the minidump was captured with a 64-bit debugger, then the CONTEXT we just
// grabbed from the mini_dump_thread is the one for the 64-bit "native"
// process rather than the 32-bit "guest" process we care about. In this
// case, we can get the 32-bit CONTEXT from the TEB (Thread Environment
// Block) of the 64-bit process.
auto teb_mem = GetMemory(td.teb, sizeof(TEB64));
if (teb_mem.empty())
return {};
const TEB64 *wow64teb;
Status error = consumeObject(teb_mem, wow64teb);
if (error.Fail())
return {};
// Slot 1 of the thread-local storage in the 64-bit TEB points to a structure
// that includes the 32-bit CONTEXT (after a ULONG). See:
// https://msdn.microsoft.com/en-us/library/ms681670.aspx
auto context =
GetMemory(wow64teb->tls_slots[1] + 4, sizeof(MinidumpContext_x86_32));
if (context.size() < sizeof(MinidumpContext_x86_32))
return {};
return context;
// NOTE: We don't currently use the TEB for anything else. If we
// need it in the future, the 32-bit TEB is located according to the address
// stored in the first slot of the 64-bit TEB (wow64teb.Reserved1[0]).
}
const MinidumpSystemInfo *MinidumpParser::GetSystemInfo() {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::SystemInfo);
if (data.size() == 0)
return nullptr;
return MinidumpSystemInfo::Parse(data);
}
ArchSpec MinidumpParser::GetArchitecture() {
ArchSpec arch_spec;
const MinidumpSystemInfo *system_info = GetSystemInfo();
if (!system_info)
return arch_spec;
// TODO what to do about big endiand flavors of arm ?
// TODO set the arm subarch stuff if the minidump has info about it
llvm::Triple triple;
triple.setVendor(llvm::Triple::VendorType::UnknownVendor);
const MinidumpCPUArchitecture arch =
static_cast<const MinidumpCPUArchitecture>(
static_cast<const uint32_t>(system_info->processor_arch));
switch (arch) {
case MinidumpCPUArchitecture::X86:
triple.setArch(llvm::Triple::ArchType::x86);
break;
case MinidumpCPUArchitecture::AMD64:
triple.setArch(llvm::Triple::ArchType::x86_64);
break;
case MinidumpCPUArchitecture::ARM:
triple.setArch(llvm::Triple::ArchType::arm);
break;
case MinidumpCPUArchitecture::ARM64:
triple.setArch(llvm::Triple::ArchType::aarch64);
break;
default:
triple.setArch(llvm::Triple::ArchType::UnknownArch);
break;
}
const MinidumpOSPlatform os = static_cast<const MinidumpOSPlatform>(
static_cast<const uint32_t>(system_info->platform_id));
// TODO add all of the OSes that Minidump/breakpad distinguishes?
switch (os) {
case MinidumpOSPlatform::Win32S:
case MinidumpOSPlatform::Win32Windows:
case MinidumpOSPlatform::Win32NT:
case MinidumpOSPlatform::Win32CE:
triple.setOS(llvm::Triple::OSType::Win32);
break;
case MinidumpOSPlatform::Linux:
triple.setOS(llvm::Triple::OSType::Linux);
break;
case MinidumpOSPlatform::MacOSX:
triple.setOS(llvm::Triple::OSType::MacOSX);
break;
case MinidumpOSPlatform::Android:
triple.setOS(llvm::Triple::OSType::Linux);
triple.setEnvironment(llvm::Triple::EnvironmentType::Android);
break;
default:
triple.setOS(llvm::Triple::OSType::UnknownOS);
break;
}
arch_spec.SetTriple(triple);
return arch_spec;
}
const MinidumpMiscInfo *MinidumpParser::GetMiscInfo() {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::MiscInfo);
if (data.size() == 0)
return nullptr;
return MinidumpMiscInfo::Parse(data);
}
llvm::Optional<LinuxProcStatus> MinidumpParser::GetLinuxProcStatus() {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::LinuxProcStatus);
if (data.size() == 0)
return llvm::None;
return LinuxProcStatus::Parse(data);
}
llvm::Optional<lldb::pid_t> MinidumpParser::GetPid() {
const MinidumpMiscInfo *misc_info = GetMiscInfo();
if (misc_info != nullptr) {
return misc_info->GetPid();
}
llvm::Optional<LinuxProcStatus> proc_status = GetLinuxProcStatus();
if (proc_status.hasValue()) {
return proc_status->GetPid();
}
return llvm::None;
}
llvm::ArrayRef<MinidumpModule> MinidumpParser::GetModuleList() {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::ModuleList);
if (data.size() == 0)
return {};
return MinidumpModule::ParseModuleList(data);
}
std::vector<const MinidumpModule *> MinidumpParser::GetFilteredModuleList() {
llvm::ArrayRef<MinidumpModule> modules = GetModuleList();
// map module_name -> pair(load_address, pointer to module struct in memory)
llvm::StringMap<std::pair<uint64_t, const MinidumpModule *>> lowest_addr;
std::vector<const MinidumpModule *> filtered_modules;
llvm::Optional<std::string> name;
std::string module_name;
for (const auto &module : modules) {
name = GetMinidumpString(module.module_name_rva);
if (!name)
continue;
module_name = name.getValue();
auto iter = lowest_addr.end();
bool exists;
std::tie(iter, exists) = lowest_addr.try_emplace(
module_name, std::make_pair(module.base_of_image, &module));
if (exists && module.base_of_image < iter->second.first)
iter->second = std::make_pair(module.base_of_image, &module);
}
filtered_modules.reserve(lowest_addr.size());
for (const auto &module : lowest_addr) {
filtered_modules.push_back(module.second.second);
}
return filtered_modules;
}
const MinidumpExceptionStream *MinidumpParser::GetExceptionStream() {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::Exception);
if (data.size() == 0)
return nullptr;
return MinidumpExceptionStream::Parse(data);
}
llvm::Optional<minidump::Range>
MinidumpParser::FindMemoryRange(lldb::addr_t addr) {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::MemoryList);
llvm::ArrayRef<uint8_t> data64 = GetStream(MinidumpStreamType::Memory64List);
if (data.empty() && data64.empty())
return llvm::None;
if (!data.empty()) {
llvm::ArrayRef<MinidumpMemoryDescriptor> memory_list =
MinidumpMemoryDescriptor::ParseMemoryList(data);
if (memory_list.empty())
return llvm::None;
for (const auto &memory_desc : memory_list) {
const MinidumpLocationDescriptor &loc_desc = memory_desc.memory;
const lldb::addr_t range_start = memory_desc.start_of_memory_range;
const size_t range_size = loc_desc.data_size;
if (loc_desc.rva + loc_desc.data_size > GetData().size())
return llvm::None;
if (range_start <= addr && addr < range_start + range_size) {
return minidump::Range(range_start,
GetData().slice(loc_desc.rva, range_size));
}
}
}
// Some Minidumps have a Memory64ListStream that captures all the heap memory
// (full-memory Minidumps). We can't exactly use the same loop as above,
// because the Minidump uses slightly different data structures to describe
// those
if (!data64.empty()) {
llvm::ArrayRef<MinidumpMemoryDescriptor64> memory64_list;
uint64_t base_rva;
std::tie(memory64_list, base_rva) =
MinidumpMemoryDescriptor64::ParseMemory64List(data64);
if (memory64_list.empty())
return llvm::None;
for (const auto &memory_desc64 : memory64_list) {
const lldb::addr_t range_start = memory_desc64.start_of_memory_range;
const size_t range_size = memory_desc64.data_size;
if (base_rva + range_size > GetData().size())
return llvm::None;
if (range_start <= addr && addr < range_start + range_size) {
return minidump::Range(range_start,
GetData().slice(base_rva, range_size));
}
base_rva += range_size;
}
}
return llvm::None;
}
llvm::ArrayRef<uint8_t> MinidumpParser::GetMemory(lldb::addr_t addr,
size_t size) {
// I don't have a sense of how frequently this is called or how many memory
// ranges a Minidump typically has, so I'm not sure if searching for the
// appropriate range linearly each time is stupid. Perhaps we should build
// an index for faster lookups.
llvm::Optional<minidump::Range> range = FindMemoryRange(addr);
if (!range)
return {};
// There's at least some overlap between the beginning of the desired range
// (addr) and the current range. Figure out where the overlap begins and how
// much overlap there is.
const size_t offset = addr - range->start;
if (addr < range->start || offset >= range->range_ref.size())
return {};
const size_t overlap = std::min(size, range->range_ref.size() - offset);
return range->range_ref.slice(offset, overlap);
}
llvm::Optional<MemoryRegionInfo>
MinidumpParser::GetMemoryRegionInfo(lldb::addr_t load_addr) {
MemoryRegionInfo info;
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::MemoryInfoList);
if (data.empty())
return llvm::None;
std::vector<const MinidumpMemoryInfo *> mem_info_list =
MinidumpMemoryInfo::ParseMemoryInfoList(data);
if (mem_info_list.empty())
return llvm::None;
const auto yes = MemoryRegionInfo::eYes;
const auto no = MemoryRegionInfo::eNo;
const MinidumpMemoryInfo *next_entry = nullptr;
for (const auto &entry : mem_info_list) {
const auto head = entry->base_address;
const auto tail = head + entry->region_size;
if (head <= load_addr && load_addr < tail) {
info.GetRange().SetRangeBase(
(entry->state != uint32_t(MinidumpMemoryInfoState::MemFree))
? head
: load_addr);
info.GetRange().SetRangeEnd(tail);
const uint32_t PageNoAccess =
static_cast<uint32_t>(MinidumpMemoryProtectionContants::PageNoAccess);
info.SetReadable((entry->protect & PageNoAccess) == 0 ? yes : no);
const uint32_t PageWritable =
static_cast<uint32_t>(MinidumpMemoryProtectionContants::PageWritable);
info.SetWritable((entry->protect & PageWritable) != 0 ? yes : no);
const uint32_t PageExecutable = static_cast<uint32_t>(
MinidumpMemoryProtectionContants::PageExecutable);
info.SetExecutable((entry->protect & PageExecutable) != 0 ? yes : no);
const uint32_t MemFree =
static_cast<uint32_t>(MinidumpMemoryInfoState::MemFree);
info.SetMapped((entry->state != MemFree) ? yes : no);
return info;
} else if (head > load_addr &&
(next_entry == nullptr || head < next_entry->base_address)) {
// In case there is no region containing load_addr keep track of the
// nearest region after load_addr so we can return the distance to it.
next_entry = entry;
}
}
// No containing region found. Create an unmapped region that extends to the
// next region or LLDB_INVALID_ADDRESS
info.GetRange().SetRangeBase(load_addr);
info.GetRange().SetRangeEnd((next_entry != nullptr) ? next_entry->base_address
: LLDB_INVALID_ADDRESS);
info.SetReadable(no);
info.SetWritable(no);
info.SetExecutable(no);
info.SetMapped(no);
// Note that the memory info list doesn't seem to contain ranges in kernel
// space, so if you're walking a stack that has kernel frames, the stack may
// appear truncated.
return info;
}