blob: 196fbe2610ea70f7f0880f7bd2b3958517820b42 [file] [log] [blame]
//===- ICF.cpp ------------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// ICF is short for Identical Code Folding. That is a size optimization to
// identify and merge two or more read-only sections (typically functions)
// that happened to have the same contents. It usually reduces output size
// by a few percent.
//
// On Windows, ICF is enabled by default.
//
// See ELF/ICF.cpp for the details about the algortihm.
//
//===----------------------------------------------------------------------===//
#include "Chunks.h"
#include "Error.h"
#include "Symbols.h"
#include "lld/Core/Parallel.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <atomic>
#include <vector>
using namespace llvm;
namespace lld {
namespace coff {
class ICF {
public:
void run(const std::vector<Chunk *> &V);
private:
void segregate(size_t Begin, size_t End, bool Constant);
bool equalsConstant(const SectionChunk *A, const SectionChunk *B);
bool equalsVariable(const SectionChunk *A, const SectionChunk *B);
uint32_t getHash(SectionChunk *C);
bool isEligible(SectionChunk *C);
size_t findBoundary(size_t Begin, size_t End);
void forEachColorRange(size_t Begin, size_t End,
std::function<void(size_t, size_t)> Fn);
void forEachColor(std::function<void(size_t, size_t)> Fn);
std::vector<SectionChunk *> Chunks;
int Cnt = 0;
std::atomic<uint32_t> NextId = {1};
std::atomic<bool> Repeat = {false};
};
// Returns a hash value for S.
uint32_t ICF::getHash(SectionChunk *C) {
return hash_combine(C->getPermissions(),
hash_value(C->SectionName),
C->NumRelocs,
C->getAlign(),
uint32_t(C->Header->SizeOfRawData),
C->Checksum);
}
// Returns true if section S is subject of ICF.
bool ICF::isEligible(SectionChunk *C) {
bool Global = C->Sym && C->Sym->isExternal();
bool Writable = C->getPermissions() & llvm::COFF::IMAGE_SCN_MEM_WRITE;
return C->isCOMDAT() && C->isLive() && Global && !Writable;
}
// Split a range into smaller ranges by recoloring sections
void ICF::segregate(size_t Begin, size_t End, bool Constant) {
while (Begin < End) {
// Divide [Begin, End) into two. Let Mid be the start index of the
// second group.
auto Bound = std::stable_partition(
Chunks.begin() + Begin + 1, Chunks.begin() + End, [&](SectionChunk *S) {
if (Constant)
return equalsConstant(Chunks[Begin], S);
return equalsVariable(Chunks[Begin], S);
});
size_t Mid = Bound - Chunks.begin();
// Split [Begin, End) into [Begin, Mid) and [Mid, End).
uint32_t Id = NextId++;
for (size_t I = Begin; I < Mid; ++I)
Chunks[I]->Color[(Cnt + 1) % 2] = Id;
// If we created a group, we need to iterate the main loop again.
if (Mid != End)
Repeat = true;
Begin = Mid;
}
}
// Compare "non-moving" part of two sections, namely everything
// except relocation targets.
bool ICF::equalsConstant(const SectionChunk *A, const SectionChunk *B) {
if (A->NumRelocs != B->NumRelocs)
return false;
// Compare relocations.
auto Eq = [&](const coff_relocation &R1, const coff_relocation &R2) {
if (R1.Type != R2.Type ||
R1.VirtualAddress != R2.VirtualAddress) {
return false;
}
SymbolBody *B1 = A->File->getSymbolBody(R1.SymbolTableIndex);
SymbolBody *B2 = B->File->getSymbolBody(R2.SymbolTableIndex);
if (B1 == B2)
return true;
if (auto *D1 = dyn_cast<DefinedRegular>(B1))
if (auto *D2 = dyn_cast<DefinedRegular>(B2))
return D1->getValue() == D2->getValue() &&
D1->getChunk()->Color[Cnt % 2] == D2->getChunk()->Color[Cnt % 2];
return false;
};
if (!std::equal(A->Relocs.begin(), A->Relocs.end(), B->Relocs.begin(), Eq))
return false;
// Compare section attributes and contents.
return A->getPermissions() == B->getPermissions() &&
A->SectionName == B->SectionName &&
A->getAlign() == B->getAlign() &&
A->Header->SizeOfRawData == B->Header->SizeOfRawData &&
A->Checksum == B->Checksum &&
A->getContents() == B->getContents();
}
// Compare "moving" part of two sections, namely relocation targets.
bool ICF::equalsVariable(const SectionChunk *A, const SectionChunk *B) {
// Compare relocations.
auto Eq = [&](const coff_relocation &R1, const coff_relocation &R2) {
SymbolBody *B1 = A->File->getSymbolBody(R1.SymbolTableIndex);
SymbolBody *B2 = B->File->getSymbolBody(R2.SymbolTableIndex);
if (B1 == B2)
return true;
if (auto *D1 = dyn_cast<DefinedRegular>(B1))
if (auto *D2 = dyn_cast<DefinedRegular>(B2))
return D1->getChunk()->Color[Cnt % 2] == D2->getChunk()->Color[Cnt % 2];
return false;
};
return std::equal(A->Relocs.begin(), A->Relocs.end(), B->Relocs.begin(), Eq);
}
size_t ICF::findBoundary(size_t Begin, size_t End) {
for (size_t I = Begin + 1; I < End; ++I)
if (Chunks[Begin]->Color[Cnt % 2] != Chunks[I]->Color[Cnt % 2])
return I;
return End;
}
void ICF::forEachColorRange(size_t Begin, size_t End,
std::function<void(size_t, size_t)> Fn) {
if (Begin > 0)
Begin = findBoundary(Begin - 1, End);
while (Begin < End) {
size_t Mid = findBoundary(Begin, Chunks.size());
Fn(Begin, Mid);
Begin = Mid;
}
}
// Call Fn on each color group.
void ICF::forEachColor(std::function<void(size_t, size_t)> Fn) {
// If the number of sections are too small to use threading,
// call Fn sequentially.
if (Chunks.size() < 1024) {
forEachColorRange(0, Chunks.size(), Fn);
return;
}
// Split sections into 256 shards and call Fn in parallel.
size_t NumShards = 256;
size_t Step = Chunks.size() / NumShards;
parallel_for(size_t(0), NumShards, [&](size_t I) {
forEachColorRange(I * Step, (I + 1) * Step, Fn);
});
forEachColorRange(Step * NumShards, Chunks.size(), Fn);
}
// Merge identical COMDAT sections.
// Two sections are considered the same if their section headers,
// contents and relocations are all the same.
void ICF::run(const std::vector<Chunk *> &Vec) {
// Collect only mergeable sections and group by hash value.
for (Chunk *C : Vec) {
auto *SC = dyn_cast<SectionChunk>(C);
if (!SC)
continue;
if (isEligible(SC)) {
// Set MSB to 1 to avoid collisions with non-hash colors.
SC->Color[0] = getHash(SC) | (1 << 31);
Chunks.push_back(SC);
} else {
SC->Color[0] = NextId++;
}
}
if (Chunks.empty())
return;
// From now on, sections in Chunks are ordered so that sections in
// the same group are consecutive in the vector.
std::stable_sort(Chunks.begin(), Chunks.end(),
[](SectionChunk *A, SectionChunk *B) {
return A->Color[0] < B->Color[0];
});
// Compare static contents and assign unique IDs for each static content.
forEachColor([&](size_t Begin, size_t End) { segregate(Begin, End, true); });
++Cnt;
// Split groups by comparing relocations until convergence is obtained.
do {
Repeat = false;
forEachColor(
[&](size_t Begin, size_t End) { segregate(Begin, End, false); });
++Cnt;
} while (Repeat);
if (Config->Verbose)
outs() << "\nICF needed " << Cnt << " iterations\n";
// Merge sections in the same colors.
forEachColor([&](size_t Begin, size_t End) {
if (End - Begin == 1)
return;
if (Config->Verbose)
outs() << "Selected " << Chunks[Begin]->getDebugName() << "\n";
for (size_t I = Begin + 1; I < End; ++I) {
if (Config->Verbose)
outs() << " Removed " << Chunks[I]->getDebugName() << "\n";
Chunks[Begin]->replace(Chunks[I]);
}
});
}
// Entry point to ICF.
void doICF(const std::vector<Chunk *> &Chunks) { ICF().run(Chunks); }
} // namespace coff
} // namespace lld