| //===- Chunks.cpp ---------------------------------------------------------===// |
| // |
| // The LLVM Linker |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Chunks.h" |
| #include "InputFiles.h" |
| #include "Symbols.h" |
| #include "Writer.h" |
| #include "SymbolTable.h" |
| #include "lld/Common/ErrorHandler.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/BinaryFormat/COFF.h" |
| #include "llvm/Object/COFF.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| |
| using namespace llvm; |
| using namespace llvm::object; |
| using namespace llvm::support::endian; |
| using namespace llvm::COFF; |
| using llvm::support::ulittle32_t; |
| |
| namespace lld { |
| namespace coff { |
| |
| SectionChunk::SectionChunk(ObjFile *F, const coff_section *H) |
| : Chunk(SectionKind), Repl(this), Header(H), File(F), |
| Relocs(File->getCOFFObj()->getRelocations(Header)) { |
| // Initialize SectionName. |
| File->getCOFFObj()->getSectionName(Header, SectionName); |
| |
| Alignment = Header->getAlignment(); |
| |
| // If linker GC is disabled, every chunk starts out alive. If linker GC is |
| // enabled, treat non-comdat sections as roots. Generally optimized object |
| // files will be built with -ffunction-sections or /Gy, so most things worth |
| // stripping will be in a comdat. |
| Live = !Config->DoGC || !isCOMDAT(); |
| } |
| |
| // Initialize the RelocTargets vector, to allow redirecting certain relocations |
| // to a thunk instead of the actual symbol the relocation's symbol table index |
| // indicates. |
| void SectionChunk::readRelocTargets() { |
| assert(RelocTargets.empty()); |
| RelocTargets.reserve(Relocs.size()); |
| for (const coff_relocation &Rel : Relocs) |
| RelocTargets.push_back(File->getSymbol(Rel.SymbolTableIndex)); |
| } |
| |
| // Reset RelocTargets to their original targets before thunks were added. |
| void SectionChunk::resetRelocTargets() { |
| for (size_t I = 0, E = Relocs.size(); I < E; ++I) |
| RelocTargets[I] = File->getSymbol(Relocs[I].SymbolTableIndex); |
| } |
| |
| static void add16(uint8_t *P, int16_t V) { write16le(P, read16le(P) + V); } |
| static void add32(uint8_t *P, int32_t V) { write32le(P, read32le(P) + V); } |
| static void add64(uint8_t *P, int64_t V) { write64le(P, read64le(P) + V); } |
| static void or16(uint8_t *P, uint16_t V) { write16le(P, read16le(P) | V); } |
| static void or32(uint8_t *P, uint32_t V) { write32le(P, read32le(P) | V); } |
| |
| // Verify that given sections are appropriate targets for SECREL |
| // relocations. This check is relaxed because unfortunately debug |
| // sections have section-relative relocations against absolute symbols. |
| static bool checkSecRel(const SectionChunk *Sec, OutputSection *OS) { |
| if (OS) |
| return true; |
| if (Sec->isCodeView()) |
| return false; |
| error("SECREL relocation cannot be applied to absolute symbols"); |
| return false; |
| } |
| |
| static void applySecRel(const SectionChunk *Sec, uint8_t *Off, |
| OutputSection *OS, uint64_t S) { |
| if (!checkSecRel(Sec, OS)) |
| return; |
| uint64_t SecRel = S - OS->getRVA(); |
| if (SecRel > UINT32_MAX) { |
| error("overflow in SECREL relocation in section: " + Sec->getSectionName()); |
| return; |
| } |
| add32(Off, SecRel); |
| } |
| |
| static void applySecIdx(uint8_t *Off, OutputSection *OS) { |
| // Absolute symbol doesn't have section index, but section index relocation |
| // against absolute symbol should be resolved to one plus the last output |
| // section index. This is required for compatibility with MSVC. |
| if (OS) |
| add16(Off, OS->SectionIndex); |
| else |
| add16(Off, DefinedAbsolute::NumOutputSections + 1); |
| } |
| |
| void SectionChunk::applyRelX64(uint8_t *Off, uint16_t Type, OutputSection *OS, |
| uint64_t S, uint64_t P) const { |
| switch (Type) { |
| case IMAGE_REL_AMD64_ADDR32: add32(Off, S + Config->ImageBase); break; |
| case IMAGE_REL_AMD64_ADDR64: add64(Off, S + Config->ImageBase); break; |
| case IMAGE_REL_AMD64_ADDR32NB: add32(Off, S); break; |
| case IMAGE_REL_AMD64_REL32: add32(Off, S - P - 4); break; |
| case IMAGE_REL_AMD64_REL32_1: add32(Off, S - P - 5); break; |
| case IMAGE_REL_AMD64_REL32_2: add32(Off, S - P - 6); break; |
| case IMAGE_REL_AMD64_REL32_3: add32(Off, S - P - 7); break; |
| case IMAGE_REL_AMD64_REL32_4: add32(Off, S - P - 8); break; |
| case IMAGE_REL_AMD64_REL32_5: add32(Off, S - P - 9); break; |
| case IMAGE_REL_AMD64_SECTION: applySecIdx(Off, OS); break; |
| case IMAGE_REL_AMD64_SECREL: applySecRel(this, Off, OS, S); break; |
| default: |
| error("unsupported relocation type 0x" + Twine::utohexstr(Type) + " in " + |
| toString(File)); |
| } |
| } |
| |
| void SectionChunk::applyRelX86(uint8_t *Off, uint16_t Type, OutputSection *OS, |
| uint64_t S, uint64_t P) const { |
| switch (Type) { |
| case IMAGE_REL_I386_ABSOLUTE: break; |
| case IMAGE_REL_I386_DIR32: add32(Off, S + Config->ImageBase); break; |
| case IMAGE_REL_I386_DIR32NB: add32(Off, S); break; |
| case IMAGE_REL_I386_REL32: add32(Off, S - P - 4); break; |
| case IMAGE_REL_I386_SECTION: applySecIdx(Off, OS); break; |
| case IMAGE_REL_I386_SECREL: applySecRel(this, Off, OS, S); break; |
| default: |
| error("unsupported relocation type 0x" + Twine::utohexstr(Type) + " in " + |
| toString(File)); |
| } |
| } |
| |
| static void applyMOV(uint8_t *Off, uint16_t V) { |
| write16le(Off, (read16le(Off) & 0xfbf0) | ((V & 0x800) >> 1) | ((V >> 12) & 0xf)); |
| write16le(Off + 2, (read16le(Off + 2) & 0x8f00) | ((V & 0x700) << 4) | (V & 0xff)); |
| } |
| |
| static uint16_t readMOV(uint8_t *Off, bool MOVT) { |
| uint16_t Op1 = read16le(Off); |
| if ((Op1 & 0xfbf0) != (MOVT ? 0xf2c0 : 0xf240)) |
| error("unexpected instruction in " + Twine(MOVT ? "MOVT" : "MOVW") + |
| " instruction in MOV32T relocation"); |
| uint16_t Op2 = read16le(Off + 2); |
| if ((Op2 & 0x8000) != 0) |
| error("unexpected instruction in " + Twine(MOVT ? "MOVT" : "MOVW") + |
| " instruction in MOV32T relocation"); |
| return (Op2 & 0x00ff) | ((Op2 >> 4) & 0x0700) | ((Op1 << 1) & 0x0800) | |
| ((Op1 & 0x000f) << 12); |
| } |
| |
| void applyMOV32T(uint8_t *Off, uint32_t V) { |
| uint16_t ImmW = readMOV(Off, false); // read MOVW operand |
| uint16_t ImmT = readMOV(Off + 4, true); // read MOVT operand |
| uint32_t Imm = ImmW | (ImmT << 16); |
| V += Imm; // add the immediate offset |
| applyMOV(Off, V); // set MOVW operand |
| applyMOV(Off + 4, V >> 16); // set MOVT operand |
| } |
| |
| static void applyBranch20T(uint8_t *Off, int32_t V) { |
| if (!isInt<21>(V)) |
| error("relocation out of range"); |
| uint32_t S = V < 0 ? 1 : 0; |
| uint32_t J1 = (V >> 19) & 1; |
| uint32_t J2 = (V >> 18) & 1; |
| or16(Off, (S << 10) | ((V >> 12) & 0x3f)); |
| or16(Off + 2, (J1 << 13) | (J2 << 11) | ((V >> 1) & 0x7ff)); |
| } |
| |
| void applyBranch24T(uint8_t *Off, int32_t V) { |
| if (!isInt<25>(V)) |
| error("relocation out of range"); |
| uint32_t S = V < 0 ? 1 : 0; |
| uint32_t J1 = ((~V >> 23) & 1) ^ S; |
| uint32_t J2 = ((~V >> 22) & 1) ^ S; |
| or16(Off, (S << 10) | ((V >> 12) & 0x3ff)); |
| // Clear out the J1 and J2 bits which may be set. |
| write16le(Off + 2, (read16le(Off + 2) & 0xd000) | (J1 << 13) | (J2 << 11) | ((V >> 1) & 0x7ff)); |
| } |
| |
| void SectionChunk::applyRelARM(uint8_t *Off, uint16_t Type, OutputSection *OS, |
| uint64_t S, uint64_t P) const { |
| // Pointer to thumb code must have the LSB set. |
| uint64_t SX = S; |
| if (OS && (OS->Header.Characteristics & IMAGE_SCN_MEM_EXECUTE)) |
| SX |= 1; |
| switch (Type) { |
| case IMAGE_REL_ARM_ADDR32: add32(Off, SX + Config->ImageBase); break; |
| case IMAGE_REL_ARM_ADDR32NB: add32(Off, SX); break; |
| case IMAGE_REL_ARM_MOV32T: applyMOV32T(Off, SX + Config->ImageBase); break; |
| case IMAGE_REL_ARM_BRANCH20T: applyBranch20T(Off, SX - P - 4); break; |
| case IMAGE_REL_ARM_BRANCH24T: applyBranch24T(Off, SX - P - 4); break; |
| case IMAGE_REL_ARM_BLX23T: applyBranch24T(Off, SX - P - 4); break; |
| case IMAGE_REL_ARM_SECTION: applySecIdx(Off, OS); break; |
| case IMAGE_REL_ARM_SECREL: applySecRel(this, Off, OS, S); break; |
| default: |
| error("unsupported relocation type 0x" + Twine::utohexstr(Type) + " in " + |
| toString(File)); |
| } |
| } |
| |
| // Interpret the existing immediate value as a byte offset to the |
| // target symbol, then update the instruction with the immediate as |
| // the page offset from the current instruction to the target. |
| void applyArm64Addr(uint8_t *Off, uint64_t S, uint64_t P, int Shift) { |
| uint32_t Orig = read32le(Off); |
| uint64_t Imm = ((Orig >> 29) & 0x3) | ((Orig >> 3) & 0x1FFFFC); |
| S += Imm; |
| Imm = (S >> Shift) - (P >> Shift); |
| uint32_t ImmLo = (Imm & 0x3) << 29; |
| uint32_t ImmHi = (Imm & 0x1FFFFC) << 3; |
| uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3); |
| write32le(Off, (Orig & ~Mask) | ImmLo | ImmHi); |
| } |
| |
| // Update the immediate field in a AARCH64 ldr, str, and add instruction. |
| // Optionally limit the range of the written immediate by one or more bits |
| // (RangeLimit). |
| void applyArm64Imm(uint8_t *Off, uint64_t Imm, uint32_t RangeLimit) { |
| uint32_t Orig = read32le(Off); |
| Imm += (Orig >> 10) & 0xFFF; |
| Orig &= ~(0xFFF << 10); |
| write32le(Off, Orig | ((Imm & (0xFFF >> RangeLimit)) << 10)); |
| } |
| |
| // Add the 12 bit page offset to the existing immediate. |
| // Ldr/str instructions store the opcode immediate scaled |
| // by the load/store size (giving a larger range for larger |
| // loads/stores). The immediate is always (both before and after |
| // fixing up the relocation) stored scaled similarly. |
| // Even if larger loads/stores have a larger range, limit the |
| // effective offset to 12 bit, since it is intended to be a |
| // page offset. |
| static void applyArm64Ldr(uint8_t *Off, uint64_t Imm) { |
| uint32_t Orig = read32le(Off); |
| uint32_t Size = Orig >> 30; |
| // 0x04000000 indicates SIMD/FP registers |
| // 0x00800000 indicates 128 bit |
| if ((Orig & 0x4800000) == 0x4800000) |
| Size += 4; |
| if ((Imm & ((1 << Size) - 1)) != 0) |
| error("misaligned ldr/str offset"); |
| applyArm64Imm(Off, Imm >> Size, Size); |
| } |
| |
| static void applySecRelLow12A(const SectionChunk *Sec, uint8_t *Off, |
| OutputSection *OS, uint64_t S) { |
| if (checkSecRel(Sec, OS)) |
| applyArm64Imm(Off, (S - OS->getRVA()) & 0xfff, 0); |
| } |
| |
| static void applySecRelHigh12A(const SectionChunk *Sec, uint8_t *Off, |
| OutputSection *OS, uint64_t S) { |
| if (!checkSecRel(Sec, OS)) |
| return; |
| uint64_t SecRel = (S - OS->getRVA()) >> 12; |
| if (0xfff < SecRel) { |
| error("overflow in SECREL_HIGH12A relocation in section: " + |
| Sec->getSectionName()); |
| return; |
| } |
| applyArm64Imm(Off, SecRel & 0xfff, 0); |
| } |
| |
| static void applySecRelLdr(const SectionChunk *Sec, uint8_t *Off, |
| OutputSection *OS, uint64_t S) { |
| if (checkSecRel(Sec, OS)) |
| applyArm64Ldr(Off, (S - OS->getRVA()) & 0xfff); |
| } |
| |
| void applyArm64Branch26(uint8_t *Off, int64_t V) { |
| if (!isInt<28>(V)) |
| error("relocation out of range"); |
| or32(Off, (V & 0x0FFFFFFC) >> 2); |
| } |
| |
| static void applyArm64Branch19(uint8_t *Off, int64_t V) { |
| if (!isInt<21>(V)) |
| error("relocation out of range"); |
| or32(Off, (V & 0x001FFFFC) << 3); |
| } |
| |
| static void applyArm64Branch14(uint8_t *Off, int64_t V) { |
| if (!isInt<16>(V)) |
| error("relocation out of range"); |
| or32(Off, (V & 0x0000FFFC) << 3); |
| } |
| |
| void SectionChunk::applyRelARM64(uint8_t *Off, uint16_t Type, OutputSection *OS, |
| uint64_t S, uint64_t P) const { |
| switch (Type) { |
| case IMAGE_REL_ARM64_PAGEBASE_REL21: applyArm64Addr(Off, S, P, 12); break; |
| case IMAGE_REL_ARM64_REL21: applyArm64Addr(Off, S, P, 0); break; |
| case IMAGE_REL_ARM64_PAGEOFFSET_12A: applyArm64Imm(Off, S & 0xfff, 0); break; |
| case IMAGE_REL_ARM64_PAGEOFFSET_12L: applyArm64Ldr(Off, S & 0xfff); break; |
| case IMAGE_REL_ARM64_BRANCH26: applyArm64Branch26(Off, S - P); break; |
| case IMAGE_REL_ARM64_BRANCH19: applyArm64Branch19(Off, S - P); break; |
| case IMAGE_REL_ARM64_BRANCH14: applyArm64Branch14(Off, S - P); break; |
| case IMAGE_REL_ARM64_ADDR32: add32(Off, S + Config->ImageBase); break; |
| case IMAGE_REL_ARM64_ADDR32NB: add32(Off, S); break; |
| case IMAGE_REL_ARM64_ADDR64: add64(Off, S + Config->ImageBase); break; |
| case IMAGE_REL_ARM64_SECREL: applySecRel(this, Off, OS, S); break; |
| case IMAGE_REL_ARM64_SECREL_LOW12A: applySecRelLow12A(this, Off, OS, S); break; |
| case IMAGE_REL_ARM64_SECREL_HIGH12A: applySecRelHigh12A(this, Off, OS, S); break; |
| case IMAGE_REL_ARM64_SECREL_LOW12L: applySecRelLdr(this, Off, OS, S); break; |
| case IMAGE_REL_ARM64_SECTION: applySecIdx(Off, OS); break; |
| default: |
| error("unsupported relocation type 0x" + Twine::utohexstr(Type) + " in " + |
| toString(File)); |
| } |
| } |
| |
| static void maybeReportRelocationToDiscarded(const SectionChunk *FromChunk, |
| Defined *Sym, |
| const coff_relocation &Rel) { |
| // Don't report these errors when the relocation comes from a debug info |
| // section or in mingw mode. MinGW mode object files (built by GCC) can |
| // have leftover sections with relocations against discarded comdat |
| // sections. Such sections are left as is, with relocations untouched. |
| if (FromChunk->isCodeView() || FromChunk->isDWARF() || Config->MinGW) |
| return; |
| |
| // Get the name of the symbol. If it's null, it was discarded early, so we |
| // have to go back to the object file. |
| ObjFile *File = FromChunk->File; |
| StringRef Name; |
| if (Sym) { |
| Name = Sym->getName(); |
| } else { |
| COFFSymbolRef COFFSym = |
| check(File->getCOFFObj()->getSymbol(Rel.SymbolTableIndex)); |
| File->getCOFFObj()->getSymbolName(COFFSym, Name); |
| } |
| |
| error("relocation against symbol in discarded section: " + Name + |
| getSymbolLocations(File, Rel.SymbolTableIndex)); |
| } |
| |
| void SectionChunk::writeTo(uint8_t *Buf) const { |
| if (!hasData()) |
| return; |
| // Copy section contents from source object file to output file. |
| ArrayRef<uint8_t> A = getContents(); |
| if (!A.empty()) |
| memcpy(Buf + OutputSectionOff, A.data(), A.size()); |
| |
| // Apply relocations. |
| size_t InputSize = getSize(); |
| for (size_t I = 0, E = Relocs.size(); I < E; I++) { |
| const coff_relocation &Rel = Relocs[I]; |
| |
| // Check for an invalid relocation offset. This check isn't perfect, because |
| // we don't have the relocation size, which is only known after checking the |
| // machine and relocation type. As a result, a relocation may overwrite the |
| // beginning of the following input section. |
| if (Rel.VirtualAddress >= InputSize) { |
| error("relocation points beyond the end of its parent section"); |
| continue; |
| } |
| |
| uint8_t *Off = Buf + OutputSectionOff + Rel.VirtualAddress; |
| |
| // Use the potentially remapped Symbol instead of the one that the |
| // relocation points to. |
| auto *Sym = dyn_cast_or_null<Defined>(RelocTargets[I]); |
| |
| // Get the output section of the symbol for this relocation. The output |
| // section is needed to compute SECREL and SECTION relocations used in debug |
| // info. |
| Chunk *C = Sym ? Sym->getChunk() : nullptr; |
| OutputSection *OS = C ? C->getOutputSection() : nullptr; |
| |
| // Skip the relocation if it refers to a discarded section, and diagnose it |
| // as an error if appropriate. If a symbol was discarded early, it may be |
| // null. If it was discarded late, the output section will be null, unless |
| // it was an absolute or synthetic symbol. |
| if (!Sym || |
| (!OS && !isa<DefinedAbsolute>(Sym) && !isa<DefinedSynthetic>(Sym))) { |
| maybeReportRelocationToDiscarded(this, Sym, Rel); |
| continue; |
| } |
| |
| uint64_t S = Sym->getRVA(); |
| |
| // Compute the RVA of the relocation for relative relocations. |
| uint64_t P = RVA + Rel.VirtualAddress; |
| switch (Config->Machine) { |
| case AMD64: |
| applyRelX64(Off, Rel.Type, OS, S, P); |
| break; |
| case I386: |
| applyRelX86(Off, Rel.Type, OS, S, P); |
| break; |
| case ARMNT: |
| applyRelARM(Off, Rel.Type, OS, S, P); |
| break; |
| case ARM64: |
| applyRelARM64(Off, Rel.Type, OS, S, P); |
| break; |
| default: |
| llvm_unreachable("unknown machine type"); |
| } |
| } |
| } |
| |
| void SectionChunk::addAssociative(SectionChunk *Child) { |
| AssocChildren.push_back(Child); |
| } |
| |
| static uint8_t getBaserelType(const coff_relocation &Rel) { |
| switch (Config->Machine) { |
| case AMD64: |
| if (Rel.Type == IMAGE_REL_AMD64_ADDR64) |
| return IMAGE_REL_BASED_DIR64; |
| return IMAGE_REL_BASED_ABSOLUTE; |
| case I386: |
| if (Rel.Type == IMAGE_REL_I386_DIR32) |
| return IMAGE_REL_BASED_HIGHLOW; |
| return IMAGE_REL_BASED_ABSOLUTE; |
| case ARMNT: |
| if (Rel.Type == IMAGE_REL_ARM_ADDR32) |
| return IMAGE_REL_BASED_HIGHLOW; |
| if (Rel.Type == IMAGE_REL_ARM_MOV32T) |
| return IMAGE_REL_BASED_ARM_MOV32T; |
| return IMAGE_REL_BASED_ABSOLUTE; |
| case ARM64: |
| if (Rel.Type == IMAGE_REL_ARM64_ADDR64) |
| return IMAGE_REL_BASED_DIR64; |
| return IMAGE_REL_BASED_ABSOLUTE; |
| default: |
| llvm_unreachable("unknown machine type"); |
| } |
| } |
| |
| // Windows-specific. |
| // Collect all locations that contain absolute addresses, which need to be |
| // fixed by the loader if load-time relocation is needed. |
| // Only called when base relocation is enabled. |
| void SectionChunk::getBaserels(std::vector<Baserel> *Res) { |
| for (size_t I = 0, E = Relocs.size(); I < E; I++) { |
| const coff_relocation &Rel = Relocs[I]; |
| uint8_t Ty = getBaserelType(Rel); |
| if (Ty == IMAGE_REL_BASED_ABSOLUTE) |
| continue; |
| // Use the potentially remapped Symbol instead of the one that the |
| // relocation points to. |
| Symbol *Target = RelocTargets[I]; |
| if (!Target || isa<DefinedAbsolute>(Target)) |
| continue; |
| Res->emplace_back(RVA + Rel.VirtualAddress, Ty); |
| } |
| } |
| |
| // MinGW specific. |
| // Check whether a static relocation of type Type can be deferred and |
| // handled at runtime as a pseudo relocation (for references to a module |
| // local variable, which turned out to actually need to be imported from |
| // another DLL) This returns the size the relocation is supposed to update, |
| // in bits, or 0 if the relocation cannot be handled as a runtime pseudo |
| // relocation. |
| static int getRuntimePseudoRelocSize(uint16_t Type) { |
| // Relocations that either contain an absolute address, or a plain |
| // relative offset, since the runtime pseudo reloc implementation |
| // adds 8/16/32/64 bit values to a memory address. |
| // |
| // Given a pseudo relocation entry, |
| // |
| // typedef struct { |
| // DWORD sym; |
| // DWORD target; |
| // DWORD flags; |
| // } runtime_pseudo_reloc_item_v2; |
| // |
| // the runtime relocation performs this adjustment: |
| // *(base + .target) += *(base + .sym) - (base + .sym) |
| // |
| // This works for both absolute addresses (IMAGE_REL_*_ADDR32/64, |
| // IMAGE_REL_I386_DIR32, where the memory location initially contains |
| // the address of the IAT slot, and for relative addresses (IMAGE_REL*_REL32), |
| // where the memory location originally contains the relative offset to the |
| // IAT slot. |
| // |
| // This requires the target address to be writable, either directly out of |
| // the image, or temporarily changed at runtime with VirtualProtect. |
| // Since this only operates on direct address values, it doesn't work for |
| // ARM/ARM64 relocations, other than the plain ADDR32/ADDR64 relocations. |
| switch (Config->Machine) { |
| case AMD64: |
| switch (Type) { |
| case IMAGE_REL_AMD64_ADDR64: |
| return 64; |
| case IMAGE_REL_AMD64_ADDR32: |
| case IMAGE_REL_AMD64_REL32: |
| case IMAGE_REL_AMD64_REL32_1: |
| case IMAGE_REL_AMD64_REL32_2: |
| case IMAGE_REL_AMD64_REL32_3: |
| case IMAGE_REL_AMD64_REL32_4: |
| case IMAGE_REL_AMD64_REL32_5: |
| return 32; |
| default: |
| return 0; |
| } |
| case I386: |
| switch (Type) { |
| case IMAGE_REL_I386_DIR32: |
| case IMAGE_REL_I386_REL32: |
| return 32; |
| default: |
| return 0; |
| } |
| case ARMNT: |
| switch (Type) { |
| case IMAGE_REL_ARM_ADDR32: |
| return 32; |
| default: |
| return 0; |
| } |
| case ARM64: |
| switch (Type) { |
| case IMAGE_REL_ARM64_ADDR64: |
| return 64; |
| case IMAGE_REL_ARM64_ADDR32: |
| return 32; |
| default: |
| return 0; |
| } |
| default: |
| llvm_unreachable("unknown machine type"); |
| } |
| } |
| |
| // MinGW specific. |
| // Append information to the provided vector about all relocations that |
| // need to be handled at runtime as runtime pseudo relocations (references |
| // to a module local variable, which turned out to actually need to be |
| // imported from another DLL). |
| void SectionChunk::getRuntimePseudoRelocs( |
| std::vector<RuntimePseudoReloc> &Res) { |
| for (const coff_relocation &Rel : Relocs) { |
| auto *Target = |
| dyn_cast_or_null<Defined>(File->getSymbol(Rel.SymbolTableIndex)); |
| if (!Target || !Target->IsRuntimePseudoReloc) |
| continue; |
| int SizeInBits = getRuntimePseudoRelocSize(Rel.Type); |
| if (SizeInBits == 0) { |
| error("unable to automatically import from " + Target->getName() + |
| " with relocation type " + |
| File->getCOFFObj()->getRelocationTypeName(Rel.Type) + " in " + |
| toString(File)); |
| continue; |
| } |
| // SizeInBits is used to initialize the Flags field; currently no |
| // other flags are defined. |
| Res.emplace_back( |
| RuntimePseudoReloc(Target, this, Rel.VirtualAddress, SizeInBits)); |
| } |
| } |
| |
| bool SectionChunk::hasData() const { |
| return !(Header->Characteristics & IMAGE_SCN_CNT_UNINITIALIZED_DATA); |
| } |
| |
| uint32_t SectionChunk::getOutputCharacteristics() const { |
| return Header->Characteristics & (PermMask | TypeMask); |
| } |
| |
| bool SectionChunk::isCOMDAT() const { |
| return Header->Characteristics & IMAGE_SCN_LNK_COMDAT; |
| } |
| |
| void SectionChunk::printDiscardedMessage() const { |
| // Removed by dead-stripping. If it's removed by ICF, ICF already |
| // printed out the name, so don't repeat that here. |
| if (Sym && this == Repl) |
| message("Discarded " + Sym->getName()); |
| } |
| |
| StringRef SectionChunk::getDebugName() { |
| if (Sym) |
| return Sym->getName(); |
| return ""; |
| } |
| |
| ArrayRef<uint8_t> SectionChunk::getContents() const { |
| ArrayRef<uint8_t> A; |
| File->getCOFFObj()->getSectionContents(Header, A); |
| return A; |
| } |
| |
| void SectionChunk::replace(SectionChunk *Other) { |
| Alignment = std::max(Alignment, Other->Alignment); |
| Other->Repl = Repl; |
| Other->Live = false; |
| } |
| |
| uint32_t SectionChunk::getSectionNumber() const { |
| DataRefImpl R; |
| R.p = reinterpret_cast<uintptr_t>(Header); |
| SectionRef S(R, File->getCOFFObj()); |
| return S.getIndex() + 1; |
| } |
| |
| CommonChunk::CommonChunk(const COFFSymbolRef S) : Sym(S) { |
| // Common symbols are aligned on natural boundaries up to 32 bytes. |
| // This is what MSVC link.exe does. |
| Alignment = std::min(uint64_t(32), PowerOf2Ceil(Sym.getValue())); |
| } |
| |
| uint32_t CommonChunk::getOutputCharacteristics() const { |
| return IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_READ | |
| IMAGE_SCN_MEM_WRITE; |
| } |
| |
| void StringChunk::writeTo(uint8_t *Buf) const { |
| memcpy(Buf + OutputSectionOff, Str.data(), Str.size()); |
| Buf[OutputSectionOff + Str.size()] = '\0'; |
| } |
| |
| ImportThunkChunkX64::ImportThunkChunkX64(Defined *S) : ImpSymbol(S) { |
| // Intel Optimization Manual says that all branch targets |
| // should be 16-byte aligned. MSVC linker does this too. |
| Alignment = 16; |
| } |
| |
| void ImportThunkChunkX64::writeTo(uint8_t *Buf) const { |
| memcpy(Buf + OutputSectionOff, ImportThunkX86, sizeof(ImportThunkX86)); |
| // The first two bytes is a JMP instruction. Fill its operand. |
| write32le(Buf + OutputSectionOff + 2, ImpSymbol->getRVA() - RVA - getSize()); |
| } |
| |
| void ImportThunkChunkX86::getBaserels(std::vector<Baserel> *Res) { |
| Res->emplace_back(getRVA() + 2); |
| } |
| |
| void ImportThunkChunkX86::writeTo(uint8_t *Buf) const { |
| memcpy(Buf + OutputSectionOff, ImportThunkX86, sizeof(ImportThunkX86)); |
| // The first two bytes is a JMP instruction. Fill its operand. |
| write32le(Buf + OutputSectionOff + 2, |
| ImpSymbol->getRVA() + Config->ImageBase); |
| } |
| |
| void ImportThunkChunkARM::getBaserels(std::vector<Baserel> *Res) { |
| Res->emplace_back(getRVA(), IMAGE_REL_BASED_ARM_MOV32T); |
| } |
| |
| void ImportThunkChunkARM::writeTo(uint8_t *Buf) const { |
| memcpy(Buf + OutputSectionOff, ImportThunkARM, sizeof(ImportThunkARM)); |
| // Fix mov.w and mov.t operands. |
| applyMOV32T(Buf + OutputSectionOff, ImpSymbol->getRVA() + Config->ImageBase); |
| } |
| |
| void ImportThunkChunkARM64::writeTo(uint8_t *Buf) const { |
| int64_t Off = ImpSymbol->getRVA() & 0xfff; |
| memcpy(Buf + OutputSectionOff, ImportThunkARM64, sizeof(ImportThunkARM64)); |
| applyArm64Addr(Buf + OutputSectionOff, ImpSymbol->getRVA(), RVA, 12); |
| applyArm64Ldr(Buf + OutputSectionOff + 4, Off); |
| } |
| |
| // A Thumb2, PIC, non-interworking range extension thunk. |
| const uint8_t ArmThunk[] = { |
| 0x40, 0xf2, 0x00, 0x0c, // P: movw ip,:lower16:S - (P + (L1-P) + 4) |
| 0xc0, 0xf2, 0x00, 0x0c, // movt ip,:upper16:S - (P + (L1-P) + 4) |
| 0xe7, 0x44, // L1: add pc, ip |
| }; |
| |
| size_t RangeExtensionThunkARM::getSize() const { |
| assert(Config->Machine == ARMNT); |
| return sizeof(ArmThunk); |
| } |
| |
| void RangeExtensionThunkARM::writeTo(uint8_t *Buf) const { |
| assert(Config->Machine == ARMNT); |
| uint64_t Offset = Target->getRVA() - RVA - 12; |
| memcpy(Buf + OutputSectionOff, ArmThunk, sizeof(ArmThunk)); |
| applyMOV32T(Buf + OutputSectionOff, uint32_t(Offset)); |
| } |
| |
| // A position independent ARM64 adrp+add thunk, with a maximum range of |
| // +/- 4 GB, which is enough for any PE-COFF. |
| const uint8_t Arm64Thunk[] = { |
| 0x10, 0x00, 0x00, 0x90, // adrp x16, Dest |
| 0x10, 0x02, 0x00, 0x91, // add x16, x16, :lo12:Dest |
| 0x00, 0x02, 0x1f, 0xd6, // br x16 |
| }; |
| |
| size_t RangeExtensionThunkARM64::getSize() const { |
| assert(Config->Machine == ARM64); |
| return sizeof(Arm64Thunk); |
| } |
| |
| void RangeExtensionThunkARM64::writeTo(uint8_t *Buf) const { |
| assert(Config->Machine == ARM64); |
| memcpy(Buf + OutputSectionOff, Arm64Thunk, sizeof(Arm64Thunk)); |
| applyArm64Addr(Buf + OutputSectionOff + 0, Target->getRVA(), RVA, 12); |
| applyArm64Imm(Buf + OutputSectionOff + 4, Target->getRVA() & 0xfff, 0); |
| } |
| |
| void LocalImportChunk::getBaserels(std::vector<Baserel> *Res) { |
| Res->emplace_back(getRVA()); |
| } |
| |
| size_t LocalImportChunk::getSize() const { return Config->Wordsize; } |
| |
| void LocalImportChunk::writeTo(uint8_t *Buf) const { |
| if (Config->is64()) { |
| write64le(Buf + OutputSectionOff, Sym->getRVA() + Config->ImageBase); |
| } else { |
| write32le(Buf + OutputSectionOff, Sym->getRVA() + Config->ImageBase); |
| } |
| } |
| |
| void RVATableChunk::writeTo(uint8_t *Buf) const { |
| ulittle32_t *Begin = reinterpret_cast<ulittle32_t *>(Buf + OutputSectionOff); |
| size_t Cnt = 0; |
| for (const ChunkAndOffset &CO : Syms) |
| Begin[Cnt++] = CO.InputChunk->getRVA() + CO.Offset; |
| std::sort(Begin, Begin + Cnt); |
| assert(std::unique(Begin, Begin + Cnt) == Begin + Cnt && |
| "RVA tables should be de-duplicated"); |
| } |
| |
| // MinGW specific, for the "automatic import of variables from DLLs" feature. |
| size_t PseudoRelocTableChunk::getSize() const { |
| if (Relocs.empty()) |
| return 0; |
| return 12 + 12 * Relocs.size(); |
| } |
| |
| // MinGW specific. |
| void PseudoRelocTableChunk::writeTo(uint8_t *Buf) const { |
| if (Relocs.empty()) |
| return; |
| |
| ulittle32_t *Table = reinterpret_cast<ulittle32_t *>(Buf + OutputSectionOff); |
| // This is the list header, to signal the runtime pseudo relocation v2 |
| // format. |
| Table[0] = 0; |
| Table[1] = 0; |
| Table[2] = 1; |
| |
| size_t Idx = 3; |
| for (const RuntimePseudoReloc &RPR : Relocs) { |
| Table[Idx + 0] = RPR.Sym->getRVA(); |
| Table[Idx + 1] = RPR.Target->getRVA() + RPR.TargetOffset; |
| Table[Idx + 2] = RPR.Flags; |
| Idx += 3; |
| } |
| } |
| |
| // Windows-specific. This class represents a block in .reloc section. |
| // The format is described here. |
| // |
| // On Windows, each DLL is linked against a fixed base address and |
| // usually loaded to that address. However, if there's already another |
| // DLL that overlaps, the loader has to relocate it. To do that, DLLs |
| // contain .reloc sections which contain offsets that need to be fixed |
| // up at runtime. If the loader finds that a DLL cannot be loaded to its |
| // desired base address, it loads it to somewhere else, and add <actual |
| // base address> - <desired base address> to each offset that is |
| // specified by the .reloc section. In ELF terms, .reloc sections |
| // contain relative relocations in REL format (as opposed to RELA.) |
| // |
| // This already significantly reduces the size of relocations compared |
| // to ELF .rel.dyn, but Windows does more to reduce it (probably because |
| // it was invented for PCs in the late '80s or early '90s.) Offsets in |
| // .reloc are grouped by page where the page size is 12 bits, and |
| // offsets sharing the same page address are stored consecutively to |
| // represent them with less space. This is very similar to the page |
| // table which is grouped by (multiple stages of) pages. |
| // |
| // For example, let's say we have 0x00030, 0x00500, 0x00700, 0x00A00, |
| // 0x20004, and 0x20008 in a .reloc section for x64. The uppermost 4 |
| // bits have a type IMAGE_REL_BASED_DIR64 or 0xA. In the section, they |
| // are represented like this: |
| // |
| // 0x00000 -- page address (4 bytes) |
| // 16 -- size of this block (4 bytes) |
| // 0xA030 -- entries (2 bytes each) |
| // 0xA500 |
| // 0xA700 |
| // 0xAA00 |
| // 0x20000 -- page address (4 bytes) |
| // 12 -- size of this block (4 bytes) |
| // 0xA004 -- entries (2 bytes each) |
| // 0xA008 |
| // |
| // Usually we have a lot of relocations for each page, so the number of |
| // bytes for one .reloc entry is close to 2 bytes on average. |
| BaserelChunk::BaserelChunk(uint32_t Page, Baserel *Begin, Baserel *End) { |
| // Block header consists of 4 byte page RVA and 4 byte block size. |
| // Each entry is 2 byte. Last entry may be padding. |
| Data.resize(alignTo((End - Begin) * 2 + 8, 4)); |
| uint8_t *P = Data.data(); |
| write32le(P, Page); |
| write32le(P + 4, Data.size()); |
| P += 8; |
| for (Baserel *I = Begin; I != End; ++I) { |
| write16le(P, (I->Type << 12) | (I->RVA - Page)); |
| P += 2; |
| } |
| } |
| |
| void BaserelChunk::writeTo(uint8_t *Buf) const { |
| memcpy(Buf + OutputSectionOff, Data.data(), Data.size()); |
| } |
| |
| uint8_t Baserel::getDefaultType() { |
| switch (Config->Machine) { |
| case AMD64: |
| case ARM64: |
| return IMAGE_REL_BASED_DIR64; |
| case I386: |
| case ARMNT: |
| return IMAGE_REL_BASED_HIGHLOW; |
| default: |
| llvm_unreachable("unknown machine type"); |
| } |
| } |
| |
| std::map<uint32_t, MergeChunk *> MergeChunk::Instances; |
| |
| MergeChunk::MergeChunk(uint32_t Alignment) |
| : Builder(StringTableBuilder::RAW, Alignment) { |
| this->Alignment = Alignment; |
| } |
| |
| void MergeChunk::addSection(SectionChunk *C) { |
| auto *&MC = Instances[C->Alignment]; |
| if (!MC) |
| MC = make<MergeChunk>(C->Alignment); |
| MC->Sections.push_back(C); |
| } |
| |
| void MergeChunk::finalizeContents() { |
| if (!Finalized) { |
| for (SectionChunk *C : Sections) |
| if (C->Live) |
| Builder.add(toStringRef(C->getContents())); |
| Builder.finalize(); |
| Finalized = true; |
| } |
| |
| for (SectionChunk *C : Sections) { |
| if (!C->Live) |
| continue; |
| size_t Off = Builder.getOffset(toStringRef(C->getContents())); |
| C->setOutputSection(Out); |
| C->setRVA(RVA + Off); |
| C->OutputSectionOff = OutputSectionOff + Off; |
| } |
| } |
| |
| uint32_t MergeChunk::getOutputCharacteristics() const { |
| return IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA; |
| } |
| |
| size_t MergeChunk::getSize() const { |
| return Builder.getSize(); |
| } |
| |
| void MergeChunk::writeTo(uint8_t *Buf) const { |
| Builder.write(Buf + OutputSectionOff); |
| } |
| |
| // MinGW specific. |
| size_t AbsolutePointerChunk::getSize() const { return Config->Wordsize; } |
| |
| void AbsolutePointerChunk::writeTo(uint8_t *Buf) const { |
| if (Config->is64()) { |
| write64le(Buf + OutputSectionOff, Value); |
| } else { |
| write32le(Buf + OutputSectionOff, Value); |
| } |
| } |
| |
| } // namespace coff |
| } // namespace lld |