blob: 0aa0fc91e408d4c569e5ad2961046d21790c8afe [file] [log] [blame]
//===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
// C++ Includes
// Other libraries and framework includes
#include "llvm/ADT/StringRef.h"
// Project includes
#include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
#include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
#include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
#include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/FileSpecList.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/ModuleSpec.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/RangeMap.h"
#include "lldb/Core/RegisterValue.h"
#include "lldb/Core/Section.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Host/Host.h"
#include "lldb/Symbol/DWARFCallFrameInfo.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Target/DynamicLoader.h"
#include "lldb/Target/MemoryRegionInfo.h"
#include "lldb/Target/Platform.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/SectionLoadList.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Target/ThreadList.h"
#include "lldb/Utility/ArchSpec.h"
#include "lldb/Utility/DataBuffer.h"
#include "lldb/Utility/FileSpec.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/Status.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/Utility/Timer.h"
#include "lldb/Utility/UUID.h"
#include "lldb/Utility/SafeMachO.h"
#include "llvm/Support/MemoryBuffer.h"
#include "ObjectFileMachO.h"
#if defined(__APPLE__) && \
(defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
// GetLLDBSharedCacheUUID() needs to call dlsym()
#include <dlfcn.h>
#endif
#ifndef __APPLE__
#include "Utility/UuidCompatibility.h"
#else
#include <uuid/uuid.h>
#endif
#define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
using namespace lldb;
using namespace lldb_private;
using namespace llvm::MachO;
// Some structure definitions needed for parsing the dyld shared cache files
// found on iOS devices.
struct lldb_copy_dyld_cache_header_v1 {
char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc.
uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
uint32_t mappingCount; // number of dyld_cache_mapping_info entries
uint32_t imagesOffset;
uint32_t imagesCount;
uint64_t dyldBaseAddress;
uint64_t codeSignatureOffset;
uint64_t codeSignatureSize;
uint64_t slideInfoOffset;
uint64_t slideInfoSize;
uint64_t localSymbolsOffset;
uint64_t localSymbolsSize;
uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
// and later
};
struct lldb_copy_dyld_cache_mapping_info {
uint64_t address;
uint64_t size;
uint64_t fileOffset;
uint32_t maxProt;
uint32_t initProt;
};
struct lldb_copy_dyld_cache_local_symbols_info {
uint32_t nlistOffset;
uint32_t nlistCount;
uint32_t stringsOffset;
uint32_t stringsSize;
uint32_t entriesOffset;
uint32_t entriesCount;
};
struct lldb_copy_dyld_cache_local_symbols_entry {
uint32_t dylibOffset;
uint32_t nlistStartIndex;
uint32_t nlistCount;
};
class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
public:
RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
const DataExtractor &data)
: RegisterContextDarwin_x86_64(thread, 0) {
SetRegisterDataFrom_LC_THREAD(data);
}
void InvalidateAllRegisters() override {
// Do nothing... registers are always valid...
}
void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
lldb::offset_t offset = 0;
SetError(GPRRegSet, Read, -1);
SetError(FPURegSet, Read, -1);
SetError(EXCRegSet, Read, -1);
bool done = false;
while (!done) {
int flavor = data.GetU32(&offset);
if (flavor == 0)
done = true;
else {
uint32_t i;
uint32_t count = data.GetU32(&offset);
switch (flavor) {
case GPRRegSet:
for (i = 0; i < count; ++i)
(&gpr.rax)[i] = data.GetU64(&offset);
SetError(GPRRegSet, Read, 0);
done = true;
break;
case FPURegSet:
// TODO: fill in FPU regs....
// SetError (FPURegSet, Read, -1);
done = true;
break;
case EXCRegSet:
exc.trapno = data.GetU32(&offset);
exc.err = data.GetU32(&offset);
exc.faultvaddr = data.GetU64(&offset);
SetError(EXCRegSet, Read, 0);
done = true;
break;
case 7:
case 8:
case 9:
// fancy flavors that encapsulate of the above flavors...
break;
default:
done = true;
break;
}
}
}
}
static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
const char *alt_name, size_t reg_byte_size,
Stream &data) {
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
if (reg_info == NULL)
reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
if (reg_info) {
lldb_private::RegisterValue reg_value;
if (reg_ctx->ReadRegister(reg_info, reg_value)) {
if (reg_info->byte_size >= reg_byte_size)
data.Write(reg_value.GetBytes(), reg_byte_size);
else {
data.Write(reg_value.GetBytes(), reg_info->byte_size);
for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
++i)
data.PutChar(0);
}
return reg_byte_size;
}
}
// Just write zeros if all else fails
for (size_t i = 0; i < reg_byte_size; ++i)
data.PutChar(0);
return reg_byte_size;
}
static bool Create_LC_THREAD(Thread *thread, Stream &data) {
RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
if (reg_ctx_sp) {
RegisterContext *reg_ctx = reg_ctx_sp.get();
data.PutHex32(GPRRegSet); // Flavor
data.PutHex32(GPRWordCount);
WriteRegister(reg_ctx, "rax", NULL, 8, data);
WriteRegister(reg_ctx, "rbx", NULL, 8, data);
WriteRegister(reg_ctx, "rcx", NULL, 8, data);
WriteRegister(reg_ctx, "rdx", NULL, 8, data);
WriteRegister(reg_ctx, "rdi", NULL, 8, data);
WriteRegister(reg_ctx, "rsi", NULL, 8, data);
WriteRegister(reg_ctx, "rbp", NULL, 8, data);
WriteRegister(reg_ctx, "rsp", NULL, 8, data);
WriteRegister(reg_ctx, "r8", NULL, 8, data);
WriteRegister(reg_ctx, "r9", NULL, 8, data);
WriteRegister(reg_ctx, "r10", NULL, 8, data);
WriteRegister(reg_ctx, "r11", NULL, 8, data);
WriteRegister(reg_ctx, "r12", NULL, 8, data);
WriteRegister(reg_ctx, "r13", NULL, 8, data);
WriteRegister(reg_ctx, "r14", NULL, 8, data);
WriteRegister(reg_ctx, "r15", NULL, 8, data);
WriteRegister(reg_ctx, "rip", NULL, 8, data);
WriteRegister(reg_ctx, "rflags", NULL, 8, data);
WriteRegister(reg_ctx, "cs", NULL, 8, data);
WriteRegister(reg_ctx, "fs", NULL, 8, data);
WriteRegister(reg_ctx, "gs", NULL, 8, data);
// // Write out the FPU registers
// const size_t fpu_byte_size = sizeof(FPU);
// size_t bytes_written = 0;
// data.PutHex32 (FPURegSet);
// data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
// bytes_written += data.PutHex32(0); // uint32_t pad[0]
// bytes_written += data.PutHex32(0); // uint32_t pad[1]
// bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
// data); // uint16_t fcw; // "fctrl"
// bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
// data); // uint16_t fsw; // "fstat"
// bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
// data); // uint8_t ftw; // "ftag"
// bytes_written += data.PutHex8 (0); // uint8_t pad1;
// bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
// data); // uint16_t fop; // "fop"
// bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
// data); // uint32_t ip; // "fioff"
// bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
// data); // uint16_t cs; // "fiseg"
// bytes_written += data.PutHex16 (0); // uint16_t pad2;
// bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
// data); // uint32_t dp; // "fooff"
// bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
// data); // uint16_t ds; // "foseg"
// bytes_written += data.PutHex16 (0); // uint16_t pad3;
// bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
// data); // uint32_t mxcsr;
// bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
// 4, data);// uint32_t mxcsrmask;
// bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
// sizeof(MMSReg), data);
// bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
// sizeof(MMSReg), data);
// bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
// sizeof(MMSReg), data);
// bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
// sizeof(MMSReg), data);
// bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
// sizeof(MMSReg), data);
// bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
// sizeof(MMSReg), data);
// bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
// sizeof(MMSReg), data);
// bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
// sizeof(MMSReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
// sizeof(XMMReg), data);
// bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
// sizeof(XMMReg), data);
//
// // Fill rest with zeros
// for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
// i)
// data.PutChar(0);
// Write out the EXC registers
data.PutHex32(EXCRegSet);
data.PutHex32(EXCWordCount);
WriteRegister(reg_ctx, "trapno", NULL, 4, data);
WriteRegister(reg_ctx, "err", NULL, 4, data);
WriteRegister(reg_ctx, "faultvaddr", NULL, 8, data);
return true;
}
return false;
}
protected:
int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
return 0;
}
int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
return 0;
}
int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
return 0;
}
};
class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
public:
RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
const DataExtractor &data)
: RegisterContextDarwin_i386(thread, 0) {
SetRegisterDataFrom_LC_THREAD(data);
}
void InvalidateAllRegisters() override {
// Do nothing... registers are always valid...
}
void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
lldb::offset_t offset = 0;
SetError(GPRRegSet, Read, -1);
SetError(FPURegSet, Read, -1);
SetError(EXCRegSet, Read, -1);
bool done = false;
while (!done) {
int flavor = data.GetU32(&offset);
if (flavor == 0)
done = true;
else {
uint32_t i;
uint32_t count = data.GetU32(&offset);
switch (flavor) {
case GPRRegSet:
for (i = 0; i < count; ++i)
(&gpr.eax)[i] = data.GetU32(&offset);
SetError(GPRRegSet, Read, 0);
done = true;
break;
case FPURegSet:
// TODO: fill in FPU regs....
// SetError (FPURegSet, Read, -1);
done = true;
break;
case EXCRegSet:
exc.trapno = data.GetU32(&offset);
exc.err = data.GetU32(&offset);
exc.faultvaddr = data.GetU32(&offset);
SetError(EXCRegSet, Read, 0);
done = true;
break;
case 7:
case 8:
case 9:
// fancy flavors that encapsulate of the above flavors...
break;
default:
done = true;
break;
}
}
}
}
static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
const char *alt_name, size_t reg_byte_size,
Stream &data) {
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
if (reg_info == NULL)
reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
if (reg_info) {
lldb_private::RegisterValue reg_value;
if (reg_ctx->ReadRegister(reg_info, reg_value)) {
if (reg_info->byte_size >= reg_byte_size)
data.Write(reg_value.GetBytes(), reg_byte_size);
else {
data.Write(reg_value.GetBytes(), reg_info->byte_size);
for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
++i)
data.PutChar(0);
}
return reg_byte_size;
}
}
// Just write zeros if all else fails
for (size_t i = 0; i < reg_byte_size; ++i)
data.PutChar(0);
return reg_byte_size;
}
static bool Create_LC_THREAD(Thread *thread, Stream &data) {
RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
if (reg_ctx_sp) {
RegisterContext *reg_ctx = reg_ctx_sp.get();
data.PutHex32(GPRRegSet); // Flavor
data.PutHex32(GPRWordCount);
WriteRegister(reg_ctx, "eax", NULL, 4, data);
WriteRegister(reg_ctx, "ebx", NULL, 4, data);
WriteRegister(reg_ctx, "ecx", NULL, 4, data);
WriteRegister(reg_ctx, "edx", NULL, 4, data);
WriteRegister(reg_ctx, "edi", NULL, 4, data);
WriteRegister(reg_ctx, "esi", NULL, 4, data);
WriteRegister(reg_ctx, "ebp", NULL, 4, data);
WriteRegister(reg_ctx, "esp", NULL, 4, data);
WriteRegister(reg_ctx, "ss", NULL, 4, data);
WriteRegister(reg_ctx, "eflags", NULL, 4, data);
WriteRegister(reg_ctx, "eip", NULL, 4, data);
WriteRegister(reg_ctx, "cs", NULL, 4, data);
WriteRegister(reg_ctx, "ds", NULL, 4, data);
WriteRegister(reg_ctx, "es", NULL, 4, data);
WriteRegister(reg_ctx, "fs", NULL, 4, data);
WriteRegister(reg_ctx, "gs", NULL, 4, data);
// Write out the EXC registers
data.PutHex32(EXCRegSet);
data.PutHex32(EXCWordCount);
WriteRegister(reg_ctx, "trapno", NULL, 4, data);
WriteRegister(reg_ctx, "err", NULL, 4, data);
WriteRegister(reg_ctx, "faultvaddr", NULL, 4, data);
return true;
}
return false;
}
protected:
int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
return 0;
}
int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
return 0;
}
int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
return 0;
}
};
class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
public:
RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
const DataExtractor &data)
: RegisterContextDarwin_arm(thread, 0) {
SetRegisterDataFrom_LC_THREAD(data);
}
void InvalidateAllRegisters() override {
// Do nothing... registers are always valid...
}
void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
lldb::offset_t offset = 0;
SetError(GPRRegSet, Read, -1);
SetError(FPURegSet, Read, -1);
SetError(EXCRegSet, Read, -1);
bool done = false;
while (!done) {
int flavor = data.GetU32(&offset);
uint32_t count = data.GetU32(&offset);
lldb::offset_t next_thread_state = offset + (count * 4);
switch (flavor) {
case GPRAltRegSet:
case GPRRegSet:
for (uint32_t i = 0; i < count; ++i) {
gpr.r[i] = data.GetU32(&offset);
}
// Note that gpr.cpsr is also copied by the above loop; this loop
// technically extends one element past the end of the gpr.r[] array.
SetError(GPRRegSet, Read, 0);
offset = next_thread_state;
break;
case FPURegSet: {
uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0];
const int fpu_reg_buf_size = sizeof(fpu.floats);
if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
fpu_reg_buf) == fpu_reg_buf_size) {
offset += fpu_reg_buf_size;
fpu.fpscr = data.GetU32(&offset);
SetError(FPURegSet, Read, 0);
} else {
done = true;
}
}
offset = next_thread_state;
break;
case EXCRegSet:
if (count == 3) {
exc.exception = data.GetU32(&offset);
exc.fsr = data.GetU32(&offset);
exc.far = data.GetU32(&offset);
SetError(EXCRegSet, Read, 0);
}
done = true;
offset = next_thread_state;
break;
// Unknown register set flavor, stop trying to parse.
default:
done = true;
}
}
}
static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
const char *alt_name, size_t reg_byte_size,
Stream &data) {
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
if (reg_info == NULL)
reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
if (reg_info) {
lldb_private::RegisterValue reg_value;
if (reg_ctx->ReadRegister(reg_info, reg_value)) {
if (reg_info->byte_size >= reg_byte_size)
data.Write(reg_value.GetBytes(), reg_byte_size);
else {
data.Write(reg_value.GetBytes(), reg_info->byte_size);
for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
++i)
data.PutChar(0);
}
return reg_byte_size;
}
}
// Just write zeros if all else fails
for (size_t i = 0; i < reg_byte_size; ++i)
data.PutChar(0);
return reg_byte_size;
}
static bool Create_LC_THREAD(Thread *thread, Stream &data) {
RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
if (reg_ctx_sp) {
RegisterContext *reg_ctx = reg_ctx_sp.get();
data.PutHex32(GPRRegSet); // Flavor
data.PutHex32(GPRWordCount);
WriteRegister(reg_ctx, "r0", NULL, 4, data);
WriteRegister(reg_ctx, "r1", NULL, 4, data);
WriteRegister(reg_ctx, "r2", NULL, 4, data);
WriteRegister(reg_ctx, "r3", NULL, 4, data);
WriteRegister(reg_ctx, "r4", NULL, 4, data);
WriteRegister(reg_ctx, "r5", NULL, 4, data);
WriteRegister(reg_ctx, "r6", NULL, 4, data);
WriteRegister(reg_ctx, "r7", NULL, 4, data);
WriteRegister(reg_ctx, "r8", NULL, 4, data);
WriteRegister(reg_ctx, "r9", NULL, 4, data);
WriteRegister(reg_ctx, "r10", NULL, 4, data);
WriteRegister(reg_ctx, "r11", NULL, 4, data);
WriteRegister(reg_ctx, "r12", NULL, 4, data);
WriteRegister(reg_ctx, "sp", NULL, 4, data);
WriteRegister(reg_ctx, "lr", NULL, 4, data);
WriteRegister(reg_ctx, "pc", NULL, 4, data);
WriteRegister(reg_ctx, "cpsr", NULL, 4, data);
// Write out the EXC registers
// data.PutHex32 (EXCRegSet);
// data.PutHex32 (EXCWordCount);
// WriteRegister (reg_ctx, "exception", NULL, 4, data);
// WriteRegister (reg_ctx, "fsr", NULL, 4, data);
// WriteRegister (reg_ctx, "far", NULL, 4, data);
return true;
}
return false;
}
protected:
int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
return 0;
}
int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
return 0;
}
int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
return 0;
}
int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
return -1;
}
};
class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
public:
RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
const DataExtractor &data)
: RegisterContextDarwin_arm64(thread, 0) {
SetRegisterDataFrom_LC_THREAD(data);
}
void InvalidateAllRegisters() override {
// Do nothing... registers are always valid...
}
void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
lldb::offset_t offset = 0;
SetError(GPRRegSet, Read, -1);
SetError(FPURegSet, Read, -1);
SetError(EXCRegSet, Read, -1);
bool done = false;
while (!done) {
int flavor = data.GetU32(&offset);
uint32_t count = data.GetU32(&offset);
lldb::offset_t next_thread_state = offset + (count * 4);
switch (flavor) {
case GPRRegSet:
// x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
// 32-bit register)
if (count >= (33 * 2) + 1) {
for (uint32_t i = 0; i < 29; ++i)
gpr.x[i] = data.GetU64(&offset);
gpr.fp = data.GetU64(&offset);
gpr.lr = data.GetU64(&offset);
gpr.sp = data.GetU64(&offset);
gpr.pc = data.GetU64(&offset);
gpr.cpsr = data.GetU32(&offset);
SetError(GPRRegSet, Read, 0);
}
offset = next_thread_state;
break;
case FPURegSet: {
uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
const int fpu_reg_buf_size = sizeof(fpu);
if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
fpu_reg_buf) == fpu_reg_buf_size) {
SetError(FPURegSet, Read, 0);
} else {
done = true;
}
}
offset = next_thread_state;
break;
case EXCRegSet:
if (count == 4) {
exc.far = data.GetU64(&offset);
exc.esr = data.GetU32(&offset);
exc.exception = data.GetU32(&offset);
SetError(EXCRegSet, Read, 0);
}
offset = next_thread_state;
break;
default:
done = true;
break;
}
}
}
static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
const char *alt_name, size_t reg_byte_size,
Stream &data) {
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
if (reg_info == NULL)
reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
if (reg_info) {
lldb_private::RegisterValue reg_value;
if (reg_ctx->ReadRegister(reg_info, reg_value)) {
if (reg_info->byte_size >= reg_byte_size)
data.Write(reg_value.GetBytes(), reg_byte_size);
else {
data.Write(reg_value.GetBytes(), reg_info->byte_size);
for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
++i)
data.PutChar(0);
}
return reg_byte_size;
}
}
// Just write zeros if all else fails
for (size_t i = 0; i < reg_byte_size; ++i)
data.PutChar(0);
return reg_byte_size;
}
static bool Create_LC_THREAD(Thread *thread, Stream &data) {
RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
if (reg_ctx_sp) {
RegisterContext *reg_ctx = reg_ctx_sp.get();
data.PutHex32(GPRRegSet); // Flavor
data.PutHex32(GPRWordCount);
WriteRegister(reg_ctx, "x0", NULL, 8, data);
WriteRegister(reg_ctx, "x1", NULL, 8, data);
WriteRegister(reg_ctx, "x2", NULL, 8, data);
WriteRegister(reg_ctx, "x3", NULL, 8, data);
WriteRegister(reg_ctx, "x4", NULL, 8, data);
WriteRegister(reg_ctx, "x5", NULL, 8, data);
WriteRegister(reg_ctx, "x6", NULL, 8, data);
WriteRegister(reg_ctx, "x7", NULL, 8, data);
WriteRegister(reg_ctx, "x8", NULL, 8, data);
WriteRegister(reg_ctx, "x9", NULL, 8, data);
WriteRegister(reg_ctx, "x10", NULL, 8, data);
WriteRegister(reg_ctx, "x11", NULL, 8, data);
WriteRegister(reg_ctx, "x12", NULL, 8, data);
WriteRegister(reg_ctx, "x13", NULL, 8, data);
WriteRegister(reg_ctx, "x14", NULL, 8, data);
WriteRegister(reg_ctx, "x15", NULL, 8, data);
WriteRegister(reg_ctx, "x16", NULL, 8, data);
WriteRegister(reg_ctx, "x17", NULL, 8, data);
WriteRegister(reg_ctx, "x18", NULL, 8, data);
WriteRegister(reg_ctx, "x19", NULL, 8, data);
WriteRegister(reg_ctx, "x20", NULL, 8, data);
WriteRegister(reg_ctx, "x21", NULL, 8, data);
WriteRegister(reg_ctx, "x22", NULL, 8, data);
WriteRegister(reg_ctx, "x23", NULL, 8, data);
WriteRegister(reg_ctx, "x24", NULL, 8, data);
WriteRegister(reg_ctx, "x25", NULL, 8, data);
WriteRegister(reg_ctx, "x26", NULL, 8, data);
WriteRegister(reg_ctx, "x27", NULL, 8, data);
WriteRegister(reg_ctx, "x28", NULL, 8, data);
WriteRegister(reg_ctx, "fp", NULL, 8, data);
WriteRegister(reg_ctx, "lr", NULL, 8, data);
WriteRegister(reg_ctx, "sp", NULL, 8, data);
WriteRegister(reg_ctx, "pc", NULL, 8, data);
WriteRegister(reg_ctx, "cpsr", NULL, 4, data);
// Write out the EXC registers
// data.PutHex32 (EXCRegSet);
// data.PutHex32 (EXCWordCount);
// WriteRegister (reg_ctx, "far", NULL, 8, data);
// WriteRegister (reg_ctx, "esr", NULL, 4, data);
// WriteRegister (reg_ctx, "exception", NULL, 4, data);
return true;
}
return false;
}
protected:
int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
return 0;
}
int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
return 0;
}
int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
return 0;
}
int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
return -1;
}
};
static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
switch (magic) {
case MH_MAGIC:
case MH_CIGAM:
return sizeof(struct mach_header);
case MH_MAGIC_64:
case MH_CIGAM_64:
return sizeof(struct mach_header_64);
break;
default:
break;
}
return 0;
}
#define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
void ObjectFileMachO::Initialize() {
PluginManager::RegisterPlugin(
GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
CreateMemoryInstance, GetModuleSpecifications, SaveCore);
}
void ObjectFileMachO::Terminate() {
PluginManager::UnregisterPlugin(CreateInstance);
}
lldb_private::ConstString ObjectFileMachO::GetPluginNameStatic() {
static ConstString g_name("mach-o");
return g_name;
}
const char *ObjectFileMachO::GetPluginDescriptionStatic() {
return "Mach-o object file reader (32 and 64 bit)";
}
ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
DataBufferSP &data_sp,
lldb::offset_t data_offset,
const FileSpec *file,
lldb::offset_t file_offset,
lldb::offset_t length) {
if (!data_sp) {
data_sp = MapFileData(*file, length, file_offset);
if (!data_sp)
return nullptr;
data_offset = 0;
}
if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
return nullptr;
// Update the data to contain the entire file if it doesn't already
if (data_sp->GetByteSize() < length) {
data_sp = MapFileData(*file, length, file_offset);
if (!data_sp)
return nullptr;
data_offset = 0;
}
auto objfile_ap = llvm::make_unique<ObjectFileMachO>(
module_sp, data_sp, data_offset, file, file_offset, length);
if (!objfile_ap || !objfile_ap->ParseHeader())
return nullptr;
return objfile_ap.release();
}
ObjectFile *ObjectFileMachO::CreateMemoryInstance(
const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
const ProcessSP &process_sp, lldb::addr_t header_addr) {
if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
std::unique_ptr<ObjectFile> objfile_ap(
new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
if (objfile_ap.get() && objfile_ap->ParseHeader())
return objfile_ap.release();
}
return NULL;
}
size_t ObjectFileMachO::GetModuleSpecifications(
const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
lldb::offset_t data_offset, lldb::offset_t file_offset,
lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
const size_t initial_count = specs.GetSize();
if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
DataExtractor data;
data.SetData(data_sp);
llvm::MachO::mach_header header;
if (ParseHeader(data, &data_offset, header)) {
size_t header_and_load_cmds =
header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
if (header_and_load_cmds >= data_sp->GetByteSize()) {
data_sp = MapFileData(file, header_and_load_cmds, file_offset);
data.SetData(data_sp);
data_offset = MachHeaderSizeFromMagic(header.magic);
}
if (data_sp) {
ModuleSpec spec;
spec.GetFileSpec() = file;
spec.SetObjectOffset(file_offset);
spec.SetObjectSize(length);
if (GetArchitecture(header, data, data_offset,
spec.GetArchitecture())) {
if (spec.GetArchitecture().IsValid()) {
GetUUID(header, data, data_offset, spec.GetUUID());
specs.Append(spec);
}
}
}
}
}
return specs.GetSize() - initial_count;
}
const ConstString &ObjectFileMachO::GetSegmentNameTEXT() {
static ConstString g_segment_name_TEXT("__TEXT");
return g_segment_name_TEXT;
}
const ConstString &ObjectFileMachO::GetSegmentNameDATA() {
static ConstString g_segment_name_DATA("__DATA");
return g_segment_name_DATA;
}
const ConstString &ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
static ConstString g_segment_name("__DATA_DIRTY");
return g_segment_name;
}
const ConstString &ObjectFileMachO::GetSegmentNameDATA_CONST() {
static ConstString g_segment_name("__DATA_CONST");
return g_segment_name;
}
const ConstString &ObjectFileMachO::GetSegmentNameOBJC() {
static ConstString g_segment_name_OBJC("__OBJC");
return g_segment_name_OBJC;
}
const ConstString &ObjectFileMachO::GetSegmentNameLINKEDIT() {
static ConstString g_section_name_LINKEDIT("__LINKEDIT");
return g_section_name_LINKEDIT;
}
const ConstString &ObjectFileMachO::GetSectionNameEHFrame() {
static ConstString g_section_name_eh_frame("__eh_frame");
return g_section_name_eh_frame;
}
bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp,
lldb::addr_t data_offset,
lldb::addr_t data_length) {
DataExtractor data;
data.SetData(data_sp, data_offset, data_length);
lldb::offset_t offset = 0;
uint32_t magic = data.GetU32(&offset);
return MachHeaderSizeFromMagic(magic) != 0;
}
ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
DataBufferSP &data_sp,
lldb::offset_t data_offset,
const FileSpec *file,
lldb::offset_t file_offset,
lldb::offset_t length)
: ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
m_mach_segments(), m_mach_sections(), m_entry_point_address(),
m_thread_context_offsets(), m_thread_context_offsets_valid(false),
m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
::memset(&m_header, 0, sizeof(m_header));
::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
}
ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
lldb::DataBufferSP &header_data_sp,
const lldb::ProcessSP &process_sp,
lldb::addr_t header_addr)
: ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
m_mach_segments(), m_mach_sections(), m_entry_point_address(),
m_thread_context_offsets(), m_thread_context_offsets_valid(false),
m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
::memset(&m_header, 0, sizeof(m_header));
::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
}
bool ObjectFileMachO::ParseHeader(DataExtractor &data,
lldb::offset_t *data_offset_ptr,
llvm::MachO::mach_header &header) {
data.SetByteOrder(endian::InlHostByteOrder());
// Leave magic in the original byte order
header.magic = data.GetU32(data_offset_ptr);
bool can_parse = false;
bool is_64_bit = false;
switch (header.magic) {
case MH_MAGIC:
data.SetByteOrder(endian::InlHostByteOrder());
data.SetAddressByteSize(4);
can_parse = true;
break;
case MH_MAGIC_64:
data.SetByteOrder(endian::InlHostByteOrder());
data.SetAddressByteSize(8);
can_parse = true;
is_64_bit = true;
break;
case MH_CIGAM:
data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
? eByteOrderLittle
: eByteOrderBig);
data.SetAddressByteSize(4);
can_parse = true;
break;
case MH_CIGAM_64:
data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
? eByteOrderLittle
: eByteOrderBig);
data.SetAddressByteSize(8);
is_64_bit = true;
can_parse = true;
break;
default:
break;
}
if (can_parse) {
data.GetU32(data_offset_ptr, &header.cputype, 6);
if (is_64_bit)
*data_offset_ptr += 4;
return true;
} else {
memset(&header, 0, sizeof(header));
}
return false;
}
bool ObjectFileMachO::ParseHeader() {
ModuleSP module_sp(GetModule());
if (module_sp) {
std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
bool can_parse = false;
lldb::offset_t offset = 0;
m_data.SetByteOrder(endian::InlHostByteOrder());
// Leave magic in the original byte order
m_header.magic = m_data.GetU32(&offset);
switch (m_header.magic) {
case MH_MAGIC:
m_data.SetByteOrder(endian::InlHostByteOrder());
m_data.SetAddressByteSize(4);
can_parse = true;
break;
case MH_MAGIC_64:
m_data.SetByteOrder(endian::InlHostByteOrder());
m_data.SetAddressByteSize(8);
can_parse = true;
break;
case MH_CIGAM:
m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
? eByteOrderLittle
: eByteOrderBig);
m_data.SetAddressByteSize(4);
can_parse = true;
break;
case MH_CIGAM_64:
m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
? eByteOrderLittle
: eByteOrderBig);
m_data.SetAddressByteSize(8);
can_parse = true;
break;
default:
break;
}
if (can_parse) {
m_data.GetU32(&offset, &m_header.cputype, 6);
ArchSpec mach_arch;
if (GetArchitecture(mach_arch)) {
// Check if the module has a required architecture
const ArchSpec &module_arch = module_sp->GetArchitecture();
if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
return false;
if (SetModulesArchitecture(mach_arch)) {
const size_t header_and_lc_size =
m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
if (m_data.GetByteSize() < header_and_lc_size) {
DataBufferSP data_sp;
ProcessSP process_sp(m_process_wp.lock());
if (process_sp) {
data_sp =
ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
} else {
// Read in all only the load command data from the file on disk
data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
if (data_sp->GetByteSize() != header_and_lc_size)
return false;
}
if (data_sp)
m_data.SetData(data_sp);
}
}
return true;
}
} else {
memset(&m_header, 0, sizeof(struct mach_header));
}
}
return false;
}
ByteOrder ObjectFileMachO::GetByteOrder() const {
return m_data.GetByteOrder();
}
bool ObjectFileMachO::IsExecutable() const {
return m_header.filetype == MH_EXECUTE;
}
uint32_t ObjectFileMachO::GetAddressByteSize() const {
return m_data.GetAddressByteSize();
}
AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
Symtab *symtab = GetSymtab();
if (symtab) {
Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
if (symbol) {
if (symbol->ValueIsAddress()) {
SectionSP section_sp(symbol->GetAddressRef().GetSection());
if (section_sp) {
const lldb::SectionType section_type = section_sp->GetType();
switch (section_type) {
case eSectionTypeInvalid:
return eAddressClassUnknown;
case eSectionTypeCode:
if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
// For ARM we have a bit in the n_desc field of the symbol that
// tells us ARM/Thumb which is bit 0x0008.
if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
return eAddressClassCodeAlternateISA;
}
return eAddressClassCode;
case eSectionTypeContainer:
return eAddressClassUnknown;
case eSectionTypeData:
case eSectionTypeDataCString:
case eSectionTypeDataCStringPointers:
case eSectionTypeDataSymbolAddress:
case eSectionTypeData4:
case eSectionTypeData8:
case eSectionTypeData16:
case eSectionTypeDataPointers:
case eSectionTypeZeroFill:
case eSectionTypeDataObjCMessageRefs:
case eSectionTypeDataObjCCFStrings:
case eSectionTypeGoSymtab:
return eAddressClassData;
case eSectionTypeDebug:
case eSectionTypeDWARFDebugAbbrev:
case eSectionTypeDWARFDebugAddr:
case eSectionTypeDWARFDebugAranges:
case eSectionTypeDWARFDebugCuIndex:
case eSectionTypeDWARFDebugFrame:
case eSectionTypeDWARFDebugInfo:
case eSectionTypeDWARFDebugLine:
case eSectionTypeDWARFDebugLoc:
case eSectionTypeDWARFDebugMacInfo:
case eSectionTypeDWARFDebugMacro:
case eSectionTypeDWARFDebugNames:
case eSectionTypeDWARFDebugPubNames:
case eSectionTypeDWARFDebugPubTypes:
case eSectionTypeDWARFDebugRanges:
case eSectionTypeDWARFDebugStr:
case eSectionTypeDWARFDebugStrOffsets:
case eSectionTypeDWARFDebugTypes:
case eSectionTypeDWARFAppleNames:
case eSectionTypeDWARFAppleTypes:
case eSectionTypeDWARFAppleNamespaces:
case eSectionTypeDWARFAppleObjC:
case eSectionTypeDWARFGNUDebugAltLink:
return eAddressClassDebug;
case eSectionTypeEHFrame:
case eSectionTypeARMexidx:
case eSectionTypeARMextab:
case eSectionTypeCompactUnwind:
return eAddressClassRuntime;
case eSectionTypeAbsoluteAddress:
case eSectionTypeELFSymbolTable:
case eSectionTypeELFDynamicSymbols:
case eSectionTypeELFRelocationEntries:
case eSectionTypeELFDynamicLinkInfo:
case eSectionTypeOther:
return eAddressClassUnknown;
}
}
}
const SymbolType symbol_type = symbol->GetType();
switch (symbol_type) {
case eSymbolTypeAny:
return eAddressClassUnknown;
case eSymbolTypeAbsolute:
return eAddressClassUnknown;
case eSymbolTypeCode:
case eSymbolTypeTrampoline:
case eSymbolTypeResolver:
if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
// For ARM we have a bit in the n_desc field of the symbol that tells
// us ARM/Thumb which is bit 0x0008.
if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
return eAddressClassCodeAlternateISA;
}
return eAddressClassCode;
case eSymbolTypeData:
return eAddressClassData;
case eSymbolTypeRuntime:
return eAddressClassRuntime;
case eSymbolTypeException:
return eAddressClassRuntime;
case eSymbolTypeSourceFile:
return eAddressClassDebug;
case eSymbolTypeHeaderFile:
return eAddressClassDebug;
case eSymbolTypeObjectFile:
return eAddressClassDebug;
case eSymbolTypeCommonBlock:
return eAddressClassDebug;
case eSymbolTypeBlock:
return eAddressClassDebug;
case eSymbolTypeLocal:
return eAddressClassData;
case eSymbolTypeParam:
return eAddressClassData;
case eSymbolTypeVariable:
return eAddressClassData;
case eSymbolTypeVariableType:
return eAddressClassDebug;
case eSymbolTypeLineEntry:
return eAddressClassDebug;
case eSymbolTypeLineHeader:
return eAddressClassDebug;
case eSymbolTypeScopeBegin:
return eAddressClassDebug;
case eSymbolTypeScopeEnd:
return eAddressClassDebug;
case eSymbolTypeAdditional:
return eAddressClassUnknown;
case eSymbolTypeCompiler:
return eAddressClassDebug;
case eSymbolTypeInstrumentation:
return eAddressClassDebug;
case eSymbolTypeUndefined:
return eAddressClassUnknown;
case eSymbolTypeObjCClass:
return eAddressClassRuntime;
case eSymbolTypeObjCMetaClass:
return eAddressClassRuntime;
case eSymbolTypeObjCIVar:
return eAddressClassRuntime;
case eSymbolTypeReExported:
return eAddressClassRuntime;
}
}
}
return eAddressClassUnknown;
}
Symtab *ObjectFileMachO::GetSymtab() {
ModuleSP module_sp(GetModule());
if (module_sp) {
std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
if (m_symtab_ap.get() == NULL) {
m_symtab_ap.reset(new Symtab(this));
std::lock_guard<std::recursive_mutex> symtab_guard(
m_symtab_ap->GetMutex());
ParseSymtab();
m_symtab_ap->Finalize();
}
}
return m_symtab_ap.get();
}
bool ObjectFileMachO::IsStripped() {
if (m_dysymtab.cmd == 0) {
ModuleSP module_sp(GetModule());
if (module_sp) {
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
for (uint32_t i = 0; i < m_header.ncmds; ++i) {
const lldb::offset_t load_cmd_offset = offset;
load_command lc;
if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
break;
if (lc.cmd == LC_DYSYMTAB) {
m_dysymtab.cmd = lc.cmd;
m_dysymtab.cmdsize = lc.cmdsize;
if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
(sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
NULL) {
// Clear m_dysymtab if we were unable to read all items from the
// load command
::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
}
}
offset = load_cmd_offset + lc.cmdsize;
}
}
}
if (m_dysymtab.cmd)
return m_dysymtab.nlocalsym <= 1;
return false;
}
ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
EncryptedFileRanges result;
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
encryption_info_command encryption_cmd;
for (uint32_t i = 0; i < m_header.ncmds; ++i) {
const lldb::offset_t load_cmd_offset = offset;
if (m_data.GetU32(&offset, &encryption_cmd, 2) == NULL)
break;
// LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the
// 3 fields we care about, so treat them the same.
if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
if (encryption_cmd.cryptid != 0) {
EncryptedFileRanges::Entry entry;
entry.SetRangeBase(encryption_cmd.cryptoff);
entry.SetByteSize(encryption_cmd.cryptsize);
result.Append(entry);
}
}
}
offset = load_cmd_offset + encryption_cmd.cmdsize;
}
return result;
}
void ObjectFileMachO::SanitizeSegmentCommand(segment_command_64 &seg_cmd,
uint32_t cmd_idx) {
if (m_length == 0 || seg_cmd.filesize == 0)
return;
if (seg_cmd.fileoff > m_length) {
// We have a load command that says it extends past the end of the file.
// This is likely a corrupt file. We don't have any way to return an error
// condition here (this method was likely invoked from something like
// ObjectFile::GetSectionList()), so we just null out the section contents,
// and dump a message to stdout. The most common case here is core file
// debugging with a truncated file.
const char *lc_segment_name =
seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
GetModule()->ReportWarning(
"load command %u %s has a fileoff (0x%" PRIx64
") that extends beyond the end of the file (0x%" PRIx64
"), ignoring this section",
cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
seg_cmd.fileoff = 0;
seg_cmd.filesize = 0;
}
if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
// We have a load command that says it extends past the end of the file.
// This is likely a corrupt file. We don't have any way to return an error
// condition here (this method was likely invoked from something like
// ObjectFile::GetSectionList()), so we just null out the section contents,
// and dump a message to stdout. The most common case here is core file
// debugging with a truncated file.
const char *lc_segment_name =
seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
GetModule()->ReportWarning(
"load command %u %s has a fileoff + filesize (0x%" PRIx64
") that extends beyond the end of the file (0x%" PRIx64
"), the segment will be truncated to match",
cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
// Truncate the length
seg_cmd.filesize = m_length - seg_cmd.fileoff;
}
}
static uint32_t GetSegmentPermissions(const segment_command_64 &seg_cmd) {
uint32_t result = 0;
if (seg_cmd.initprot & VM_PROT_READ)
result |= ePermissionsReadable;
if (seg_cmd.initprot & VM_PROT_WRITE)
result |= ePermissionsWritable;
if (seg_cmd.initprot & VM_PROT_EXECUTE)
result |= ePermissionsExecutable;
return result;
}
static lldb::SectionType GetSectionType(uint32_t flags,
ConstString section_name) {
if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
return eSectionTypeCode;
uint32_t mach_sect_type = flags & SECTION_TYPE;
static ConstString g_sect_name_objc_data("__objc_data");
static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
static ConstString g_sect_name_objc_const("__objc_const");
static ConstString g_sect_name_objc_classlist("__objc_classlist");
static ConstString g_sect_name_cfstring("__cfstring");
static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
static ConstString g_sect_name_dwarf_debug_info("__debug_info");
static ConstString g_sect_name_dwarf_debug_line("__debug_line");
static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
static ConstString g_sect_name_dwarf_debug_names("__debug_names");
static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
static ConstString g_sect_name_dwarf_debug_str("__debug_str");
static ConstString g_sect_name_dwarf_debug_types("__debug_types");
static ConstString g_sect_name_dwarf_apple_names("__apple_names");
static ConstString g_sect_name_dwarf_apple_types("__apple_types");
static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
static ConstString g_sect_name_eh_frame("__eh_frame");
static ConstString g_sect_name_compact_unwind("__unwind_info");
static ConstString g_sect_name_text("__text");
static ConstString g_sect_name_data("__data");
static ConstString g_sect_name_go_symtab("__gosymtab");
if (section_name == g_sect_name_dwarf_debug_abbrev)
return eSectionTypeDWARFDebugAbbrev;
if (section_name == g_sect_name_dwarf_debug_aranges)
return eSectionTypeDWARFDebugAranges;
if (section_name == g_sect_name_dwarf_debug_frame)
return eSectionTypeDWARFDebugFrame;
if (section_name == g_sect_name_dwarf_debug_info)
return eSectionTypeDWARFDebugInfo;
if (section_name == g_sect_name_dwarf_debug_line)
return eSectionTypeDWARFDebugLine;
if (section_name == g_sect_name_dwarf_debug_loc)
return eSectionTypeDWARFDebugLoc;
if (section_name == g_sect_name_dwarf_debug_macinfo)
return eSectionTypeDWARFDebugMacInfo;
if (section_name == g_sect_name_dwarf_debug_names)
return eSectionTypeDWARFDebugNames;
if (section_name == g_sect_name_dwarf_debug_pubnames)
return eSectionTypeDWARFDebugPubNames;
if (section_name == g_sect_name_dwarf_debug_pubtypes)
return eSectionTypeDWARFDebugPubTypes;
if (section_name == g_sect_name_dwarf_debug_ranges)
return eSectionTypeDWARFDebugRanges;
if (section_name == g_sect_name_dwarf_debug_str)
return eSectionTypeDWARFDebugStr;
if (section_name == g_sect_name_dwarf_debug_types)
return eSectionTypeDWARFDebugTypes;
if (section_name == g_sect_name_dwarf_apple_names)
return eSectionTypeDWARFAppleNames;
if (section_name == g_sect_name_dwarf_apple_types)
return eSectionTypeDWARFAppleTypes;
if (section_name == g_sect_name_dwarf_apple_namespaces)
return eSectionTypeDWARFAppleNamespaces;
if (section_name == g_sect_name_dwarf_apple_objc)
return eSectionTypeDWARFAppleObjC;
if (section_name == g_sect_name_objc_selrefs)
return eSectionTypeDataCStringPointers;
if (section_name == g_sect_name_objc_msgrefs)
return eSectionTypeDataObjCMessageRefs;
if (section_name == g_sect_name_eh_frame)
return eSectionTypeEHFrame;
if (section_name == g_sect_name_compact_unwind)
return eSectionTypeCompactUnwind;
if (section_name == g_sect_name_cfstring)
return eSectionTypeDataObjCCFStrings;
if (section_name == g_sect_name_go_symtab)
return eSectionTypeGoSymtab;
if (section_name == g_sect_name_objc_data ||
section_name == g_sect_name_objc_classrefs ||
section_name == g_sect_name_objc_superrefs ||
section_name == g_sect_name_objc_const ||
section_name == g_sect_name_objc_classlist) {
return eSectionTypeDataPointers;
}
switch (mach_sect_type) {
// TODO: categorize sections by other flags for regular sections
case S_REGULAR:
if (section_name == g_sect_name_text)
return eSectionTypeCode;
if (section_name == g_sect_name_data)
return eSectionTypeData;
return eSectionTypeOther;
case S_ZEROFILL:
return eSectionTypeZeroFill;
case S_CSTRING_LITERALS: // section with only literal C strings
return eSectionTypeDataCString;
case S_4BYTE_LITERALS: // section with only 4 byte literals
return eSectionTypeData4;
case S_8BYTE_LITERALS: // section with only 8 byte literals
return eSectionTypeData8;
case S_LITERAL_POINTERS: // section with only pointers to literals
return eSectionTypeDataPointers;
case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
return eSectionTypeDataPointers;
case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
return eSectionTypeDataPointers;
case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
// the reserved2 field
return eSectionTypeCode;
case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
// initialization
return eSectionTypeDataPointers;
case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
// termination
return eSectionTypeDataPointers;
case S_COALESCED:
return eSectionTypeOther;
case S_GB_ZEROFILL:
return eSectionTypeZeroFill;
case S_INTERPOSING: // section with only pairs of function pointers for
// interposing
return eSectionTypeCode;
case S_16BYTE_LITERALS: // section with only 16 byte literals
return eSectionTypeData16;
case S_DTRACE_DOF:
return eSectionTypeDebug;
case S_LAZY_DYLIB_SYMBOL_POINTERS:
return eSectionTypeDataPointers;
default:
return eSectionTypeOther;
}
}
struct ObjectFileMachO::SegmentParsingContext {
const EncryptedFileRanges EncryptedRanges;
lldb_private::SectionList &UnifiedList;
uint32_t NextSegmentIdx = 0;
uint32_t NextSectionIdx = 0;
bool FileAddressesChanged = false;
SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
lldb_private::SectionList &UnifiedList)
: EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
};
void ObjectFileMachO::ProcessSegmentCommand(const load_command &load_cmd_,
lldb::offset_t offset,
uint32_t cmd_idx,
SegmentParsingContext &context) {
segment_command_64 load_cmd;
memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
return;
ModuleSP module_sp = GetModule();
const bool is_core = GetType() == eTypeCoreFile;
const bool is_dsym = (m_header.filetype == MH_DSYM);
bool add_section = true;
bool add_to_unified = true;
ConstString const_segname(
load_cmd.segname,
std::min<size_t>(strlen(load_cmd.segname), sizeof(load_cmd.segname)));
SectionSP unified_section_sp(
context.UnifiedList.FindSectionByName(const_segname));
if (is_dsym && unified_section_sp) {
if (const_segname == GetSegmentNameLINKEDIT()) {
// We need to keep the __LINKEDIT segment private to this object file
// only
add_to_unified = false;
} else {
// This is the dSYM file and this section has already been created by the
// object file, no need to create it.
add_section = false;
}
}
load_cmd.vmaddr = m_data.GetAddress(&offset);
load_cmd.vmsize = m_data.GetAddress(&offset);
load_cmd.fileoff = m_data.GetAddress(&offset);
load_cmd.filesize = m_data.GetAddress(&offset);
if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
return;
SanitizeSegmentCommand(load_cmd, cmd_idx);
const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
const bool segment_is_encrypted =
(load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
// Keep a list of mach segments around in case we need to get at data that
// isn't stored in the abstracted Sections.
m_mach_segments.push_back(load_cmd);
// Use a segment ID of the segment index shifted left by 8 so they never
// conflict with any of the sections.
SectionSP segment_sp;
if (add_section && (const_segname || is_core)) {
segment_sp.reset(new Section(
module_sp, // Module to which this section belongs
this, // Object file to which this sections belongs
++context.NextSegmentIdx
<< 8, // Section ID is the 1 based segment index
// shifted right by 8 bits as not to collide with any of the 256
// section IDs that are possible
const_segname, // Name of this section
eSectionTypeContainer, // This section is a container of other
// sections.
load_cmd.vmaddr, // File VM address == addresses as they are
// found in the object file
load_cmd.vmsize, // VM size in bytes of this section
load_cmd.fileoff, // Offset to the data for this section in
// the file
load_cmd.filesize, // Size in bytes of this section as found
// in the file
0, // Segments have no alignment information
load_cmd.flags)); // Flags for this section
segment_sp->SetIsEncrypted(segment_is_encrypted);
m_sections_ap->AddSection(segment_sp);
segment_sp->SetPermissions(segment_permissions);
if (add_to_unified)
context.UnifiedList.AddSection(segment_sp);
} else if (unified_section_sp) {
if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
// Check to see if the module was read from memory?
if (module_sp->GetObjectFile()->GetHeaderAddress().IsValid()) {
// We have a module that is in memory and needs to have its file
// address adjusted. We need to do this because when we load a file
// from memory, its addresses will be slid already, yet the addresses
// in the new symbol file will still be unslid. Since everything is
// stored as section offset, this shouldn't cause any problems.
// Make sure we've parsed the symbol table from the ObjectFile before
// we go around changing its Sections.
module_sp->GetObjectFile()->GetSymtab();
// eh_frame would present the same problems but we parse that on a per-
// function basis as-needed so it's more difficult to remove its use of
// the Sections. Realistically, the environments where this code path
// will be taken will not have eh_frame sections.
unified_section_sp->SetFileAddress(load_cmd.vmaddr);
// Notify the module that the section addresses have been changed once
// we're done so any file-address caches can be updated.
context.FileAddressesChanged = true;
}
}
m_sections_ap->AddSection(unified_section_sp);
}
struct section_64 sect64;
::memset(&sect64, 0, sizeof(sect64));
// Push a section into our mach sections for the section at index zero
// (NO_SECT) if we don't have any mach sections yet...
if (m_mach_sections.empty())
m_mach_sections.push_back(sect64);
uint32_t segment_sect_idx;
const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
++segment_sect_idx) {
if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
sizeof(sect64.sectname)) == NULL)
break;
if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
sizeof(sect64.segname)) == NULL)
break;
sect64.addr = m_data.GetAddress(&offset);
sect64.size = m_data.GetAddress(&offset);
if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == NULL)
break;
// Keep a list of mach sections around in case we need to get at data that
// isn't stored in the abstracted Sections.
m_mach_sections.push_back(sect64);
if (add_section) {
ConstString section_name(
sect64.sectname,
std::min<size_t>(strlen(sect64.sectname), sizeof(sect64.sectname)));
if (!const_segname) {
// We have a segment with no name so we need to conjure up segments
// that correspond to the section's segname if there isn't already such
// a section. If there is such a section, we resize the section so that
// it spans all sections. We also mark these sections as fake so
// address matches don't hit if they land in the gaps between the child
// sections.
const_segname.SetTrimmedCStringWithLength(sect64.segname,
sizeof(sect64.segname));
segment_sp = context.UnifiedList.FindSectionByName(const_segname);
if (segment_sp.get()) {
Section *segment = segment_sp.get();
// Grow the section size as needed.
const lldb::addr_t sect64_min_addr = sect64.addr;
const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
const lldb::addr_t curr_seg_max_addr =
curr_seg_min_addr + curr_seg_byte_size;
if (sect64_min_addr >= curr_seg_min_addr) {
const lldb::addr_t new_seg_byte_size =
sect64_max_addr - curr_seg_min_addr;
// Only grow the section size if needed
if (new_seg_byte_size > curr_seg_byte_size)
segment->SetByteSize(new_seg_byte_size);
} else {
// We need to change the base address of the segment and adjust the
// child section offsets for all existing children.
const lldb::addr_t slide_amount =
sect64_min_addr - curr_seg_min_addr;
segment->Slide(slide_amount, false);
segment->GetChildren().Slide(-slide_amount, false);
segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
}
// Grow the section size as needed.
if (sect64.offset) {
const lldb::addr_t segment_min_file_offset =
segment->GetFileOffset();
const lldb::addr_t segment_max_file_offset =
segment_min_file_offset + segment->GetFileSize();
const lldb::addr_t section_min_file_offset = sect64.offset;
const lldb::addr_t section_max_file_offset =
section_min_file_offset + sect64.size;
const lldb::addr_t new_file_offset =
std::min(section_min_file_offset, segment_min_file_offset);
const lldb::addr_t new_file_size =
std::max(section_max_file_offset, segment_max_file_offset) -
new_file_offset;
segment->SetFileOffset(new_file_offset);
segment->SetFileSize(new_file_size);
}
} else {
// Create a fake section for the section's named segment
segment_sp.reset(new Section(
segment_sp, // Parent section
module_sp, // Module to which this section belongs
this, // Object file to which this section belongs
++context.NextSegmentIdx
<< 8, // Section ID is the 1 based segment index
// shifted right by 8 bits as not to
// collide with any of the 256 section IDs
// that are possible
const_segname, // Name of this section
eSectionTypeContainer, // This section is a container of
// other sections.
sect64.addr, // File VM address == addresses as they are
// found in the object file
sect64.size, // VM size in bytes of this section
sect64.offset, // Offset to the data for this section in
// the file
sect64.offset ? sect64.size : 0, // Size in bytes of
// this section as
// found in the file
sect64.align,
load_cmd.flags)); // Flags for this section
segment_sp->SetIsFake(true);
segment_sp->SetPermissions(segment_permissions);
m_sections_ap->AddSection(segment_sp);
if (add_to_unified)
context.UnifiedList.AddSection(segment_sp);
segment_sp->SetIsEncrypted(segment_is_encrypted);
}
}
assert(segment_sp.get());
lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
SectionSP section_sp(new Section(
segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
sect64.flags));
// Set the section to be encrypted to match the segment
bool section_is_encrypted = false;
if (!segment_is_encrypted && load_cmd.filesize != 0)
section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
sect64.offset) != NULL;
section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
section_sp->SetPermissions(segment_permissions);
segment_sp->GetChildren().AddSection(section_sp);
if (segment_sp->IsFake()) {
segment_sp.reset();
const_segname.Clear();
}
}
}
if (segment_sp && is_dsym) {
if (first_segment_sectID <= context.NextSectionIdx) {
lldb::user_id_t sect_uid;
for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
++sect_uid) {
SectionSP curr_section_sp(
segment_sp->GetChildren().FindSectionByID(sect_uid));
SectionSP next_section_sp;
if (sect_uid + 1 <= context.NextSectionIdx)
next_section_sp =
segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
if (curr_section_sp.get()) {
if (curr_section_sp->GetByteSize() == 0) {
if (next_section_sp.get() != NULL)
curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
curr_section_sp->GetFileAddress());
else
curr_section_sp->SetByteSize(load_cmd.vmsize);
}
}
}
}
}
}
void ObjectFileMachO::ProcessDysymtabCommand(const load_command &load_cmd,
lldb::offset_t offset) {
m_dysymtab.cmd = load_cmd.cmd;
m_dysymtab.cmdsize = load_cmd.cmdsize;
m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
(sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
}
void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
if (m_sections_ap)
return;
m_sections_ap.reset(new SectionList());
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
// bool dump_sections = false;
ModuleSP module_sp(GetModule());
offset = MachHeaderSizeFromMagic(m_header.magic);
SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
struct load_command load_cmd;
for (uint32_t i = 0; i < m_header.ncmds; ++i) {
const lldb::offset_t load_cmd_offset = offset;
if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
break;
if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
ProcessSegmentCommand(load_cmd, offset, i, context);
else if (load_cmd.cmd == LC_DYSYMTAB)
ProcessDysymtabCommand(load_cmd, offset);
offset = load_cmd_offset + load_cmd.cmdsize;
}
if (context.FileAddressesChanged && module_sp)
module_sp->SectionFileAddressesChanged();
}
class MachSymtabSectionInfo {
public:
MachSymtabSectionInfo(SectionList *section_list)
: m_section_list(section_list), m_section_infos() {
// Get the number of sections down to a depth of 1 to include all segments
// and their sections, but no other sections that may be added for debug
// map or
m_section_infos.resize(section_list->GetNumSections(1));
}
SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
if (n_sect == 0)
return SectionSP();
if (n_sect < m_section_infos.size()) {
if (!m_section_infos[n_sect].section_sp) {
SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
m_section_infos[n_sect].section_sp = section_sp;
if (section_sp) {
m_section_infos[n_sect].vm_range.SetBaseAddress(
section_sp->GetFileAddress());
m_section_infos[n_sect].vm_range.SetByteSize(
section_sp->GetByteSize());
} else {
Host::SystemLog(Host::eSystemLogError,
"error: unable to find section for section %u\n",
n_sect);
}
}
if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
// Symbol is in section.
return m_section_infos[n_sect].section_sp;
} else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
m_section_infos[n_sect].vm_range.GetBaseAddress() ==
file_addr) {
// Symbol is in section with zero size, but has the same start address
// as the section. This can happen with linker symbols (symbols that
// start with the letter 'l' or 'L'.
return m_section_infos[n_sect].section_sp;
}
}
return m_section_list->FindSectionContainingFileAddress(file_addr);
}
protected:
struct SectionInfo {
SectionInfo() : vm_range(), section_sp() {}
VMRange vm_range;
SectionSP section_sp;
};
SectionList *m_section_list;
std::vector<SectionInfo> m_section_infos;
};
struct TrieEntry {
TrieEntry()
: name(), address(LLDB_INVALID_ADDRESS), flags(0), other(0),
import_name() {}
void Clear() {
name.Clear();
address = LLDB_INVALID_ADDRESS;
flags = 0;
other = 0;
import_name.Clear();
}
void Dump() const {
printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
static_cast<unsigned long long>(address),
static_cast<unsigned long long>(flags),
static_cast<unsigned long long>(other), name.GetCString());
if (import_name)
printf(" -> \"%s\"\n", import_name.GetCString());
else
printf("\n");
}
ConstString name;
uint64_t address;
uint64_t flags;
uint64_t other;
ConstString import_name;
};
struct TrieEntryWithOffset {
lldb::offset_t nodeOffset;
TrieEntry entry;
TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
void Dump(uint32_t idx) const {
printf("[%3u] 0x%16.16llx: ", idx,
static_cast<unsigned long long>(nodeOffset));
entry.Dump();
}
bool operator<(const TrieEntryWithOffset &other) const {
return (nodeOffset < other.nodeOffset);
}
};
static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
const bool is_arm,
std::vector<llvm::StringRef> &nameSlices,
std::set<lldb::addr_t> &resolver_addresses,
std::vector<TrieEntryWithOffset> &output) {
if (!data.ValidOffset(offset))
return true;
const uint64_t terminalSize = data.GetULEB128(&offset);
lldb::offset_t children_offset = offset + terminalSize;
if (terminalSize != 0) {
TrieEntryWithOffset e(offset);
e.entry.flags = data.GetULEB128(&offset);
const char *import_name = NULL;
if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
e.entry.address = 0;
e.entry.other = data.GetULEB128(&offset); // dylib ordinal
import_name = data.GetCStr(&offset);
} else {
e.entry.address = data.GetULEB128(&offset);
if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
e.entry.other = data.GetULEB128(&offset);
uint64_t resolver_addr = e.entry.other;
if (is_arm)
resolver_addr &= THUMB_ADDRESS_BIT_MASK;
resolver_addresses.insert(resolver_addr);
} else
e.entry.other = 0;
}
// Only add symbols that are reexport symbols with a valid import name
if (EXPORT_SYMBOL_FLAGS_REEXPORT & e.entry.flags && import_name &&
import_name[0]) {
std::string name;
if (!nameSlices.empty()) {
for (auto name_slice : nameSlices)
name.append(name_slice.data(), name_slice.size());
}
if (name.size() > 1) {
// Skip the leading '_'
e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
}
if (import_name) {
// Skip the leading '_'
e.entry.import_name.SetCString(import_name + 1);
}
output.push_back(e);
}
}
const uint8_t childrenCount = data.GetU8(&children_offset);
for (uint8_t i = 0; i < childrenCount; ++i) {
const char *cstr = data.GetCStr(&children_offset);
if (cstr)
nameSlices.push_back(llvm::StringRef(cstr));
else
return false; // Corrupt data
lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
if (childNodeOffset) {
if (!ParseTrieEntries(data, childNodeOffset, is_arm, nameSlices,
resolver_addresses, output)) {
return false;
}
}
nameSlices.pop_back();
}
return true;
}
// Read the UUID out of a dyld_shared_cache file on-disk.
UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
const ByteOrder byte_order,
const uint32_t addr_byte_size) {
UUID dsc_uuid;
DataBufferSP DscData = MapFileData(
dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
if (!DscData)
return dsc_uuid;
DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
char version_str[7];
lldb::offset_t offset = 0;
memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
version_str[6] = '\0';
if (strcmp(version_str, "dyld_v") == 0) {
offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid);
uint8_t uuid_bytes[sizeof(uuid_t)];
memcpy(uuid_bytes, dsc_header_data.GetData(&offset, sizeof(uuid_t)),
sizeof(uuid_t));
dsc_uuid.SetBytes(uuid_bytes);
}
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
if (log && dsc_uuid.IsValid()) {
log->Printf("Shared cache %s has UUID %s", dyld_shared_cache.GetPath().c_str(),
dsc_uuid.GetAsString().c_str());
}
return dsc_uuid;
}
size_t ObjectFileMachO::ParseSymtab() {
static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
Timer scoped_timer(func_cat, "ObjectFileMachO::ParseSymtab () module = %s",
m_file.GetFilename().AsCString(""));
ModuleSP module_sp(GetModule());
if (!module_sp)
return 0;
struct symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
struct linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
struct dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
FunctionStarts function_starts;
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
uint32_t i;
FileSpecList dylib_files;
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
static const llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
static const llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
static const llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
for (i = 0; i < m_header.ncmds; ++i) {
const lldb::offset_t cmd_offset = offset;
// Read in the load command and load command size
struct load_command lc;
if (m_data.GetU32(&offset, &lc, 2) == NULL)
break;
// Watch for the symbol table load command
switch (lc.cmd) {
case LC_SYMTAB:
symtab_load_command.cmd = lc.cmd;
symtab_load_command.cmdsize = lc.cmdsize;
// Read in the rest of the symtab load command
if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
0) // fill in symoff, nsyms, stroff, strsize fields
return 0;
if (symtab_load_command.symoff == 0) {
if (log)
module_sp->LogMessage(log, "LC_SYMTAB.symoff == 0");
return 0;
}
if (symtab_load_command.stroff == 0) {
if (log)
module_sp->LogMessage(log, "LC_SYMTAB.stroff == 0");
return 0;
}
if (symtab_load_command.nsyms == 0) {
if (log)
module_sp->LogMessage(log, "LC_SYMTAB.nsyms == 0");
return 0;
}
if (symtab_load_command.strsize == 0) {
if (log)
module_sp->LogMessage(log, "LC_SYMTAB.strsize == 0");
return 0;
}
break;
case LC_DYLD_INFO:
case LC_DYLD_INFO_ONLY:
if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
dyld_info.cmd = lc.cmd;
dyld_info.cmdsize = lc.cmdsize;
} else {
memset(&dyld_info, 0, sizeof(dyld_info));
}
break;
case LC_LOAD_DYLIB:
case LC_LOAD_WEAK_DYLIB:
case LC_REEXPORT_DYLIB:
case LC_LOADFVMLIB:
case LC_LOAD_UPWARD_DYLIB: {
uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
const char *path = m_data.PeekCStr(name_offset);
if (path) {
FileSpec file_spec(path, false);
// Strip the path if there is @rpath, @executable, etc so we just use
// the basename
if (path[0] == '@')
file_spec.GetDirectory().Clear();
if (lc.cmd == LC_REEXPORT_DYLIB) {
m_reexported_dylibs.AppendIfUnique(file_spec);
}
dylib_files.Append(file_spec);
}
} break;
case LC_FUNCTION_STARTS:
function_starts_load_command.cmd = lc.cmd;
function_starts_load_command.cmdsize = lc.cmdsize;
if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
NULL) // fill in symoff, nsyms, stroff, strsize fields
memset(&function_starts_load_command, 0,
sizeof(function_starts_load_command));
break;
default:
break;
}
offset = cmd_offset + lc.cmdsize;
}
if (symtab_load_command.cmd) {
Symtab *symtab = m_symtab_ap.get();
SectionList *section_list = GetSectionList();
if (section_list == NULL)
return 0;
const uint32_t addr_byte_size = m_data.GetAddressByteSize();
const ByteOrder byte_order = m_data.GetByteOrder();
bool bit_width_32 = addr_byte_size == 4;
const size_t nlist_byte_size =
bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
DataExtractor nlist_data(NULL, 0, byte_order, addr_byte_size);
DataExtractor strtab_data(NULL, 0, byte_order, addr_byte_size);
DataExtractor function_starts_data(NULL, 0, byte_order, addr_byte_size);
DataExtractor indirect_symbol_index_data(NULL, 0, byte_order,
addr_byte_size);
DataExtractor dyld_trie_data(NULL, 0, byte_order, addr_byte_size);
const addr_t nlist_data_byte_size =
symtab_load_command.nsyms * nlist_byte_size;
const addr_t strtab_data_byte_size = symtab_load_command.strsize;
addr_t strtab_addr = LLDB_INVALID_ADDRESS;
ProcessSP process_sp(m_process_wp.lock());
Process *process = process_sp.get();
uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
if (process && m_header.filetype != llvm::MachO::MH_OBJECT) {
Target &target = process->GetTarget();
memory_module_load_level = target.GetMemoryModuleLoadLevel();
SectionSP linkedit_section_sp(
section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
// Reading mach file from memory in a process or core file...
if (linkedit_section_sp) {
addr_t linkedit_load_addr =
linkedit_section_sp->GetLoadBaseAddress(&target);
if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
// We might be trying to access the symbol table before the
// __LINKEDIT's load address has been set in the target. We can't
// fail to read the symbol table, so calculate the right address
// manually
linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
}
const addr_t linkedit_file_offset =
linkedit_section_sp->GetFileOffset();
const addr_t symoff_addr = linkedit_load_addr +
symtab_load_command.symoff -
linkedit_file_offset;
strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
linkedit_file_offset;
bool data_was_read = false;
#if defined(__APPLE__) && \
(defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
if (m_header.flags & 0x80000000u &&
process->GetAddressByteSize() == sizeof(void *)) {
// This mach-o memory file is in the dyld shared cache. If this
// program is not remote and this is iOS, then this process will
// share the same shared cache as the process we are debugging and we
// can read the entire __LINKEDIT from the address space in this
// process. This is a needed optimization that is used for local iOS
// debugging only since all shared libraries in the shared cache do
// not have corresponding files that exist in the file system of the
// device. They have been combined into a single file. This means we
// always have to load these files from memory. All of the symbol and
// string tables from all of the __LINKEDIT sections from the shared
// libraries in the shared cache have been merged into a single large
// symbol and string table. Reading all of this symbol and string
// table data across can slow down debug launch times, so we optimize
// this by reading the memory for the __LINKEDIT section from this
// process.
UUID lldb_shared_cache;
addr_t lldb_shared_cache_addr;
GetLLDBSharedCacheUUID (lldb_shared_cache_addr, lldb_shared_cache);
UUID process_shared_cache;
addr_t process_shared_cache_addr;
GetProcessSharedCacheUUID(process, process_shared_cache_addr, process_shared_cache);
bool use_lldb_cache = true;
if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() &&
(lldb_shared_cache != process_shared_cache
|| process_shared_cache_addr != lldb_shared_cache_addr)) {
use_lldb_cache = false;
}
PlatformSP platform_sp(target.GetPlatform());
if (platform_sp && platform_sp->IsHost() && use_lldb_cache) {
data_was_read = true;
nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size,
eByteOrderLittle);
strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size,
eByteOrderLittle);
if (function_starts_load_command.cmd) {
const addr_t func_start_addr =
linkedit_load_addr + function_starts_load_command.dataoff -
linkedit_file_offset;
function_starts_data.SetData(
(void *)func_start_addr,
function_starts_load_command.datasize, eByteOrderLittle);
}
}
}
#endif
if (!data_was_read) {
// Always load dyld - the dynamic linker - from memory if we didn't
// find a binary anywhere else. lldb will not register
// dylib/framework/bundle loads/unloads if we don't have the dyld
// symbols, we force dyld to load from memory despite the user's
// target.memory-module-load-level setting.
if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
m_header.filetype == llvm::MachO::MH_DYLINKER) {
DataBufferSP nlist_data_sp(
ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
if (nlist_data_sp)
nlist_data.SetData(nlist_data_sp, 0,
nlist_data_sp->GetByteSize());
// Load strings individually from memory when loading from memory
// since shared cache string tables contain strings for all symbols
// from all shared cached libraries DataBufferSP strtab_data_sp
// (ReadMemory (process_sp, strtab_addr,
// strtab_data_byte_size));
// if (strtab_data_sp)
// strtab_data.SetData (strtab_data_sp, 0,
// strtab_data_sp->GetByteSize());
if (m_dysymtab.nindirectsyms != 0) {
const addr_t indirect_syms_addr = linkedit_load_addr +
m_dysymtab.indirectsymoff -
linkedit_file_offset;
DataBufferSP indirect_syms_data_sp(
ReadMemory(process_sp, indirect_syms_addr,
m_dysymtab.nindirectsyms * 4));
if (indirect_syms_data_sp)
indirect_symbol_index_data.SetData(
indirect_syms_data_sp, 0,
indirect_syms_data_sp->GetByteSize());
}
} else if (memory_module_load_level >=
eMemoryModuleLoadLevelPartial) {
if (function_starts_load_command.cmd) {
const addr_t func_start_addr =
linkedit_load_addr + function_starts_load_command.dataoff -
linkedit_file_offset;
DataBufferSP func_start_data_sp(
ReadMemory(process_sp, func_start_addr,
function_starts_load_command.datasize));
if (func_start_data_sp)
function_starts_data.SetData(func_start_data_sp, 0,
func_start_data_sp->GetByteSize());
}
}
}
}
} else {
nlist_data.SetData(m_data, symtab_load_command.symoff,
nlist_data_byte_size);
strtab_data.SetData(m_data, symtab_load_command.stroff,
strtab_data_byte_size);
if (dyld_info.export_size > 0) {
dyld_trie_data.SetData(m_data, dyld_info.export_off,
dyld_info.export_size);
}
if (m_dysymtab.nindirectsyms != 0) {
indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff,
m_dysymtab.nindirectsyms * 4);
}
if (function_starts_load_command.cmd) {
function_starts_data.SetData(m_data,
function_starts_load_command.dataoff,
function_starts_load_command.datasize);
}
}
if (nlist_data.GetByteSize() == 0 &&
memory_module_load_level == eMemoryModuleLoadLevelComplete) {
if (log)
module_sp->LogMessage(log, "failed to read nlist data");
return 0;
}
const bool have_strtab_data = strtab_data.GetByteSize() > 0;
if (!have_strtab_data) {
if (process) {
if (strtab_addr == LLDB_INVALID_ADDRESS) {
if (log)
module_sp->LogMessage(log, "failed to locate the strtab in memory");
return 0;
}
} else {
if (log)
module_sp->LogMessage(log, "failed to read strtab data");
return 0;
}
}
const ConstString &g_segment_name_TEXT = GetSegmentNameTEXT();
const ConstString &g_segment_name_DATA = GetSegmentNameDATA();
const ConstString &g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
const ConstString &g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
const ConstString &g_segment_name_OBJC = GetSegmentNameOBJC();
const ConstString &g_section_name_eh_frame = GetSectionNameEHFrame();
SectionSP text_section_sp(
section_list->FindSectionByName(g_segment_name_TEXT));
SectionSP data_section_sp(
section_list->FindSectionByName(g_segment_name_DATA));
SectionSP data_dirty_section_sp(
section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
SectionSP data_const_section_sp(
section_list->FindSectionByName(g_segment_name_DATA_CONST));
SectionSP objc_section_sp(
section_list->FindSectionByName(g_segment_name_OBJC));
SectionSP eh_frame_section_sp;
if (text_section_sp.get())
eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
g_section_name_eh_frame);
else
eh_frame_section_sp =
section_list->FindSectionByName(g_section_name_eh_frame);
const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
// lldb works best if it knows the start address of all functions in a
// module. Linker symbols or debug info are normally the best source of
// information for start addr / size but they may be stripped in a released
// binary. Two additional sources of information exist in Mach-O binaries:
// LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
// function's start address in the
// binary, relative to the text section.
// eh_frame - the eh_frame FDEs have the start addr & size of
// each function
// LC_FUNCTION_STARTS is the fastest source to read in, and is present on
// all modern binaries.
// Binaries built to run on older releases may need to use eh_frame
// information.
if (text_section_sp && function_starts_data.GetByteSize()) {
FunctionStarts::Entry function_start_entry;
function_start_entry.data = false;
lldb::offset_t function_start_offset = 0;
function_start_entry.addr = text_section_sp->GetFileAddress();
uint64_t delta;
while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
0) {
// Now append the current entry
function_start_entry.addr += delta;
function_starts.Append(function_start_entry);
}
} else {
// If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
// load command claiming an eh_frame but it doesn't actually have the
// eh_frame content. And if we have a dSYM, we don't need to do any of
// this fill-in-the-missing-symbols works anyway - the debug info should
// give us all the functions in the module.
if (text_section_sp.get() && eh_frame_section_sp.get() &&
m_type != eTypeDebugInfo) {
DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
DWARFCallFrameInfo::EH);
DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
eh_frame.GetFunctionAddressAndSizeVector(functions);
addr_t text_base_addr = text_section_sp->GetFileAddress();
size_t count = functions.GetSize();
for (size_t i = 0; i < count; ++i) {
const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
functions.GetEntryAtIndex(i);
if (func) {
FunctionStarts::Entry function_start_entry;
function_start_entry.addr = func->base - text_base_addr;
function_starts.Append(function_start_entry);
}
}
}
}
const size_t function_starts_count = function_starts.GetSize();
// For user process binaries (executables, dylibs, frameworks, bundles), if
// we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're
// going to assume the binary has been stripped. Don't allow assembly
// language instruction emulation because we don't know proper function
// start boundaries.
//
// For all other types of binaries (kernels, stand-alone bare board
// binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame
// sections - we should not make any assumptions about them based on that.
if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
m_allow_assembly_emulation_unwind_plans = false;
Log *unwind_or_symbol_log(lldb_private::GetLogIfAnyCategoriesSet(
LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_UNWIND));
if (unwind_or_symbol_log)
module_sp->LogMessage(
unwind_or_symbol_log,
"no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
}
const user_id_t TEXT_eh_frame_sectID =
eh_frame_section_sp.get() ? eh_frame_section_sp->GetID()
: static_cast<user_id_t>(NO_SECT);
lldb::offset_t nlist_data_offset = 0;
uint32_t N_SO_index = UINT32_MAX;
MachSymtabSectionInfo section_info(section_list);
std::vector<uint32_t> N_FUN_indexes;
std::vector<uint32_t> N_NSYM_indexes;
std::vector<uint32_t> N_INCL_indexes;
std::vector<uint32_t> N_BRAC_indexes;
std::vector<uint32_t> N_COMM_indexes;
typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
typedef std::map<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
typedef std::map<const char *, uint32_t> ConstNameToSymbolIndexMap;
ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
// Any symbols that get merged into another will get an entry in this map
// so we know
NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
uint32_t nlist_idx = 0;
Symbol *symbol_ptr = NULL;
uint32_t sym_idx = 0;
Symbol *sym = NULL;
size_t num_syms = 0;
std::string memory_symbol_name;
uint32_t unmapped_local_symbols_found = 0;
std::vector<TrieEntryWithOffset> trie_entries;
std::set<lldb::addr_t> resolver_addresses;
if (dyld_trie_data.GetByteSize() > 0) {
std::vector<llvm::StringRef> nameSlices;
ParseTrieEntries(dyld_trie_data, 0, is_arm, nameSlices,
resolver_addresses, trie_entries);
ConstString text_segment_name("__TEXT");
SectionSP text_segment_sp =
GetSectionList()->FindSectionByName(text_segment_name);
if (text_segment_sp) {
const lldb::addr_t text_segment_file_addr =
text_segment_sp->GetFileAddress();
if (text_segment_file_addr != LLDB_INVALID_ADDRESS) {
for (auto &e : trie_entries)
e.entry.address += text_segment_file_addr;
}
}
}
typedef std::set<ConstString> IndirectSymbols;
IndirectSymbols indirect_symbol_names;
#if defined(__APPLE__) && \
(defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
// Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
// optimized by moving LOCAL symbols out of the memory mapped portion of
// the DSC. The symbol information has all been retained, but it isn't
// available in the normal nlist data. However, there *are* duplicate
// entries of *some*
// LOCAL symbols in the normal nlist data. To handle this situation
// correctly, we must first attempt
// to parse any DSC unmapped symbol information. If we find any, we set a
// flag that tells the normal nlist parser to ignore all LOCAL symbols.
if (m_header.flags & 0x80000000u) {
// Before we can start mapping the DSC, we need to make certain the
// target process is actually using the cache we can find.
// Next we need to determine the correct path for the dyld shared cache.
ArchSpec header_arch;
GetArchitecture(header_arch);
char dsc_path[PATH_MAX];
char dsc_path_development[PATH_MAX];
snprintf(
dsc_path, sizeof(dsc_path), "%s%s%s",
"/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
*/
"dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
header_arch.GetArchitectureName());
snprintf(
dsc_path_development, sizeof(dsc_path), "%s%s%s%s",
"/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
*/
"dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
header_arch.GetArchitectureName(), ".development");
FileSpec dsc_nondevelopment_filespec(dsc_path, false);
FileSpec dsc_development_filespec(dsc_path_development, false);
FileSpec dsc_filespec;
UUID dsc_uuid;
UUID process_shared_cache_uuid;
addr_t process_shared_cache_base_addr;
if (process) {
GetProcessSharedCacheUUID(process, process_shared_cache_base_addr, process_shared_cache_uuid);
}
// First see if we can find an exact match for the inferior process
// shared cache UUID in the development or non-development shared caches
// on disk.
if (process_shared_cache_uuid.IsValid()) {
if (dsc_development_filespec.Exists()) {
UUID dsc_development_uuid = GetSharedCacheUUID(
dsc_development_filespec, byte_order, addr_byte_size);
if (dsc_development_uuid.IsValid() &&
dsc_development_uuid == process_shared_cache_uuid) {
dsc_filespec = dsc_development_filespec;
dsc_uuid = dsc_development_uuid;
}
}
if (!dsc_uuid.IsValid() && dsc_nondevelopment_filespec.Exists()) {
UUID dsc_nondevelopment_uuid = GetSharedCacheUUID(
dsc_nondevelopment_filespec, byte_order, addr_byte_size);
if (dsc_nondevelopment_uuid.IsValid() &&
dsc_nondevelopment_uuid == process_shared_cache_uuid) {
dsc_filespec = dsc_nondevelopment_filespec;
dsc_uuid = dsc_nondevelopment_uuid;
}
}
}
// Failing a UUID match, prefer the development dyld_shared cache if both
// are present.
if (!dsc_filespec.Exists()) {
if (dsc_development_filespec.Exists()) {
dsc_filespec = dsc_development_filespec;
} else {
dsc_filespec = dsc_nondevelopment_filespec;
}
}
/* The dyld_cache_header has a pointer to the
dyld_cache_local_symbols_info structure (localSymbolsOffset).
The dyld_cache_local_symbols_info structure gives us three things:
1. The start and count of the nlist records in the dyld_shared_cache
file
2. The start and size of the strings for these nlist records
3. The start and count of dyld_cache_local_symbols_entry entries
There is one dyld_cache_local_symbols_entry per dylib/framework in the
dyld shared cache.
The "dylibOffset" field is the Mach-O header of this dylib/framework in
the dyld shared cache.
The dyld_cache_local_symbols_entry also lists the start of this
dylib/framework's nlist records
and the count of how many nlist records there are for this
dylib/framework.
*/
// Process the dyld shared cache header to find the unmapped symbols
DataBufferSP dsc_data_sp = MapFileData(
dsc_filespec, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
if (!dsc_uuid.IsValid()) {
dsc_uuid = GetSharedCacheUUID(dsc_filespec, byte_order, addr_byte_size);
}
if (dsc_data_sp) {
DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size);
bool uuid_match = true;
if (dsc_uuid.IsValid() && process) {
if (process_shared_cache_uuid.IsValid() &&
dsc_uuid != process_shared_cache_uuid) {
// The on-disk dyld_shared_cache file is not the same as the one in
// this process' memory, don't use it.
uuid_match = false;
ModuleSP module_sp(GetModule());
if (module_sp)
module_sp->ReportWarning("process shared cache does not match "
"on-disk dyld_shared_cache file, some "
"symbol names will be missing.");
}
}
offset = offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset);
uint32_t mappingOffset = dsc_header_data.GetU32(&offset);
// If the mappingOffset points to a location inside the header, we've
// opened an old dyld shared cache, and should not proceed further.
if (uuid_match &&
mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v1)) {
DataBufferSP dsc_mapping_info_data_sp = MapFileData(
dsc_filespec, sizeof(struct lldb_copy_dyld_cache_mapping_info),
mappingOffset);
DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp,
byte_order, addr_byte_size);
offset = 0;
// The File addresses (from the in-memory Mach-O load commands) for
// the shared libraries in the shared library cache need to be
// adjusted by an offset to match up with the dylibOffset identifying
// field in the dyld_cache_local_symbol_entry's. This offset is
// recorded in mapping_offset_value.
const uint64_t mapping_offset_value =
dsc_mapping_info_data.GetU64(&offset);
offset = offsetof(struct lldb_copy_dyld_cache_header_v1,
localSymbolsOffset);
uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset);
uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset);
if (localSymbolsOffset && localSymbolsSize) {
// Map the local symbols
DataBufferSP dsc_local_symbols_data_sp =
MapFileData(dsc_filespec, localSymbolsSize, localSymbolsOffset);
if (dsc_local_symbols_data_sp) {
DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp,
byte_order, addr_byte_size);
offset = 0;
typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap;
typedef std::map<uint32_t, ConstString> SymbolIndexToName;
UndefinedNameToDescMap undefined_name_to_desc;
SymbolIndexToName reexport_shlib_needs_fixup;
// Read the local_symbols_infos struct in one shot
struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info;
dsc_local_symbols_data.GetU32(&offset,
&local_symbols_info.nlistOffset, 6);
SectionSP text_section_sp(
section_list->FindSectionByName(GetSegmentNameTEXT()));
uint32_t header_file_offset =
(text_section_sp->GetFileAddress() - mapping_offset_value);
offset = local_symbols_info.entriesOffset;
for (uint32_t entry_index = 0;
entry_index < local_symbols_info.entriesCount;
entry_index++) {
struct lldb_copy_dyld_cache_local_symbols_entry
local_symbols_entry;
local_symbols_entry.dylibOffset =
dsc_local_symbols_data.GetU32(&offset);
local_symbols_entry.nlistStartIndex =
dsc_local_symbols_data.GetU32(&offset);
local_symbols_entry.nlistCount =
dsc_local_symbols_data.GetU32(&offset);
if (header_file_offset == local_symbols_entry.dylibOffset) {
unmapped_local_symbols_found = local_symbols_entry.nlistCount;
// The normal nlist code cannot correctly size the Symbols
// array, we need to allocate it here.
sym = symtab->Resize(
symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
unmapped_local_symbols_found - m_dysymtab.nlocalsym);
num_syms = symtab->GetNumSymbols();
nlist_data_offset =
local_symbols_info.nlistOffset +
(nlist_byte_size * local_symbols_entry.nlistStartIndex);
uint32_t string_table_offset =
local_symbols_info.stringsOffset;
for (uint32_t nlist_index = 0;
nlist_index < local_symbols_entry.nlistCount;
nlist_index++) {
/////////////////////////////
{
struct nlist_64 nlist;
if (!dsc_local_symbols_data.ValidOffsetForDataOfSize(
nlist_data_offset, nlist_byte_size))
break;
nlist.n_strx = dsc_local_symbols_data.GetU32_unchecked(
&nlist_data_offset);
nlist.n_type = dsc_local_symbols_data.GetU8_unchecked(
&nlist_data_offset);
nlist.n_sect = dsc_local_symbols_data.GetU8_unchecked(
&nlist_data_offset);
nlist.n_desc = dsc_local_symbols_data.GetU16_unchecked(
&nlist_data_offset);
nlist.n_value =
dsc_local_symbols_data.GetAddress_unchecked(
&nlist_data_offset);
SymbolType type = eSymbolTypeInvalid;
const char *symbol_name = dsc_local_symbols_data.PeekCStr(
string_table_offset + nlist.n_strx);
if (symbol_name == NULL) {
// No symbol should be NULL, even the symbols with no
// string values should have an offset zero which
// points to an empty C-string
Host::SystemLog(
Host::eSystemLogError,
"error: DSC unmapped local symbol[%u] has invalid "
"string table offset 0x%x in %s, ignoring symbol\n",
entry_index, nlist.n_strx,
module_sp->GetFileSpec().GetPath().c_str());
continue;
}
if (symbol_name[0] == '\0')
symbol_name = NULL;
const char *symbol_name_non_abi_mangled = NULL;
SectionSP symbol_section;
uint32_t symbol_byte_size = 0;
bool add_nlist = true;
bool is_debug = ((nlist.n_type & N_STAB) != 0);
bool demangled_is_synthesized = false;
bool is_gsym = false;
bool set_value = true;
assert(sym_idx < num_syms);
sym[sym_idx].SetDebug(is_debug);
if (is_debug) {
switch (nlist.n_type) {
case N_GSYM:
// global symbol: name,,NO_SECT,type,0
// Sometimes the N_GSYM value contains the address.
// FIXME: In the .o files, we have a GSYM and a debug
// symbol for all the ObjC data. They
// have the same address, but we want to ensure that
// we always find only the real symbol, 'cause we
// don't currently correctly attribute the
// GSYM one to the ObjCClass/Ivar/MetaClass
// symbol type. This is a temporary hack to make
// sure the ObjectiveC symbols get treated correctly.
// To do this right, we should coalesce all the GSYM
// & global symbols that have the same address.
is_gsym = true;
sym[sym_idx].SetExternal(true);
if (symbol_name && symbol_name[0] == '_' &&
symbol_name[1] == 'O') {
llvm::StringRef symbol_name_ref(symbol_name);
if (symbol_name_ref.startswith(
g_objc_v2_prefix_class)) {
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name =
symbol_name + g_objc_v2_prefix_class.size();
type = eSymbolTypeObjCClass;
demangled_is_synthesized = true;
} else if (symbol_name_ref.startswith(
g_objc_v2_prefix_metaclass)) {
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name = symbol_name +
g_objc_v2_prefix_metaclass.size();
type = eSymbolTypeObjCMetaClass;
demangled_is_synthesized = true;
} else if (symbol_name_ref.startswith(
g_objc_v2_prefix_ivar)) {
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name =
symbol_name + g_objc_v2_prefix_ivar.size();
type = eSymbolTypeObjCIVar;
demangled_is_synthesized = true;
}
} else {
if (nlist.n_value != 0)
symbol_section = section_info.GetSection(
nlist.n_sect, nlist.n_value);
type = eSymbolTypeData;
}
break;
case N_FNAME:
// procedure name (f77 kludge): name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case N_FUN:
// procedure: name,,n_sect,linenumber,address
if (symbol_name) {
type = eSymbolTypeCode;
symbol_section = section_info.GetSection(
nlist.n_sect, nlist.n_value);
N_FUN_addr_to_sym_idx.insert(
std::make_pair(nlist.n_value, sym_idx));
// We use the current number of symbols in the
// symbol table in lieu of using nlist_idx in case
// we ever start trimming entries out
N_FUN_indexes.push_back(sym_idx);
} else {
type = eSymbolTypeCompiler;
if (!N_FUN_indexes.empty()) {
// Copy the size of the function into the
// original
// STAB entry so we don't have
// to hunt for it later
symtab->SymbolAtIndex(N_FUN_indexes.back())
->SetByteSize(nlist.n_value);
N_FUN_indexes.pop_back();
// We don't really need the end function STAB as
// it contains the size which we already placed
// with the original symbol, so don't add it if
// we want a minimal symbol table
add_nlist = false;
}
}
break;
case N_STSYM:
// static symbol: name,,n_sect,type,address
N_STSYM_addr_to_sym_idx.insert(
std::make_pair(nlist.n_value, sym_idx));
symbol_section = section_info.GetSection(
nlist.n_sect, nlist.n_value);
if (symbol_name && symbol_name[0]) {
type = ObjectFile::GetSymbolTypeFromName(
symbol_name + 1, eSymbolTypeData);
}
break;
case N_LCSYM:
// .lcomm symbol: name,,n_sect,type,address
symbol_section = section_info.GetSection(
nlist.n_sect, nlist.n_value);
type = eSymbolTypeCommonBlock;
break;
case N_BNSYM:
// We use the current number of symbols in the symbol
// table in lieu of using nlist_idx in case we ever
// start trimming entries out Skip these if we want
// minimal symbol tables
add_nlist = false;
break;
case N_ENSYM:
// Set the size of the N_BNSYM to the terminating
// index of this N_ENSYM so that we can always skip
// the entire symbol if we need to navigate more
// quickly at the source level when parsing STABS
// Skip these if we want minimal symbol tables
add_nlist = false;
break;
case N_OPT:
// emitted with gcc2_compiled and in gcc source
type = eSymbolTypeCompiler;
break;
case N_RSYM:
// register sym: name,,NO_SECT,type,register
type = eSymbolTypeVariable;
break;
case N_SLINE:
// src line: 0,,n_sect,linenumber,address
symbol_section = section_info.GetSection(
nlist.n_sect, nlist.n_value);
type = eSymbolTypeLineEntry;
break;
case N_SSYM:
// structure elt: name,,NO_SECT,type,struct_offset
type = eSymbolTypeVariableType;
break;
case N_SO:
// source file name
type = eSymbolTypeSourceFile;
if (symbol_name == NULL) {
add_nlist = false;
if (N_SO_index != UINT32_MAX) {
// Set the size of the N_SO to the terminating
// index of this N_SO so that we can always skip
// the entire N_SO if we need to navigate more
// quickly at the source level when parsing STABS
symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
symbol_ptr->SetByteSize(sym_idx);
symbol_ptr->SetSizeIsSibling(true);
}
N_NSYM_indexes.clear();
N_INCL_indexes.clear();
N_BRAC_indexes.clear();
N_COMM_indexes.clear();
N_FUN_indexes.clear();
N_SO_index = UINT32_MAX;
} else {
// We use the current number of symbols in the
// symbol table in lieu of using nlist_idx in case
// we ever start trimming entries out
const bool N_SO_has_full_path =
symbol_name[0] == '/';
if (N_SO_has_full_path) {
if ((N_SO_index == sym_idx - 1) &&
((sym_idx - 1) < num_syms)) {
// We have two consecutive N_SO entries where
// the first contains a directory and the
// second contains a full path.
sym[sym_idx - 1].GetMangled().SetValue(
ConstString(symbol_name), false);
m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
add_nlist = false;
} else {
// This is the first entry in a N_SO that
// contains a directory or
// a full path to the source file
N_SO_index = sym_idx;
}
} else if ((N_SO_index == sym_idx - 1) &&
((sym_idx - 1) < num_syms)) {
// This is usually the second N_SO entry that
// contains just the filename, so here we combine
// it with the first one if we are minimizing the
// symbol table
const char *so_path =
sym[sym_idx - 1]
.GetMangled()
.GetDemangledName(
lldb::eLanguageTypeUnknown)
.AsCString();
if (so_path && so_path[0]) {
std::string full_so_path(so_path);
const size_t double_slash_pos =
full_so_path.find("//");
if (double_slash_pos != std::string::npos) {
// The linker has been generating bad N_SO
// entries with doubled up paths
// in the format "%s%s" where the first
// string in the DW_AT_comp_dir, and the
// second is the directory for the source
// file so you end up with a path that looks
// like "/tmp/src//tmp/src/"
FileSpec so_dir(so_path, false);
if (!so_dir.Exists()) {
so_dir.SetFile(
&full_so_path[double_slash_pos + 1],
false);
if (so_dir.Exists()) {
// Trim off the incorrect path
full_so_path.erase(0,
double_slash_pos + 1);
}
}
}
if (*full_so_path.rbegin() != '/')
full_so_path += '/';
full_so_path += symbol_name;
sym[sym_idx - 1].GetMangled().SetValue(
ConstString(full_so_path.c_str()), false);
add_nlist = false;
m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
}
} else {
// This could be a relative path to a N_SO
N_SO_index = sym_idx;
}
}
break;
case N_OSO:
// object file name: name,,0,0,st_mtime
type = eSymbolTypeObjectFile;
break;
case N_LSYM:
// local sym: name,,NO_SECT,type,offset
type = eSymbolTypeLocal;
break;
//----------------------------------------------------------------------
// INCL scopes
//----------------------------------------------------------------------
case N_BINCL:
// include file beginning: name,,NO_SECT,0,sum We use
// the current number of symbols in the symbol table
// in lieu of using nlist_idx in case we ever start
// trimming entries out
N_INCL_indexes.push_back(sym_idx);
type = eSymbolTypeScopeBegin;
break;
case N_EINCL:
// include file end: name,,NO_SECT,0,0
// Set the size of the N_BINCL to the terminating
// index of this N_EINCL so that we can always skip
// the entire symbol if we need to navigate more
// quickly at the source level when parsing STABS
if (!N_INCL_indexes.empty()) {
symbol_ptr =
symtab->SymbolAtIndex(N_INCL_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_INCL_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case N_SOL:
// #included file name: name,,n_sect,0,address
type = eSymbolTypeHeaderFile;
// We currently don't use the header files on darwin
add_nlist = false;
break;
case N_PARAMS:
// compiler parameters: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case N_VERSION:
// compiler version: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case N_OLEVEL:
// compiler -O level: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case N_PSYM:
// parameter: name,,NO_SECT,type,offset
type = eSymbolTypeVariable;
break;
case N_ENTRY:
// alternate entry: name,,n_sect,linenumber,address
symbol_section = section_info.GetSection(
nlist.n_sect, nlist.n_value);
type = eSymbolTypeLineEntry;
break;
//----------------------------------------------------------------------
// Left and Right Braces
//----------------------------------------------------------------------
case N_LBRAC:
// left bracket: 0,,NO_SECT,nesting level,address We
// use the current number of symbols in the symbol
// table in lieu of using nlist_idx in case we ever
// start trimming entries out
symbol_section = section_info.GetSection(
nlist.n_sect, nlist.n_value);
N_BRAC_indexes.push_back(sym_idx);
type = eSymbolTypeScopeBegin;
break;
case N_RBRAC:
// right bracket: 0,,NO_SECT,nesting level,address
// Set the size of the N_LBRAC to the terminating
// index of this N_RBRAC so that we can always skip
// the entire symbol if we need to navigate more
// quickly at the source level when parsing STABS
symbol_section = section_info.GetSection(
nlist.n_sect, nlist.n_value);
if (!N_BRAC_indexes.empty()) {
symbol_ptr =
symtab->SymbolAtIndex(N_BRAC_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_BRAC_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case N_EXCL:
// deleted include file: name,,NO_SECT,0,sum
type = eSymbolTypeHeaderFile;
break;
//----------------------------------------------------------------------
// COMM scopes
//----------------------------------------------------------------------
case N_BCOMM:
// begin common: name,,NO_SECT,0,0
// We use the current number of symbols in the symbol
// table in lieu of using nlist_idx in case we ever
// start trimming entries out
type = eSymbolTypeScopeBegin;
N_COMM_indexes.push_back(sym_idx);
break;
case N_ECOML:
// end common (local name): 0,,n_sect,0,address
symbol_section = section_info.GetSection(
nlist.n_sect, nlist.n_value);
// Fall through
case N_ECOMM:
// end common: name,,n_sect,0,0
// Set the size of the N_BCOMM to the terminating
// index of this N_ECOMM/N_ECOML so that we can
// always skip the entire symbol if we need to
// navigate more quickly at the source level when
// parsing STABS
if (!N_COMM_indexes.empty()) {
symbol_ptr =
symtab->SymbolAtIndex(N_COMM_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_COMM_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case N_LENG:
// second stab entry with length information
type = eSymbolTypeAdditional;
break;
default:
break;
}
} else {
// uint8_t n_pext = N_PEXT & nlist.n_type;
uint8_t n_type = N_TYPE & nlist.n_type;
sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
switch (n_type) {
case N_INDR: {
const char *reexport_name_cstr =
strtab_data.PeekCStr(nlist.n_value);
if (reexport_name_cstr && reexport_name_cstr[0]) {
type = eSymbolTypeReExported;
ConstString reexport_name(
reexport_name_cstr +
((reexport_name_cstr[0] == '_') ? 1 : 0));
sym[sym_idx].SetReExportedSymbolName(reexport_name);
set_value = false;
reexport_shlib_needs_fixup[sym_idx] = reexport_name;
indirect_symbol_names.insert(
ConstString(symbol_name +
((symbol_name[0] == '_') ? 1 : 0)));
} else
type = eSymbolTypeUndefined;
} break;
case N_UNDF:
if (symbol_name && symbol_name[0]) {
ConstString undefined_name(
symbol_name +
((symbol_name[0] == '_') ? 1 : 0));
undefined_name_to_desc[undefined_name] =
nlist.n_desc;
}
// Fall through
case N_PBUD:
type = eSymbolTypeUndefined;
break;
case N_ABS:
type = eSymbolTypeAbsolute;
break;
case N_SECT: {
symbol_section = section_info.GetSection(
nlist.n_sect, nlist.n_value);
if (symbol_section == NULL) {
// TODO: warn about this?
add_nlist = false;
break;
}
if (TEXT_eh_frame_sectID == nlist.n_sect) {
type = eSymbolTypeException;
} else {
uint32_t section_type =
symbol_section->Get() & SECTION_TYPE;
switch (section_type) {
case S_CSTRING_LITERALS:
type = eSymbolTypeData;
break; // section with only literal C strings
case S_4BYTE_LITERALS:
type = eSymbolTypeData;
break; // section with only 4 byte literals
case S_8BYTE_LITERALS:
type = eSymbolTypeData;
break; // section with only 8 byte literals
case S_LITERAL_POINTERS:
type = eSymbolTypeTrampoline;
break; // section with only pointers to literals
case S_NON_LAZY_SYMBOL_POINTERS:
type = eSymbolTypeTrampoline;
break; // section with only non-lazy symbol
// pointers
case S_LAZY_SYMBOL_POINTERS:
type = eSymbolTypeTrampoline;
break; // section with only lazy symbol pointers
case S_SYMBOL_STUBS:
type = eSymbolTypeTrampoline;
break; // section with only symbol stubs, byte
// size of stub in the reserved2 field
case S_MOD_INIT_FUNC_POINTERS:
type = eSymbolTypeCode;
break; // section with only function pointers for
// initialization
case S_MOD_TERM_FUNC_POINTERS:
type = eSymbolTypeCode;
break; // section with only function pointers for
// termination
case S_INTERPOSING:
type = eSymbolTypeTrampoline;
break; // section with only pairs of function
// pointers for interposing
case S_16BYTE_LITERALS:
type = eSymbolTypeData;
break; // section with only 16 byte literals
case S_DTRACE_DOF:
type = eSymbolTypeInstrumentation;
break;
case S_LAZY_DYLIB_SYMBOL_POINTERS:
type = eSymbolTypeTrampoline;
break;
default:
switch (symbol_section->GetType()) {
case lldb::eSectionTypeCode:
type = eSymbolTypeCode;
break;
case eSectionTypeData:
case eSectionTypeDataCString: // Inlined C string
// data
case eSectionTypeDataCStringPointers: // Pointers
// to C
// string
// data
case eSectionTypeDataSymbolAddress: // Address of
// a symbol in
// the symbol
// table
case eSectionTypeData4:
case eSectionTypeData8:
case eSectionTypeData16:
type = eSymbolTypeData;
break;
default:
break;
}
break;
}
if (type == eSymbolTypeInvalid) {
const char *symbol_sect_name =
symbol_section->GetName().AsCString();
if (symbol_section->IsDescendant(
text_section_sp.get())) {
if (symbol_section->IsClear(
S_ATTR_PURE_INSTRUCTIONS |
S_ATTR_SELF_MODIFYING_CODE |
S_ATTR_SOME_INSTRUCTIONS))
type = eSymbolTypeData;
else
type = eSymbolTypeCode;
} else if (symbol_section->IsDescendant(
data_section_sp.get()) ||
symbol_section->IsDescendant(
data_dirty_section_sp.get()) ||
symbol_section->IsDescendant(
data_const_section_sp.get())) {
if (symbol_sect_name &&
::strstr(symbol_sect_name, "__objc") ==
symbol_sect_name) {
type = eSymbolTypeRuntime;
if (symbol_name) {
llvm::StringRef symbol_name_ref(
symbol_name);
if (symbol_name_ref.startswith("_OBJC_")) {
static const llvm::StringRef
g_objc_v2_prefix_class(
"_OBJC_CLASS_$_");
static const llvm::StringRef
g_objc_v2_prefix_metaclass(
"_OBJC_METACLASS_$_");
static const llvm::StringRef
g_objc_v2_prefix_ivar(
"_OBJC_IVAR_$_");
if (symbol_name_ref.startswith(
g_objc_v2_prefix_class)) {
symbol_name_non_abi_mangled =
symbol_name + 1;
symbol_name =
symbol_name +
g_objc_v2_prefix_class.size();
type = eSymbolTypeObjCClass;
demangled_is_synthesized = true;
} else if (
symbol_name_ref.startswith(
g_objc_v2_prefix_metaclass)) {
symbol_name_non_abi_mangled =
symbol_name + 1;
symbol_name =
symbol_name +
g_objc_v2_prefix_metaclass.size();
type = eSymbolTypeObjCMetaClass;
demangled_is_synthesized = true;
} else if (symbol_name_ref.startswith(
g_objc_v2_prefix_ivar)) {
symbol_name_non_abi_mangled =
symbol_name + 1;
symbol_name =
symbol_name +
g_objc_v2_prefix_ivar.size();
type = eSymbolTypeObjCIVar;
demangled_is_synthesized = true;
}
}
}
} else if (symbol_sect_name &&
::strstr(symbol_sect_name,
"__gcc_except_tab") ==
symbol_sect_name) {
type = eSymbolTypeException;
} else {
type = eSymbolTypeData;
}
} else if (symbol_sect_name &&
::strstr(symbol_sect_name,
"__IMPORT") ==
symbol_sect_name) {
type = eSymbolTypeTrampoline;
} else if (symbol_section->IsDescendant(
objc_section_sp.get())) {
type = eSymbolTypeRuntime;
if (symbol_name && symbol_name[0] == '.') {
llvm::StringRef symbol_name_ref(symbol_name);
static const llvm::StringRef
g_objc_v1_prefix_class(
".objc_class_name_");
if (symbol_name_ref.startswith(
g_objc_v1_prefix_class)) {
symbol_name_non_abi_mangled = symbol_name;
symbol_name = symbol_name +
g_objc_v1_prefix_class.size();
type = eSymbolTypeObjCClass;
demangled_is_synthesized = true;
}
}
}
}
}
} break;
}
}
if (add_nlist) {
uint64_t symbol_value = nlist.n_value;
if (symbol_name_non_abi_mangled) {
sym[sym_idx].GetMangled().SetMangledName(
ConstString(symbol_name_non_abi_mangled));
sym[sym_idx].GetMangled().SetDemangledName(
ConstString(symbol_name));
} else {
bool symbol_name_is_mangled = false;
if (symbol_name && symbol_name[0] == '_') {
symbol_name_is_mangled = symbol_name[1] == '_';
symbol_name++; // Skip the leading underscore
}
if (symbol_name) {
ConstString const_symbol_name(symbol_name);
sym[sym_idx].GetMangled().SetValue(
const_symbol_name, symbol_name_is_mangled);
if (is_gsym && is_debug) {
const char *gsym_name =
sym[sym_idx]
.GetMangled()
.GetName(lldb::eLanguageTypeUnknown,
Mangled::ePreferMangled)
.GetCString();
if (gsym_name)
N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
}
}
}
if (symbol_section) {
const addr_t section_file_addr =
symbol_section->GetFileAddress();
if (symbol_byte_size == 0 &&
function_starts_count > 0) {
addr_t symbol_lookup_file_addr = nlist.n_value;
// Do an exact address match for non-ARM addresses,
// else get the closest since the symbol might be a
// thumb symbol which has an address with bit zero
// set
FunctionStarts::Entry *func_start_entry =
function_starts.FindEntry(
symbol_lookup_file_addr, !is_arm);
if (is_arm && func_start_entry) {
// Verify that the function start address is the
// symbol address (ARM) or the symbol address + 1
// (thumb)
if (func_start_entry->addr !=
symbol_lookup_file_addr &&
func_start_entry->addr !=
(symbol_lookup_file_addr + 1)) {
// Not the right entry, NULL it out...
func_start_entry = NULL;
}
}
if (func_start_entry) {
func_start_entry->data = true;
addr_t symbol_file_addr = func_start_entry->addr;
uint32_t symbol_flags = 0;
if (is_arm) {
if (symbol_file_addr & 1)
symbol_flags =
MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
}
const FunctionStarts::Entry
*next_func_start_entry =
function_starts.FindNextEntry(
func_start_entry);
const addr_t section_end_file_addr =
section_file_addr +
symbol_section->GetByteSize();
if (next_func_start_entry) {
addr_t next_symbol_file_addr =
next_func_start_entry->addr;
// Be sure the clear the Thumb address bit when
// we calculate the size from the current and
// next address
if (is_arm)
next_symbol_file_addr &=
THUMB_ADDRESS_BIT_MASK;
symbol_byte_size = std::min<lldb::addr_t>(
next_symbol_file_addr - symbol_file_addr,
section_end_file_addr - symbol_file_addr);
} else {
symbol_byte_size =
section_end_file_addr - symbol_file_addr;
}
}
}
symbol_value -= section_file_addr;
}
if (is_debug == false) {
if (type == eSymbolTypeCode) {
// See if we can find a N_FUN entry for any code
// symbols. If we do find a match, and the name
// matches, then we can merge the two into just the
// function symbol to avoid duplicate entries in
// the symbol table
std::pair<ValueToSymbolIndexMap::const_iterator,
ValueToSymbolIndexMap::const_iterator>
range;
range = N_FUN_addr_to_sym_idx.equal_range(
nlist.n_value);
if (range.first != range.second) {
bool found_it = false;
for (ValueToSymbolIndexMap::const_iterator pos =
range.first;
pos != range.second; ++pos) {
if (sym[sym_idx].GetMangled().GetName(
lldb::eLanguageTypeUnknown,
Mangled::ePreferMangled) ==
sym[pos->second].GetMangled().GetName(
lldb::eLanguageTypeUnknown,
Mangled::ePreferMangled)) {
m_nlist_idx_to_sym_idx[nlist_idx] =
pos->second;
// We just need the flags from the linker
// symbol, so put these flags
// into the N_FUN flags to avoid duplicate
// symbols in the symbol table
sym[pos->second].SetExternal(
sym[sym_idx].IsExternal());
sym[pos->second].SetFlags(nlist.n_type << 16 |
nlist.n_desc);
if (resolver_addresses.find(nlist.n_value) !=
resolver_addresses.end())
sym[pos->second].SetType(
eSymbolTypeResolver);
sym[sym_idx].Clear();
found_it = true;
break;
}
}
if (found_it)
continue;
} else {
if (resolver_addresses.find(nlist.n_value) !=
resolver_addresses.end())
type = eSymbolTypeResolver;
}
} else if (type == eSymbolTypeData ||
type == eSymbolTypeObjCClass ||
type == eSymbolTypeObjCMetaClass ||
type == eSymbolTypeObjCIVar) {
// See if we can find a N_STSYM entry for any data
// symbols. If we do find a match, and the name
// matches, then we can merge the two into just the
// Static symbol to avoid duplicate entries in the
// symbol table
std::pair<ValueToSymbolIndexMap::const_iterator,
ValueToSymbolIndexMap::const_iterator>
range;
range = N_STSYM_addr_to_sym_idx.equal_range(
nlist.n_value);
if (range.first != range.second) {
bool found_it = false;
for (ValueToSymbolIndexMap::const_iterator pos =
range.first;
pos != range.second; ++pos) {
if (sym[sym_idx].GetMangled().GetName(
lldb::eLanguageTypeUnknown,
Mangled::ePreferMangled) ==
sym[pos->second].GetMangled().GetName(
lldb::eLanguageTypeUnknown,
Mangled::ePreferMangled)) {
m_nlist_idx_to_sym_idx[nlist_idx] =
pos->second;
// We just need the flags from the linker
// symbol, so put these flags
// into the N_STSYM flags to avoid duplicate
// symbols in the symbol table
sym[pos->second].SetExternal(
sym[sym_idx].IsExternal());
sym[pos->second].SetFlags(nlist.n_type << 16 |
nlist.n_desc);
sym[sym_idx].Clear();
found_it = true;
break;
}
}
if (found_it)
continue;
} else {
const char *gsym_name =
sym[sym_idx]
.GetMangled()
.GetName(lldb::eLanguageTypeUnknown,
Mangled::ePreferMangled)
.GetCString();
if (gsym_name) {
// Combine N_GSYM stab entries with the non
// stab symbol
ConstNameToSymbolIndexMap::const_iterator pos =
N_GSYM_name_to_sym_idx.find(gsym_name);
if (pos != N_GSYM_name_to_sym_idx.end()) {
const uint32_t GSYM_sym_idx = pos->second;
m_nlist_idx_to_sym_idx[nlist_idx] =
GSYM_sym_idx;
// Copy the address, because often the N_GSYM
// address has an invalid address of zero
// when the global is a common symbol
sym[GSYM_sym_idx].GetAddressRef().SetSection(
symbol_section);
sym[GSYM_sym_idx].GetAddressRef().SetOffset(
symbol_value);
// We just need the flags from the linker
// symbol, so put these flags
// into the N_GSYM flags to avoid duplicate
// symbols in the symbol table
sym[GSYM_sym_idx].SetFlags(
nlist.n_type << 16 | nlist.n_desc);
sym[sym_idx].Clear();
continue;
}
}
}
}
}
sym[sym_idx].SetID(nlist_idx);
sym[sym_idx].SetType(type);
if (set_value) {
sym[sym_idx].GetAddressRef().SetSection(
symbol_section);
sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
}
sym[sym_idx].SetFlags(nlist.n_type << 16 |
nlist.n_desc);
if (symbol_byte_size > 0)
sym[sym_idx].SetByteSize(symbol_byte_size);
if (demangled_is_synthesized)
sym[sym_idx].SetDemangledNameIsSynthesized(true);
++sym_idx;
} else {
sym[sym_idx].Clear();
}
}
/////////////////////////////
}
break; // No more entries to consider
}
}
for (const auto &pos : reexport_shlib_needs_fixup) {
const auto undef_pos = undefined_name_to_desc.find(pos.second);
if (undef_pos != undefined_name_to_desc.end()) {
const uint8_t dylib_ordinal =
llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
if (dylib_ordinal > 0 &&
dylib_ordinal < dylib_files.GetSize())
sym[pos.first].SetReExportedSymbolSharedLibrary(
dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
}
}
}
}
}
}
}
// Must reset this in case it was mutated above!
nlist_data_offset = 0;
#endif
if (nlist_data.GetByteSize() > 0) {
// If the sym array was not created while parsing the DSC unmapped
// symbols, create it now.
if (sym == NULL) {
sym = symtab->Resize(symtab_load_command.nsyms +
m_dysymtab.nindirectsyms);
num_syms = symtab->GetNumSymbols();
}
if (unmapped_local_symbols_found) {
assert(m_dysymtab.ilocalsym == 0);
nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
nlist_idx = m_dysymtab.nlocalsym;
} else {
nlist_idx = 0;
}
typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap;
typedef std::map<uint32_t, ConstString> SymbolIndexToName;
UndefinedNameToDescMap undefined_name_to_desc;
SymbolIndexToName reexport_shlib_needs_fixup;
for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
struct nlist_64 nlist;
if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset,
nlist_byte_size))
break;
nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
SymbolType type = eSymbolTypeInvalid;
const char *symbol_name = NULL;
if (have_strtab_data) {
symbol_name = strtab_data.PeekCStr(nlist.n_strx);
if (symbol_name == NULL) {
// No symbol should be NULL, even the symbols with no string values
// should have an offset zero which points to an empty C-string
Host::SystemLog(Host::eSystemLogError,
"error: symbol[%u] has invalid string table offset "
"0x%x in %s, ignoring symbol\n",
nlist_idx, nlist.n_strx,
module_sp->GetFileSpec().GetPath().c_str());
continue;
}
if (symbol_name[0] == '\0')
symbol_name = NULL;
} else {
const addr_t str_addr = strtab_addr + nlist.n_strx;
Status str_error;
if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
str_error))
symbol_name = memory_symbol_name.c_str();
}
const char *symbol_name_non_abi_mangled = NULL;
SectionSP symbol_section;
lldb::addr_t symbol_byte_size = 0;
bool add_nlist = true;
bool is_gsym = false;
bool is_debug = ((nlist.n_type & N_STAB) != 0);
bool demangled_is_synthesized = false;
bool set_value = true;
assert(sym_idx < num_syms);
sym[sym_idx].SetDebug(is_debug);
if (is_debug) {
switch (nlist.n_type) {
case N_GSYM:
// global symbol: name,,NO_SECT,type,0
// Sometimes the N_GSYM value contains the address.
// FIXME: In the .o files, we have a GSYM and a debug symbol for all
// the ObjC data. They
// have the same address, but we want to ensure that we always find
// only the real symbol, 'cause we don't currently correctly
// attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol
// type. This is a temporary hack to make sure the ObjectiveC
// symbols get treated correctly. To do this right, we should
// coalesce all the GSYM & global symbols that have the same
// address.
is_gsym = true;
sym[sym_idx].SetExternal(true);
if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
llvm::StringRef symbol_name_ref(symbol_name);
if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name = symbol_name + g_objc_v2_prefix_class.size();
type = eSymbolTypeObjCClass;
demangled_is_synthesized = true;
} else if (symbol_name_ref.startswith(
g_objc_v2_prefix_metaclass)) {
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
type = eSymbolTypeObjCMetaClass;
demangled_is_synthesized = true;
} else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
type = eSymbolTypeObjCIVar;
demangled_is_synthesized = true;
}
} else {
if (nlist.n_value != 0)
symbol_section =
section_info.GetSection(nlist.n_sect, nlist.n_value);
type = eSymbolTypeData;
}
break;
case N_FNAME:
// procedure name (f77 kludge): name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case N_FUN:
// procedure: name,,n_sect,linenumber,address
if (symbol_name) {
type = eSymbolTypeCode;
symbol_section =
section_info.GetSection(nlist.n_sect, nlist.n_value);
N_FUN_addr_to_sym_idx.insert(
std::make_pair(nlist.n_value, sym_idx));
// We use the current number of symbols in the symbol table in
// lieu of using nlist_idx in case we ever start trimming entries
// out
N_FUN_indexes.push_back(sym_idx);
} else {
type = eSymbolTypeCompiler;
if (!N_FUN_indexes.empty()) {
// Copy the size of the function into the original STAB entry
// so we don't have to hunt for it later
symtab->SymbolAtIndex(N_FUN_indexes.back())
->SetByteSize(nlist.n_value);
N_FUN_indexes.pop_back();
// We don't really need the end function STAB as it contains
// the size which we already placed with the original symbol,
// so don't add it if we want a minimal symbol table
add_nlist = false;
}
}
break;
case N_STSYM:
// static symbol: name,,n_sect,type,address
N_STSYM_addr_to_sym_idx.insert(
std::make_pair(nlist.n_value, sym_idx));
symbol_section =
section_info.GetSection(nlist.n_sect, nlist.n_value);
if (symbol_name && symbol_name[0]) {
type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
eSymbolTypeData);
}
break;
case N_LCSYM:
// .lcomm symbol: name,,n_sect,type,address
symbol_section =
section_info.GetSection(nlist.n_sect, nlist.n_value);
type = eSymbolTypeCommonBlock;
break;
case N_BNSYM:
// We use the current number of symbols in the symbol table in lieu
// of using nlist_idx in case we ever start trimming entries out
// Skip these if we want minimal symbol tables
add_nlist = false;
break;
case N_ENSYM:
// Set the size of the N_BNSYM to the terminating index of this
// N_ENSYM so that we can always skip the entire symbol if we need
// to navigate more quickly at the source level when parsing STABS
// Skip these if we want minimal symbol tables
add_nlist = false;
break;
case N_OPT:
// emitted with gcc2_compiled and in gcc source
type = eSymbolTypeCompiler;
break;
case N_RSYM:
// register sym: name,,NO_SECT,type,register
type = eSymbolTypeVariable;
break;
case N_SLINE:
// src line: 0,,n_sect,linenumber,address
symbol_section =
section_info.GetSection(nlist.n_sect, nlist.n_value);
type = eSymbolTypeLineEntry;
break;
case N_SSYM:
// structure elt: name,,NO_SECT,type,struct_offset
type = eSymbolTypeVariableType;
break;
case N_SO:
// source file name
type = eSymbolTypeSourceFile;
if (symbol_name == NULL) {
add_nlist = false;
if (N_SO_index != UINT32_MAX) {
// Set the size of the N_SO to the terminating index of this
// N_SO so that we can always skip the entire N_SO if we need
// to navigate more quickly at the source level when parsing
// STABS
symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
symbol_ptr->SetByteSize(sym_idx);
symbol_ptr->SetSizeIsSibling(true);
}
N_NSYM_indexes.clear();
N_INCL_indexes.clear();
N_BRAC_indexes.clear();
N_COMM_indexes.clear();
N_FUN_indexes.clear();
N_SO_index = UINT32_MAX;
} else {
// We use the current number of symbols in the symbol table in
// lieu of using nlist_idx in case we ever start trimming entries
// out
const bool N_SO_has_full_path = symbol_name[0] == '/';
if (N_SO_has_full_path) {
if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
// We have two consecutive N_SO entries where the first
// contains a directory and the second contains a full path.
sym[sym_idx - 1].GetMangled().SetValue(
ConstString(symbol_name), false);
m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
add_nlist = false;
} else {
// This is the first entry in a N_SO that contains a
// directory or a full path to the source file
N_SO_index = sym_idx;
}
} else if ((N_SO_index == sym_idx - 1) &&
((sym_idx - 1) < num_syms)) {
// This is usually the second N_SO entry that contains just the
// filename, so here we combine it with the first one if we are
// minimizing the symbol table
const char *so_path =
sym[sym_idx - 1]
.GetMangled()
.GetDemangledName(lldb::eLanguageTypeUnknown)
.AsCString();
if (so_path && so_path[0]) {
std::string full_so_path(so_path);
const size_t double_slash_pos = full_so_path.find("//");
if (double_slash_pos != std::string::npos) {
// The linker has been generating bad N_SO entries with
// doubled up paths in the format "%s%s" where the first
// string in the DW_AT_comp_dir, and the second is the
// directory for the source file so you end up with a path
// that looks like "/tmp/src//tmp/src/"
FileSpec so_dir(so_path, false);
if (!so_dir.Exists()) {
so_dir.SetFile(&full_so_path[double_slash_pos + 1], false,
FileSpec::Style::native);
if (so_dir.Exists()) {
// Trim off the incorrect path
full_so_path.erase(0, double_slash_pos + 1);
}
}
}
if (*full_so_path.rbegin() != '/')
full_so_path += '/';
full_so_path += symbol_name;
sym[sym_idx - 1].GetMangled().SetValue(
ConstString(full_so_path.c_str()), false);
add_nlist = false;
m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
}
} else {
// This could be a relative path to a N_SO
N_SO_index = sym_idx;
}
}
break;
case N_OSO:
// object file name: name,,0,0,st_mtime
type = eSymbolTypeObjectFile;
break;
case N_LSYM:
// local sym: name,,NO_SECT,type,offset
type = eSymbolTypeLocal;
break;
//----------------------------------------------------------------------
// INCL scopes
//----------------------------------------------------------------------
case N_BINCL:
// include file beginning: name,,NO_SECT,0,sum We use the current
// number of symbols in the symbol table in lieu of using nlist_idx
// in case we ever start trimming entries out
N_INCL_indexes.push_back(sym_idx);
type = eSymbolTypeScopeBegin;
break;
case N_EINCL:
// include file end: name,,NO_SECT,0,0
// Set the size of the N_BINCL to the terminating index of this
// N_EINCL so that we can always skip the entire symbol if we need
// to navigate more quickly at the source level when parsing STABS
if (!N_INCL_indexes.empty()) {
symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_INCL_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case N_SOL:
// #included file name: name,,n_sect,0,address
type = eSymbolTypeHeaderFile;
// We currently don't use the header files on darwin
add_nlist = false;
break;
case N_PARAMS:
// compiler parameters: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case N_VERSION:
// compiler version: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case N_OLEVEL:
// compiler -O level: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case N_PSYM:
// parameter: name,,NO_SECT,type,offset
type = eSymbolTypeVariable;
break;
case N_ENTRY:
// alternate entry: name,,n_sect,linenumber,address
symbol_section =
section_info.GetSection(nlist.n_sect, nlist.n_value);
type = eSymbolTypeLineEntry;
break;
//----------------------------------------------------------------------
// Left and Right Braces
//----------------------------------------------------------------------
case N_LBRAC:
// left bracket: 0,,NO_SECT,nesting level,address We use the
// current number of symbols in the symbol table in lieu of using
// nlist_idx in case we ever start trimming entries out
symbol_section =
section_info.GetSection(nlist.n_sect, nlist.n_value);
N_BRAC_indexes.push_back(sym_idx);
type = eSymbolTypeScopeBegin;
break;
case N_RBRAC:
// right bracket: 0,,NO_SECT,nesting level,address Set the size of
// the N_LBRAC to the terminating index of this N_RBRAC so that we
// can always skip the entire symbol if we need to navigate more
// quickly at the source level when parsing STABS
symbol_section =
section_info.GetSection(nlist.n_sect, nlist.n_value);
if (!N_BRAC_indexes.empty()) {
symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_BRAC_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case N_EXCL:
// deleted include file: name,,NO_SECT,0,sum
type = eSymbolTypeHeaderFile;
break;
//----------------------------------------------------------------------
// COMM scopes
//----------------------------------------------------------------------
case N_BCOMM:
// begin common: name,,NO_SECT,0,0
// We use the current number of symbols in the symbol table in lieu
// of using nlist_idx in case we ever start trimming entries out
type = eSymbolTypeScopeBegin;
N_COMM_indexes.push_back(sym_idx);
break;
case N_ECOML:
// end common (local name): 0,,n_sect,0,address
symbol_section =
section_info.GetSection(nlist.n_sect, nlist.n_value);
LLVM_FALLTHROUGH;
case N_ECOMM:
// end common: name,,n_sect,0,0
// Set the size of the N_BCOMM to the terminating index of this
// N_ECOMM/N_ECOML so that we can always skip the entire symbol if
// we need to navigate more quickly at the source level when
// parsing STABS
if (!N_COMM_indexes.empty()) {
symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_COMM_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case N_LENG:
// second stab entry with length information
type = eSymbolTypeAdditional;
break;
default:
break;
}
} else {
// uint8_t n_pext = N_PEXT & nlist.n_type;
uint8_t n_type = N_TYPE & nlist.n_type;
sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
switch (n_type) {
case N_INDR: {
const char *reexport_name_cstr =
strtab_data.PeekCStr(nlist.n_value);
if (reexport_name_cstr && reexport_name_cstr[0]) {
type = eSymbolTypeReExported;
ConstString reexport_name(
reexport_name_cstr +
((reexport_name_cstr[0] == '_') ? 1 : 0));
sym[sym_idx].SetReExportedSymbolName(reexport_name);
set_value = false;
reexport_shlib_needs_fixup[sym_idx] = reexport_name;
indirect_symbol_names.insert(
ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
} else
type = eSymbolTypeUndefined;
} break;
case N_UNDF:
if (symbol_name && symbol_name[0]) {
ConstString undefined_name(symbol_name +
((symbol_name[0] == '_') ? 1 : 0));
undefined_name_to_desc[undefined_name] = nlist.n_desc;
}
LLVM_FALLTHROUGH;
case N_PBUD:
type = eSymbolTypeUndefined;
break;
case N_ABS:
type = eSymbolTypeAbsolute;
break;
case N_SECT: {
symbol_section =
section_info.GetSection(nlist.n_sect, nlist.n_value);
if (!symbol_section) {
// TODO: warn about this?
add_nlist = false;
break;
}
if (TEXT_eh_frame_sectID == nlist.n_sect) {
type = eSymbolTypeException;
} else {
uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
switch (section_type) {
case S_CSTRING_LITERALS:
type = eSymbolTypeData;
break; // section with only literal C strings
case S_4BYTE_LITERALS:
type = eSymbolTypeData;
break; // section with only 4 byte literals
case S_8BYTE_LITERALS:
type = eSymbolTypeData;
break; // section with only 8 byte literals
case S_LITERAL_POINTERS:
type = eSymbolTypeTrampoline;
break; // section with only pointers to literals
case S_NON_LAZY_SYMBOL_POINTERS:
type = eSymbolTypeTrampoline;
break; // section with only non-lazy symbol pointers
case S_LAZY_SYMBOL_POINTERS:
type = eSymbolTypeTrampoline;
break; // section with only lazy symbol pointers
case S_SYMBOL_STUBS:
type = eSymbolTypeTrampoline;
break; // section with only symbol stubs, byte size of stub in
// the reserved2 field
case S_MOD_INIT_FUNC_POINTERS:
type = eSymbolTypeCode;
break; // section with only function pointers for initialization
case S_MOD_TERM_FUNC_POINTERS:
type = eSymbolTypeCode;
break; // section with only function pointers for termination
case S_INTERPOSING:
type = eSymbolTypeTrampoline;
break; // section with only pairs of function pointers for
// interposing
case S_16BYTE_LITERALS:
type = eSymbolTypeData;
break; // section with only 16 byte literals
case S_DTRACE_DOF:
type = eSymbolTypeInstrumentation;
break;
case S_LAZY_DYLIB_SYMBOL_POINTERS:
type = eSymbolTypeTrampoline;
break;
default:
switch (symbol_section->GetType()) {
case lldb::eSectionTypeCode:
type = eSymbolTypeCode;
break;
case eSectionTypeData:
case eSectionTypeDataCString: // Inlined C string data
case eSectionTypeDataCStringPointers: // Pointers to C string
// data
case eSectionTypeDataSymbolAddress: // Address of a symbol in
// the symbol table
case eSectionTypeData4:
case eSectionTypeData8:
case eSectionTypeData16:
type = eSymbolTypeData;
break;
default:
break;
}
break;
}
if (type == eSymbolTypeInvalid) {
const char *symbol_sect_name =
symbol_section->GetName().AsCString();
if (symbol_section->IsDescendant(text_section_sp.get())) {
if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
S_ATTR_SELF_MODIFYING_CODE |
S_ATTR_SOME_INSTRUCTIONS))
type = eSymbolTypeData;
else
type = eSymbolTypeCode;
} else if (symbol_section->IsDescendant(
data_section_sp.get()) ||
symbol_section->IsDescendant(
data_dirty_section_sp.get()) ||
symbol_section->IsDescendant(
data_const_section_sp.get())) {
if (symbol_sect_name &&
::strstr(symbol_sect_name, "__objc") ==
symbol_sect_name) {
type = eSymbolTypeRuntime;
if (symbol_name) {
llvm::StringRef symbol_name_ref(symbol_name);
if (symbol_name_ref.startswith("_OBJC_")) {
static const llvm::StringRef g_objc_v2_prefix_class(
"_OBJC_CLASS_$_");
static const llvm::StringRef g_objc_v2_prefix_metaclass(
"_OBJC_METACLASS_$_");
static const llvm::StringRef g_objc_v2_prefix_ivar(
"_OBJC_IVAR_$_");
if (symbol_name_ref.startswith(
g_objc_v2_prefix_class)) {
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name =
symbol_name + g_objc_v2_prefix_class.size();
type = eSymbolTypeObjCClass;
demangled_is_synthesized = true;
} else if (symbol_name_ref.startswith(
g_objc_v2_prefix_metaclass)) {
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name =
symbol_name + g_objc_v2_prefix_metaclass.size();
type = eSymbolTypeObjCMetaClass;
demangled_is_synthesized = true;
} else if (symbol_name_ref.startswith(
g_objc_v2_prefix_ivar)) {
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name =
symbol_name + g_objc_v2_prefix_ivar.size();
type = eSymbolTypeObjCIVar;
demangled_is_synthesized = true;
}
}
}
} else if (symbol_sect_name &&
::strstr(symbol_sect_name, "__gcc_except_tab") ==
symbol_sect_name) {
type = eSymbolTypeException;
} else {
type = eSymbolTypeData;
}
} else if (symbol_sect_name &&
::strstr(symbol_sect_name, "__IMPORT") ==
symbol_sect_name) {
type = eSymbolTypeTrampoline;
} else if (symbol_section->IsDescendant(
objc_section_sp.get())) {
type = eSymbolTypeRuntime;
if (symbol_name && symbol_name[0] == '.') {
llvm::StringRef symbol_name_ref(symbol_name);
static const llvm::StringRef g_objc_v1_prefix_class(
".objc_class_name_");
if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
symbol_name_non_abi_mangled = symbol_name;
symbol_name = symbol_name + g_objc_v1_prefix_class.size();
type = eSymbolTypeObjCClass;
demangled_is_synthesized = true;
}
}
}
}
}
} break;
}
}
if (add_nlist) {
uint64_t symbol_value = nlist.n_value;
if (symbol_name_non_abi_mangled) {
sym[sym_idx].GetMangled().SetMangledName(
ConstString(symbol_name_non_abi_mangled));
sym[sym_idx].GetMangled().SetDemangledName(
ConstString(symbol_name));
} else {
bool symbol_name_is_mangled = false;
if (symbol_name && symbol_name[0] == '_') {
symbol_name_is_mangled = symbol_name[1] == '_';
symbol_name++; // Skip the leading underscore
}
if (symbol_name) {
ConstString const_symbol_name(symbol_name);
sym[sym_idx].GetMangled().SetValue(const_symbol_name,
symbol_name_is_mangled);
}
}
if (is_gsym) {
const char *gsym_name = sym[sym_idx]
.GetMangled()
.GetName(lldb::eLanguageTypeUnknown,
Mangled::ePreferMangled)
.GetCString();
if (gsym_name)
N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
}
if (symbol_section) {
const addr_t section_file_addr = symbol_section->GetFileAddress();
if (symbol_byte_size == 0 && function_starts_count > 0) {
addr_t symbol_lookup_file_addr = nlist.n_value;
// Do an exact address match for non-ARM addresses, else get the
// closest since the symbol might be a thumb symbol which has an
// address with bit zero set
FunctionStarts::Entry *func_start_entry =
function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
if (is_arm && func_start_entry) {
// Verify that the function start address is the symbol address
// (ARM) or the symbol address + 1 (thumb)
if (func_start_entry->addr != symbol_lookup_file_addr &&
func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
// Not the right entry, NULL it out...
func_start_entry = NULL;
}
}
if (func_start_entry) {
func_start_entry->data = true;
addr_t symbol_file_addr = func_start_entry->addr;
if (is_arm)
symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
const FunctionStarts::Entry *next_func_start_entry =
function_starts.FindNextEntry(func_start_entry);
const addr_t section_end_file_addr =
section_file_addr + symbol_section->GetByteSize();
if (next_func_start_entry) {
addr_t next_symbol_file_addr = next_func_start_entry->addr;
// Be sure the clear the Thumb address bit when we calculate
// the size from the current and next address
if (is_arm)
next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
symbol_byte_size = std::min<lldb::addr_t>(
next_symbol_file_addr - symbol_file_addr,
section_end_file_addr - symbol_file_addr);
} else {
symbol_byte_size = section_end_file_addr - symbol_file_addr;
}
}
}
symbol_value -= section_file_addr;
}
if (is_debug == false) {
if (type == eSymbolTypeCode) {
// See if we can find a N_FUN entry for any code symbols. If we
// do find a match, and the name matches, then we can merge the
// two into just the function symbol to avoid duplicate entries
// in the symbol table
std::pair<ValueToSymbolIndexMap::const_iterator,
ValueToSymbolIndexMap::const_iterator>
range;
range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
if (range.first != range.second) {
bool found_it = false;
for (ValueToSymbolIndexMap::const_iterator pos = range.first;
pos != range.second; ++pos) {
if (sym[sym_idx].GetMangled().GetName(
lldb::eLanguageTypeUnknown,
Mangled::ePreferMangled) ==
sym[pos->second].GetMangled().GetName(
lldb::eLanguageTypeUnknown,
Mangled::ePreferMangled)) {
m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
// We just need the flags from the linker symbol, so put
// these flags into the N_FUN flags to avoid duplicate
// symbols in the symbol table
sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
sym[pos->second].SetFlags(nlist.n_type << 16 |
nlist.n_desc);
if (resolver_addresses.find(nlist.n_value) !=
resolver_addresses.end())
sym[pos->second].SetType(eSymbolTypeResolver);
sym[sym_idx].Clear();
found_it = true;
break;
}
}
if (found_it)
continue;
} else {
if (resolver_addresses.find(nlist.n_value) !=
resolver_addresses.end())
type = eSymbolTypeResolver;
}
} else if (type == eSymbolTypeData ||
type == eSymbolTypeObjCClass ||
type == eSymbolTypeObjCMetaClass ||
type == eSymbolTypeObjCIVar) {
// See if we can find a N_STSYM entry for any data symbols. If we
// do find a match, and the name matches, then we can merge the
// two into just the Static symbol to avoid duplicate entries in
// the symbol table
std::pair<ValueToSymbolIndexMap::const_iterator,
ValueToSymbolIndexMap::const_iterator>
range;
range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
if (range.first != range.second) {
bool found_it = false;
for (ValueToSymbolIndexMap::const_iterator pos = range.first;
pos != range.second; ++pos) {
if (sym[sym_idx].GetMangled().GetName(
lldb::eLanguageTypeUnknown,
Mangled::ePreferMangled) ==
sym[pos->second].GetMangled().GetName(
lldb::eLanguageTypeUnknown,
Mangled::ePreferMangled)) {
m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
// We just need the flags from the linker symbol, so put
// these flags into the N_STSYM flags to avoid duplicate
// symbols in the symbol table
sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
sym[pos->second].SetFlags(nlist.n_type << 16 |
nlist.n_desc);
sym[sym_idx].Clear();
found_it = true;
break;
}
}
if (found_it)
continue;
} else {
// Combine N_GSYM stab entries with the non stab symbol
const char *gsym_name = sym[sym_idx]
.GetMangled()
.GetName(lldb::eLanguageTypeUnknown,
Mangled::ePreferMangled)
.GetCString();
if (gsym_name) {
ConstNameToSymbolIndexMap::const_iterator pos =
N_GSYM_name_to_sym_idx.find(gsym_name);
if (pos != N_GSYM_name_to_sym_idx.end()) {
const uint32_t GSYM_sym_idx = pos->second;
m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
// Copy the address, because often the N_GSYM address has
// an invalid address of zero when the global is a common
// symbol
sym[GSYM_sym_idx].GetAddressRef().SetSection(
symbol_section);
sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
// We just need the flags from the linker symbol, so put
// these flags into the N_GSYM flags to avoid duplicate
// symbols in the symbol table
sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
nlist.n_desc);
sym[sym_idx].Clear();
continue;
}
}
}
}
}
sym[sym_idx].SetID(nlist_idx);
sym[sym_idx].SetType(type);
if (set_value) {
sym[sym_idx].GetAddressRef().SetSection(symbol_section);
sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
}
sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
if (symbol_byte_size > 0)
sym[sym_idx].SetByteSize(symbol_byte_size);
if (demangled_is_synthesized)
sym[sym_idx].SetDemangledNameIsSynthesized(true);
++sym_idx;
} else {
sym[sym_idx].Clear();
}
}
for (const auto &pos : reexport_shlib_needs_fixup) {
const auto undef_pos = undefined_name_to_desc.find(pos.second);
if (undef_pos != undefined_name_to_desc.end()) {
const uint8_t dylib_ordinal =
llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
sym[pos.first].SetReExportedSymbolSharedLibrary(
dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
}
}
}
uint32_t synthetic_sym_id = symtab_load_command.nsyms;
if (function_starts_count > 0) {
uint32_t num_synthetic_function_symbols = 0;
for (i = 0; i < function_starts_count; ++i) {
if (function_starts.GetEntryRef(i).data == false)
++num_synthetic_function_symbols;
}
if (num_synthetic_function_symbols > 0) {
if (num_syms < sym_idx + num_synthetic_function_symbols) {
num_syms = sym_idx + num_synthetic_function_symbols;
sym = symtab->Resize(num_syms);
}
for (i = 0; i < function_starts_count; ++i) {
const FunctionStarts::Entry *func_start_entry =
function_starts.GetEntryAtIndex(i);
if (func_start_entry->data == false) {
addr_t symbol_file_addr = func_start_entry->addr;
uint32_t symbol_flags = 0;
if (is_arm) {
if (symbol_file_addr & 1)
symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
}
Address symbol_addr;
if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
SectionSP symbol_section(symbol_addr.GetSection());
uint32_t symbol_byte_size = 0;
if (symbol_section) {
const addr_t section_file_addr =
symbol_section->GetFileAddress();
const FunctionStarts::Entry *next_func_start_entry =
function_starts.FindNextEntry(func_start_entry);
const addr_t section_end_file_addr =
section_file_addr + symbol_section->GetByteSize();
if (next_func_start_entry) {
addr_t next_symbol_file_addr = next_func_start_entry->addr;
if (is_arm)
next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
symbol_byte_size = std::min<lldb::addr_t>(
next_symbol_file_addr - symbol_file_addr,
section_end_file_addr - symbol_file_addr);
} else {
symbol_byte_size = section_end_file_addr - symbol_file_addr;
}
sym[sym_idx].SetID(synthetic_sym_id++);
sym[sym_idx].GetMangled().SetDemangledName(
GetNextSyntheticSymbolName());
sym[sym_idx].SetType(eSymbolTypeCode);
sym[sym_idx].SetIsSynthetic(true);
sym[sym_idx].GetAddressRef() = symbol_addr;
if (symbol_flags)
sym[sym_idx].SetFlags(symbol_flags);
if (symbol_byte_size)
sym[sym_idx].SetByteSize(symbol_byte_size);
++sym_idx;
}
}
}
}
}
}
// Trim our symbols down to just what we ended up with after removing any
// symbols.
if (sym_idx < num_syms) {
num_syms = sym_idx;
sym = symtab->Resize(num_syms);
}
// Now synthesize indirect symbols
if (m_dysymtab.nindirectsyms != 0) {
if (indirect_symbol_index_data.GetByteSize()) {
NListIndexToSymbolIndexMap::const_iterator end_index_pos =
m_nlist_idx_to_sym_idx.end();
for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
++sect_idx) {
if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
S_SYMBOL_STUBS) {
uint32_t symbol_stub_byte_size =
m_mach_sections[sect_idx].reserved2;
if (symbol_stub_byte_size == 0)
continue;
const uint32_t num_symbol_stubs =
m_mach_sections[sect_idx].size / symbol_stub_byte_size;
if (num_symbol_stubs == 0)
continue;
const uint32_t symbol_stub_index_offset =
m_mach_sections[sect_idx].reserved1;
for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs;
++stub_idx) {
const uint32_t symbol_stub_index =
symbol_stub_index_offset + stub_idx;
const lldb::addr_t symbol_stub_addr =
m_mach_sections[sect_idx].addr +
(stub_idx * symbol_stub_byte_size);
lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
symbol_stub_offset, 4)) {
const uint32_t stub_sym_id =
indirect_symbol_index_data.GetU32(&symbol_stub_offset);
if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
continue;
NListIndexToSymbolIndexMap::const_iterator index_pos =
m_nlist_idx_to_sym_idx.find(stub_sym_id);
Symbol *stub_symbol = NULL;
if (index_pos != end_index_pos) {
// We have a remapping from the original nlist index to a
// current symbol index, so just look this up by index
stub_symbol = symtab->SymbolAtIndex(index_pos->second);
} else {
// We need to lookup a symbol using the original nlist symbol
// index since this index is coming from the S_SYMBOL_STUBS
stub_symbol = symtab->FindSymbolByID(stub_sym_id);
}
if (stub_symbol) {
Address so_addr(symbol_stub_addr, section_list);
if (stub_symbol->GetType() == eSymbolTypeUndefined) {
// Change the external symbol into a trampoline that makes
// sense These symbols were N_UNDF N_EXT, and are useless
// to us, so we can re-use them so we don't have to make up
// a synthetic symbol for no good reason.
if (resolver_addresses.find(symbol_stub_addr) ==
resolver_addresses.end())
stub_symbol->SetType(eSymbolTypeTrampoline);
else
stub_symbol->SetType(eSymbolTypeResolver);
stub_symbol->SetExternal(false);
stub_symbol->GetAddressRef() = so_addr;
stub_symbol->SetByteSize(symbol_stub_byte_size);
} else {
// Make a synthetic symbol to describe the trampoline stub
Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
if (sym_idx >= num_syms) {
sym = symtab->Resize(++num_syms);
stub_symbol = NULL; // this pointer no longer valid
}
sym[sym_idx].SetID(synthetic_sym_id++);
sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
if (resolver_addresses.find(symbol_stub_addr) ==
resolver_addresses.end())
sym[sym_idx].SetType(eSymbolTypeTrampoline);
else
sym[sym_idx].SetType(eSymbolTypeResolver);
sym[sym_idx].SetIsSynthetic(true);
sym[sym_idx].GetAddressRef() = so_addr;
sym[sym_idx].SetByteSize(symbol_stub_byte_size);
++sym_idx;
}
} else {
if (log)
log->Warning("symbol stub referencing symbol table symbol "
"%u that isn't in our minimal symbol table, "
"fix this!!!",
stub_sym_id);
}
}
}
}
}
}
}
if (!trie_entries.empty()) {
for (const auto &e : trie_entries) {
if (e.entry.import_name) {
// Only add indirect symbols from the Trie entries if we didn't have
// a N_INDR nlist entry for this already
if (indirect_symbol_names.find(e.entry.name) ==
indirect_symbol_names.end()) {
// Make a synthetic symbol to describe re-exported symbol.
if (sym_idx >= num_syms)
sym = symtab->Resize(++num_syms);
sym[sym_idx].SetID(synthetic_sym_id++);
sym[sym_idx].GetMangled() = Mangled(e.entry.name);
sym[sym_idx].SetType(eSymbolTypeReExported);
sym[sym_idx].SetIsSynthetic(true);
sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
sym[sym_idx].SetReExportedSymbolSharedLibrary(
dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
}
++sym_idx;
}
}
}
}
// StreamFile s(stdout, false);
// s.Printf ("Symbol table before CalculateSymbolSizes():\n");
// symtab->Dump(&s, NULL, eSortOrderNone);
// Set symbol byte sizes correctly since mach-o nlist entries don't have
// sizes
symtab->CalculateSymbolSizes();
// s.Printf ("Symbol table after CalculateSymbolSizes():\n");
// symtab->Dump(&s, NULL, eSortOrderNone);
return symtab->GetNumSymbols();
}
return 0;
}
void ObjectFileMachO::Dump(Stream *s) {
ModuleSP module_sp(GetModule());
if (module_sp) {
std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
s->Printf("%p: ", static_cast<void *>(this));
s->Indent();
if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
s->PutCString("ObjectFileMachO64");
else
s->PutCString("ObjectFileMachO32");
ArchSpec header_arch;
GetArchitecture(header_arch);
*s << ", file = '" << m_file
<< "', triple = " << header_arch.GetTriple().getTriple() << "\n";
SectionList *sections = GetSectionList();
if (sections)
sections->Dump(s, NULL, true, UINT32_MAX);
if (m_symtab_ap.get())
m_symtab_ap->Dump(s, NULL, eSortOrderNone);
}
}
bool ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
const lldb_private::DataExtractor &data,
lldb::offset_t lc_offset,
lldb_private::UUID &uuid) {
uint32_t i;
struct uuid_command load_cmd;
lldb::offset_t offset = lc_offset;
for (i = 0; i < header.ncmds; ++i) {
const lldb::offset_t cmd_offset = offset;
if (data.GetU32(&offset, &load_cmd, 2) == NULL)
break;
if (load_cmd.cmd == LC_UUID) {
const uint8_t *uuid_bytes = data.PeekData(offset, 16);
if (uuid_bytes) {
// OpenCL on Mac OS X uses the same UUID for each of its object files.
// We pretend these object files have no UUID to prevent crashing.
const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
0xbb, 0x14, 0xf0, 0x0d};
if (!memcmp(uuid_bytes, opencl_uuid, 16))
return false;
uuid.SetBytes(uuid_bytes);
return true;
}
return false;
}
offset = cmd_offset + load_cmd.cmdsize;
}
return false;
}
static const char *GetOSName(uint32_t cmd) {
switch (cmd) {
case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
return "ios";
case llvm::MachO::LC_VERSION_MIN_MACOSX:
return "macosx";
case llvm::MachO::LC_VERSION_MIN_TVOS:
return "tvos";
case llvm::MachO::LC_VERSION_MIN_WATCHOS:
return "watchos";
default:
llvm_unreachable("unexpected LC_VERSION load command");
}
}
bool ObjectFileMachO::GetArchitecture(const llvm::MachO::mach_header &header,
const lldb_private::DataExtractor &data,
lldb::offset_t lc_offset,
ArchSpec &arch) {
arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
if (arch.IsValid()) {
llvm::Triple &triple = arch.GetTriple();
// Set OS to an unspecified unknown or a "*" so it can match any OS
triple.setOS(llvm::Triple::UnknownOS);
triple.setOSName(llvm::StringRef());
if (header.filetype == MH_PRELOAD) {
if (header.cputype == CPU_TYPE_ARM) {
// If this is a 32-bit arm binary, and it's a standalone binary, force
// the Vendor to Apple so we don't accidentally pick up the generic
// armv7 ABI at runtime. Apple's armv7 ABI always uses r7 for the
// frame pointer register; most other armv7 ABIs use a combination of
// r7 and r11.
triple.setVendor(llvm::Triple::Apple);
} else {
// Set vendor to an unspecified unknown or a "*" so it can match any
// vendor This is required for correct behavior of EFI debugging on
// x86_64
triple.setVendor(llvm::Triple::UnknownVendor);
triple.setVendorName(llvm::StringRef());
}
return true;
} else {
struct load_command load_cmd;
lldb::offset_t offset = lc_offset;
for (uint32_t i = 0; i < header.ncmds; ++i) {
const lldb::offset_t cmd_offset = offset;
if (data.GetU32(&offset, &load_cmd, 2) == NULL)
break;
uint32_t major, minor, patch;
struct version_min_command version_min;
llvm::SmallString<16> os_name;
llvm::raw_svector_ostream os(os_name);
switch (load_cmd.cmd) {
case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
case llvm::MachO::LC_VERSION_MIN_MACOSX:
case llvm::MachO::LC_VERSION_MIN_TVOS:
case llvm::MachO::LC_VERSION_MIN_WATCHOS:
if (load_cmd.cmdsize != sizeof(version_min))
break;
data.ExtractBytes(cmd_offset,
sizeof(version_min), data.GetByteOrder(),
&version_min);
major = version_min.version >> 16;
minor = (version_min.version >> 8) & 0xffu;
patch = version_min.version & 0xffu;
os << GetOSName(load_cmd.cmd) << major << '.' << minor << '.'
<< patch;
triple.setOSName(os.str());
return true;
default:
break;
}
offset = cmd_offset + load_cmd.cmdsize;
}
if (header.filetype != MH_KEXT_BUNDLE) {
// We didn't find a LC_VERSION_MIN load command and this isn't a KEXT
// so lets not say our Vendor is Apple, leave it as an unspecified
// unknown
triple.setVendor(llvm::Triple::UnknownVendor);
triple.setVendorName(llvm::StringRef());
}
}
}
return arch.IsValid();
}
bool ObjectFileMachO::GetUUID(lldb_private::UUID *uuid) {
ModuleSP module_sp(GetModule());
if (module_sp) {
std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
return GetUUID(m_header, m_data, offset, *uuid);
}
return false;
}
uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
uint32_t count = 0;
ModuleSP module_sp(GetModule());
if (module_sp) {
std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
struct load_command load_cmd;
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
std::vector<std::string> rpath_paths;
std::vector<std::string> rpath_relative_paths;
std::vector<std::string> at_exec_relative_paths;
const bool resolve_path = false; // Don't resolve the dependent file paths
// since they may not reside on this
// system
uint32_t i;
for (i = 0; i < m_header.ncmds; ++i) {
const uint32_t cmd_offset = offset;
if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
break;
switch (load_cmd.cmd) {
case LC_RPATH:
case LC_LOAD_DYLIB:
case LC_LOAD_WEAK_DYLIB:
case LC_REEXPORT_DYLIB:
case LC_LOAD_DYLINKER:
case LC_LOADFVMLIB:
case LC_LOAD_UPWARD_DYLIB: {
uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
const char *path = m_data.PeekCStr(name_offset);
if (path) {
if (load_cmd.cmd == LC_RPATH)
rpath_paths.push_back(path);
else {
if (path[0] == '@') {
if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
rpath_relative_paths.push_back(path + strlen("@rpath"));
else if (strncmp(path, "@executable_path",
strlen("@executable_path")) == 0)
at_exec_relative_paths.push_back(path
+ strlen("@executable_path"));
} else {
FileSpec file_spec(path, resolve_path);
if (files.AppendIfUnique(file_spec))
count++;
}
}
}
} break;
default:
break;
}
offset = cmd_offset + load_cmd.cmdsize;
}
FileSpec this_file_spec(m_file);
this_file_spec.ResolvePath();
if (!rpath_paths.empty()) {
// Fixup all LC_RPATH values to be absolute paths
std::string loader_path("@loader_path");
std::string executable_path("@executable_path");
for (auto &rpath : rpath_paths) {
if (rpath.find(loader_path) == 0) {
rpath.erase(0, loader_path.size());
rpath.insert(0, this_file_spec.GetDirectory().GetCString());
} else if (rpath.find(executable_path) == 0) {
rpath.erase(0, executable_path.size());
rpath.insert(0, this_file_spec.GetDirectory().GetCString());
}
}
for (const auto &rpath_relative_path : rpath_relative_paths) {
for (const auto &rpath : rpath_paths) {
std::string path = rpath;
path += rpath_relative_path;
// It is OK to resolve this path because we must find a file on disk
// for us to accept it anyway if it is rpath relative.
FileSpec file_spec(path, true);
if (file_spec.Exists() && files.AppendIfUnique(file_spec)) {
count++;
break;
}
}
}
}
// We may have @executable_paths but no RPATHS. Figure those out here.
// Only do this if this object file is the executable. We have no way to
// get back to the actual executable otherwise, so we won't get the right
// path.
if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
for (const auto &at_exec_relative_path : at_exec_relative_paths) {
FileSpec file_spec =
exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
if (file_spec.Exists() && files.AppendIfUnique(file_spec))
count++;
}
}
}
return count;
}
lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
// If the object file is not an executable it can't hold the entry point.
// m_entry_point_address is initialized to an invalid address, so we can just
// return that. If m_entry_point_address is valid it means we've found it
// already, so return the cached value.
if (!IsExecutable() || m_entry_point_address.IsValid())
return m_entry_point_address;
// Otherwise, look for the UnixThread or Thread command. The data for the
// Thread command is given in /usr/include/mach-o.h, but it is basically:
//
// uint32_t flavor - this is the flavor argument you would pass to
// thread_get_state
// uint32_t count - this is the count of longs in the thread state data
// struct XXX_thread_state state - this is the structure from
// <machine/thread_status.h> corresponding to the flavor.
// <repeat this trio>
//
// So we just keep reading the various register flavors till we find the GPR
// one, then read the PC out of there.
// FIXME: We will need to have a "RegisterContext data provider" class at some
// point that can get all the registers
// out of data in this form & attach them to a given thread. That should
// underlie the MacOS X User process plugin, and we'll also need it for the
// MacOS X Core File process plugin. When we have that we can also use it
// here.
//
// For now we hard-code the offsets and flavors we need:
//
//
ModuleSP module_sp(GetModule());
if (module_sp) {
std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
struct load_command load_cmd;
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
uint32_t i;
lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
bool done = false;
for (i = 0; i < m_header.ncmds; ++i) {
const lldb::offset_t cmd_offset = offset;
if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
break;
switch (load_cmd.cmd) {
case LC_UNIXTHREAD:
case LC_THREAD: {
while (offset < cmd_offset + load_cmd.cmdsize) {
uint32_t flavor = m_data.GetU32(&offset);
uint32_t count = m_data.GetU32(&offset);
if (count == 0) {
// We've gotten off somehow, log and exit;
return m_entry_point_address;
}
switch (m_header.cputype) {
case llvm::MachO::CPU_TYPE_ARM:
if (flavor == 1 ||
flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32 from
// mach/arm/thread_status.h
{
offset += 60; // This is the offset of pc in the GPR thread state
// data structure.
start_address = m_data.GetU32(&offset);
done = true;
}
break;
case llvm::MachO::CPU_TYPE_ARM64:
if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
{
offset += 256; // This is the offset of pc in the GPR thread state
// data structure.
start_address = m_data.GetU64(&offset);
done = true;
}
break;
case llvm::MachO::CPU_TYPE_I386:
if (flavor ==
1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
{
offset += 40; // This is the offset of eip in the GPR thread state
// data structure.
start_address = m_data.GetU32(&offset);
done = true;
}
break;
case llvm::MachO::CPU_TYPE_X86_64:
if (flavor ==
4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
{
offset += 16 * 8; // This is the offset of rip in the GPR thread
// state data structure.
start_address = m_data.GetU64(&offset);
done = true;
}
break;
default:
return m_entry_point_address;
}
// Haven't found the GPR flavor yet, skip over the data for this
// flavor:
if (done)
break;
offset += count * 4;
}
} break;
case LC_MAIN: {
ConstString text_segment_name("__TEXT");
uint64_t entryoffset = m_data.GetU64(&offset);
SectionSP text_segment_sp =
GetSectionList()->FindSectionByName(text_segment_name);
if (text_segment_sp) {
done = true;
start_address = text_segment_sp->GetFileAddress() + entryoffset;
}
} break;
default:
break;
}
if (done)
break;
// Go to the next load command:
offset = cmd_offset + load_cmd.cmdsize;
}
if (start_address != LLDB_INVALID_ADDRESS) {
// We got the start address from the load commands, so now resolve that
// address in the sections of this ObjectFile:
if (!m_entry_point_address.ResolveAddressUsingFileSections(
start_address, GetSectionList())) {
m_entry_point_address.Clear();
}
} else {
// We couldn't read the UnixThread load command - maybe it wasn't there.
// As a fallback look for the "start" symbol in the main executable.
ModuleSP module_sp(GetModule());
if (module_sp) {
SymbolContextList contexts;
SymbolContext context;
if (module_sp->FindSymbolsWithNameAndType(ConstString("start"),
eSymbolTypeCode, contexts)) {
if (contexts.GetContextAtIndex(0, context))
m_entry_point_address = context.symbol->GetAddress();
}
}
}
}
return m_entry_point_address;
}
lldb_private::Address ObjectFileMachO::GetHeaderAddress() {
lldb_private::Address header_addr;
SectionList *section_list = GetSectionList();
if (section_list) {
SectionSP text_segment_sp(
section_list->FindSectionByName(GetSegmentNameTEXT()));
if (text_segment_sp) {
header_addr.SetSection(text_segment_sp);
header_addr.SetOffset(0);
}
}
return header_addr;
}
uint32_t ObjectFileMachO::GetNumThreadContexts() {
ModuleSP module_sp(GetModule());
if (module_sp) {
std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
if (!m_thread_context_offsets_valid) {
m_thread_context_offsets_valid = true;
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
FileRangeArray::Entry file_range;
thread_command thread_cmd;
for (uint32_t i = 0; i < m_header.ncmds; ++i) {
const uint32_t cmd_offset = offset;
if (m_data.GetU32(&offset, &thread_cmd, 2) == NULL)
break;
if (thread_cmd.cmd == LC_THREAD) {
file_range.SetRangeBase(offset);
file_range.SetByteSize(thread_cmd.cmdsize - 8);
m_thread_context_offsets.Append(file_range);
}
offset = cmd_offset + thread_cmd.cmdsize;
}
}
}
return m_thread_context_offsets.GetSize();
}
std::string ObjectFileMachO::GetIdentifierString() {
std::string result;
ModuleSP module_sp(GetModule());
if (module_sp) {
std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
// First, look over the load commands for an LC_NOTE load command with
// data_owner string "kern ver str" & use that if found.
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
for (uint32_t i = 0; i < m_header.ncmds; ++i) {
const uint32_t cmd_offset = offset;
load_command lc;
if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
break;
if (lc.cmd == LC_NOTE)
{
char data_owner[17];
m_data.CopyData (offset, 16, data_owner);
data_owner[16] = '\0';
offset += 16;
uint64_t fileoff = m_data.GetU64_unchecked (&offset);
uint64_t size = m_data.GetU64_unchecked (&offset);
// "kern ver str" has a uint32_t version and then a nul terminated
// c-string.
if (strcmp ("kern ver str", data_owner) == 0)
{
offset = fileoff;
uint32_t version;
if (m_data.GetU32 (&offset, &version, 1) != nullptr)
{
if (version == 1)
{
uint32_t strsize = size - sizeof (uint32_t);
char *buf = (char*) malloc (strsize);
if (buf)
{
m_data.CopyData (offset, strsize, buf);
buf[strsize - 1] = '\0';
result = buf;
if (buf)
free (buf);
return result;
}
}
}
}
}
offset = cmd_offset + lc.cmdsize;
}
// Second, make a pass over the load commands looking for an obsolete
// LC_IDENT load command.
offset = MachHeaderSizeFromMagic(m_header.magic);
for (uint32_t i = 0; i < m_header.ncmds; ++i) {
const uint32_t cmd_offset = offset;
struct ident_command ident_command;
if (m_data.GetU32(&offset, &ident_command, 2) == NULL)
break;
if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
char *buf = (char *) malloc (ident_command.cmdsize);
if (buf != nullptr
&& m_data.CopyData (offset, ident_command.cmdsize, buf) == ident_command.cmdsize) {
buf[ident_command.cmdsize - 1] = '\0';
result = buf;
}
if (buf)
free (buf);
}
offset = cmd_offset + ident_command.cmdsize;
}
}
return result;
}
bool ObjectFileMachO::GetCorefileMainBinaryInfo (addr_t &address, UUID &uuid) {
address = LLDB_INVALID_ADDRESS;
uuid.Clear();
ModuleSP module_sp(GetModule());
if (module_sp) {
std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
for (uint32_t i = 0; i < m_header.ncmds; ++i) {
const uint32_t cmd_offset = offset;
load_command lc;
if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
break;
if (lc.cmd == LC_NOTE)
{
char data_owner[17];
memset (data_owner, 0, sizeof (data_owner));
m_data.CopyData (offset, 16, data_owner);
offset += 16;
uint64_t fileoff = m_data.GetU64_unchecked (&offset);
uint64_t size = m_data.GetU64_unchecked (&offset);
// "main bin spec" (main binary specification) data payload is
// formatted:
// uint32_t version [currently 1]
// uint32_t type [0 == unspecified, 1 == kernel, 2 == user process]
// uint64_t address [ UINT64_MAX if address not specified ]
// uuid_t uuid [ all zero's if uuid not specified ]
// uint32_t log2_pagesize [ process page size in log base 2, e.g. 4k pages are 12. 0 for unspecified ]
if (strcmp ("main bin spec", data_owner) == 0 && size >= 32)
{
offset = fileoff;
uint32_t version;
if (m_data.GetU32 (&offset, &version, 1) != nullptr && version == 1)
{
uint32_t type = 0;
uuid_t raw_uuid;
memset (raw_uuid, 0, sizeof (uuid_t));
if (m_data.GetU32 (&offset, &type, 1)
&& m_data.GetU64 (&offset, &address, 1)
&& m_data.CopyData (offset, sizeof (uuid_t), raw_uuid) != 0
&& uuid.SetBytes (raw_uuid, sizeof (uuid_t)))
{
return true;
}
}
}
}
offset = cmd_offset + lc.cmdsize;
}
}
return false;
}
lldb::RegisterContextSP
ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
lldb_private::Thread &thread) {
lldb::RegisterContextSP reg_ctx_sp;
ModuleSP module_sp(GetModule());
if (module_sp) {
std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
if (!m_thread_context_offsets_valid)
GetNumThreadContexts();
const FileRangeArray::Entry *thread_context_file_range =
m_thread_context_offsets.GetEntryAtIndex(idx);
if (thread_context_file_range) {
DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
thread_context_file_range->GetByteSize());
switch (m_header.cputype) {
case llvm::MachO::CPU_TYPE_ARM64:
reg_ctx_sp.reset(new RegisterContextDarwin_arm64_Mach(thread, data));
break;
case llvm::MachO::CPU_TYPE_ARM:
reg_ctx_sp.reset(new RegisterContextDarwin_arm_Mach(thread, data));
break;
case llvm::MachO::CPU_TYPE_I386:
reg_ctx_sp.reset(new RegisterContextDarwin_i386_Mach(thread, data));
break;
case llvm::MachO::CPU_TYPE_X86_64:
reg_ctx_sp.reset(new RegisterContextDarwin_x86_64_Mach(thread, data));
break;
}
}
}
return reg_ctx_sp;
}
ObjectFile::Type ObjectFileMachO::CalculateType() {
switch (m_header.filetype) {
case MH_OBJECT: // 0x1u
if (GetAddressByteSize() == 4) {
// 32 bit kexts are just object files, but they do have a valid
// UUID load command.
UUID uuid;
if (GetUUID(&uuid)) {
// this checking for the UUID load command is not enough we could
// eventually look for the symbol named "OSKextGetCurrentIdentifier" as
// this is required of kexts
if (m_strata == eStrataInvalid)
m_strata = eStrataKernel;
return eTypeSharedLibrary;
}
}
return eTypeObjectFile;
case MH_EXECUTE:
return eTypeExecutable; // 0x2u
case MH_FVMLIB:
return eTypeSharedLibrary; // 0x3u
case MH_CORE:
return eTypeCoreFile; // 0x4u
case MH_PRELOAD:
return eTypeSharedLibrary; // 0x5u
case MH_DYLIB:
return eTypeSharedLibrary; // 0x6u
case MH_DYLINKER:
return eTypeDynamicLinker; // 0x7u
case MH_BUNDLE:
return eTypeSharedLibrary; // 0x8u
case MH_DYLIB_STUB:
return eTypeStubLibrary; // 0x9u
case MH_DSYM:
return eTypeDebugInfo; // 0xAu
case MH_KEXT_BUNDLE:
return eTypeSharedLibrary; // 0xBu
default:
break;
}
return eTypeUnknown;
}
ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
switch (m_header.filetype) {
case MH_OBJECT: // 0x1u
{
// 32 bit kexts are just object files, but they do have a valid
// UUID load command.
UUID uuid;
if (GetUUID(&uuid)) {
// this checking for the UUID load command is not enough we could
// eventually look for the symbol named "OSKextGetCurrentIdentifier" as
// this is required of kexts
if (m_type == eTypeInvalid)
m_type = eTypeSharedLibrary;
return eStrataKernel;
}
}
return eStrataUnknown;
case MH_EXECUTE: // 0x2u
// Check for the MH_DYLDLINK bit in the flags
if (m_header.flags & MH_DYLDLINK) {
return eStrataUser;
} else {
SectionList *section_list = GetSectionList();
if (section_list) {
static ConstString g_kld_section_name("__KLD");
if (section_list->FindSectionByName(g_kld_section_name))
return eStrataKernel;
}
}
return eStrataRawImage;
case MH_FVMLIB:
return eStrataUser; // 0x3u
case MH_CORE:
return eStrataUnknown; // 0x4u
case MH_PRELOAD:
return eStrataRawImage; // 0x5u
case MH_DYLIB:
return eStrataUser; // 0x6u
case MH_DYLINKER:
return eStrataUser; // 0x7u
case MH_BUNDLE:
return eStrataUser; // 0x8u
case MH_DYLIB_STUB:
return eStrataUser; // 0x9u
case MH_DSYM:
return eStrataUnknown; // 0xAu
case MH_KEXT_BUNDLE:
return eStrataKernel; // 0xBu
default:
break;
}
return eStrataUnknown;
}
llvm::VersionTuple ObjectFileMachO::GetVersion() {
ModuleSP module_sp(GetModule());
if (module_sp) {
std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
struct dylib_command load_cmd;
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
uint32_t version_cmd = 0;
uint64_t version = 0;
uint32_t i;
for (i = 0; i < m_header.ncmds; ++i) {
const lldb::offset_t cmd_offset = offset;
if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
break;
if (load_cmd.cmd == LC_ID_DYLIB) {
if (version_cmd == 0) {
version_cmd = load_cmd.cmd;
if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == NULL)
break;
version = load_cmd.dylib.current_version;
}
break; // Break for now unless there is another more complete version
// number load command in the future.
}
offset = cmd_offset + load_cmd.cmdsize;
}
if (version_cmd == LC_ID_DYLIB) {
unsigned major = (version & 0xFFFF0000ull) >> 16;
unsigned minor = (version & 0x0000FF00ull) >> 8;
unsigned subminor = (version & 0x000000FFull);
return llvm::VersionTuple(major, minor, subminor);
}
}
return llvm::VersionTuple();
}
bool ObjectFileMachO::GetArchitecture(ArchSpec &arch) {
ModuleSP module_sp(GetModule());
if (module_sp) {
std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
return GetArchitecture(m_header, m_data,
MachHeaderSizeFromMagic(m_header.magic), arch);
}
return false;
}
void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process, addr_t &base_addr, UUID &uuid) {
uuid.Clear();
base_addr = LLDB_INVALID_ADDRESS;
if (process && process->GetDynamicLoader()) {
DynamicLoader *dl = process->GetDynamicLoader();
LazyBool using_shared_cache;
LazyBool private_shared_cache;
dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache,
private_shared_cache);
}
Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_PROCESS));
if (log)
log->Printf("inferior process shared cache has a UUID of %s, base address 0x%" PRIx64 , uuid.GetAsString().c_str(), base_addr);
}
// From dyld SPI header dyld_process_info.h
typedef void *dyld_process_info;
struct lldb_copy__dyld_process_cache_info {
uuid_t cacheUUID; // UUID of cache used by process
uint64_t cacheBaseAddress; // load address of dyld shared cache
bool noCache; // process is running without a dyld cache
bool privateCache; // process is using a private copy of its dyld cache
};
// #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with llvm
// enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile errors.
// So we need to use the actual underlying types of task_t and kern_return_t
// below.
extern "C" unsigned int /*task_t*/ mach_task_self();
void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) {
uuid.Clear();
base_addr = LLDB_INVALID_ADDRESS;
#if defined(__APPLE__) && \
(defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
uint8_t *(*dyld_get_all_image_infos)(void);
dyld_get_all_image_infos =
(uint8_t * (*)())dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
if (dyld_get_all_image_infos) {
uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
if (dyld_all_image_infos_address) {
uint32_t *version = (uint32_t *)
dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
if (*version >= 13) {
uuid_t *sharedCacheUUID_address = 0;
int wordsize = sizeof(uint8_t *);
if (wordsize == 8) {
sharedCacheUUID_address =
(uuid_t *)((uint8_t *)dyld_all_image_infos_address +
160); // sharedCacheUUID <mach-o/dyld_images.h>
if (*version >= 15)
base_addr = *(uint64_t *) ((uint8_t *) dyld_all_image_infos_address
+ 176); // sharedCacheBaseAddress <mach-o/dyld_images.h>
} else {
sharedCacheUUID_address =
(uuid_t *)((uint8_t *)dyld_all_image_infos_address +
84); // sharedCacheUUID <mach-o/dyld_images.h>
if (*version >= 15) {
base_addr = 0;
base_addr = *(uint32_t *) ((uint8_t *) dyld_all_image_infos_address
+ 100); // sharedCacheBaseAddress <mach-o/dyld_images.h>
}
}
uuid.SetBytes(sharedCacheUUID_address);
}
}
} else {
// Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
dyld_process_info (*dyld_process_info_create)(unsigned int /* task_t */ task, uint64_t timestamp, unsigned int /*kern_return_t*/ *kernelError);
void (*dyld_process_info_get_cache)(void *info, void *cacheInfo);
void (*dyld_process_info_release)(dyld_process_info info);
dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t, unsigned int /*kern_return_t*/ *))
dlsym (RTLD_DEFAULT, "_dyld_process_info_create");
dyld_process_info_get_cache = (void (*)(void *, void *))
dlsym (RTLD_DEFAULT, "_dyld_process_info_get_cache");
dyld_process_info_release = (void (*)(void *))
dlsym (RTLD_DEFAULT, "_dyld_process_info_release");
if (dyld_process_info_create && dyld_process_info_get_cache) {
unsigned int /*kern_return_t */ kern_ret;
dyld_process_info process_info = dyld_process_info_create(::mach_task_self(), 0, &kern_ret);
if (process_info) {
struct lldb_copy__dyld_process_cache_info sc_info;
memset (&sc_info, 0, sizeof (struct lldb_copy__dyld_process_cache_info));
dyld_process_info_get_cache (process_info, &sc_info);
if (sc_info.cacheBaseAddress != 0) {
base_addr = sc_info.cacheBaseAddress;
uuid.SetBytes (sc_info.cacheUUID);
}
dyld_process_info_release (process_info);
}
}
}
Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_PROCESS));
if (log && uuid.IsValid())
log->Printf("lldb's in-memory shared cache has a UUID of %s base address of 0x%" PRIx64, uuid.GetAsString().c_str(), base_addr);
#endif
}
llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() {
if (!m_min_os_version) {
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
for (uint32_t i = 0; i < m_header.ncmds; ++i) {
const lldb::offset_t load_cmd_offset = offset;
version_min_command lc;
if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
break;
if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
if (m_data.GetU32(&offset, &lc.version,
(sizeof(lc) / sizeof(uint32_t)) - 2)) {
const uint32_t xxxx = lc.version >> 16;
const uint32_t yy = (lc.version >> 8) & 0xffu;
const uint32_t zz = lc.version & 0xffu;
if (xxxx) {
m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
break;
}
}
}
offset = load_cmd_offset + lc.cmdsize;
}
if (!m_min_os_version) {
// Set version to an empty value so we don't keep trying to
m_min_os_version = llvm::VersionTuple();
}
}
return *m_min_os_version;
}
uint32_t ObjectFileMachO::GetSDKVersion(uint32_t *versions,
uint32_t num_versions) {
if (m_sdk_versions.empty()) {
lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
bool success = false;
for (uint32_t i = 0; success == false && i < m_header.ncmds; ++i) {
const lldb::offset_t load_cmd_offset = offset;
version_min_command lc;
if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
break;
if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
if (m_data.GetU32(&offset, &lc.version,
(sizeof(lc) / sizeof(uint32_t)) - 2)) {
const uint32_t xxxx = lc.sdk >> 16;
const uint32_t yy = (lc.sdk >> 8) & 0xffu;
const uint32_t zz = lc.sdk & 0xffu;
if (xxxx) {
m_sdk_versions.push_back(xxxx);
m_sdk_versions.push_back(yy);
m_sdk_versions.push_back(zz);
}
success = true;
}
}
offset = load_cmd_offset + lc.cmdsize;
}
if (success == false) {
// Push an invalid value so we don't keep trying to
m_sdk_versions.push_back(UINT32_MAX);
}
}
if (m_sdk_versions.size() > 1 || m_sdk_versions[0] != UINT32_MAX) {
if (versions != NULL && num_versions > 0) {
for (size_t i = 0; i < num_versions; ++i) {
if (i < m_sdk_versions.size())
versions[i] = m_sdk_versions[i];
else
versions[i] = 0;
}
}
return m_sdk_versions.size();
}
// Call the superclasses version that will empty out the data
return ObjectFile::GetSDKVersion(versions, num_versions);
}
bool ObjectFileMachO::GetIsDynamicLinkEditor() {
return m_header.filetype == llvm::MachO::MH_DYLINKER;
}
bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
return m_allow_assembly_emulation_unwind_plans;
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
lldb_private::ConstString ObjectFileMachO::GetPluginName() {
return GetPluginNameStatic();
}
uint32_t ObjectFileMachO::GetPluginVersion() { return 1; }
Section *ObjectFileMachO::GetMachHeaderSection() {
// Find the first address of the mach header which is the first non-zero file
// sized section whose file offset is zero. This is the base file address of
// the mach-o file which can be subtracted from the vmaddr of the other
// segments found in memory and added to the load address
ModuleSP module_sp = GetModule();
if (module_sp) {
SectionList *section_list = GetSectionList();
if (section_list) {
lldb::addr_t mach_base_file_addr = LLDB_INVALID_ADDRESS;
const size_t num_sections = section_list->GetSize();
for (size_t sect_idx = 0; sect_idx < num_sections &&
mach_base_file_addr == LLDB_INVALID_ADDRESS;
++sect_idx) {
Section *section = section_list->GetSectionAtIndex(sect_idx).get();
if (section && section->GetFileSize() > 0 &&
section->GetFileOffset() == 0 &&
section->IsThreadSpecific() == false &&
module_sp.get() == section->GetModule().get()) {
return section;
}
}
}
}
return nullptr;
}
lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
lldb::addr_t mach_header_load_address, const Section *mach_header_section,
const Section *section) {
ModuleSP module_sp = GetModule();
if (module_sp && mach_header_section && section &&
mach_header_load_address != LLDB_INVALID_ADDRESS) {
lldb::addr_t mach_header_file_addr = mach_header_section->GetFileAddress();
if (mach_header_file_addr != LLDB_INVALID_ADDRESS) {
if (section && section->GetFileSize() > 0 &&
section->IsThreadSpecific() == false &&
module_sp.get() == section->GetModule().get()) {
// Ignore __LINKEDIT and __DWARF segments
if (section->GetName() == GetSegmentNameLINKEDIT()) {
// Only map __LINKEDIT if we have an in memory image and this isn't a
// kernel binary like a kext or mach_kernel.
const bool is_memory_image = (bool)m_process_wp.lock();
const Strata strata = GetStrata();
if (is_memory_image == false || strata == eStrataKernel)
return LLDB_INVALID_ADDRESS;
}
return section->GetFileAddress() - mach_header_file_addr +
mach_header_load_address;
}
}
}
return LLDB_INVALID_ADDRESS;
}
bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
bool value_is_offset) {
ModuleSP module_sp = GetModule();
if (module_sp) {
size_t num_loaded_sections = 0;
SectionList *section_list = GetSectionList();
if (section_list) {
const size_t num_sections = section_list->GetSize();
if (value_is_offset) {
// "value" is an offset to apply to each top level segment
for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
// Iterate through the object file sections to find all of the
// sections that size on disk (to avoid __PAGEZERO) and load them
SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
if (section_sp && section_sp->GetFileSize() > 0 &&
section_sp->IsThreadSpecific() == false &&
module_sp.get() == section_sp->GetModule().get()) {
// Ignore __LINKEDIT and __DWARF segments
if (section_sp->GetName() == GetSegmentNameLINKEDIT()) {
// Only map __LINKEDIT if we have an in memory image and this
// isn't a kernel binary like a kext or mach_kernel.
const bool is_memory_image = (bool)m_process_wp.lock();
const Strata strata = GetStrata();
if (is_memory_image == false || strata == eStrataKernel)
continue;
}
if (target.GetSectionLoadList().SetSectionLoadAddress(
section_sp, section_sp->GetFileAddress() + value))
++num_loaded_sections;
}
}
} else {
// "value" is the new base address of the mach_header, adjust each
// section accordingly
Section *mach_header_section = GetMachHeaderSection();
if (mach_header_section) {
for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
lldb::addr_t section_load_addr =
CalculateSectionLoadAddressForMemoryImage(
value, mach_header_section, section_sp.get());
if (section_load_addr != LLDB_INVALID_ADDRESS) {
if (target.GetSectionLoadList().SetSectionLoadAddress(
section_sp, section_load_addr))
++num_loaded_sections;
}
}
}
}
}
return num_loaded_sections > 0;
}
return false;
}
bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
const FileSpec &outfile, Status &error) {
if (process_sp) {
Target &target = process_sp->GetTarget();
const ArchSpec target_arch = target.GetArchitecture();
const llvm::Triple &target_triple = target_arch.GetTriple();
if (target_triple.getVendor() == llvm::Triple::Apple &&
(target_triple.getOS() == llvm::Triple::MacOSX ||
target_triple.getOS() == llvm::Triple::IOS ||
target_triple.getOS() == llvm::Triple::WatchOS ||
target_triple.getOS() == llvm::Triple::TvOS)) {
bool make_core = false;
switch (target_arch.GetMachine()) {
case llvm::Triple::aarch64:
case llvm::Triple::arm:
case llvm::Triple::thumb:
case llvm::Triple::x86:
case llvm::Triple::x86_64:
make_core = true;
break;
default:
error.SetErrorStringWithFormat("unsupported core architecture: %s",
target_triple.str().c_str());
break;
}
if (make_core) {
std::vector<segment_command_64> segment_load_commands;
// uint32_t range_info_idx = 0;
MemoryRegionInfo range_info;
Status range_error = process_sp->GetMemoryRegionInfo(0, range_info);
const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
const ByteOrder byte_order = target_arch.GetByteOrder();
if (range_error.Success()) {
while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) {
const addr_t addr = range_info.GetRange().GetRangeBase();
const addr_t size = range_info.GetRange().GetByteSize();
if (size == 0)
break;
// Calculate correct protections
uint32_t prot = 0;
if (range_info.GetReadable() == MemoryRegionInfo::eYes)
prot |= VM_PROT_READ;
if (range_info.GetWritable() == MemoryRegionInfo::eYes)
prot |= VM_PROT_WRITE;
if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
prot |= VM_PROT_EXECUTE;
// printf ("[%3u] [0x%16.16" PRIx64 " -
// 0x%16.16" PRIx64 ") %c%c%c\n",
// range_info_idx,
// addr,
// size,
// (prot & VM_PROT_READ ) ? 'r' :
// '-',
// (prot & VM_PROT_WRITE ) ? 'w' :
// '-',
// (prot & VM_PROT_EXECUTE) ? 'x' :
// '-');
if (prot != 0) {
uint32_t cmd_type = LC_SEGMENT_64;
uint32_t segment_size = sizeof(segment_command_64);
if (addr_byte_size == 4) {
cmd_type = LC_SEGMENT;
segment_size = sizeof(segment_command);
}
segment_command_64 segment = {
cmd_type, // uint32_t cmd;
segment_size, // uint32_t cmdsize;
{0}, // char segname[16];
addr, // uint64_t vmaddr; // uint32_t for 32-bit Mach-O
size, // uint64_t vmsize; // uint32_t for 32-bit Mach-O
0, // uint64_t fileoff; // uint32_t for 32-bit Mach-O
size, // uint64_t filesize; // uint32_t for 32-bit Mach-O
prot, // uint32_t maxprot;
prot, // uint32_t initprot;
0, // uint32_t nsects;
0}; // uint32_t flags;
segment_load_commands.push_back(segment);
} else {
// No protections and a size of 1 used to be returned from old
// debugservers when we asked about a region that was past the
// last memory region and it indicates the end...
if (size == 1)
break;
}
range_error = process_sp->GetMemoryRegionInfo(
range_info.GetRange().GetRangeEnd(), range_info);
if (range_error.Fail())
break;
}
StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
mach_header_64 mach_header;
if (addr_byte_size == 8) {
mach_header.magic = MH_MAGIC_64;
} else {
mach_header.magic = MH_MAGIC;
}
mach_header.cputype = target_arch.GetMachOCPUType();
mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
mach_header.filetype = MH_CORE;
mach_header.ncmds = segment_load_commands.size();
mach_header.flags = 0;
mach_header.reserved = 0;
ThreadList &thread_list = process_sp->GetThreadList();
const uint32_t num_threads = thread_list.GetSize();
// Make an array of LC_THREAD data items. Each one contains the
// contents of the LC_THREAD load command. The data doesn't contain
// the load command + load command size, we will add the load command
// and load command size as we emit the data.
std::vector<StreamString> LC_THREAD_datas(num_threads);
for (auto &LC_THREAD_data : LC_THREAD_datas) {
LC_THREAD_data.GetFlags().Set(Stream::eBinary);
LC_THREAD_data.SetAddressByteSize(addr_byte_size);
LC_THREAD_data.SetByteOrder(byte_order);
}
for (uint32_t thread_idx = 0; thread_idx < num_threads;
++thread_idx) {
ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
if (thread_sp) {
switch (mach_header.cputype) {
case llvm::MachO::CPU_TYPE_ARM64:
RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
thread_sp.get(), LC_THREAD_datas[thread_idx]);
break;
case llvm::MachO::CPU_TYPE_ARM:
RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
thread_sp.get(), LC_THREAD_datas[thread_idx]);
break;
case llvm::MachO::CPU_TYPE_I386:
RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
thread_sp.get(), LC_THREAD_datas[thread_idx]);
break;
case llvm::MachO::CPU_TYPE_X86_64:
RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
thread_sp.get(), LC_THREAD_datas[thread_idx]);
break;
}
}
}
// The size of the load command is the size of the segments...
if (addr_byte_size == 8) {
mach_header.sizeofcmds = segment_load_commands.size() *
sizeof(struct segment_command_64);
} else {
mach_header.sizeofcmds =
segment_load_commands.size() * sizeof(struct segment_command);
}
// and the size of all LC_THREAD load command
for (const auto &LC_THREAD_data : LC_THREAD_datas) {
++mach_header.ncmds;
mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
}
printf("mach_header: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x "
"0x%8.8x 0x%8.8x\n",
mach_header.magic, mach_header.cputype, mach_header.cpusubtype,
mach_header.filetype, mach_header.ncmds,
mach_header.sizeofcmds, mach_header.flags,
mach_header.reserved);
// Write the mach header
buffer.PutHex32(mach_header.magic);
buffer.PutHex32(mach_header.cputype);
buffer.PutHex32(mach_header.cpusubtype);
buffer.PutHex32(mach_header.filetype);
buffer.PutHex32(mach_header.ncmds);
buffer.PutHex32(mach_header.sizeofcmds);
buffer.PutHex32(mach_header.flags);
if (addr_byte_size == 8) {
buffer.PutHex32(mach_header.reserved);
}
// Skip the mach header and all load commands and align to the next
// 0x1000 byte boundary
addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
if (file_offset & 0x00000fff) {
file_offset += 0x00001000ull;
file_offset &= (~0x00001000ull + 1);
}
for (auto &segment : segment_load_commands) {
segment.fileoff = file_offset;
file_offset += segment.filesize;
}
// Write out all of the LC_THREAD load commands
for (const auto &LC_THREAD_data : LC_THREAD_datas) {
const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
buffer.PutHex32(LC_THREAD);
buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
buffer.Write(LC_THREAD_data.GetString().data(),
LC_THREAD_data_size);
}
// Write out all of the segment load commands
for (const auto &segment : segment_load_commands) {
printf("0x%8.8x 0x%8.8x [0x%16.16" PRIx64 " - 0x%16.16" PRIx64
") [0x%16.16" PRIx64 " 0x%16.16" PRIx64
") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n",
segment.cmd, segment.cmdsize, segment.vmaddr,
segment.vmaddr + segment.vmsize, segment.fileoff,
segment.filesize, segment.maxprot, segment.initprot,
segment.nsects, segment.flags);
buffer.PutHex32(segment.cmd);
buffer.PutHex32(segment.cmdsize);
buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
if (addr_byte_size == 8) {
buffer.PutHex64(segment.vmaddr);
buffer.PutHex64(segment.vmsize);
buffer.PutHex64(segment.fileoff);
buffer.PutHex64(segment.filesize);
} else {
buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
}
buffer.PutHex32(segment.maxprot);
buffer.PutHex32(segment.initprot);
buffer.PutHex32(segment.nsects);
buffer.PutHex32(segment.flags);
}
File core_file;
std::string core_file_path(outfile.GetPath());
error = core_file.Open(core_file_path.c_str(),
File::eOpenOptionWrite |
File::eOpenOptionTruncate |
File::eOpenOptionCanCreate);
if (error.Success()) {
// Read 1 page at a time
uint8_t bytes[0x1000];
// Write the mach header and load commands out to the core file
size_t bytes_written = buffer.GetString().size();
error = core_file.Write(buffer.GetString().data(), bytes_written);
if (error.Success()) {
// Now write the file data for all memory segments in the process
for (const auto &segment : segment_load_commands) {
if (core_file.SeekFromStart(segment.fileoff) == -1) {
error.SetErrorStringWithFormat(
"unable to seek to offset 0x%" PRIx64 " in '%s'",
segment.fileoff, core_file_path.c_str());
break;
}
printf("Saving %" PRId64
" bytes of data for memory region at 0x%" PRIx64 "\n",
segment.vmsize, segment.vmaddr);
addr_t bytes_left = segment.vmsize;
addr_t addr = segment.vmaddr;
Status memory_read_error;
while (bytes_left > 0 && error.Success()) {
const size_t bytes_to_read =
bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
const size_t bytes_read = process_sp->ReadMemory(
addr, bytes, bytes_to_read, memory_read_error);
if (bytes_read == bytes_to_read) {
size_t bytes_written = bytes_read;
error = core_file.Write(bytes, bytes_written);
bytes_left -= bytes_read;
addr += bytes_read;
} else {
// Some pages within regions are not readable, those should
// be zero filled
memset(bytes, 0, bytes_to_read);
size_t bytes_written = bytes_to_read;
error = core_file.Write(bytes, bytes_written);
bytes_left -= bytes_to_read;
addr += bytes_to_read;
}
}
}
}
}
} else {
error.SetErrorString(
"process doesn't support getting memory region info");
}
}
return true; // This is the right plug to handle saving core files for
// this process
}
}
return false;
}