| //===- ICF.cpp ------------------------------------------------------------===// |
| // |
| // The LLVM Linker |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // ICF is short for Identical Code Folding. That is a size optimization to |
| // identify and merge two or more read-only sections (typically functions) |
| // that happened to have the same contents. It usually reduces output size |
| // by a few percent. |
| // |
| // On Windows, ICF is enabled by default. |
| // |
| // See ELF/ICF.cpp for the details about the algortihm. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Chunks.h" |
| #include "Symbols.h" |
| #include "lld/Common/ErrorHandler.h" |
| #include "llvm/ADT/Hashing.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/Parallel.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <atomic> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| namespace lld { |
| namespace coff { |
| |
| class ICF { |
| public: |
| void run(ArrayRef<Chunk *> V); |
| |
| private: |
| void segregate(size_t Begin, size_t End, bool Constant); |
| |
| bool equalsConstant(const SectionChunk *A, const SectionChunk *B); |
| bool equalsVariable(const SectionChunk *A, const SectionChunk *B); |
| |
| uint32_t getHash(SectionChunk *C); |
| bool isEligible(SectionChunk *C); |
| |
| size_t findBoundary(size_t Begin, size_t End); |
| |
| void forEachClassRange(size_t Begin, size_t End, |
| std::function<void(size_t, size_t)> Fn); |
| |
| void forEachClass(std::function<void(size_t, size_t)> Fn); |
| |
| std::vector<SectionChunk *> Chunks; |
| int Cnt = 0; |
| std::atomic<bool> Repeat = {false}; |
| }; |
| |
| // Returns a hash value for S. |
| uint32_t ICF::getHash(SectionChunk *C) { |
| return hash_combine(C->getPermissions(), C->SectionName, C->NumRelocs, |
| C->Alignment, uint32_t(C->Header->SizeOfRawData), |
| C->Checksum, C->getContents()); |
| } |
| |
| // Returns true if section S is subject of ICF. |
| // |
| // Microsoft's documentation |
| // (https://msdn.microsoft.com/en-us/library/bxwfs976.aspx; visited April |
| // 2017) says that /opt:icf folds both functions and read-only data. |
| // Despite that, the MSVC linker folds only functions. We found |
| // a few instances of programs that are not safe for data merging. |
| // Therefore, we merge only functions just like the MSVC tool. However, we merge |
| // identical .xdata sections, because the address of unwind information is |
| // insignificant to the user program and the Visual C++ linker does this. |
| bool ICF::isEligible(SectionChunk *C) { |
| // Non-comdat chunks, dead chunks, and writable chunks are not elegible. |
| bool Writable = C->getPermissions() & llvm::COFF::IMAGE_SCN_MEM_WRITE; |
| if (!C->isCOMDAT() || !C->isLive() || Writable) |
| return false; |
| |
| // Code sections are eligible. |
| if (C->getPermissions() & llvm::COFF::IMAGE_SCN_MEM_EXECUTE) |
| return true; |
| |
| // .xdata unwind info sections are eligble. |
| return C->getSectionName().split('$').first == ".xdata"; |
| } |
| |
| // Split an equivalence class into smaller classes. |
| void ICF::segregate(size_t Begin, size_t End, bool Constant) { |
| while (Begin < End) { |
| // Divide [Begin, End) into two. Let Mid be the start index of the |
| // second group. |
| auto Bound = std::stable_partition( |
| Chunks.begin() + Begin + 1, Chunks.begin() + End, [&](SectionChunk *S) { |
| if (Constant) |
| return equalsConstant(Chunks[Begin], S); |
| return equalsVariable(Chunks[Begin], S); |
| }); |
| size_t Mid = Bound - Chunks.begin(); |
| |
| // Split [Begin, End) into [Begin, Mid) and [Mid, End). We use Mid as an |
| // equivalence class ID because every group ends with a unique index. |
| for (size_t I = Begin; I < Mid; ++I) |
| Chunks[I]->Class[(Cnt + 1) % 2] = Mid; |
| |
| // If we created a group, we need to iterate the main loop again. |
| if (Mid != End) |
| Repeat = true; |
| |
| Begin = Mid; |
| } |
| } |
| |
| // Compare "non-moving" part of two sections, namely everything |
| // except relocation targets. |
| bool ICF::equalsConstant(const SectionChunk *A, const SectionChunk *B) { |
| if (A->NumRelocs != B->NumRelocs) |
| return false; |
| |
| // Compare relocations. |
| auto Eq = [&](const coff_relocation &R1, const coff_relocation &R2) { |
| if (R1.Type != R2.Type || |
| R1.VirtualAddress != R2.VirtualAddress) { |
| return false; |
| } |
| Symbol *B1 = A->File->getSymbol(R1.SymbolTableIndex); |
| Symbol *B2 = B->File->getSymbol(R2.SymbolTableIndex); |
| if (B1 == B2) |
| return true; |
| if (auto *D1 = dyn_cast<DefinedRegular>(B1)) |
| if (auto *D2 = dyn_cast<DefinedRegular>(B2)) |
| return D1->getValue() == D2->getValue() && |
| D1->getChunk()->Class[Cnt % 2] == D2->getChunk()->Class[Cnt % 2]; |
| return false; |
| }; |
| if (!std::equal(A->Relocs.begin(), A->Relocs.end(), B->Relocs.begin(), Eq)) |
| return false; |
| |
| // Compare section attributes and contents. |
| return A->getPermissions() == B->getPermissions() && |
| A->SectionName == B->SectionName && A->Alignment == B->Alignment && |
| A->Header->SizeOfRawData == B->Header->SizeOfRawData && |
| A->Checksum == B->Checksum && A->getContents() == B->getContents(); |
| } |
| |
| // Compare "moving" part of two sections, namely relocation targets. |
| bool ICF::equalsVariable(const SectionChunk *A, const SectionChunk *B) { |
| // Compare relocations. |
| auto Eq = [&](const coff_relocation &R1, const coff_relocation &R2) { |
| Symbol *B1 = A->File->getSymbol(R1.SymbolTableIndex); |
| Symbol *B2 = B->File->getSymbol(R2.SymbolTableIndex); |
| if (B1 == B2) |
| return true; |
| if (auto *D1 = dyn_cast<DefinedRegular>(B1)) |
| if (auto *D2 = dyn_cast<DefinedRegular>(B2)) |
| return D1->getChunk()->Class[Cnt % 2] == D2->getChunk()->Class[Cnt % 2]; |
| return false; |
| }; |
| return std::equal(A->Relocs.begin(), A->Relocs.end(), B->Relocs.begin(), Eq); |
| } |
| |
| size_t ICF::findBoundary(size_t Begin, size_t End) { |
| for (size_t I = Begin + 1; I < End; ++I) |
| if (Chunks[Begin]->Class[Cnt % 2] != Chunks[I]->Class[Cnt % 2]) |
| return I; |
| return End; |
| } |
| |
| void ICF::forEachClassRange(size_t Begin, size_t End, |
| std::function<void(size_t, size_t)> Fn) { |
| if (Begin > 0) |
| Begin = findBoundary(Begin - 1, End); |
| |
| while (Begin < End) { |
| size_t Mid = findBoundary(Begin, Chunks.size()); |
| Fn(Begin, Mid); |
| Begin = Mid; |
| } |
| } |
| |
| // Call Fn on each class group. |
| void ICF::forEachClass(std::function<void(size_t, size_t)> Fn) { |
| // If the number of sections are too small to use threading, |
| // call Fn sequentially. |
| if (Chunks.size() < 1024) { |
| forEachClassRange(0, Chunks.size(), Fn); |
| ++Cnt; |
| return; |
| } |
| |
| // Split sections into 256 shards and call Fn in parallel. |
| size_t NumShards = 256; |
| size_t Step = Chunks.size() / NumShards; |
| for_each_n(parallel::par, size_t(0), NumShards, [&](size_t I) { |
| size_t End = (I == NumShards - 1) ? Chunks.size() : (I + 1) * Step; |
| forEachClassRange(I * Step, End, Fn); |
| }); |
| ++Cnt; |
| } |
| |
| // Merge identical COMDAT sections. |
| // Two sections are considered the same if their section headers, |
| // contents and relocations are all the same. |
| void ICF::run(ArrayRef<Chunk *> Vec) { |
| // Collect only mergeable sections and group by hash value. |
| uint32_t NextId = 1; |
| for (Chunk *C : Vec) { |
| if (auto *SC = dyn_cast<SectionChunk>(C)) { |
| if (isEligible(SC)) |
| Chunks.push_back(SC); |
| else |
| SC->Class[0] = NextId++; |
| } |
| } |
| |
| // Initially, we use hash values to partition sections. |
| for_each(parallel::par, Chunks.begin(), Chunks.end(), [&](SectionChunk *SC) { |
| // Set MSB to 1 to avoid collisions with non-hash classs. |
| SC->Class[0] = getHash(SC) | (1 << 31); |
| }); |
| |
| // From now on, sections in Chunks are ordered so that sections in |
| // the same group are consecutive in the vector. |
| std::stable_sort(Chunks.begin(), Chunks.end(), |
| [](SectionChunk *A, SectionChunk *B) { |
| return A->Class[0] < B->Class[0]; |
| }); |
| |
| // Compare static contents and assign unique IDs for each static content. |
| forEachClass([&](size_t Begin, size_t End) { segregate(Begin, End, true); }); |
| |
| // Split groups by comparing relocations until convergence is obtained. |
| do { |
| Repeat = false; |
| forEachClass( |
| [&](size_t Begin, size_t End) { segregate(Begin, End, false); }); |
| } while (Repeat); |
| |
| log("ICF needed " + Twine(Cnt) + " iterations"); |
| |
| // Merge sections in the same classs. |
| forEachClass([&](size_t Begin, size_t End) { |
| if (End - Begin == 1) |
| return; |
| |
| log("Selected " + Chunks[Begin]->getDebugName()); |
| for (size_t I = Begin + 1; I < End; ++I) { |
| log(" Removed " + Chunks[I]->getDebugName()); |
| Chunks[Begin]->replace(Chunks[I]); |
| } |
| }); |
| } |
| |
| // Entry point to ICF. |
| void doICF(ArrayRef<Chunk *> Chunks) { ICF().run(Chunks); } |
| |
| } // namespace coff |
| } // namespace lld |